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ABSTRACT 

Embrittlement and Localized Corrosion in Alloy HT -9 

By 

Sudheer Sarna 

Dr. Ajit K.Roy, Examination Committee chair 
Associate Professor of Mechanical Engineering 

University ofNevada, Las Vegas 

This investigation is focused on the evaluation of stress corrosion cracking (SCC), 

hydrogen embrittlement (HE) and localized corrosion susceptibility of Alloy HT -9 in 

neutral and acidic solutions at 30, 60 and 90°C. Constant-load and slow-strain-rate (SSR) 

testing techniques were used to evaluate the SCC and HE behavior of this alloy by using 

smooth and notched tensile specimens. Hydrogen effect on the cracking behavior was 

evaluated by applying cathodic (negative) potential to the test specimens. Localized 

corrosion susceptibility was evaluated by cyclic potentiodynamic polarization technique. 

The results of constant load SCC testing showed a threshold stress at 80% of the 

material's yield strength value in the 90°C acidic solution. Reduced ductility and true 

failure stress were observed in the SSR tests due to the combined effect of acidic pH and 

increased temperature. sec testing under cathodic charging showed further reduction in 

ductility and true failure stress. Polarized specimens showed pitting in the acidic solution. 

Fractographic evaluations by scanning electron microscopy revealed ductile and brittle 

failures, respectively in the neutral and acidic environments. 
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CHAPTER 1 

INTRODUCTION 

Nuclear waste consists of used fuel released from nuclear reactors. In the United 

States, the existing nuclear reactors are expected to produce approximately 150,000 

metric tons of spent fuel over their life times. Almost 50 percent (%) of this wastage is 

designed to be stored in a geological repository at the Yucca Mountain site near Las 

Vegas, Nevada. It has been estimated that by 2050 there may be 1 million tons of 

discharged fuel worldwide. This projection may indicate a necessity of constructing and 

commissioning an additional repository of the scale ofYucca Mountain somewhere in the 

world for every three to four years. 

The detrimental effect of SNF is accountable is attributable only to 1% of its content. 

This 1% is primarily made up of plutonium, neptunium, americium, and curium (called 

transuranic elements) and long-lived isotopes of iodine and technetium created as 

products from the fission process in nuclear powered reactors [ 1]. The separation of the 

long-lived actinides and fission products from the SNF, and transmuting them into short

lived actinides or non-radioactive waste would ease the constraints for geologic 

repositories, reduce their building costs, and increase the public acceptance. For this 

reason, accelerator-driven systems with their transmutation potential are currently being 

considered as an alternative approach for the nuclear waste management, compared to 

that associated with the direct disposal of SNF in a geological repository. 

1 
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The basic process of accelerator-driven nuclear systems is nuclear transmutation that 

can minimize the inflexible performance requirements of a geological repository by 

reducing the isolation period for HL W /SNF from 10,000 years to much shorter duration 

and can also eliminate the need for another geologic repository. In essence, the benefits 

drawn from transmuting of nuclear waste components are: the reduction of long-lived 

nuclear contents, the elimination of a future geological repository and the partitioning and 

transmutation process allows for the use of optimized waste forms that can be highly 

resistant to leaching and other natural processes [2]. 

Transmutation refers to the minimization or elimination of long-lived actinides and 

fission products from spent fuels discharged from operating nuclear reactors. An 

important component of the transmutation facility is a subcritical-target, which produces 

an intense neutron flux by impingement of accelerator proton beam onto it by a process 

known as spallation. 

A large amount of heat can be generated in the target material that will be contained 

m a sub-system structural container. Molten lead-bismuth-eutectic (LBE) has been 

identified as a spallation target to produce neutrons by the incident proton beams, and at 

the same time acting as a coolant, thus removing the generated heat. During this process, 

the target structural material may experience plastic or mechanical deformation because 

of the thrust produced by the bombardment of the high-speed protons onto the molten 

LBE. 

2 
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Figure 1.1 Schematic Illustration of Accelerator Driven Transmutation Process 

Temperature ranging from 400 to 600°C can be developed in the molten LBE during 

this process. In addition, the LBE-containing structural material may undergo 

environment assisted degradation and high temperature deformation [3]. The 

environments associated with the target systems can have an appreciable amount of 

hydrogen and helium that can induce degradations such as stress corrosion cracking 

(SCC), hydrogen embrittlement (HE), and localized corrosion [4]. Hydrogen and helium 

generation are the result of neutron formation during the transmutation process. 

sec is an environment-assisted cracking of an alloy resulting from the combined 

effect of a corrosive environment and a tensile stress. The stress may result from applied 

forces or locked-in residual stresses. Only specific combinations of alloy and chemical 

environment can lead to SCC. Usually, SCC begins with the rupturing of the protective 

3 
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oxide film on the metal surface by either mechanical means or by the action of chemical 

species, such as chloride ion. The cracks resulting from SCC may be either ductile or 

brittle in nature or a combination of both. Cracking may be intergranular, transgranular, 

or mixed mode depending on the alloy, its microstructure, and the environment. As stated 

earlier, hydrogen and helium produced during nuclear reactions can segregate to vacancy 

clusters and internal voids, thus eventually leading to HE in the target structural material 

[5]. 

The HE process may depend on two major factors: (1) the origin of the hydrogen; (2) 

the transport processes involved in moving the hydrogen from its source to the locations 

where it reacts with the metal to cause embrittlement. Body-centered cubic (bee) metals 

are the most susceptible to HE [6]. The Primary characteristics of HE are its strain-rate 

sensitivity, its temperature dependence and its susceptibility to delayed fracture. 

Localized corrosion is a degradation mode in which an intense attack takes place at 

localized sites on the surface of the material while the rest corrodes at a lower rate. 

This investigation is focused on the evaluation of SCC and HE of Alloy HT-9, a 

leading candidate target structural material, in aqueous environments of two different pH 

values using constant-load (CL) and slow-strain-rate (SSR) testing techniques. The use of 

the SSR and CL testing methods was based on their simplicity in performing the desired 

testing. The SSR testing is based upon a principle by which a test specimen is pulled in 

tension until fracture under a very slow strain rate condition to optimize combined effect 

of environment and mechanical constraint. Further, electrochemical studies were 

performed to evaluate the susceptibility of Alloy HT -9 to localized corrosion including 

pitting and crevice corrosion in similar environments. In addition, the metallographic and 

4 
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fracto graphic evaluations of the broken specimens were performed by optical microscopy 

and scanning electron microscopy (SEM), respectively. 

In essence, this thesis presents the results of SCC, HE and localized corrosion studies 

of Alloy HT -9 in aqueous environments that may constitute significant baseline 

information on the performance of this alloy as a function of different environmental and 

mechanical parameters including temperature, pH, and hydrogen ion (H+) concentration 

and loading mode. It should, however, be noted that a direct comparison of the 

performance of this material in molten LBE to that in the aqueous environments is not 

possible since the degradation in the former case is the result of liquid-metal 

embrittlement that does not involve ionic transfer but experience reduction in cohesive 

strength among surface atoms due to their reactions with the molten metal. Space 

evaluation of the SCC and localized corrosion susceptibility in the molten LBE is 

currently being pursued at the Los Alamos National Laboratory (LANL). Further, an 

infrastructure development to perform LBE experiments at UNL V is in progress. 

5 
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CHAPTER2 

MATERIAL AND ENVIRONMENTS 

2.1. Test Material 

The martensitic stainless steels are currently finding extensive application in nuclear 

reactors as substitutes for austenitic steels [7]. They are basically alloys of carbon (C) and 

chromium (Cr) having body-centered-cubic (bee) or body-centered tetragonal (bet) 

martensitic crystal structure in the hardened state. They are ferromagnetic and hardenable 

by heat-treatments. Martensitic stainless steels are usually preferred for their relatively 

high strength, moderate resistance to corrosion and good fatigue properties following 

suitable thermal treatments. The Cr content of these materials normally ranges between 9 

to 18 wt%, and their C content can be as high as 1.2 wt%. The composition of Cr and C 

are balanced to ensure a martensitic structure after hardening. Molybdenum (Mo) and 

nickel (Ni) can also be added to improve the mechanical properties or the corrosion 

resistance. When higher Cr levels are used to improve corrosion resistance, the presence 

of Ni can also help in maintaining the desired microstructure and preventing the 

formation of excessive free-ferrite [8]. 

Since the as-hardened martensitic structure is quite brittle, this material is typically 

reheated at lower temperatures to relieve the internal stresses within the microstructure or 

reheated to slightly higher temperatures to soften (temper) the material to intermediate 

6 
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hardness levels. Two martensitic alloys are of great interest in the United States. They 

are: Alloy HT-9 and T-91, both of which contain Cr and Mo. These alloys have been 

extensively used in Europe and USA as target structural materials in the transmutation 

systems as well as for the internal components in the U.S experimental liquid metal fast 

breeder reactors (LMFBR) due to their moderate corrosion resistance, optimum strength 

and the ease of manufacturing as well as their relatively lower cost [9]. Alloy HT -9 is a 

Swedish nuclear grade martensitic iron-nickel-chromium-molybdenum (Fe-Ni-Cr-Mo) 

stainless steel. T-91 falls within an ASTM designation [10] having Cr, Mo, Nb and V in 

it. 

Alloy HT -9 was specifically developed for high temperature applications where the 

corrosion-resistance inherent in austenitic stainless steels is not required. It has good 

swelling resistance and is also resistant to irradiation embrittlement particularly at 60°C 

[11]. It has been an excellent material for cladding and duct applications in liquid-metal 

reactors. The thermal/physical properties and history of development of Alloy HT -9 are 

shown in Tables 2.1 and 2.2, respectively [12, 13]. 

Table 2.1 Thermal and Physical Properties of Alloy HT -9 

Property 

Thermal Conductivity, W/m*K 

Modulus of Elasticity, GPa (106 psi) 

Poisson's Ratio 

Coefficient of Thermal Expansion per oc CF) * w-6 

7 

Alloy HT-9 

28 

160 

0.33 

12.5 
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Table 2.2 History and Properties of Alloy HT -9 

Alloy Application History Properties 

• Structural • Lower coefficient 
applications in super of thermal 
critical fossil power expansion and high 
plants thermal 

conductivity than 
austenitic steels 

• High swelling 
HT-9 resistance in fast 

neutron, ion and 
electron irradiation 
conditions 

• High creep strength 

• Higher Cr 
corrosion rates than 
austenitic/Ni based 
alloys 

• Addition of Cu 
may cause 
irradiation 
embrittlement 

The chemical composition and ambient temperature mechanical properties of Alloy 

HT-9 tested in this study are given in Tables 2.3 and 2.4, respectively. 

Table 2.3 Chemical Composition of Alloy HT-9 Tested 

Elements (wt%) 
Material/ 

Heat# c Mn p s Si Cr Ni Mo Cu v w Cb B Ce 

Alloy HT-9 0.18 0.4 0.012 0.2 0.20 12.26 0.49 1 0.01 0.3 0.46 -- -- --
/2048 

8 
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Table 2.4 Ambient Temperature Mechanical Properties of Alloy HT -9 

Material/Heat No. Yield Strength (ksi) Ultimate Strength 
(ksi) %El %RA 

Alloy HT -9/2048 118 139 22.1 62.3 

2.2. Test specimens 

An experimental heat of Alloy HT -9 was custom-melted by vacuum induction 

melting practice at the Timken Research Laboratory followed by fabrication processes to 

develop round bars. These bars were then austenitized at 1850°F for an hour, followed by 

an oil-quench. The quenched bars were then tempered at 1150°F for 1.25 hour and were 

subsequently air-cooled. The purpose of quenching and tempering was to achieve a fully 

tempered martensitic microstructure with a bee structure without any retained austenite. 

Cylindrical smooth specimens of 4-inch total length; l-inch gage length and 0.25-inch 

gage diameter were machined from these heat-treated bars in the longitudinal rolling 

direction. Some of these cylindrical tensile specimens were notched at the gage section 

by machining a V-shaped notch having an angle of 60° and a 0.05-inch depth around the 

diameter (0.156-inch) at the middle of the gage section. The stress concentration factor 

(Kt) corresponding to this notch was roughly about 2.9. The magnitude of Kt [14] was 

determined from the following calculation by using the plot shown in Figure 2.1. 

D 0.250in 
=---

d 0.156in 

D = 1.60 
(Equation 3.1) 

d 

9 
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Where, 
D = gage diameter, 
d = notch diameter 

r 0.005 in 
=----

d 0.156 in 

!_ = 0.032 
d 

r = radius of curvature at the root of the notch 

't , ! I 1 

' 
J ! , , I ! C" 

0.1 0.2 
rid 

(Equation 3.2) 

0.3 

Figure 2.1 Stress Concentration Factors for Grooved Shafts 

According to the ASTM designation E 8 [15], the aspect ratio of both smooth and 

notch specimens was maintained at 4. Specimens used in electrochemical polarization 

experiments were machined according to ASTM designation G 5 [16]. The schematic 

views of the smooth, notched and polarization specimens are shown in Figures 2.1, 2.2 

and 2.3, respectively. 

10 
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2.3. Test Environments 

As mentioned earlier, the performance of Alloy HT-9 needs evaluation in the 

presence of molten LBE. The susceptibility of Alloy HT-9 using self-loaded specimens 

(C-ring/U-bend) is to be studied soon at LANLIUNLV using a LBE testing facility. 

Since, the materials performance laboratory (MPL) at UNL V has no capability to conduct 

SCC experiments in the presence of molten LBE, corrosion studies have been performed 

at MPL in the presence of aqueous environments using different state-of-the-art testing 

techniques. These environments include neutral solution with pH ranging between 6 and 

6.5, and acidic solution with pH ranging from 2 to 2.5, as shown in Table 2.5. The 

susceptibility of Alloy HT -9 to SCC, HE and localized attack was evaluated in these 

environments at 30, 60 and 90°C. 

12 
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Table 2.5 Chemical Composition of Test Solutions (grams/liter) 

Environment 
CaCh K2S04 MgS04 NaCl NaN03 Na2S04 (pH) 

Neutral 2.769 7.577 4.951 39.973 31.529 56.742 
(6-6.5) 
Acidic Same as above except for an addition ofHCl to attain for the desired pH 
(2-2.5) range 

13 
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CHAPTER3 

EXPERIMENTAL PROCEDURES 

The susceptibility of Alloy HT -9 to SCC in acidic and neutral environments was 

evaluated by using both constant-load (CL) and slow-strain-rate (SSR) testing techniques 

at temperatures ranging from ambient to 90°C. The susceptibility of this alloy to localized 

corrosion was evaluated by using electrochemical cyclic potentiodynamic polarization 

(CPP) technique. The effect of hydrogen on the cracking behavior of this alloy was 

determined by applying cathodic (negative) electrochemical potential while the specimen 

was strained in tension in an aqueous solution. Further, optical microscopy and SEM 

were used to evaluate the metallurgical microstructures and the morphology of failure in 

the tested specimens, respectively. 

3.1. Constant-load Testing 

A calibrated proof ring was used for constant-load (CL) testing. Proof rings were 

specifically-designed to meet the National Association of Corrosion Engineers (NACE) 

standards [ 17]. Each individually calibrated proof ring was made by Cortest Inc and was 

accompanied by a calibration curve showing the load versus deflection of this ring. Test 

specimens were loaded under a stress state of uniaxial tension. Ring deflection was 

measured with a 8-9" diameter micrometer, with the supplied dial indicator providing a 
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check. These poof rings were fabricated from precision-machined alloy steel. Tension on 

the proof ring was quickly and easily adjusted using a standard wrench on the tension-

adjusting screw and lock nut. A thrust bearing distributed the load and prevented seizure. 

Specimen grips in these proof rings were made of stainless steel, fully-resistant to the 

testing environments. The environmental test chamber was secured by 0-ring seals that 

prevented any leakage during testing. The environmental chambers made of highly 

corrosion-resistant Hasteloy C-276 were used for testing at elevated temperatures. The 

experimental setup is shown in Figure 3.1. 

C - Test Specimen 

D - Rnvin'!nmental Chamber 

Figure 3.1 Constant-load Test Setup 

The amount of deflection needed to apply the desired load in the CL testing was 

determined by use of the calibration curve of the proof ring, as shown in Figure 3.2. The 

magnitude of the applied stress was based on the ambient temperature tensile yield 

strength (YS) of the test materials. Specimens were loaded at stress values equivalent to 

different percentages of the individual material's YS value, and the corresponding time-
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to-failure (TTF) was recorded. The determination of the SCC tendency using this 

technique was based on the TTF for the maximum test duration of 30 days. An automatic 

timer attached to the test specimen recorded the TTF. The cracking susceptibility was 

expressed in terms of a threshold stress ( cr1h) below which cracking did not occur during 

the maximum test duration of 30 days. 
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Figure 3.2 A Typical Calibration Curve for a Proof Ring 

3.2. Slow-Strain-Rate Testing 

J 
J 
J 
] 

' 

O.tf 

Before 1965, only constant-load or constant-strain tests of smooth and notched 

specimens of various configurations were used to assess the SCC tendency in metals. 

During the late 1960s, a dynamic SCC evaluation technique had emerged which is known 
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as constant-strain-rate or slow-strain-rate testing (SSR) technique [17]. SSR testing used 

in this investigation was performed in a specially-designed system known as a constant

extension-rate-testing (CERT) machine, as shown in Figure 3.3. This equipment allowed 

testing to simulate a broad range of load, temperature, pressure, strain-rate and 

environmental conditions using both mechanical and electrochemical corrosion testing 

techniques. These machines, designed and manufactured by the Cortest Inc, offered 

accuracy and flexibility in testing the effects of strain rate, providing up to 7500 lbs of 

load capacity with linear extension rates ranging from 1 o-5 to 1 o-8 in/sec. 

To ensure the maximum accuracy in test results, this apparatus was comprised of a 

heavy-duty load-frame that minimized the system compliance while maintaining precise 

axial alignment of the load train. An all-gear drive system provided consistent extension 

rate. This machine provided the maximum flexibility and working space for test sample 

configuration, environmental chamber design, and accessibility. An added feature 

included in this model (model# 3451) for ease of operation was a quick-hand wheel to 

apply a pre-load prior to the operation. 
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Constant Extension Rate Testing Machines 

- Top Actuator 
C • Environmental Chamber 
D - Bottom Actuator 

Figure 3.3 CERT Machines for SSR Testing 

The SSR test setup used in this study consisted of a top-loaded actuator, testing 

chamber, linear variable differential transducer (L VDT) and load cell as shown in Figure 

3.4. The top-loaded actuator was intended to pull the specimen at a specified strain rate 

so that the spilled solution, if any, would not damage the actuator. A heating cartridge 

was connected to the bottom cover of the environmental chamber for elevated-

temperature testing. A thermocouple was connected on the top cover of this chamber to 

monitor the inside temperature. The load cell was intended to measure the applied load 

through an interface with the front panel user interface. The L VDT was used to record the 

displacement of the gage section during the SSR testing. 
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Load cell Stepper motor power drive 

Jhermoouple 

Testing chamber 

specimen 

Figure 3.4 SSR Test Setup 

Prior to the performance of SCC testing by the SSR technique, the load-frame

compliance factor (LFCF- the deflection in the frame per unit load), was determined by 

using ferritic type 430 stainless steel. The generated LFCF data are shown in the Figure 

3.5. These LFCF values were inputted to a load frame acquisition system prior to the 

SCC testing. The resultant LFCF values are also shown in Figure 3.5. 
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Frame Compliance Test 
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Figure 3.5 Load Frame Compliance Test 

7000 8000 

A strain rate of 3.3x10·6 s·1 was used during the SSR testing. This strain rate 

was selected based upon prior research work performed at the Lawrence Livermore 

National Laboratory (LLNL) [18]. It is well known that the SCC occurrence is an effect 

of two significant factors such as the applied/residual stress and a susceptible 

environment. If the stress is applied at a very fast rate to the test specimen, while it is 

exposed to the aqueous environment, the resultant failure may not be different from the 

conventional mechanical deformation produced without an environment. On the other 

hand, if the strain rate is too slow, the resultant failure may simply be attributed to the 

corrosive damage due to environmental interaction with the material, thus, causing 

breakdown of the protective surface film. In view of this rationale, the SSR testing at 

LLNL was initially conducted at strain rates ranging between 10·5 and 10-7 s-1
• Based 
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upon the experimental work at LLNL, it was determined that a strain rate of around 1 o-6 

s-1 would provide the most effective contributions of both the mechanical and 

environmental variables in enhancing the environment-induced cracking susceptibility 

during the SSR testing. 

During SCC testing by the SSR method, the specimen was continuously strained in 

tension until fracture, in contrast to more conventional SCC test conducted under a 

sustained loading condition. The application of a slow dynamic straining during the SSR 

testing to the specimen caused failure that probably might not occur under a constant load 

or might have taken a prohibitively longer duration to initiate cracks in producing failures 

in the tested specimens. 

Load versus displacement, and stress versus strain curves were plotted during these 

tests. Dimensions (length and diameter) of the test specimens were measured before and 

after testing. The cracking tendency in the SSR tests was characterized by the time-to

failure (TTF), and a number of ductility parameters such as the percent elongation (%El) 

and the percent reduction in area (%RA). Further, the maximum stress (crm) and the true 

failure stress ( crc) obtained from the stress-strain diagram and the final dimensions were 

taken into consideration. The magnitudes of %El, %RA, O"m and crr were calculated using 

the following equations: 

% El = ( L rzoL o ) x I 00 ; Lr > Lo 

%RA = ( Ao;:oAr )x 100 ; Ao>Ac 
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Where, 

p 
a = m 

m A 
m 

A= 4 

Ao = Initial cross sectional area 

Am = Cross sectional area at maximum load 

Ar= Final cross sectional area at failure 

P m= Ultimate tensile load 

Pr= Failure load 

Lo= Initial length 

Lr= Final length 

3.3. Electrochemical Testing 

3.3.1. Cyclic Potentiodynamic Polarization Testing 

(Equation 3.3) 

(Equation 3.4) 

(Equation 3.5) 

The susceptibility of Alloy HT -9 to localized (pitting and crevice) corrosion was 

determined by performing cyclic potentiodynamic polarization (CPP) experiments in 

acidic and neutral environments using EG&G Model 273A potentiostat. The CPP testing 

was based on a three-electrode polarization concept, in which the working electrode 

(specimen) acted as an anode and two graphite electrodes (counter electrodes) acted as 
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cathodes (Figure 3.7). The reference electrode was made of Ag/AgCl solution contained 

Electrochemical Test Setup 

A • Potentiosrat 
B - Water Bath 
C - Polari7.ation Cell 

Figure 3.6 Electrochemical Testing Setup 

inside a Luggin probe having the test solution that acted as a salt bridge. The tip of the 

Luggin probe was placed at a distance of 2 to 3 mm from the polarization specimen, as 

shown in Figure 3.8. 

Working 
Eledrode 

Luggin Capillary 

Figure 3.7 Luggin Probe Arrangement 
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Oxidation reaction takes place at the working electrode (specimen) and reduction 

reaction occurs at the counter electrodes (graphite rods). At the onset, the corrosion or the 

open circuit potential (Ecorr) of the specimen was determined with respect to the Ag/ AgCl 

reference electrode, followed by forward and reverse potential scans at the rate of 0.17 

m V /sec. An initial delay of 50 minutes was given to attain a stable Ecorr value. The 

magnitudes of the critical pitting potential (Epit) and protection potential (Eprot), if any, 

were determined from the CPP diagram. 

Before conducting the CPP test, the potentiostat was calibrated according to the 

ASTM G 5 Designation. The calibration of this potentiostat was performed to generate a 

characteristic potentiodynamic polarization curve (Figure 3.9) for ferritic Type 430 

stainless steel (SS) in 1N (1 Normal) H2S04 solution at 30°C. Small cylindrical 

specimens of Type 430 ferritic SS were used to generate the calibration curve. The 

resultant potentiodynamic polarization curve (Figure 3.10.) was compared to the plot 

shown in Figure 3.9, taken from the ASTM Designation G 5 [19]. Ideally, the average 

Ecorr value for Type 430 ferritic SS in 1N sulphuric acid at 30°C should be approximately 

- 520 m V with respect to a saturated calomel electrode (SCE). 
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1ype 430 Statnlest Steel 
(OKS $4l(l0G) 
11 Ri!so •• sc"c 
Plltl!nt to<lyn<~n~t< 
0.6 V/h 

Figure 3.8 Standard Potentiodynamic Polarization Plot (ASTM-G 5) 

Figure 3.9 Potentiodynamic Polarization Curve for Potentiostat M273A-1 

3.3.2. SCC Testing under Potentiostatic Potential 

As indicated in the previous section, hydrogen can be generated during the 

transmutation process due to formation of neutrons. Therefore, attempts were made in 
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this investigation to evaluate the effect of hydrogen on the cracking susceptibility of 

Alloy HT -9 while the specimen was strained in tension under the SSR condition. It is a 

well known that atomic hydrogen can be generated by cathodic polarization (H+ + e-+ H) 

when a metallic material is exposed to an aqueous environment. A cathodic or reduction 

reaction is associated with the formation of atomic hydrogen (H) that can diffuse into the 

triaxial stress region within the metal when exposed to a corrosive environment. 

Accumulation of H in this region can enhance the cracking susceptibility of a stressed 

material of interest. The susceptibility of an alloy to embrittlement is usually increased in 

an acidic solution due to the increased concentration of hydrogen ion (W) generated 

during the electrochemical reaction. This phenomenon of degradation is commonly 

known as hydrogen embrittlement (HE). 

The susceptibility of Alloy HT -9 to HE was evaluated by applying cathodic 

(negative) electrochemical potential (Econt) of -1000 mV with respect to Ag/AgCl 

reference electrode to the test specimen during straining of the tensile specimen under a 

similar SSR condition. For SCC testing under Econt, the cylindrical specimens were spot

welded with a conductive. metallic wire at their shoulder for electron flow to the gage 

section of the specimen. The configuration of the spot-welded cylindrical specimen, and 

the experimental setup under Econt are shown in Figures 3.11 and 3.12, respectively. The 

specimen was subjected to a selected Econt value for the entire testing duration until it 

failed. The cracking susceptibility was expressed in terms of ductility parameters (%El 

and %RA), TTF and crr resulting from hydrogen generation due to the cathodic charging. 
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Figure 3.10 Spot-Welded Cylindrical Specimen 

Figure 3.11 HE Test Setup 

3.4. Optical Microcopy 

Characterization of metallurgical microstructures of engineering materials by optical 

microscopy is of great importance. Therefore, the tested specimens were sectioned and 

mounted by a standard metallographic technique, followed by polishing and etching to 

reveal their microstructures including the grain boundaries. The polished and etched 

specimens were rinsed in deionized water, and dried with acetone and alcohol prior to 

their evaluation by a Leica microscope (model# 4001) having a magnification of 1000X. 
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The presence of secondary cracks, if any, along the gage section of the failed specimen 

was also determined by this technique. 

3.5. Scanning electron microscopy 

Failure analyses of metals and alloys involve identification of the types of the failure. 

Failure can occur by one or more of the several mechanisms, including surface damage, 

such as corrosion or wear, elastic or plastic deformation and fracture. Failures can be 

classified as ductile or brittle. The morphology of failure in the tested specimen was 

determined by scanning electron microscopy (SEM). A Joel SEM (model# 2605) was 

used to evaluate the fractography of all tested specimen. Energy Dispersive Spectrometry 

(EDS), interfaced with this SEM, was also used for elemental analysis in the vicinity of 

the resultant failures. 
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CHAPTER4 

RESULTS 

4.1. Slow- Strain-Rate Tests 

4.1.1. Smooth Specimen without Econt 

The stress-strain diagrams of Alloy HT -9 obtained in the neutral solution at 30 and 

90°C and in the acidic solution at 30, 60 and 90°C are superimposed in Figures 4.1 and 

4.2, respectively for comparison purpose. An examination of both figures clearly 

indicates that the magnitude of strain was gradually reduced with increasing temperature, 

irrespective of the testing environment. However, the extent of reduction was more 

pronounced in the acidic solution (Figure 4.2), as expected. 

The stress-strain diagrams obtained in the SSR testing and the specimen dimensions 

before and after testing were used to calculate the ductility parameters (%Eland %RA) 

and the true failure stress ( crr). The magnitudes of these parameters, and the failure load 

(Pr) and time-to-failure (TTF) are shown in Table 4.1 as a function of testing environment 

and temperature. These data reveals that the magnitude of ductility parameters, crr and 

TTF were gradually reduced with increasing temperature, once again showing more 

pronounced effect in the acidic environment. 

The data shown in Table 4.1 are reproduced in a graphical format in Figures 4.3 

through 4.6, showing the effects of pH and temperature on %El, %RA, crrand TTF. There 

is a clear indication that all four parameters gradually become reduced with increasing 
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temperature. These reductions were more pronounced in the acidic solution, as 

anticipated. It should be noted that all the SSR tests were replicated twice. 
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Figure 4.1 Comparisons of Stress-Strain Diagrams 
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Figure 4.2 Comparisons of Stress-Strain Diagrams 
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Table 4.1 SSR Test Results using Smooth Specimens 

Material/ 
Heat Number/ 

Env 
Temp %El 

%RA Pr crr TTF 
Specimen ID (oC) (lbs) (Ksi) (Houu 

HT9/2048/ A19 Neutral 30°C 19.3 61.6 3689.61 191.65 19 

HT9/2048/ A21 Neutral 30°C 18.86 62.86 3725.79 199.3 18.98 

HT9/2048/ A33 !Neutral 60 oc 18.86 52.32 3959.9 176.8 18.51 

HT9/2048/ A34 Neutral 60 oc 17.8 51.2 3975.20 175.3 18.52 

HT9/2048/ A20 Neutral 90°C 13.4 41.7 4248.85 144.5 12.51 

HT9/2048/ A29 Neutral 90°C 12.4 37.4 4257.3 122.9 12.73 

HT9/2048/ A8 Acidic 30°C 19.12 55.96 3534.69 171.6 17.93 

HT9/2048/A11 Acidic 30°C 18.4 55.72 3575.25 174.45 17.95 

HT9/2048/A37 Acidic 60 °C 14.62 48.02 4012.53 154.6 14.9 

HT9/2048/ A3 7 Acidic 60 oc 14.8 49.6 4001.32 159.4 14.2 

HT9/2048/ A38 Acidic 60 oc 14.34 47.92 3755.5 146.98 14.56 

HT9/2048/A17 Acidic 90°C 11.02 38.4 3959.3 126.20 12.33 

HT9/2048/A18 Acidic 90°C 10.15 35.53 4002.1 117.63 11.9 

Temp: Temperature 

Env : Environment 

Pr : Failure Load 

%El : Percentage Elongation 

crr : True Failure Stress 

%RA: Percentage Reduction in Area 

TTF: Time-To-Failure 

31 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

70 

60 

50 

~ 40 

~ 30 

20 

10 

jjj 
~ 

25 

20 

15 

10 

5 

0 
0 

Alloy HT-9 -+-- Neutral Solution 

-Acidic Solution 

20 40 60 80 

Temperature (0 C} 

Figure 4.3 Effect of pH and Temperature on %El 

Alloy HT -9 -+-- Neutral Solution 

-Acidic Solution 

0+-------~------~------~------~------~ 

0 20 40 60 80 100 

Temperature (°C) 

Figure 4.4 Effect of pH and Temperature on %RA 

32 

100 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

250 

200 

::::- 150 
U) 

~ -b 100 

50 

0 
0 

20 

18 

16 

14 
~ 12 
:::l 

~ 10 -u. 8 t-
t-

6 

4 

2 
0 

0 

Alloy HT-9 

--.-Neutral Solution 

-Acidic Solution 

20 40 60 80 100 

Temperature (0 C) 

Figure 4.5 Effect of pH and Temperature on crr 

Alloy HT-9 

20 40 60 

Temperature ec) 

__._ Neutral Solution 

-Acidic Soution 

80 100 

Figure 4.6 Effect of pH and Temperature on TTF 

33 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

4.1.2. Notched Specimen 

A comparison of stress-strain diagram for Alloy HT -9 obtained in air using an MTS 

unit at ambient temperature involving smooth and notched cylindrical specimens is 

shown in Figure 4. 7. It is obvious from this figure that the presence of a notch in the test 

specimens reduced the magnitude of the yield strength (YS), ultimate tensile strength 

(UTS), and the failure stress when tested in air. The effect of pH on the stress-strain 

diagrams obtained in the 30°C neutral and acidic solutions using notched specimen in the 

SSR testing is shown in Figure 4.8. These data indicate that the magnitude of the failure 

strain was substantially reduced in the acidic solution at a comparable testing 

temperature. 

The overall SSR testing data using notched specimens of Alloy HT -9 are given in 

Table 4.2, showing ductility parameters, failure load, crr and TTF as functions of testing 

environment and temperature. Data shown in Table 4.1 and 4.2 are reproduced in Figures 

4.9-4.12 showing the effects of temperature, pH and notch on crr, %El, %RA and TTF. 

These data indicate that the ductility in terms of %RA was reduced in the acidic solution 

at the elevated temperature due to the presence of notch. However, very little reduction 

was observed with %El and TTF in either environment due to a change in temperature. 

The magnitude of the true failure stress ( crr) was increased in the presence of a notch 

due to the reduced cross sectional area at the root of this notch. However, it should be 

noted that the magnitude of crr reduced in the 90°C acidic solution, possibly due to the 

combined effect of pH and temperature on this parameter. In general, the notched 

specimen showed significantly reduced %El, %RA, TTF values compared to those 

obtained with smooth specimens, as expected. The effects of testing temperature and 
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environment on the maximum load (Pm) and failure load (Pr) are shown in Table 4.3, 

showing lower values in the acidic solution at the elevated temperature. 

Alloy HT -9, Air, Ambient Temperature 
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Figure 4.7 Comparison of Stress-Strain Diagram with and without a Notch 
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Figure 4.8 Stress-Strain Curves in Neutral and Acidic environments 
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Table 4.2 SSR Test results using Notched Specimens 

Material/ 
Heat Number/ 

Heat 
Temp UTS TTF 

Treatment/ Env %EI %RA O"f 

Specimen ID 
(oC) (Ksi) (Ksi) (Hour) 

HT9/2048/B 19 Neutral 30 ~.02 22.8 209.79 243.1 4.28 

HT9/2048/B22 Neutral 30 1.93 23.99 209.12 250.23 4.3 

HT9/2048/B23 Neutral 90 1.67 11.80 177.6 185.01 3.52 

HT9/2048/B24 Neutral 90 1.69 12.40 185.27 189.01 3.51 

HT9/2048/B27 Acidic 30 1.56 8.16 204.5 201.7 4.2 

HT9/2048/B28 Acidic 30 1.53 7.54 200.56 204.03 4.21 

HT9/2048/B25 
Acidic 90 1.42 6.8 174.051 174.05 3.68 

HT9/2048/B26 Acidic 90 1.41 6.8 175.5 173.6 3.52 

Temp: Temperature 

Env: Environment UTS :Ultimate tensile Strength 

%El: Percentage Elongation ar : True Failure Stress 

%RA: Percentage Reduction in Area TTF: Time-To-Failure 
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Table 4.3 Comparisons of the Loads with and without a notch 

Alloy HT-9 

Env Temp With notch Without notch 

COC) 
Pm Pr Pm Pr 
(lb) (lb) (lb) (lb) 

Neutral 30 3992 3630 6278 4252 

Acidic 30 3858 3466 6250 3554 

Neutral 90 3457 3073 5991 3707 

Acidic 90 3343 3113 5900 3980 

4.1.3. Smooth Specimen with Controlled Potential 

SSR tests were performed in the 30 and 90°C acidic solution under a cathodic 

controlled potential (Econt) of -1000 m V with respect to Ag/ AgCl reference electrode. As 

described earlier, hydrogen can be generated in the aqueous solution during cathodic 

reaction producing atomic hydrogen (H), which can diffuse at the gage section of the 

cylindrical specimen and can produce significant amount of stress within the metal 

lattice. The amount of H generated is related to the magnitude of Econt· 

The stress-strain diagrams of Alloy HT -9 in the acidic solution, with and without 

Econt. at 30 and 90°C are shown in Figures 4.12 and 4.13, respectively. An examination of 

these figures reveals that the magnitude of UTS and the failure strain was reduced to 

some extent due to the application of Econt during straining of the test specimen. Table 4.4 

shows the comparisons of UTS, %El, %RA, TTF, UTS and crr obtained in the acidic 

solution. These data reveal that the magnitude of all these parameters was reduced during 

the Econt testing. However, it is interesting to note that the true fracture stress ( crr) was 
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reduced to a larger extent due to the applied potential, the effect being more pronounced 

at 90°C. Nevertheless, these data demonstrate that the presence of hydrogen resulting 

from potentiostatic cathodic polarization can influence the cracking susceptibility by 

reducing the ductility, TTF and crf. as anticipated. 
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Figure 4.13 Stress-Strain Diagrams with and without Econt 

Table 4.4 SSR Test Data for Alloy HT -9 with and without Econt 

Temp COC)/ 
%El %RA 

TTF UTS ar 
Env (Hours) (Ksi) (Ksi) 

30°C/ Acidic 19.12 55.96 17.53 128 159 

30°C/ Acidic 17.32 53.56 12.63 123 138 

90°C/ Acidic 10.58 36.63 11.9 120 115 

90°C/ Acidic 6.32 28.76 7.89 110 89 

Env: Environment Temp: Temperature 
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4.2. Constant-Load Tests 

The results of SCC testing under constant-loading conditions involving smooth and 

notched cylindrical specimens of Alloy HT -9 are shown in Tables 4.5 and 4.6, 

respectively. These data indicate that no failures were observed in smooth specimens of 

this alloy when exposed to the neutral and acidic environments at the ambient 

temperature even at an applied stress corresponding to the 95 percent (%) of this 

material's YS value. Failures were observed in the 90°C neutral solution at 0.95YS. Alloy 

HT -9 exhibited failures in the 90°C acidic solution at applied stresses equivalent to 95, 

90, and 85% of its YS value. However, no failures were observed with this alloy at an 

applied stress corresponding to the 80% of its YS value, suggesting a threshold stress 

(crth) of 93 Ksi when tested in 90°C acidic solution, as shown in Figure 4.14. However, 

the presence of a notch at the gage section of this specimen resulted in a threshold load 

(Lth) of 1084 lbs below which no failure may occur in the acidic solution in the presence 

of a notch having a diameter of 0.156 inch. It should be noted that all these tests were 

preformed twice and an average value was considered to get the desired parameters. 
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Table 4.5 Results of CL SCC Tests using Smooth Specimens 

Material I Heat 
Environment Tested Applied Load Results 

Test No. 
No. 

Temperature (°C) 
pH %YS Pf(lbs) TTF 

CL-18 HT-9/2048 30 Neutral 95 5588 NF 
CL-19 HT-9/2048 30 Neutral 95 5623 NF 
CL-14 HT-9/2048 90 Neutral 95 5626 278 
CL-15 HT-9/2048 90 Neutral 95 5634 264 
CL-16 HT-9/2048 90 Neutral 90 5125 NF 
CL-17 HT-9/2048 90 Neutral 90 5189 NF 
CL-1 HT-9/2048 30 Acidic 95 5610 NF 
CL-2 HT-9/2048 30 Acidic 95 5619 NF 
CL-3 HT-9/2048 90 Acidic 95 5668 189 
CL-4 HT-9/2048 90 Acidic 95 5653 196 
CL-5 HT-9/2048 90 Acidic 90 5185 139 
CL-6 HT-9/2048 90 Acidic 90 5130 141 
CL-7 HT-9/2048 90 Acidic 85 4834 59 
CL-8 HT-9/2048 90 Acidic 85 4820 63 
CL-9 HT-9/2048 90 Acidic 85 4740 67 

CL-10 HT-9/2048 90 Acidic 80 4444 NF 
CL-11 HT-9/2048 90 Acidic 80 4480 NF 
CL-12 HT-9/2048 90 Acidic 80 4436 NF 

NF: No Failure 
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Table 4.6 Results ofCL SCC Tests using Notched Specimens 

Material I Heat 
Environment Tested Applied Load 

Test No. 
No. 

Temperature (°C) 
pH %YL Pf(lbs) 

CL-1 HT-9/2048 Amb Acidic 40 1734 
CL-2 HT-9/2048 Amb Acidic 40 1734 
CL-3 HT-9/2048 90 Acidic 40 1734 
CL-4 HT-9/2048 90 Acidic 40 1734 
CL-5 HT-9/2048 90 Acidic 35 1517 
CL-6 HT-9/2048 90 Acidic 35 1517 
CL-7 HT-9/2048 90 Acidic 35 1517 
CL-8 HT-9/2048 90 Acidic 30 1301 
CL-9 HT-9/2048 90 Acidic 30 1301 

CL-10 HT-9/2048 90 Acidic 30 1301 
CL-11 HT-9/2048 90 Acidic 25 1084 
CL-12 HT-9/2048 90 Acidic 25 1084 

YL: Yield Load= 4337Psi 
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Figure 4.14 Determination of crth in Neutral and Acidic Environments at 90°C 
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4.3. Cyclic Potentiodynamic Polarization 

The cyclic potentiodynamic polarization (CPP) diagrams for Alloy HT -9 obtained in 

the acidic solution are shown in Figures 4.15 and 4.16, as a function of the testing 

temperature. The magnitudes of Ecorr, Epit, and Eprot determined from the CPP diagrams are 

shown in Table 4.8. An examination of this table clearly indicates that the magnitude of 

Ecorr value became more active (negative) in the neutral solution due to a change in 

temperature from 30 to 60°C. A similar temperature effect on Ecorr was also observed in 

the acidic solution, as expected. However, the magnitude of Ecorr in the acidic solution 

was more active due to the increased concentration of H+ in this environment. No pitting 

was observed in the neutral solution at any tested temperature. However, the test 

specimens exhibited susceptibility to pitting in the 30 and 60°C acidic solution. As 

expected, the magnitude of Epit was more active at the higher testing temperature. 

Protection potentials of -185 and -200 mV (Ag/AgCl) were also observed in the acidic 

solutions, suggesting repassivation of Alloy HT -9 in these environments. 
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Table 4.7 Results ofCPP Testing 

Material Env Temp( C) 
Scan Rate Ecorr, mV Epit,mV Eprot, mV 
(mV/sec) (Ag/Agcl) (Ag/Agcl) (Ag/Agcl) 

Alloy HT-9 
30 0.166 -185 None None 

Neutral 60 0.166 -367 None None 
30 0.166 -493 -100 -185 

Acidic 60 0.166 -538 -170 -200 

4.4. Metallography and Fractography 

Efforts were made to investigate the fracture modes of all broken specimens. Based 

on the fractographic evaluations, it appears that the primary failure mode at the gage 

section of specimens tested in the 90°C neutral solution was ductile, showing dimpled 

microstructures (Figure 4.17), irrespective of loading condition. On the contrary, the 

specimens tested in the 90°C acidic solution showed intergranular and/or transgranular 

brittle failures, as shown in Figure 4.18 for both constant load and SSR testing. Elemental 

analysis in the vicinity of the cracks, performed by the energy dispersive spectrometry 

(EDS) primarily showed significant concentrations of Fe and Cr, as illustrated in Figure 

4.19. Other alloying elements present in Alloy HT-9 were also noticed. 
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(a) Constant Load Test (b) SSR Test 

Figure 4.17 SEM Micrographs of Alloy HT-9 at 90°C in Neural Environment 

(a) Constant Load Test (b) SSR Test 

Figure 4.18 SEM Micrographs of Alloy HT -9 in 90°C Acidic Environment 
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The metallographic evaluation of the gage section of the broken specimen by optical 

microscopy revealed branched secondary cracks, as shown in Figure 4.20 

Figure 4.20 Alloy HT-9 Showing Secondary Cracks, (50X) 

49 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTERS 

DISCUSSION 

As described earlier, this investigation is aimed at evaluating environment-induced 

degradations including SCC, HE and localized corrosion behavior of a target structural 

material, namely Alloy HT -9 in molten LBE. Since experimental work involving the 

molten LBE environment could not be accommodated at UNL V, an effort was made to 

perform the LBE testing at LANL. Simultaneously, an extensive experimental program 

was pursued at the Materials Performance laboratory (MPL) at UNL V to develop 

baseline corrosion data on the susceptibility of Alloy HT -9 to SCC, HE and localized 

corrosion (pitting and crevice) in aqueous environments at ambient and elevated 

temperatures using different state-of-the-art testing techniques. A brief, but relevant 

discussion ofthe resultant data using different experimental methods is presented below. 

5.1. SCC- Constant-Load Testing 

The results of constant-load SCC testing in a 90°C neutral solution using smooth 

tensile specimens of Alloy HT-9, shown in the previous section, indicate that this 

material may undergo failure at an applied stress level corresponding to 95% of its YS 

value. However, failures have been observed in the 90°C acidic solution when tested at 

applied stresses equivalent to 95, 90 and 85% of this material's YS value. Since no 
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failures were observed at 0.80YS in this environment, a threshold stress ( O'th) in the 

vicinity of 93 Ksi was established for this alloy in this environment. A synergistic effect 

of pH and temperature can be attributed to this observed reduction in O'th in the 90°C 

acidic solution. It should, however, be noted that the presence of a stress raiser (notch) in 

the smooth specimen reduced the threshold load (Lth) to 25% of its yielding load (notched 

specimen) in the similar environment at 90°C. Based on these results, a threshold load 

(Lth) of 25-30% of the yielding load can be suggested for the notch configuration used in 

this study. A similar effect of notch on the cracking susceptibility of engineering alloys 

has been demonstrated by other investigators [19]. 

5.2. SCC- SSR Testing 

The results of SCC testing performed under a SSR condition using both smooth and 

notched specimens indicates that the ductility parameters (%Eland %RA) and TTF were 

reduced with increasing temperature, irrespective of the solution pH. The temperature 

effects on these parameters are consistent with observation made by other investigators 

[20, 21]. Once again, the presence of a notch at the gage section of the test specimen 

resulted in significant reduction in all these parameters, as expected. The only exception 

to these results was with the effect of notch on the true failure stress ( crr) that was 

enhanced due to the reduced cross sectional area at the root of the notch. 
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5.3. SCC- Econt Testing 

It is well known that an electrochemical reaction consists of anodic and cathodic 

reactions. The anodic or oxidation reaction produces a metal ion (M+) and an electron, 

which is used in the reduction of hydrogen ion (H+) to produce atomic hydrogen (H). 

During potenstiostatic polarization in an acidic solution under cathodic control, more H+ 

ion can be generated causing increased concentration of H that can diffuse into the metal 

lattice within a certain temperature regime. This phenomenon is known as HE. While 

many theories exist on HE, it is known that the presence of H can weaken the cohesive 

bond of the surface film existing in materials of interest. As expected, the magnitude of 

the failure strain was reduced with the change in temperature from 30 to 60°C. This effect 

was more pronounced when an external potential of -lOOOmV (Ag/AgCl) was 

potenstiostatically applied to the tensile specimen, as shown in Figures 4.12 and 4.13. 

Simultaneously, the magnitude of crrwas reduced to some extent due to these changes in 

environmental conditions, as expected [22]. 

5.4. Localized Corrosion- CPP Testing 

The results of CPP testing of Alloy HT -9 showed more active Ecorr, Epit and Eprot 

values in the acidic solution compared to that in the neutral environment. Simultaneously 

relatively more active Ecom Epit and Eprot values were observed at higher testing 

temperatures, as expected. Electrochemically speaking, more active (negative) potential 

is a characteristic of enhanced localized corrosion susceptibility. These active (negative) 

potentials may be attributed to more acidic pH and higher testing temperature. A similar 

phenomenon has been reported by the other investigators [23]. 
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5.5. Fractography and Metallography 

Fracto graphic evaluations by SEM revealed dimpled microstructure in Alloy HT -9 

when tested in the neutral solution, indicating a ductile failure. On the contrary, brittle 

failures were characterized by intergranular and/or transgranular cracking in the acidic 

solution, irrespective of the testing temperature. Branched secondary cracks were also 

observed along the gage section of the tested specimens, determined by optical 

microscopy. 
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CHAPTER6 

SUMMARY AND CONCLUSIONS 

The susceptibility of Alloy HT -9 to SCC, HE and localized corrosion has been 

evaluated in aqueous environments of different pH values at ambient and elevated 

temperatures. For SCC testing, both constant load and SSR techniques have been used. 

The susceptibility to HE has been determined by cathodic charging of the cylindrical 

specimens. CPP tests have been performed to evaluate the localized corrosion behavior of 

test material. SEM and optical microscopy have been used for failure analysis and 

microstructural evaluation, respectively. The significant conclusions derived from this 

study are given below. 

• Alloy HT -9 showed failures in the 90°C acidic solution under constant loading at 

applied stresses of 95, 90 and 85% of its YS value. No failures, however, were 

observed at 80% of its YS, resulting in a O"th value of 93 ksi. 

• Constant load SCC testing in the 90°C Neutral solution showed failure in Alloy 

HT-9. 

• The magnitudes of ductility parameters and TTF were gradually reduced in both 

tested environments with increasing temperature. The presence of a notch further 

reduced these parameters. However, magnitude of crr was increased due to a 

smaller cross sectional area at the root of this notch. 
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• The application of a cathodic potential to the test specimens showed a detrimental 

effect of H in enhancing its cracking susceptibility in an acidic environment. 

• The specimens, polarized in the acidic solution, were characterized by pits and 

crevices. The pitting susceptibility was enhanced at 60° showing more active Ecorr, 

Epit, and Eprot values. No localized attack was observed in the neutral solution. 

• Secondary cracks with branching were detected at the gage section of the failed 

specimen, by metallographic technique. 
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FUTURE WORK 

• Assuming that a research facility to accommodate molten LBE testing is established 

at UNLV, SCC testing needs to be conducted in this environment at temperatures ranging 

from 400 to 550°C, using self-loaded (C-ring and U-bent) specimens. Efforts may also be 

made to see if localized dissolution of the surface film may occur in this temperature 

regtme. 

• Characterize the surface film in Alloy HT -9 specimens tested in aqueous and molten 

LBE environments at comparable temperatures using relevant testing techniques. 
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APPENDIX A 

LOAD VS DISPLACMENT PLOTS FOR SMOOTH SPECIMENS 
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APPENDIXB 

LOAD VS DISPLACEMENT PLOTS FOR NOTCHED SPECIMENS 
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APPENDIXC 

LOAD VS DISPLACEMENT PLOTS UNDER EcoNT IN ACIDIC SOLUTION 
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