
UNLV Theses, Dissertations, Professional Papers, and Capstones

8-1-2012

Image Processing with CUDA Image Processing with CUDA

Jia Jun Tse
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Tse, Jia Jun, "Image Processing with CUDA" (2012). UNLV Theses, Dissertations, Professional Papers, and
Capstones. 1699.
http://dx.doi.org/10.34917/4332680

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1699&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1699&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/4332680
mailto:digitalscholarship@unlv.edu

IMAGE PROCESSING WITH CUDA

by

Jia Tse

Bachelor of Science,

University of Nevada, Las Vegas

2006

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science Degree in Computer Science

School of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

August 2012

c© Jia Tse, 2012

All Rights Reserved

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Jia Tse

entitled

Image Processing with Cuda

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
School of Computer Science

Ajoy K. Datta, Committee Chair

Lawrence L. Larmore, Committee Member

Yoohwan Kim, Committee Member

Venkatesan Muthukumar, Graduate College Representative

Thomas Piechota, Ph. D., Interim Vice President for Research and Graduate Studies
and Dean of the Graduate College

August 2012

Abstract

This thesis puts to the test the power of parallel computing on the GPU against the massive com-

putations needed in image processing of large images. The GPU has long been used to accelerate

3D applications. With the advent of high level programmable interfaces, programming to the GPU

is simplied and is being used to accelerate a wider class of applications. More specifically, this thesis

focuses on CUDA as its parallel programming platform.

This thesis explores on the possible performance gains that can be achieved by using CUDA

on image processing. Two well known algorithms for image blurring and edge detection is used

in the experiment. Benchmarks are done between the parallel implementation and the sequential

implementation.

iii

Acknowledgements

I would like to express my deepest sincere gratitude to my adviser Dr. Ajoy K. Datta for sticking

with me through this entire time. He is one of the best cs professors at UNLV, and I consider myself

fortunate to be one of his students. His patience and guidance is what made this thesis possible.

I would also like to thank Dr. Larmore, Dr. Kim and Dr. Muthukumar for their time in reviewing

my report and their willingness to serve on my committee.

I thank my family and friends for their unconditional support in finishing this thesis.

Jia Tse

University of Nevada, Las Vegas

August 2012

iv

Contents

Abstract iii

Acknowledgements iv

Contents v

List of Tables vii

List of Figures viii

Listing ix

1 Introduction 1

2 CUDA 3

2.1 GPU Computing and GPGPU . 3

2.2 CUDA architecture . 8

2.3 CUDA Programming Model . 10

2.4 CUDA Thread Hierarchy . 15

2.5 CUDA Memory . 23

2.6 Limitations of CUDA . 25

2.7 Common CUDA APIs . 26

v

3 Image Processing and CUDA 29

3.1 Gaussian Blur . 30

3.2 Sobel Edge Detection . 31

3.3 Gaussian Blur Implementation . 32

3.3.1 Implementation . 33

3.3.2 Breaking Down CUDA . 37

3.4 Sobel Edge Detection Implementation . 38

3.4.1 Implementation . 38

4 Results 43

5 Conclusion and Future Work 45

Appendix A: Glossary 47

Bibliography 50

Vita 55

List of Tables

4.1 Results of the Gaussian Blur . 43

4.2 Results of the Sobel Edge Detection . 44

vii

List of Figures

2.1 GPU vs CPU on floating point calculations . 5

2.2 CPU and GPU chip design . 5

2.3 Products supporting CUDA . 7

2.4 GPU Architecture. TPC: Texture/processor cluster; SM: Streaming Multiprocessor;

SP: Streaming Processor . 8

2.5 Streaming Multiprocessor . 9

2.6 The compilation process for source file with host & device code 11

2.7 CUDA architecture . 11

2.8 CUDA architecture . 12

2.9 Execution of a CUDA program . 14

2.10 Grid of thread blocks . 16

2.11 A grid with dimension (2,2,1) and a block with dimension (4,2,2) 18

2.12 A 1-dimensional 10 x 1 block . 19

2.13 Each thread computing the square of its own value 20

2.14 A device with more multiprocessors will automatically execute a kernel grid in less

time than a device with fewer multiprocessors . 21

2.15 Different memory types: Constant, Global, Shared and Register memory 24

3.1 Discrete kernel at (0,0) and σ = 1 . 31

viii

Listing

2.1 Sample source code with Host & Device code . 13

2.2 Memory operations in a CUDA program . 14

2.3 Invoking a kernel with a 2 x 2 x 1 grid and a 4 x 2 x 2 block 17

2.4 A program that squares an array of numbers . 18

2.5 Copying data from host memory to device memory and vice versa 24

3.1 Sequential and Parallel Implementation of the Gaussian Blur 33

3.2 This calls a CUDA library to allocate memory on the device to d pixels 37

3.3 Copies the contents of the host memory to the device memory referenced by d pixels 37

3.4 CUDA calls to create/start/stop the timer . 37

3.5 Declares block sizes of 16 x 16 for 256 threads per block. 37

3.6 This tells us that we want to have a w/16 x h/16 size grid. 37

3.7 Invokes the device method d blur passing in the parameters. 37

3.8 Finding the current pixel location. 37

3.9 This forces the threads to synchronize before executing further instructions. 38

3.10 This saves the image to a PGM file. 38

3.11 Sequential and Parallel Implementation of the Sobel Edge Detection 38

ix

Chapter 1

Introduction

Graphics cards are widely used to accelerate gaming and 3D graphics applications. The GPU

(Graphics Processing Unit) of a graphics card is built for compute-intensive and highly parallel

computations. With the prevalence of high level APIs (CUDA - Compute Unified Device Archi-

tecture), the power of the GPU is being leveraged to accelerate more general purpose and high

performance applications. It has been used in accelerating database operations[1], solving differen-

tial equations[2], and geometric computations[3].

Image processing is a well known and established research field. It is a form of signals processing

in which the input is an image, and the output can be an image or anything else that undergoes

some meaningful processing. Altering an image to be brighter, or darker is an example of a common

image processing tool that is available in basic image editors.

Often, processing happens on the entire image, and the same steps are applied to every pixel of

the image. This means a lot of repetition of the same work. Newer technology allows better quality

images to be taken. This equates to bigger files and longer processing time. With the advancement

of CUDA, programming to the GPU is simplified. The technology is ready to be used as a problem

solving tool in the field of image processing.

This thesis shows the vast performance gain of using CUDA for image processing. Chapter

1

two gives an overview of the GPU, and gets into the depths of CUDA, its architecture and its

programming model. Chapter three consists of the experimental section of this thesis. It provides

both the sequential and parallel implementations of two common image processing techniques: image

blurring and edge detection. Chapter four shows the experiment results and the thesis is concluded

in chapter five.

2

Chapter 2

CUDA

CUDA (Compute Unified Device Architecture) is a parallel computing architecture developed by

NVidia for massively parallel high-performance computing. It is the compute engine in the GPU

and is accessible by developers through standard programming languages. CUDA technology is

proprietary to NVidia video cards.

NVidia provides APIs in their CUDA SDK to give a level of hardware extraction that hides

the GPU hardware from developers. Developers no longer have to understand the complexities

behind the GPU. All the intricacies of instruction optimizations, thread and memory management

are handled by the API. One benefit of the hardware abstraction is that this allows NVidia to

change the GPU architecture in the future without requiring the developers to learn a new set of

instructions.

2.1 GPU Computing and GPGPU

The Graphics Processing Unit (GPU) is a processor on a graphics card specialized for compute-

intensive, highly parallel computation. it is primarily designed for transforming, rendering and

accelerating graphics. It has millions of transistors, much more than the Central Processing Unit

3

(CPU), specializing in floating point arithemetic. Floating point arithemetic is what graphics ren-

dering is all about. The GPU has evolved into a highly parallel, multithreaded processor with

exceptional computational power. The GPU, since its inception in 1999, has been a dominant

technology in accelerated gaming and 3D graphics application.

The main difference between a CPU and a GPU is that a CPU is a serial processor while the

GPU is a stream processor. A serial processor, based on the Von Neumann architecture executes

instructions sequentially. Each instruction is fetched and executed by the CPU one at a time. A

stream processor on the other hand executes a function (kernel) on a set of input data (stream)

simultaneously. The input elements are passed into the kernel and processed independently without

dependencies among other elements. This allows the program to be executed in a parallel fashion.

Due to their highly parallel nature, GPUs are outperforming CPUs by an astonishing rate on

floating point calculations (Figure 2.1)[4]. The main reason for the performance difference lies in

the design philosophies between the two types of processors (Figure 2.2)[4]. The CPU is optimized

for high performance on sequential operations. It makes use of sophisticated control logic to manage

the execution of many threads while maintaining the appearance of a sequential execution. The

large cache memories used to reduce access latency and slow memory bandwidth also contribute to

the performance gap.

4

Figure 2.1: GPU vs CPU on floating point calculations

Figure 2.2: CPU and GPU chip design

The design philosophy for GPUs on the other hand is driven by the fast growing video game

industry that demands the ability to perform massive floating-point calculations in advanced video

games. The motivation is to optimize the execution of massive number of threads, minimize control

logic, and have small memory caches so that more chip area can be dedicated to floating-point

5

calculations. This trade-off makes the GPU less efficient at sequential tasks designed for the CPU.

Recognizing the huge potential performance gains, developers hungry for high performance be-

gan using the GPU for non graphics purposes. Improvements in the programmability of graphics

hardware further drove GPU programming. Using high-level shading languages such as DirectX,

OpenGL and Cg, various data parallel algorithms can be mapped onto the graphics API. A tradi-

tional graphics shader is hardwired to only do graphical operations, but now it is used in everyday

general-purpose computing. Researchers have discovered that the GPU can accelerate certain prob-

lems by over an order of magnitude over the CPU. Using the GPU for general purpose computing

creates a phenomenon known as GPGPU.

GPGPU is already being used to accelerate applications over a wide range of cross-disciplinary

fields. Many applications that process large data sets take advantage of the parallel programming

model by mapping its data elements to parallel processing threads. Purcell and Carr illustrates how

this mapping is done for ray-tracing[5][6]. Similarly, this concept can be applied to other fields. The

GPU is also being adopted in accelerating database operations[1][7][8][9][10][11]. Work has been

done using the GPU for geometric computations[3][12][13][14], linear algebra[15], solving partial

differential equations[2][16] and solving matrices[17][18]. As the GPU’s floating-point processing

performance continues to outpace the CPU, more data parallel applications are expected to be done

on the GPU.

While the GPGPU model has its advantages, programmers initially faced many challenges in

porting algorithms from the CPU over to the GPU. Because the GPU was originally driven and

designed for graphics processing and video games, the programming environment was tightly con-

strained. The programmer requires a deep understanding of the graphics API and GPU architecture.

These APIs severely limit the kind of applications that can be written on this platform. Expressing

algorithms in terms of vertex coordinates and shader programs increased programming complexity.

As a result, the learning curve is steep and GPGPU programming is not widespread.

Higher-level language constructs are built to abstract the details of shader languages. The Brook

6

Specifications is created in 2003 by Stanford as an extension of the C language to efficiently in-

corporate ideas of parallel computing into a familiar language[19]. In 2006 a plethora of platforms

including Microsoft’s Accelerator [20], the RapidMind Multi-Core Development Platform[21] and the

PeakStream Platform[22] emerge. RapidMind is later acquired by Intel in 2009 and Peakstream is

acquired by Google in 2007. By 2008 Apple released OpenCL[23], and AMD released its Stream

Computing software deveopment kit (SDK) that is built on top of the Brook Specifications. Mi-

crosoft released DirectCompute as part of its DirectX 11 package. NVidia released its Compute

Unified Device Architecture (CUDA) as part of its parallel computing architecture. Popular com-

mercial vendors such as Adobe and Wolfram are releasing cuda-enabled versions of their products

(Figure 2.3)[24].

It is important to note that GPU processing is not meant to replace CPU processing. There

are simply algorithms that run more effiicently on the CPU than on the GPU. Not everything can

be executed in a parallel manner. GPUs, however, offer an efficient alternative for certain types of

problems. The prime candidates for GPU parallel processing are algorithms that have components

that require a repeated execution of the same calculations, and those components must be able to

be executed independently of each other. Chapter 3 explores image processing algorithms that fit

this paradigm well.

7

Figure 2.3: Products supporting CUDA

2.2 CUDA architecture

A typical CUDA architecture consists of the components as illustrated in Figure 2.4[25]. The Host

CPU, Bridge and System memory are external to the graphics card, and are collectively referred

to as the host. All remaining components forms the GPU and the CUDA architecture, and are

collectively referred to as the device. The host interface unit is responsible for communication such

as responding to commands, and facilitating data transfer between the host and the device.

8

Figure 2.4: GPU Architecture. TPC: Texture/processor cluster; SM: Streaming Multiprocessor; SP:

Streaming Processor

The input assembler collects geometric primitives and outputs a stream to the work distributors[25].

The work distributors forward the stream in a round robin fashion to the Streaming Processor Array

(SPA). The SPA is where all the computation takes place. The SPA is an array of Texture/Processor

Clusters (TPC) as shown in Figure 2.4[25]. Each TPC contains a geometry controller, a Streaming

Multiprocessor (SM) controller (SMC), a texture unit and 2 SMs. The texture unit is used by the

SM as a third execution unit and the SMC is used by the SM to implement external memory load,

store and atomic access. A SM is a multiprocessor that executes vertex, geometry and other shader

programs as well as parallel computing programs. Each SM contains 8 Streaming Processors (SP),

and 2 Special Function Units (SFU) specializing in floating point functions such as square root and

9

transcendental functions and for attribute interpolations. It also contains an instruction cache, a

constant cache, a multithreaded instruction fetch and issue unit (MT) and shared memory (Fig-

ure 2.5)[25]. Shared memory holds shared data between the SPs for parallel thread communication

and cooperation. Each SP contains its own MAD and MUL units while sharing the 2 SFU with the

other SPs.

Figure 2.5: Streaming Multiprocessor

A SM can execute up to 8 thread blocks, one for each SP. It is capable of efficiently executing hun-

dreds of threads in parallel with zero scheduling overhead. The SMs employ the Single-Instruction,

Multiple-Thread (SIMT) architecture to manage hundreds of concurrent threads[26]. GTX-200 se-

ries is equipped with 16 KB of shared memory per SM. In the GeForce 8-series GPU, each SP can

handle up to 96 concurrent threads for a total of 768 threads per SM[27]. On a GPU with 16 SMs,

up to 12,288 concurrent threads can be supported.

10

2.3 CUDA Programming Model

CUDA programming is a type of heterogeneous programming that involves running code on two

different platforms: a host and a device. The host system consists primarily of the CPU, main

memory and its supporting architecture. The device is generally the video card consisting of a

CUDA-enabled GPU and its supporting architecture.

The source code for a CUDA program consists of both the host and device code mixed in the

same file. Because the source code targets two different processing architectures, additional steps are

required in the compilation process. The NVidia C Compiler (NVCC) first parses the source code

and creates two separate files: one to be executed by the host and one for the device. The host file is

compiled with a standard C/C++ compiler which produces standard CPU object files. The device

file is compiled with the CUDA C Compiler (CUDACC) which produces CUDA object files. These

object files are in an assembly language known as Parallel Thread eXecution or PTX files. PTX files

are recognized by device drivers that are installed with NVidia graphics cards. The two resulting

file set is linked and a CPU-GPU executable is created (Figure 2.6)[28]. As shown in Figure 2.7[28]

& 2.8[29], this type of architecture allows the flexibility for developers who are familiar with other

languages to leverage the power of CUDA without having to learn a brand new language.

11

Figure 2.6: The compilation process for source file with host & device code

Figure 2.7: CUDA architecture

12

Figure 2.8: CUDA architecture

NVCC separates host from device code by identifying specific keywords that represents instruc-

tions for the device. Methods/Functions that are designed to execute on the device are called kernels.

Kernels are typically executed by thousands to millions of threads to take advantage of data par-

allelism. Since all threads are executing the same code, this falls into the well known paradigm of

Single Program Multiple Data (SPMD) widely used in parallel computing systems[30]. SPMD is

an asynchronous version of another technique known as Single-Instruction Multiple-Data (SIMD).

In SIMD, multiple processors execute the same program instructions (a function) on different data.

The key difference between SIMD and SPMD is that SIMD executes the program instructions in

locksteps. Every processor executes the identical instruction at any given time. SPMD however

removes that restriction. This allows the possibility of having branching in the program instruction

where the instructions executed by each processor is not always the same.

Listing 2.1 shows an example of a typical C program involving CUDA. global is a C extension

that defines a kernel. The kernel is invoked inside the main function by using the <<< ... >>>

syntax. dimblock and dimGrid defines the number of threads and its configuration when it executes

in the kernel. Each thread that executes the kernel is assigned a unique thread id. A particular

thread within the kernel can be identified by the combination of its blockIdx, blockDim and threadIdx.

13

This allows for the control of having different threads do different work.

Listing 2.1: Sample source code with Host & Device code

1 // Kernel Definition

2 __global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])

{

3 int i = blockIdx.x * blockDim.x + threadIdx.x;

4 int j = blockIdx.y * blockDim.y + threadIdx.y;

5

6 if (i < N && j < N) {

7 C[i][j] = A[i][j] + B[i][j];

8 }

9 }

10

11 int main() {

12 // Kernel Invocation

13 dim3 dimBlock (16, 16);

14 dim3 dimGrid ((N + dimBlock.x - 1) / dimBlock.x, (N + dimBlock.y -

1) / dimBlock.y);

15

16 MatAdd <<< dimGrid , dimBlock >>> (A, B, C);

17 }

A CUDA program starts execution on the the host (Figure 2.9)[31]. When it encounters the

kernel, it will launch the kernel and continues execution on the CPU without waiting for the com-

pletion of the kernel. The groups of threads created as a result of the kernel invocation is collectively

referred to as a grid. The grid terminates when the kernel terminates. Currently in CUDA, only one

kernel can be executed at a time. If the host encounters another kernel while a previous kernel is

not yet complete, the CPU will stall until the kernel is complete. The next-generation architecture

FERMI allows for the concurrent execution of multiple kernels.

14

Figure 2.9: Execution of a CUDA program

In CUDA, the host and devices have separate memory spaces. Variables and data in the host

memory is not directly accessible by the GPU. The data allocated on the host must first be trans-

fered to the device memory using the CUDA API. Similarly, the results from the device must be

transferred back to the host. Memory management techniques must be applied on both platforms.

Listing 2.2[31] shows a snippet of operations dealing with memory on the host and device. cudaMal-

loc, cudaMemcpy, cudaFree are all CUDA APIs that allocates memory, copies memory, and frees

memory respectively on the device.

Listing 2.2: Memory operations in a CUDA program

1 void MatrixMulOnDevice(float* M, float* N, float* P, int Width) {

2 int size = Width * Width * sizeof(float);

3

4 //1. Load M and N to device memory

5 cudaMalloc(Md, size);

6 cudaMemcpy(Md, M, size , cudaMemcpyHostToDevice);

7 cudaMalloc(Nd, size);

8 cudaMemcpy(Nd, N, size , cudaMemcpyHostToDevice);

9

10 // Allocate P on the device

11 cudaMalloc(Pd, size);

12

15

13 //2. Kernel invocation code here

14 //...

15

16 //3. Read P from the device

17 cudaMemcpy(P, Pd, size , cudaMemcpyDeviceToHost);

18 //Free device matrices

19 cudaFree(Md);

20 cudaFree(Nd);

21 cudaFree(Pd);

22 }

2.4 CUDA Thread Hierarchy

Threads on the device are automatically invoked when a kernel is being executed. The programmer

determines the number of threads that best suits the given problem. The thread count along with

the thread configurations are passed into the kernel. The entire collection of threads responsible for

an execution of the kernel is called a grid (Figure 2.10)[4].

16

Figure 2.10: Grid of thread blocks

A grid is further partitioned and can consist of one or more thread blocks. A block is an array of

concurrent threads that execute the same thread program and can cooperate in achieving a result.

In Figure 2.10[4], the blocks are organized into a 2 x 3 array. A thread block can be partitioned

into one, two or three dimensions, facilitating calculations dealing with vectors, matrices or fields.

Each block has its own unique block identifier. All threads within a block can cooperate with each

other. They can share data by reading and writing to shared memory, and they can synchronize

their execution by using syncthreads(). syncthreads acts as a barrier so that all threads of the

same block must wait for all threads to execute before moving forward. This ensures that all threads

17

have finished executing a phase of their execution in the kernel before moving on to the next phase.

synchthread is commonly used inside the kernel to coordinate read and write phases to shared

memory. Since the data in the memory is shared, all threads must write first and read second.

Threads of different blocks cannot communicate with each other. In fact, thread blocks are

required that they can be executed independently of other blocks, whether in series or in parallel.

Like blocks, threads within a block can be strategically structured as well. Figure 2.10 shows a 3

x 4 array of threads within block (1,1). All blocks must contain the same number of threads and

thread structure. Each block can have a maximum of up to 512 threads. The programmer has the

freedom to structure the threads in any different combinations of up to three dimensions (512 x 1,

16 x 8 x 2, etc) as long as the total number of threads do not exceed 512. The organization of

blocks and threads can be established and passed to the kernel when it is invoked by the host. this

configuration is maintained throughout the entire execution of the kernel.

Block and grid dimensions can be initialized by the to type dim3, which is a essentially a struct

with x, y, z fields. Listing 2.3 creates a 2 x 2 x 1 grid and each block has a dimension of 4 x 2 x 2.

The threading configuration is then passed to the kernel. The resulting hierarchy can be graphically

represented as shown in Figure 2.11[31]. Within the kernel, these information are stored as built-in

variables. blockDim holds the dimension information of the current block. blockIdx and threadIdx

provides the current block and thread index information. All blockIdx, threadIdx, gridDim, and

blockDim have 3 dimensions: x, y, z. For example, block (1,1) has blockIdx.x = 1 and blockIdx.y =

1.

Listing 2.3: Invoking a kernel with a 2 x 2 x 1 grid and a 4 x 2 x 2 block

1 dim3 dimBlock (4,2,2);

2 dim3 dimGrid (2,2,1);

3 KernelFunction <<< dimGrid , dimBlock >>>

18

Figure 2.11: A grid with dimension (2,2,1) and a block with dimension (4,2,2)

One of the main functionality of blockId and threadId is to distinguish themselves from other

threads. One common usage is to determine which set of data a thread is responsible for. Listing 2.4

is a simple example of squaring all elements of a 1-dimensional array of size 10. To do that we create

a 1-dimensional grid, containing a 1-dimensional 10 x 1 block. When the square array kernel is

called, it generates a threading configuration resembling Figure 2.12; a 1-dimensional array of 10

threads.

Listing 2.4: A program that squares an array of numbers

1 __global__ void square_array (float *a, int N) {

2 int idx = blockIdx.x * blockDim.x + threadIdx.x;

3 if (idx < N) {

4 a[idx] = a[idx] * a[idx];

5 }

19

6 }

7

8 int main (void) {

9 ...

10 dim3 Block(10, 1);

11 dim3 Grid (1);

12 square_array <<< Grid , Block >>> (arr , 10);

13 ...

14 }

Figure 2.12: A 1-dimensional 10 x 1 block

The code in the kernel identifies a thread by using the blockIdx.x, blockDim.x and threadIdx.x. In

this case, blockIdx.x = 0, blockDim.x = 10 and threadIdx.x ranges from 0,9 inclusive depending on

which thread executes the kernel. Figure 2.13 is the result of executing kernel square array. Each

thread is responsible for computing the square of the value stored in the array at index equal to

the thread id. It is easily seen that each thread can operate independently of each other. Mapping

thread Ids to array indices is a common practice in parallel processing. A similar technique is used

in mapping to matrices and fields.

20

Figure 2.13: Each thread computing the square of its own value

One limitation on blocks is that each block can hold up to 512 threads. In trivial cases where

each thread is independent of other threads (such as square array in the example above) the grid

can simply be augmented to contain more blocks. Grid dimensions are limited to 65535 x 65535 x 1

blocks. For situations where each thread is dependent of other threads such as the computation of a

dot product that exceeds 512 in length, A more sophisticated technique is required. The programmer

needs to be creative and craft a design that allow threads to be mapped to larger regions, and at the

same time not overlap the work of other threads. Taking the square array example, if the problem

deals with 1024 elements, each thread can be responsible for data at indices threadIdx and threadIdx

+ blockDim.x, where blockDim.x = 512.

Once a kernel is launched, the corresponding grid and block structure is created. The blocks

are then assigned to a SM by the SMC (see CUDA architecture). Each SM executes up to 8 blocks

concurrently. Remaining blocks are queued up until a SM is free. The SMCs are smart enough to

monitor resource usage and not assign blocks to SMs that are deficient of resources. This ensures

that all SMs are functioning to its maximum capacity. As shown in Figure 2.14[4], the more SM a

graphics card has, the more concurrent blocks can be executed. Although each block can contain

up to 512 threads, and each SM can execute up to a maximum of 8 concurrent blocks, it is not

true that at any given time a SM can execute 4096 concurrent threads. Resources are required to

maintain the thread and block IDs and its execution state. Due to hardware limitations the SM can

21

only manage up to 768[4] concurrent threads. However, those threads can be provided to the SM in

any configuration of blocks. If a graphics card have 16 SM, then the GPU can be executing up to

12,288 threads concurrently.

Figure 2.14: A device with more multiprocessors will automatically execute a kernel grid in less time

than a device with fewer multiprocessors

To manage and execute hundreds of concurrent threads efficiently, the SM uses a processor archi-

tecture known as Single-Instruction, multiple-thread (SIMT). The SIMT instruction unit subdivides

threads within a block into groups of 32 parallel thread units call warps. Since a SM can handle up

to 768 concurrent threads, it can support up to 24 warps. However, the SM’s hardware is designed

22

to execute only one warp at a time. The reason it is assigned up to 8 warps is to mask long latency

operations such as memory access. When an instruction executed by a thread in a warp requires

it to wait, the warp is placed in a queue while the SM continues to execute other warps that are

available. The SMC employs a priority scheme in assigning warps to the SM. A warp is a construct

developed for thread scheduling within the SM. Although warps are not part of the CUDA language

specification, it is beneficial to understand what warps are and how it is used. This knowledge

provides an edge in optimizing performance of CUDA applications.

All threads of a warp are designed to execute the same block of code in lock steps. When an

instruction is issue, the SIMT unit selects a warp that is ready to execute. Full efficiency is achieved

when all 32 threads can execute that instruction simultaenously. However, threads are free to branch

and execute independently. If a particular thread of the warp diverges from the group based on a

conditional branch, the warp will execute each branch serially. While a group of threads are executing

a branch, all threads not part of that branch will be disabled. When all threads finish executing their

respective branches, the warp will converge back to its original execution path. The SM manages

branching threads by using a branch synchronization stack. The branching of threads in a warp is

known as thread divergence, and should be avoided since it serializes execution. Divergence only

occurs within warps. Different warps are executed independent of each other regardless of the path

it takes.

A warp always contains consecutive threads of increasing thread Ids, and is always created the

same way. The programmer can take advantage of this fact and use designs that minimizes thread

divergence.

SIMT is very similar to the SIMD and SPMD models described earlier. Like SIMD, SIMT allows

all threads execute the same instruction. However, similar to SPMD, the SIMT architecture is

flexible enough to allow threads to follow different execution paths based on conditional branches.

SIMT differs with SPMD in that SIMT refers to the management of threads within a warp where

as SPMD focuses on the larger scale of a kernel. The SIMT model greatly increases the set of

23

algorithms that can be run on this parallel architecture. The SIMT architecture is user friendly

in that the programmer can ignore the entire SIMT behavior and the idea of warps. However,

substantial performance gain can be achieved if thread divergence is avoided.

2.5 CUDA Memory

The typical flow of a CUDA program starts by loading data into host memory and from there transfer

to device memory. When an instruction is executed, the threads can retrieve the data needed from

device memory. Memory access however can be slow and have limited bandwidth. With thousands

of threads making memory calls, this potentially can be a bottle neck and thus, rendering the SMs

idled. To ease traffic congestion, CUDA provides several types of memory constructs that improve

execution efficiency.

There are 4 major types of device memories: global, constant, shared and register memory

(Figure 2.15)[31]. Global memory has the highest access latency among the three. A global variable

is declared by using the keyword device . It is the easiest to use and requires very little strategy.

It can easily be read and written to by the host using CUDA APIs and it can be easily accessed by

the device. As Listing 2.5 shows, the first step is to allocate global memory by using the cudaMalloc

function. Then the data in the host is copied to the device by the cudaMemcpy function and the

constant cudaMemcpyHostToDevice indicates that the transfer is from host to device. After the

computation is done, the same step is applied to move the data back to the host. Finally the global

memory allocated on the device is freed by the cudaFree() function. The only constraint on usage

of global memory is that it is limited by memory size. Data in global memory lasts for the duration

of the entire application and is accessible by any thread across any grid. Global memory is the only

way for threads from different blocks to communicate with each other. However, during execution

of a single grid, there is no way to synchronize threads from different blocks. Therefore, for practical

purposes, global memory is more useful for information from one kernel invocation to be saved and

used by a future kernel invocation.

24

Figure 2.15: Different memory types: Constant, Global, Shared and Register memory

Listing 2.5: Copying data from host memory to device memory and vice versa

1 cudaMalloc ((void **) &a_d , size); // Allocate array on device

2 cudaMemcpy(a_d , a_h , size , cudaMemcpyHostToDevice);

3 ...

4 cudaMemcpy(a_h , a_d , size , cudaMemcpyDeviceToHost);

5 cudaFree(a_d); //Frees memory on the device.

Constant memory is very similar to global memory. In fact, these are the only two memory that

the host can read and write to. The main difference from global memory is that constant memory is

read-only to the device because it is designed for faster parallel data access. Data is stored in global

memory but are cached for efficient access. It allows for high-bandwidth, short-latency access when

25

all threads simultaneously read from the same location. A constant variable is declared by using the

keyword constant . Like global memory, constant memory also lasts for the entire duration of the

application.

Shared memory is an on-chip memory that the host cannot access. This type of memory is

allocated on a block level and can only be accessed by threads of that block. Shared memory is the

most efficient way for threads of the same block to cooperate, usually by synchronizing read and

write phases. It is much faster than using global memory for information sharing within a block.

Shared memory is declared by using the keyword shared . It is typically used inside the kernel.

The contents of the memory last for the entire duration of the kernel invocation.

The last type of memory is register memory. Registers are allocated to each individual thread,

and are private to each thread. If there are 1 million threads declaring a variable, 1 million versions

will be created and stored in their registers. Once the kernel invocation is complete, that memory

is released. Variables declared inside a kernel (that are not arrays, and without a keyword) are

automatically stored in registers. Variables that are arrays are stored in global memory, but since

the variables are declared inside a kernel, the scope is still at the kernel level. Arrays inside a kernel

is seldomly needed.

2.6 Limitations of CUDA

One of the limitations of the early CUDA architecture is the lack of support for recursion. Mainly

a hardware limitation, the the stack and overhead for recursion was too heavy to support. This

limitation has been overcome in devices with CUDA compute capability greater than 2.0, which is

a new architecture code name FERMI.

Another limitation is its compliance with the IEEE-754 standard for binary floating point

arithmetic[4]. For single-precision floating point numbers:

• Addition and Multiplication are combined into a single multiply-add operation (FMAD), which

26

truncates the intermediate result of the multiplication

• Division is implemented via the riciprocal

• For addition and multiplication, only round-to-nearest-even and round-towards-zero are sup-

ported via static rounding modes

• Underflowed results are flushed to zero

For double-precision floating point numbers:

• Round-to-nearest-even is the only supported IEEE rounding mode for reciprocal, division and

square root.

Finally, CUDA is a proprietary architecture owned by NVidia and is available through NVidia video

cards only.

2.7 Common CUDA APIs

Function Qualifiers

• device

– declares a function that is executed on the device, and called by the device

– do not support recursion

• global

– declares a function that is executed on the device, and called by the host

– must have void as return type

– function call is asynchronous

– do not support recursion

• host - declares a function that is executed on the host, and called by the host

27

Variable Type Qualifiers

• device

– declares a variable on the device that resides in global memory

– has the lifetime of an application

– is accessible from all threads across all grids

– can read/write by the host and device

• constant

– declares a variable on the device that resides in constant memory

– has the lifetime of an application

– is accessible from all threads across all grids

– can read/write by the host and read only by the device

• shared

– declares a variable on the device that resides in shared memory

– has the lifetime of a block

– is accessible (read/write) from all threads within the same block

Built-In Variables

• gridDim - contains the dimension of the grid

• blockDim - contains the dimension of the block

• blockIdx - contains the index of the block

• threadIdx - contains the index of the thread

Common Runtime Components

28

• dim3 Type - Used to declare a type with dimensions

• syncthreads() - used to synchronize threads within a kernel

• cudaThreadSynchronize() - used to synchronize threads between kernels

• cudaMalloc() - allocates memory in the device

• cudaFree() - frees the allocated memory in the device

• cudaMemcpy() - copies memory content between the host and device

For a complete reference of the CUDA API, please visit NVidia’s website.

29

Chapter 3

Image Processing and CUDA

Image processing is a type of signals processing in which the input is an image, and the output

can be an image or anything else that undergoes some meaningful processing. Converting a colored

image to its grayscale representation is an example of image processing. Enhancing a dull and

worn off fingerprint image is another example of image processing. More often than not, image

processing happens on the entire image, and the same steps are repeatedly applied to every pixel

of the image. This programming paradigm is a perfect candidate to fully leverage CUDAs massive

compute capabilities.

This section will compare the performance differences between software that are run on a se-

quential processor (CPU) and a parallel processor (GPU). The experiment will consist of performing

various image processing algorithms on a set of images. Image processing is ideal for running on the

GPU because each pixel can be directly mapped to a separate thread.

The experiment will involve a series of image convolution algorithms. Convolutions are commonly

used in a wide array of engineering and mathematical applications. A simple highlevel explanation

is basically taking one matrix (the image) and passing it through another matrix (the convolution

matrix). The result is your convoluted image. The matrix can also be called the filter.

30

3.1 Gaussian Blur

Image smoothing is a type of convolution most commonly used to reduce image noise and detail.

This is generally done by applying the image through a low pass filter. The filter will retain lower

frequency values while reducing high frequency values. The image is smoothed by reducing the

disparity between pixels by its nearby pixels.

Image smoothing is sometimes used as a preprocessor for other image operations. Most com-

monly, an image is smoothed to reduce noise before an edge detection algorithm is applied. Smooth-

ing can be applied to the same image over and over again until the desired effect is achieved.

A simple way to achieve smoothing is by using a mean filter. The idea is to replace each pixel

with the average value of all neighboring pixels including itself. One of the advantages of this

approach is its simplicity and speed. However, a main disadvantage is that outliers, especially ones

that are farthest away from the pixel of interest can create a misrepresentation of the true mean of

the neighborhood.

Another way to smooth an image is to use the Gaussian Blur[32]. The Gaussian Blur is a

sophisticated image smoothing technique because it reduces the magnitude of high frequencies pro-

portional to their frequencies. It gives less weight to pixels further from the center of the window.

The Gaussian function is defined as:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

where σ is the standard deviation of the distribution. The discrete kernel at (0,0) and σ = 1 is

shown in Figure 3.1[33].

31

Figure 3.1: Discrete kernel at (0,0) and σ = 1

3.2 Sobel Edge Detection

Edge detection is a common image processing technique used in feature detection and extraction.

Applying an edge detection on an image can significantly reduce the amount of data needed to be

processed at a later phase while maintaining the important structure of the image. The idea is to

remove everything from the image except the pixels that are part of an edge. These edges have

special properties, such as corners, lines, curves, etc. A collection of these properties or features can

be used to accomplish a bigger picture, such as image recognition.

An edge can be identified by significant local changes of intensity in an image[34]. An edge

usually divides two different regions of an image. Most edge detection algorithms work best on

an image that has the noise removal procedure already applied. The main ones existing today are

techniques using differential operators and high pass filtration.

A simple edge detection algorithm is to apply the Sobel edge detection algorithm. It involves

convolving the image using a integer value filter, which is both simple and computationally inex-

32

pensive.

The Sobel filter is defined as:

S1 =


−1 0 +1

−2 0 +2

−1 0 +1

 , S2 =


−1 −2 −1

0 0 0

+1 +2 +1


To apply the sobel algorithm on an image, we first find the approximate derivatives with re-

spect to the horizontal and vertical directions. Let A be the original image, Gx be the derivative

approximation on the horizontal axis and Gy be the derivative approximation on the vertical axis.

Gx = S1 ·A

Gy = S2 ·A

The resulting gradient image is the combination of Gx and Gy. Each pixel G(x, y) of the resulting

image can be calculated by taking the magnitude of Gx and Gy:

G(x, y) =

√
Gx

2 +Gy
2

The gradients direction is calculated by:

θ = arctan
Gy

Gx

Finally, to determine whether a pixel of the original image A is part of an edge, we apply:

if G(x, y) > threshold, then A(x, y) is part of an edge

3.3 Gaussian Blur Implementation

To compare the speedup differences between processing on the CPU vs processing on the GPU, an

experiment was done using the above algorithms in both the sequential and the parallel model. Both

implementations are shown in the source code (Listing 3.1).

33

The programs are run on an Intel Core 2 Duo, 2GHz processor with a NVidia GeForce GTX 260.

The graphics card contains 192 cores at 1.2 GHz each. Each algorithm is run against images that

are 266kb, 791kb, and 7.7mb in size. The images had dimensions of 512 x 512, 1024 x 768, 3200 x

2400 respectively.

3.3.1 Implementation

Listing 3.1: Sequential and Parallel Implementation of the Gaussian Blur

1 #include <time.h>

2 #include <stdlib.h>

3 #include <stdio.h>

4 #include <string.h>

5 #include <math.h>

6 #include <cuda.h>

7 #include <cutil.h>

8 #include <ctime >

9

10 unsigned int width , height;

11 int mask [3][3] = {1,2,1,

12 2,3,2,

13 1,2,1,

14 };

15

16 int getPixel(unsigned char * arr , int col , int row){

17

18 int sum = 0;

19

20 for (int j=-1; j<=1; j++){

21 for (int i=-1; i<=1; i++){

22 int color = arr[(row + j) * width + (col + i)];

23 sum += color * mask[i+1][j+1];

24 }

25 }

26

27 return sum /15;

28 }

29

34

30 void h_blur(unsigned char * arr , unsigned char * result){

31 int offset = 2 * width;

32 for (int row=2; row < height -3; row++){

33 for (int col=2; col <width -3; col++){

34 result[offset + col] = getPixel(arr , col , row);

35 }

36 offset += width;

37 }

38 }

39

40

41 __global__ void d_blur(unsigned char * arr , unsigned char * result ,

int width , int height){

42 int col = blockIdx.x * blockDim.x + threadIdx.x;

43 int row = blockIdx.y * blockDim.y + threadIdx.y;

44

45 if (row < 2 || col < 2 || row >= height -3 || col >= width -3)

46 return;

47

48 int mask [3][3] = {1,2,1, 2,3,2, 1,2,1};

49

50 int sum = 0;

51 for (int j=-1; j<=1; j++){

52 for (int i=-1; i<=1; i++){

53 int color = arr[(row + j) * width + (col + i)];

54 sum += color * mask[i+1][j+1];

55 }

56 }

57

58 result[row * width + col] = sum /15;

59

60 }

61

62

63 int main(int argc , char** argv)

64 {

65 /* ******************** setup work ***************************

*/

66 unsigned char * d_resultPixels;

35

67 unsigned char * h_resultPixels;

68 unsigned char * h_pixels = NULL;

69 unsigned char * d_pixels = NULL;

70

71

72 char * srcPath = "/Developer/GPU Computing/C/src/GaussianBlur/

image/wallpaper2.pgm";

73 char * h_ResultPath = "/Developer/GPU Computing/C/src/

GaussianBlur/output/h_wallpaper2.pgm";

74 char * d_ResultPath = "/Developer/GPU Computing/C/src/

GaussianBlur/output/d_wallpaper2.pgm";

75

76

77 cutLoadPGMub(srcPath , &h_pixels , &width , &height);

78

79 int ImageSize = sizeof(unsigned char) * width * height;

80

81 h_resultPixels = (unsigned char *) malloc(ImageSize);

82 cudaMalloc ((void **)&d_pixels , ImageSize);

83 cudaMalloc ((void **)&d_resultPixels , ImageSize);

84 cudaMemcpy(d_pixels , h_pixels , ImageSize , cudaMemcpyHostToDevice

);

85

86 /* ******************** END setup work

*************************** */

87

88 /* ************************ Host processing

************************* */

89

90 clock_t starttime , endtime , difference;

91 starttime = clock ();

92

93 // apply gaussian blur

94 h_blur(h_pixels , h_resultPixels);

95

96 endtime = clock();

97 difference = (endtime - starttime);

98 double interval = difference / (double)CLOCKS_PER_SEC;

99 printf("CPU execution time = %f ms\n", interval * 1000);

36

100 cutSavePGMub(h_ResultPath , h_resultPixels , width , height);

101

102 /* ************************ END Host processing

************************* */

103

104

105 /* ************************ Device processing

************************* */

106 dim3 block (16 ,16);

107 dim3 grid (width/16, height /16);

108 unsigned int timer = 0;

109 cutCreateTimer (& timer);

110 cutStartTimer(timer);

111

112 /* CUDA method */

113 d_blur <<< grid , block >>>(d_pixels , d_resultPixels , width ,

height);

114

115 cudaThreadSynchronize ();

116 cutStopTimer(timer);

117 printf("CUDA execution time = %f ms\n",cutGetTimerValue(timer));

118

119 cudaMemcpy(h_resultPixels , d_resultPixels , ImageSize ,

cudaMemcpyDeviceToHost);

120 cutSavePGMub(d_ResultPath , h_resultPixels , width , height);

121

122 /* ************************ END Device processing

************************* */

123

124 printf("Press enter to exit ...\n");

125 getchar ();

126 }

37

3.3.2 Breaking Down CUDA

Listing 3.2: This calls a CUDA library to allocate memory on the device to d pixels

cudaMalloc ((void **)&d_pixels , ImageSize);

Listing 3.3: Copies the contents of the host memory to the device memory referenced by d pixels

cudaMemcpy(d_pixels , h_pixels , ImageSize ,cudaMemcpyHostToDevice);

Listing 3.4: CUDA calls to create/start/stop the timer

cutCreateTimer (& timer);

cutStartTimer(timer);

cutStopTimer(timer);

Listing 3.5: Declares block sizes of 16 x 16 for 256 threads per block.

dim3 block (16 ,16);

Listing 3.6: This tells us that we want to have a w/16 x h/16 size grid.

dim3 grid (width/16, height /16);

If the image we are dealing with is 256 x 256, then the grid will be 16 x 16 and will contain 256

blocks. Since each block contains 256 threads, this will amount to 65536, which is exactly the num-

ber of pixels in a 256 x 256 image.

Listing 3.7: Invokes the device method d blur passing in the parameters.

d_blur <<< grid , block >>>(d_pixels , d_resultPixels , width ,

height);

Listing 3.8: Finding the current pixel location.

int col = blockIdx.x * blockDim.x + threadIdx.x;

int row = blockIdx.y * blockDim.y + threadIdx.y;

38

These two lines basically determine which thread process on which pixel of the image. As calculated

above, there are 65536 threads performing on 65536 pixels. Each thread should perform on its own

unique pixel and avoid processing the pixels owned by other threads. Since each thread is uniquely

identified by its own thread id, block id and we know the dimensions of the block, we can use the

techique above to assign a unique pixel coordinate for each thread to work on.

Listing 3.9: This forces the threads to synchronize before executing further instructions.

cudaThreadSynchronize ();

Listing 3.10: This saves the image to a PGM file.

cutSavePGMub(d_ResultPath , h_resultPixels , width , height);

3.4 Sobel Edge Detection Implementation

The Sobel edge detection algorithm is also implemented in both the sequential and parallel version.

It is run on the same hardware and uses the same images as the one used by the Gasssian Blur

experiment.

3.4.1 Implementation

Listing 3.11: Sequential and Parallel Implementation of the Sobel Edge Detection

1

2 #include <time.h>

3 #include <stdlib.h>

4 #include <stdio.h>

5 #include <string.h>

6 #include <math.h>

7 #include <cuda.h>

8 #include <cutil.h>

9 #include <ctime >

39

10

11 unsigned int width , height;

12

13 int Gx [3][3] = {-1, 0, 1,

14 -2, 0, 2,

15 -1, 0, 1};

16

17 int Gy [3][3] = {1,2,1,

18 0,0,0,

19 -1,-2,-1};

20

21 int getPixel(unsigned char * org , int col , int row){

22

23 int sumX , sumY;

24 sumX = sumY = 0;

25

26 for (int i=-1; i<= 1; i++){

27 for (int j=-1; j<=1; j++){

28 int curPixel = org[(row + j) * width + (col + i)];

29 sumX += curPixel * Gx[i+1][j+1];

30 sumY += curPixel * Gy[i+1][j+1];

31 }

32 }

33 int sum = abs(sumY) + abs(sumX);

34 if (sum > 255) sum = 255;

35 if (sum < 0) sum = 0;

36 return sum;

37 }

38

39 void h_EdgeDetect(unsigned char * org , unsigned char * result){

40 int offset = 1 * width;

41 for (int row=1; row < height -2; row++){

42 for (int col=1; col <width -2; col++){

43 result[offset + col] = getPixel(org , col , row);

44 }

45 offset += width;

46 }

47 }

48

40

49 __global__ void d_EdgeDetect(unsigned char *org , unsigned char *

result , int width , int height){

50 int col = blockIdx.x * blockDim.x + threadIdx.x;

51 int row = blockIdx.y * blockDim.y + threadIdx.y;

52

53 if (row < 2 || col < 2 || row >= height -3 || col >= width -3)

54 return;

55

56 int Gx [3][3] = {-1, 0, 1,

57 -2, 0, 2,

58 -1, 0, 1};

59

60 int Gy [3][3] = {1,2,1,

61 0,0,0,

62 -1,-2,-1};

63

64 int sumX , sumY;

65 sumX = sumY = 0;

66

67 for (int i=-1; i<= 1; i++){

68 for (int j=-1; j<=1; j++){

69 int curPixel = org[(row + j) * width + (col + i)];

70 sumX += curPixel * Gx[i+1][j+1];

71 sumY += curPixel * Gy[i+1][j+1];

72 }

73 }

74

75 int sum = abs(sumY) + abs(sumX);

76 if (sum > 255) sum = 255;

77 if (sum < 0) sum = 0;

78

79 result[row * width + col] = sum;

80

81 }

82

83 int main(int argc , char** argv)

84 {

85 printf("Starting program\n");

86

41

87 /* ******************** setup work ***************************

*/

88

89 unsigned char * d_resultPixels;

90 unsigned char * h_resultPixels;

91 unsigned char * h_pixels = NULL;

92 unsigned char * d_pixels = NULL;

93

94 char * srcPath = "/Developer/GPU Computing/C/src/EdgeDetection/

image/cartoon.pgm";

95 char * h_ResultPath = "/Developer/GPU Computing/C/src/

EdgeDetection/output/h_cartoon.pgm";

96 char * d_ResultPath = "/Developer/GPU Computing/C/src/

EdgeDetection/output/d_cartoon.pgm";

97

98 cutLoadPGMub(srcPath , &h_pixels , &width , &height);

99

100 int ImageSize = sizeof(unsigned char) * width * height;

101

102 h_resultPixels = (unsigned char *) malloc(ImageSize);

103 cudaMalloc ((void **)&d_pixels , ImageSize);

104 cudaMalloc ((void **)&d_resultPixels , ImageSize);

105 cudaMemcpy(d_pixels , h_pixels , ImageSize , cudaMemcpyHostToDevice

);

106

107 /* ******************** END setup work

*************************** */

108

109 /* ************************ Host processing

************************* */

110 clock_t starttime , endtime , difference;

111

112 printf("Starting host processing\n");

113 starttime = clock ();

114 h_EdgeDetect(h_pixels , h_resultPixels);

115 endtime = clock();

116 printf("Completed host processing\n");

117

118 difference = (endtime - starttime);

42

119 double interval = difference / (double)CLOCKS_PER_SEC;

120 printf("CPU execution time = %f ms\n", interval * 1000);

121 cutSavePGMub(h_ResultPath , h_resultPixels , width , height);

122 /* ************************ END Host processing

************************* */

123

124 /* ************************ Device processing

************************* */

125 dim3 block (16 ,16);

126 dim3 grid (width/16, height /16);

127 unsigned int timer = 0;

128 cutCreateTimer (& timer);

129

130 printf("Invoking Kernel\n");

131 cutStartTimer(timer);

132 /* CUDA method */

133 d_EdgeDetect <<< grid , block >>>(d_pixels , d_resultPixels , width

, height);

134 cudaThreadSynchronize ();

135 cutStopTimer(timer);

136 printf("Completed Kernel\n");

137

138 printf("CUDA execution time = %f ms\n", cutGetTimerValue(timer))

;

139

140 cudaMemcpy(h_resultPixels , d_resultPixels , ImageSize ,

cudaMemcpyDeviceToHost);

141 cutSavePGMub(d_ResultPath , h_resultPixels , width , height);

142

143 /* ************************ END Device processing

************************* */

144

145

146

147 printf("Press enter to exit ...\n");

148 getchar ();

149 }

43

Chapter 4

Results

The results of both executions are shown in Table 4.1 & 4.2. As shown in the results, the GPU

time has a significant increase over the CPU time in all the images that were processed. Irregardless

of the type of algorithm ran, the results are affirmative. Processing on the GPU has a huge edge

over processing on the CPU. The rate of percent increase increases as the image size increases. This

aligns with the earlier claim that CUDA processing is most effective when lots of threads are being

utilized simultaneously.

GPU Time(ms) CPU Time(ms) Percent Increase

512 x 512 Lena 0.67 16 2,288

1024 x 768 wallpaper2 0.84 62 7,280

3200 x 2400 cartoon 2.92 688 23,461

Table 4.1: Results of the Gaussian Blur

44

GPU Time(ms) CPU Time(ms) Percent Increase

512 x 512 Lena 0.67 32 4,676

1024 x 768 wallpaper2 0.82 94 11,363

3200 x 2400 cartoon 2.87 937 32,548

Table 4.2: Results of the Sobel Edge Detection

The results also show that the edge detection algorithm in general is slightly less computationally

expensive than the Gaussian Blur. While that difference is shown with the need for more time in

the sequential algorithm, the parallel algorithm is unaffected. This further confirms that the more

computation power is required, the more CUDA is utilized to its full potential.

45

Chapter 5

Conclusion and Future Work

Graphics cards have widely been used to accelerate gaming and 3D graphical applications. High

level programmable interfaces now allow this technology to be used for general purpose computing.

CUDA is the first of its kind from the NVidia tech chain. It is fundamentally sound and easy to use.

This thesis gives an introduction of the type of performance gains that can be achieved by switching

over to the parallel programming model.

Image processing algorithms is a category of algorithms that work well in achieving the best

benefits out of CUDA. Most algorithms are such that a type of calculation is repeated over and over

again in massive amounts. This is perfect for utilizing CUDA’s massive amounts of threads. Most of

these algorithms can be processed independently of each other, making it ideal to spawn off threads

to perform these calculations simultaneously.

In chapter 2, we give an overview of what GPGPU is, and goes into depths of the benefits of

using CUDA. The chapter discusses CUDA’s architecture, including its memory model, its thread

hierarchy, and programming model. We showed the type of algorithms that benefit the most out of

CUDA, and how to program in order to reap the maximum of CUDA’s benefits.

In Chapter 3, we present examples to the reader of what a typical CUDA program looks like from

beginning to end. It has a complete breakdown of what each method call does. The experiment is

46

done using two well know image processing algorithms: Gaussian Blur and Sobel Edge Detection.

The implementation contains both the sequential version and the parallel version. This allows the

reader to compare and contrast the performance differences between the two executions.

Chapter 3 gives the reader an idea of the type of algorithms that are well fitted for CUDA. It

is an example of how a sequential algorithm can be craftily broken down such that it can be run in

parallel and achieve the same results, but faster. Creative techniques like these are required to be

made when programming in the parallel model.

Chapter 4 shows the results of the experiment. It provide several executions of the same algorithm

against different images. It affirms the claim that the larger the data set, the better the benefits are

in using CUDA. For one of the smaller test cases, the performance increase is only 22%. The gain

becomes 234% when we process an image 29 times bigger.

This thesis gives an introduction to CUDA and its benefits, but it does not stop here. A lot of

future work can be done. Experiments can be done by using different size grids and blocks. The

experiements are likely to improve with smarter memory usages. A lot can still be explored beyond

this thesis.

CUDA, though it is ready for commercial use, is still a very young product. FERMI is the next

generation currently available that is better than CUDA. CUDA blocks can hold up to 512 threads

while FERMI blocks can hold up to 1536 threads. Another advantage is that FERMI supports

the execution of multiple kernels simultaneously. CUDA must execute kernels sequentially. As

technology advances, there are sure to be products that are better and better.

47

Appendix A: Glossary

Block - A name for a container that represents a group of threads. Threads belong in a block, which

then belongs in a grid. Blocks can be partitioned into several dimensions to make indexing

the threads easier. Threads within the same block can communicate with each other.

Central Processing Unit (CPU) - A serial processor on a computer that is optimized for high

performance on sequential operations.

Compute Unified Device Architecture (CUDA) - A parallel computing architecture devel-

oped by NVidia for massively parallel high-performance computing.

Constant Memory - Similar to global memory, except this is read-only for the device. It is

optimized for faster parallel data access.

CUDA C Compiler (CUDACC) - This compiles the GPU file produced by the NVCC and

creates CUDA object files.

Device - In the context of a CUDA program, the device is everythign that is in the graphics card.

This includes the GPU, the memory that is in the graphics card, etc.

FERMI - The next generation CUDA architecture that is faster and more powerful than CUDA

General Purpose GPU (GPGPU) - A type of computing that utilizes the computational power

of the GPU in computing that are not necessarily graphics related. For example, using the

GPU to solve a matrix.

48

Global Memory - Variables declared in the global memory space lasts for the entire duration of

the application and can be accessed by anythread across any grid. Both the host and the

device can read and write to this.

Graphics Processing Unit (GPU) - A stream processor on a graphics card specialized for compute-

intensive, highly parallel computation.

Grid - A name for a container that represents all the threads of a single kernel execution. A grid

contains a set of blocks, which contains a set of threads.

Host - In the context of a CUDA program, the host is everything that is not on the graphics card.

This can be the CPU, the memory that is on the computer, etc.

Kernel - A function or method that is executed on the device.

NVidia C Compiler (NVCC) - A compiler that parses the source code (.cu) and creates two

resulting files: One for processing on the GPU and one for processing on the CPU.

Parallel Thread eXecution (TPX) - A type of file that is produced by the CUDACC. These

files are recognized by device drivers that are installed with NVidia graphics cards.

Register Memory - This type of memory is allocated on the thread level, and are private to each

individual thread.

Shared Memory - This type of memory is on the device, and the host has no access to. It is

allocated on the block level and can only be accessed by threads of that block.

Single Instruction Multiple Data (SIMD) - A type of programming paradigm in which a set

of threads execute the same instructions but against a different dataset. The set of threads

execute the same instructions in locksteps.

Single Instruction Multiple Thread (SIMT) - A type of architecture that is used for the man-

agement of threads. When an instruction is issued, a SIMT unit selects a group of threads

49

that can execute that instruction.

Single Program Multiple Data (SPMD) - The same as SIMD except the threads do not have

to execute the same instructions in locksteps. Threads are allowed to branch in the program

and execute a different set of instructions.

Special Function Units (SFU) - The units in a SM that specializes in floating point functions

such as square root and transcendental functions.

Streaming Multiprocessor (SM) - This contains a group of SPs, and 2 SFUs, shared memory,

and cache.

Streaming Processor (SP) - This is where the actual computation happens. It contains its own

MAD and MUL units.

Streaming Processor Array (SPA) - This refers to a group of streaming processors inside the

GPU. This is where all the computation takes place.

Texture/Processor Clusters (TPC) - This is a member of the SPA. Each TPC contains a ge-

ometry controller, a SM Controller, a texture unit and 2 SMs.

Warp - A construct developed for thread scheduling within the SM. A warp contains a group of

threads. Thread executions are usually done in a warp group.

50

Bibliography

[1] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha, “Fast computation of

database operations using graphics processors,” in Proceedings of the 2004 ACM SIGMOD

international conference on Management of data, SIGMOD ’04, (New York, NY, USA), pp. 215–

226, ACM, 2004.

[2] M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra, “Physically-based visual simulation

on graphics hardware,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference

on Graphics hardware, HWWS ’02, (Aire-la-Ville, Switzerland, Switzerland), pp. 109–118, Eu-

rographics Association, 2002.

[3] M. C. Lin and D. Manocha, “Interactive geometric and scientific computations using graphics

hardware,” in SIGGRAPH 2003 Course Notes, vol. 11. ACM SIGGRAPH, ACM SIGGRAPH,

2003.

[4] NVidia, “Nvidia cuda c programming guide.” http://developer.download.nvidia.com/

compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf, 2012.

[5] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray tracing on programmable graphics

hardware,” in Proceedings of the 29th annual conference on Computer graphics and interactive

techniques, SIGGRAPH ’02, (New York, NY, USA), pp. 703–712, ACM, 2002.

51

[6] N. A. Carr, J. D. Hall, and J. C. Hart, “The ray engine,” in Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, HWWS ’02, (Aire-la-Ville,

Switzerland, Switzerland), pp. 37–46, Eurographics Association, 2002.

[7] J. Zhou and K. A. Ross, “Implementing database operations using simd instructions,” in Pro-

ceedings of the 2002 ACM SIGMOD international conference on Management of data, SIGMOD

’02, (New York, NY, USA), pp. 145–156, ACM, 2002.

[8] W. Fang, K. K. Lau, M. Lu, X. Xiao, C. K. Lam, P. Y. Yang, B. He, Q. Luo, P. V. S, and

K. Yang, “Parallel data mining on graphics processors,” tech. rep., 2008.

[9] N. Bandi, C. Sun, D. Agrawal, and A. El Abbadi, “Hardware acceleration in commercial

databases: a case study of spatial operations,” in Proceedings of the Thirtieth international

conference on Very large data bases - Volume 30, VLDB ’04, pp. 1021–1032, VLDB Endow-

ment, 2004.

[10] B. He, N. K. Govindaraju, Q. Luo, and B. Smith, “Efficient gather and scatter operations on

graphics processors,” in Proceedings of the 2007 ACM/IEEE conference on Supercomputing, SC

’07, (New York, NY, USA), pp. 46:1–46:12, ACM, 2007.

[11] C. Sun, D. Agrawal, and A. El Abbadi, “Hardware acceleration for spatial selections and joins,”

in Proceedings of the 2003 ACM SIGMOD international conference on Management of data,

SIGMOD ’03, (New York, NY, USA), pp. 455–466, ACM, 2003.

[12] K. E. Hoff, III, J. Keyser, M. Lin, D. Manocha, and T. Culver, “Fast computation of generalized

voronoi diagrams using graphics hardware,” in Proceedings of the 26th annual conference on

Computer graphics and interactive techniques, SIGGRAPH ’99, (New York, NY, USA), pp. 277–

286, ACM Press/Addison-Wesley Publishing Co., 1999.

[13] S. Krishnan, N. H. Mustafa, and S. Venkatasubramanian, “Hardware-assisted computation of

depth contours,” in Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete

52

algorithms, SODA ’02, (Philadelphia, PA, USA), pp. 558–567, Society for Industrial and Applied

Mathematics, 2002.

[14] P. K. Agarwal, S. Krishnan, N. H. Mustafa, and Suresh, “Streaming geometric optimization

using graphics hardware,” in In Proc. 11th European Sympos. Algorithms, Lect. Notes Comput.

Sci, pp. 544–555, Springer-Verlag, 2003.

[15] J. Krüger and R. Westermann, “Linear algebra operators for gpu implementation of numeri-

cal algorithms,” in ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, (New York, NY, USA),

pp. 908–916, ACM, 2003.

[16] M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra, “Simulation of cloud dynamics

on graphics hardware,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference

on Graphics hardware, HWWS ’03, (Aire-la-Ville, Switzerland, Switzerland), pp. 92–101, Eu-

rographics Association, 2003.

[17] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and G. Humphreys, “A multigrid solver for

boundary value problems using programmable graphics hardware,” in Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, HWWS ’03, (Aire-la-Ville,

Switzerland, Switzerland), pp. 102–111, Eurographics Association, 2003.

[18] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse matrix solvers on the gpu: conjugate

gradients and multigrid,” in ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, (New York, NY,

USA), pp. 917–924, ACM, 2003.

[19] I. Buck, “Brook specification v0.2.” http://merrimac.stanford.edu/brook/, Oct. 2003.

[20] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism to program gpus for

general-purpose uses,” in Proceedings of the 12th international conference on Architectural sup-

port for programming languages and operating systems, ASPLOS-XII, (New York, NY, USA),

pp. 325–335, ACM, 2006.

53

[21] M. D. McCool, K. Wadleigh, B. Henderson, and H.-Y. Lin, “Performance evaluation of gpus

using the rapidmind development platform,” in Proceedings of the 2006 ACM/IEEE conference

on Supercomputing, SC ’06, (New York, NY, USA), ACM, 2006.

[22] Peakstream, “The peakstream platform: High productivity software development for multi-core

processors,” tech. rep., 2006.

[23] A. Munshi, “Opencl: Parallel computing on the gpu and cpu.” presentation at SIGGRAPH,

2008.

[24] B. Endre, “Nvidia gtx-275.” http://www.bjorn3d.com/2009/04/nvidia-gtx-275/, 2009.

[25] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla: A unified graphics and

computing architecture,” IEEE Micro, vol. 28, pp. 39–55, Mar. 2008.

[26] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with cuda,”

Queue, vol. 6, pp. 40–53, Mar. 2008.

[27] T. Halfhill, “Parallel processing with cuda.” Nvidia’s High-Performance Computing Platform

Uses Massive Multithreading, 2008.

[28] M. Harris, “Tesla gpu computing.” http://www.cse.unsw.edu.au/~pls/cuda-workshop09/,

2009.

[29] NVidia, “Isc 2009 cuda tutorial.” http://gpgpu.org/isc2009, 2009.

[30] M. J. Atallah in Algorithms and theory of computation handbook, (Boca Raton, FL), CRC Press,

1998.

[31] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Processors: A Hands-on

Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1st ed., 2010.

[32] M. S. Nixon and A. S. Aguado, “Feature extraction and image processing.” Academic Press,

2008.

54

[33] R. Fisher, S. Perkins, A. Walker, and E. Wolfart, “Gaussian smoothing.” http://homepages.

inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm, 2003.

[34] W. Gao, X. Zhang, L. Yang, and H. Liu, “An improved Sobel edge detection,” in International

Conference on Computer Science and Information Technology, 2010.

55

Vita

Graduate College

University of Nevada, Las Vegas

Jia Tse

Degrees:

Master of Science in Computer Science 2012

University of Nevada Las Vegas

Thesis Title: Image Processing with CUDA

Thesis Examination Committee:

Chairperson, Dr. Ajoy K. Datta, Ph.D.

Committee Member, Dr. Lawrence L. Larmore, Ph.D.

Committee Member, Dr. Yoohwan Kim, Ph.D.

Graduate Faculty Representative, Dr. Venkatesan Muthukumar, Ph.D.

56

	Image Processing with CUDA
	Repository Citation

	tmp.1374277684.pdf.Snu8x

