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ABSTRACT

The Born-Oppenheimer approximation has long been the standard approach to solving the

Schrödinger equation for diatomic molecules. In it nuclear and electronic motions are sepa-

rated into “slow” and “fast” degrees of freedom and couplings between the two are ignored.

The neglect of non-adiabatic couplings leads to an incomplete description of diatomic motion

and in a more refined approach non-adiabatic couplings are uncoupled by transforming the

angular momentum of the molecule and electrons into the body-fixed frame.

In this thesis we examine a “modern” form of the Born-Oppenheimer approximation by ex-

ploiting a gauge theoretic approach in a description of molecular motion. This procedure is

described by a U(1) gauge field theory which we call the gauge covariant Born-Oppenheimer

approximation. Using this approach we show that the non-adiabatic coupling terms are repro-

duced and manifest as an effective “magnetic monopole” vector potential that gives rise to an

effective Lorentz type force.
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Chapter 1

INTRODUCTION AND OUTLINE

Because the quantum mechanical few body problem is intractable, the Born-Oppenheimer (BO)

approximation [8] is a starting point for most molecular structure calculations. In the standard

theory, the nuclear motion of diatoms are decoupled from that of the electronic, or fast, degrees

of freedom but in a more refined treatment, non-adiabatic effects due to rotational motion are

also included. Expressing the Hamiltonian for the electronic degrees of freedom in a body-

fixed coordinate frame, and representing the total angular momentum of the molecule in that

frame, non-adiabatic couplings that determine the rovibrational structure of the molecule are

incorporated. That procedure is a cornerstone of molecular structure theory and was firmly

established by the early days in the development of the wave mechanics.

In the 1980’s a modern approach incorporating gauge theory ideas where introduced in the

treatment of diatom rovibrational motion. In this thesis we explore the relationship between

the standard approach and that using gauge theoretic techniques [37, 61].

In the conventional Born-Oppenheimer approximation the electronic and nuclear motion are

taken to be uncoupled. The uncoupling procedure is justified by the assumption, because of

the disparity between nuclear and electronic mass, that the nuclei adjust adiabatically to the

motion of the electrons. In that picture, the electrons respond to the instantaneous position

of the nuclei [8, 22] and one proceeds to calculate for the electronic wave functions at each

value of inter-nuclear separation. In this description, electrons create a scalar potential field

for a given nuclear configuration that back-reacts on the nuclei. This potential is called the

Born-Oppenheimer potential and gives rise to the Feynman-Hellman force [24].

In a more complete treatment of this problem, the coupling between nuclear and electronic

motion is no longer neglected [17]. Terms in the nuclear Hamiltonian induced by these cou-

plings, typically called non-adiabatic couplings, modify the rotational eigenvalues and Born-

Oppenheimer energies. Inclusion of non-adiabatic couplings, due to molecular rotation, lead

to an effective nuclear Hamiltonian that is similar to that of the rotating symmetric top [34].

For a symmetric top, the eigenvalues of the rotational Hamiltonian are related to the Wigner

d-functions [21], and for low energies the radial motion of the molecule can be accurately ap-
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proximated by the eigenstates of a simple harmonic oscillator.

The gauge theoretic approach for the description of bound diatoms was first advanced by Moody,

Shapere, and Wilczek [37] in 1986. They showed that the Hamiltonian governing nuclear motion

in a diatom can be expressed as that of free rotator being acted upon by an effective gauge vector

potential. In this description, the effective gauge potential was shown to be that produced by

an effective “magnetic monopole” [37, 61, 64]. Using this approach, the rotational spectra of

diatoms can be re-produced [37, 61] and it offers an alternative paradigm for molecular structure

theory. Whereas both the standard theory and the gauge theoretic approach, which in this

thesis we call the modern Born-Oppenheimer approximation, lead to identical ro-vibrational

eigenvalues, the latter theory has significant advantages which we will elaborate on in this thesis.

For example, the modern approach allows a better understanding for the mechanism in which

total angular momentum (nuclear + electronic) is conserved in the BO approximation. In this

theory the standard Hund’s rules for angular momentum coupling is replaced by a mechanism

in which the orbital angular momentum of the nuclei are coupled to the intrinsic angular

momentum of the effective magnetic monopole [29, 37, 61] gauge field. Magnetic monopoles

were first postulated by Poincaré [42], however the first quantum mechanical treatment of them

was made in Dirac’s seminal 1931 paper [18]. Whereas the latter are typically considered

fundamental monopoles, i.e. arising from an extension of Maxwell’s theory, the monopoles in

molecular theory are effective ones that emerge as a consequence of the adiabatic approximation.

The gauge theoretic approach also allows one to make connections with similar phenomena that

occur in other areas of physics, including quantum Hall physics and the appearance of anyons

in complex quantum systems. The gauge theory framework allows for a generalization of the

Hellmann-Feynman force which plays an important role in molecular dynamics simulations.

These forces arise from an effective scalar potential that describes the mean field induced by

the fast degrees of freedom, i.e. electrons. In the modern Born-Oppenheimer approximation the

vector potential leads to the appearance of effective Lorentz forces in addition to the traditional

Hellmann-Feynman force.

We provide a brief outline of this thesis, which has two components, below. In the first part we

review the traditional approach first advanced by Van Vleck, Kronig and others, of rovibrational

molecular structure theory. We then introduce the modern approach and compare and relate

the latter with the former. We make some suggestion for future investigations.

In Chapter 2 we review the traditional description of BO theory. Restricting the discussion to
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homonuclear systems, we express the Hamiltonian in a molecular coordinate system and review

the BO separation of fast and slow degrees of freedom. In Chapter 3 we include the effects

of non-adiabatic couplings in the Hamiltonian for the diatom. In chapter 4 we separate the

angular and vibrational degrees of freedom, and show how inclusion of angular non-adiabatic

couplings leads to an effective Hamiltonian that is identical to that of a symmetric top. The

eigensolutions of the latter are obtained, and we illustrate how the rovibrational structure of

bound diatoms are modified by the inclusion of rotational non-adiabatic couplings. In section

4.3 we review the treatment of vibrational motion, and obtain analytic results by approximating

the BO eigenenergy with a Morse potential.

Chapter 5 introduces the second component of the thesis, in which we re-discuss the material

introduced in the previous chapters from a gauge theory point of view. We first give an overview

of general concepts, such as the notion of minimal coupling of a gauge field in the non-relativistic

Schrodinger equation, gauge transformations and gauge invariance. In Chapter 7 we review the

general quantum mechanical theory of magnetic monopoles. In section 7.1 we discuss the classic

Dirac monopole, and in section 7.2 we show how mathematical inconsistencies in the latter can

be resolved by employing a procedure introduced by T.T. Wu and C. N. Yang. We also discuss

the concept of a non-integrable phase factor in quantum mechanics. The latter was introduced

by Dirac in order to provide a deeper understanding of the nature and appearance of gauge

fields in quantum mechanics. In the same paper in which Dirac introduced the idea of a non-

integrable phase factor, he solved the quantum mechanical problem of a charged particle, an

electron, interacting with a magnetic monopole. The Dirac-Maxwell monopole is a theoretical

construct and searches in nature have so far been unsuccessful. Nevertheless the concept of

the magnetic monopole plays an important part in modern theoretical physics, and we show

in this thesis how effective, but not fundamental, magnetic monopoles do arise in molecular

physics. In Chapter 8 we show how non-adiabatic effects in the Modern Born-Oppenheimer

approximation manifest as the appearance of a gauge vector potential that describes a magnetic

monopole. We show how the angular momentum of the rotating nuclei are coupled with the

angular momentum contained in the static gauge field. The latter is shown to give rise to

rovibrational structure identical to that derived in the classic theory of Van Vleck, Rabi and

Kronig. We show how the induced gauge field gives rise to an effective, velocity-dependent,

Lorentz force. We speculate on the applicability of the gauge theoretic approach in a more

general context, and conclude with a summary of the thesis.
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Chapter 2

TRADITIONAL QUANTUM DESCRIPTION OF DIATOMIC

MOTION

The time-independent Schrödinger equation for a diatomic molecule is given by

H ′ ψ(R,x) = E′ ψ(R,x) (2.1)

where the wavefunction describing molecular motion is represented by ψ(R,x). R represents

the coordinates of the nuclei and x represents the coordinates of the electrons. H ′ is the

molecular Hamiltonian which is given by

H ′ = TN + Te + Vee + VNN + VNe (2.2)

and E′ is the total energy of the diatom which includes the kinetic energy of the center of mass

and all internal energies. The terms in the Hamiltonian are the nuclear kinetic energy, the elec-

tronic kinetic energy, the nuclear-nuclear Coulombic repulsion, the nuclear-electronic Coulombic

attraction and the electronic-electronic Coulombic repulsion potential energies respectively. We

shall be neglecting spin, relativistic effects and time dependence in our analysis.

2.1 MOLECULAR COORDINATE TRANSFORMATIONS FOR H2

The hydrogen molecule, H2, is composed of 2 protons and 2 electrons. If spin and relativistic

effects are ignored, then the Hamiltonian describing the system is given by [63]

H ′ =
1

2M

2∑

I=1

PI
2 +

1

2m

2∑

i=1

pi
2 +

1

|x1 − x2|
+

1

|R1 −R2|
−
∑

I,i=1,2

1

|RI − xi|
(2.3)

where RI and PI are the conjugate position and momentum operators for the protons respec-

tively, and xi and pi are the corresponding operators for the electrons where I, i = 1, 2. The

coordinates are defined with respect to a common origin in a space fixed frame. The masses

of the protons are denoted by M and m respectively. We will be using Hartree atomic units
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throughout except where we want to include some of the qualifying symbols in our calculations.

In this system of units [10]

e = m = ~ = 4πε0 = 1 and c = 1/α = 137.036 (2.4)

where α is the fine structure constant and M/m = 1836.15. We also will be suppressing the

convention of labeling an operator with a “hat” so that Ĥ → H. We want to perform a

coordinate transformation into a Jacobi coordinate system so that the Hamiltonian transforms

to H ′ → H = TC+TN+HAD where the three terms on the right hand side describe the motion of

the center of mass, the relative motion of the nuclei and the adiabatic Hamiltonian respectively.

In performing this transformation the dependence of the wavefuntion on the coordinates relative

to the space fixed frame will transform as ψ(RI ,xi)→ ψ(RC ,R, ri) whereRC is the coordinate

of the center of mass of the diatom, R is the relative separation of the nuclei, and ri is the

location of an electron with respect to the center of mass of the nuclei.

We will first transform the kinetic portion of the Hamiltonian

H ′K = − 1

2M

∑

I

∇2
RI
− 1

2m

∑

i

∇2
xi (2.5)

where we have made the substitution P → −i∇R and p → −i∇x and the differentiations are

performed in cartesian coordinates.

The equations we use for the transformation are [63]:

Center of mass of the molecule:

RC =
M
∑

I RI +m
∑

i xi

MT
where MT = 2(M +m). (2.6)

Center of mass of the nuclei:

RN =
M
∑

I RI

2M
. (2.7)

Relative separation:

R = R2 −R1. (2.8)
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Location of the ith electron with respect to center of mass of the nuclei:

ri = xi −RN . (2.9)

In order to begin the transformation procedure, we apply the chain rule to the gradient operator

for each of the coordinates to be transformed and then reapply this for the Laplacian. The

wavefunctions are all considered to be smooth and continuous functions so that there is no

difficulty in differentiation and that there is equality in mixed partials. An example of this

where we have chosen any one of the cartesian coordinates is

− 1

2M
∇R1ψ(RI , ri) =

− 1

2M

[
∂RC
∂R1

∂

∂RC
+

∂R

∂R1

∂

∂R
+
∂r1

∂R1

∂

∂r1
+
∂r2

∂R1

∂

∂r2

]
ψ(RC ,R, ri). (2.10)

This same procedure is to be repeated with regards to the coordinates R, r1, and r2 and then

reapplied so that the Laplacian is derived. This leads to the following terms:

− 1

2M
∇2
R1
ψ(RI , ri) =− 1

2M

[( M
MT

)2
∇2
RC

+∇2
R +

1

4
∇2
r1 +

1

4
∇2
r2

− 2M

MT
∇RC ·∇R −

M

MT
∇RC ·∇r1 +

M

MT
∇RC ·∇r2

+ ∇R ·∇r1 + ∇R ·∇r2 +
1

2
∇r1 ·∇r2

]
ψ(RC ,R, ri), (2.11)

− 1

2M
∇2
R2
ψ(RI , ri) =− 1

2M

[( M
MT

)2
∇2
RC

+∇2
R +

1

4
∇2
r1 +

1

4
∇2
r2

+
2M

MT
∇RC ·∇R −

M

MT
∇RC ·∇r1 +

M

MT
∇RC ·∇r2

−∇R ·∇r1 −∇R ·∇r2 +
1

2
∇r1 ·∇r2

]
ψ(RC ,R, ri), (2.12)

− 1

2m
∇2
r1ψ(RI , ri) = − 1

2m

[( m

MT

)2
∇2
RC

+∇2
r1 +

2m

MT
∇RC ·∇r1

]
ψ(RC ,R, ri), (2.13)

− 1

2m
∇2
r2ψ(RI , ri) = − 1

2m

[( m

MT

)2
∇2
RC

+∇2
r2 +

2m

MT
∇RC ·∇r2

]
ψ(RC ,R, ri). (2.14)
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Combining (2.11),(2.12),(2.13), and (2.14) rearranging and simplifying the kinetic portion of

the Hamiltonian H ′K transforms as

H ′K → HK = −
[

1

2MT
∇2
RC

+
1

2µ
∇2
R +

1

2m

∑

i

∇2
ri +

1

4M

(∑

i

∇ri

)2
]

(2.15)

where µ = M/2 is the reduced mass of the nuclei. Using the coordinate transformations given

in (2.8)-(2.9) the potential of H ′ transforms as

[
1

|x1 − x2|
+

1

|R1 −R2|
−
∑

I,i=1,2

1

|RI − xi|

]
ψ(RI , ri)

=

[
1

|r1 − r2|
+

1

|R| −
∑

i

1

|ri ±R/2|

]
ψ(RC ,R, ri). (2.16)

Combining (2.15) with (2.16) gives

H = TC + TN +HAD (2.17)

where

TC = − 1

2MT
∇2
RC
, (2.18)

TN = − 1

2µ
∇2
R, (2.19)

HAD = − 1

2m

∑

i

∇2
ri −

1

4M

(∑

i

∇ri

)2

+
1

|r1 − r2|
+

1

|R| −
∑

i

1

|ri ±R/2|
. (2.20)

TC represents the kinetic energy of the diatom in free space and can be separated out of the

total energy of the diatom. This then gives

TN ψ(R, r) +HAD ψ(R, r) = E ψ(R, r) (2.21)

where E is the internal energy of the diatom. TN represents the kinetic energy of the nuclei

in regards to their relative separation and HAD is the adiabatic Hamiltonian. (2.21) is the

time-independent Schrödinger equation for the molecule. The second term of HAD is the mass

polarization and due to the factor M >> m, can usually be neglected. The remaining terms of

HAD can be written as in (2.2) so that

HAD = Te + Vee + VNN + VNe (2.22)

7



which represent the 1st, 3rd, 4th, and 5th terms in (2.20) respectively.

2.2 THE BORN-OPPENHEIMER APPROXIMATION AND THE
ADIABATIC HAMILTONIAN

It is impossible to obtain an analytic solution to the Schrödinger equation for a molecular

system of coupled nuclear and electronic motion. The standard method to turn this into a

tractable problem was done almost 80 years ago by Born and Oppenheimer [8].

The first step in this procedure is that the molecular wavefunction can be separated into nuclear

and electronic components. This is described by [9]

ψ(R, r) =
∑

n

Φn(R, r)Fn(R). (2.23)

The Φn(R, r) are electronic wavefunctions which form a complete set of electronic eigenstates

for the adiabatic Hamiltonian for a given value of R and the Fn(R) are nuclear “wavefunctions”

which are the expansion coefficients describing the amplitude of nuclear motion [9, 10, 61]. In

an adiabatic treatment, the electronic motion is considered “fast” and the nuclear motion

“slow” [5]. The electronic wavefunction is a function of the coordinates of the electrons, r and

parametrically dependent on the internuclear separation vector, R. The internuclear separation

vector describes the separation of the nuclei and the orientation of the internuclear axis. It is

given by the coordinates R = (R, θ, φ), thus the molecular wavefunction is dependent on all of

these coordinates [63].

The nuclear “wavefunction” is not a wavefunction in the typical quantum mechanical sense due

to how the basis functions are defined [5]. If we consider only a single state Born-Oppenheimer

state then this wavefunction can be written as [8]

ψ(R, r) = Φ(R, r)F (R). (2.24)

Substitution of (2.24) into (2.21) gives

TN Φ(R, r)F (R) +HAD Φ(R, r)F (R) = E Φ(R, r)F (R). (2.25)

8



Let’s expand the kinetic term of the adiabatic Hamiltonian.

∇2
r Φ(R, r)F (R) = − 1

2m

[
Φ(R, r)∇2

rF (R) +
(
∇2
rΦ(R, r)

)
F (R) + 2∇rΦ(R, r) ·∇rF (R)

]
.

(2.26)

Because the nuclear wavefunction is not dependent on electronic coordinates, ∇2
rF (R) and

∇rF (R) vanish and we are left with

∇2
rΦ(R, r)F (R) =

(
∇2
rΦ(R, r)

)
F (R) (2.27)

and (2.25) becomes

− 1

2µ
∇2
R

(
Φ(R, r)F (R)

)
+
[
− 1

2m

(
∇2
rΦ(R, r)

)

+ VeeΦ(R, r) + VNNΦ(R, r) + VNeΦ(R, r)
]
F (R)

= E Φ(R, r)F (R) (2.28)

where we explicitly show the kinetic energy operator for the nuclei. The term in brackets is the

adiabatic Hamiltonian.

The second step in the Born-Oppenheimer approximation is to solve the molecular Schrödinger

equation for a given value of R. If we imagine the nuclear motion of the molecule “frozen” in

space, then the value of R is constant which means that the kinetic energy operator acting on

the molecular wavefunction is zero. By applying this effect (2.28) becomes

− 1

2m
∇2
rΦ(R, r) + VeeΦ(R, r) + VNNΦ(R, r) + VNeΦ(R, r) = ε(R) Φ(R, r) (2.29)

which is a time-independent Schrödinger equation for the electrons in a given nuclear configu-

ration. As such it is an eigenvalue equation where ε(R) is called the Born-Oppenheimer energy

and represents the energy of the electrons in this configuration and the electronic eigenstates

are the solutions to the equation. The nuclei are now moved an infinitesimal amount to a new

separation distance and again the electrons adjust to this new configuration. The step of solving

the electronic Schrödinger equation is repeated and a new eigenenergy is found. This process

is repeated in theory an infinite amount of times and as such the energy of the electrons as a

function of internuclear separation is found, ε(R). The collection of all such curves is called

9



a potential energy surface. This is considered an adiabatic process as the eigenstates of the

electrons do not change under a slow variation of the internuclear separation [5, 7, 22]. In

the absence of external fields, the potential operators are only dependent on the internuclear

separation distance, R, and not the angular configuration (θ, φ) of the nuclei which is why ε(R)

contains the scalar R [10]. The nuclear wavefunction was cancelled on both sides because the

potential energy operators return scalar values and do not operate explicitly on the nuclear

wavefunction.

The eigenenergy of the adiabatic Hamiltonian can now be substituted into (2.28) to give

− 1

2µ
∇2
R

(
Φ(R, r)F (R)

)
+ ε(R) Φ(R, r)F (R) = E Φ(R, r)F (R). (2.30)

In order to solve (2.30) for the nuclear wavefunction, the dependence on the electronic coor-

dinates r needs to be eliminated. This can be accomplished by left multiplying (2.30) by the

complex conjugate of the electronic wavefunction, Φ∗(R, r) and integrating over the electronic

coordinates. Then (2.30) becomes

− 1

2µ

∫
d3rΦ∗(R, r)∇2

R

(
Φ(R, r)F (R)

)

+ ε(R)

∫
d3rΦ∗(R, r)Φ(R, r)F (R) = E

∫
d3rΦ∗(R, r)Φ(R, r)F (R). (2.31)

Since the electronic wavefunctions form a complete set of electronic eigenstates for the adiabatic

Hamiltonian, we can take them to be orthonormal so that [63]

∫
d3rΦ∗(R, r)Φ(R, r) = 1 (2.32)

and (2.31) simplifies to

− 1

2µ

∫
d3rΦ∗(R, r)∇2

R

(
Φ(R, r)F (R)

)
+ ε(R)F (R) = E F (R). (2.33)
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We will explicitly insert the nuclear kinetic energy operator into (2.33).

The Laplacian in spherical coordinates is given by 1

∇2
R =

1

R2

∂

∂R

(
R2 ∂

∂R

)
+

1

R2 sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂φ2

]
. (2.36)

The first term in the Laplacian is the radial component and the second term is the angular

component.

The angular component is the square of the nuclear angular momentum operator

N2 = − 1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂φ2

]
. (2.37)

Substituting (2.37) into (2.36) and then this into (2.33) gives

1

2µR2

∫
d3rΦ∗(R, r)

[
− ∂

∂R

(
R2 ∂

∂R

)
+N2

](
Φ(R, r)F (R)

)
+ ε(R)F (R) = E F (R). (2.38)

The term in brackets, which is the nuclear kinetic energy operator, is still acting on the electronic

wavefunction.

The third step in the Born-Oppenheimer approximation uses the “fast” and “slow” adiabatic

motion of the electrons and nuclei [5, 8–10]. Due to the mass of the nuclei being on the order

of 103 times the mass of the electrons, the electrons are considered to adjust their postition

instantaneously with regards to the radial nuclear motion. As such (2.38) becomes

1

2µR2

[
− ∂

∂R

(
R2 ∂

∂R

)
+

∫
d3rΦ∗(R, r)N2Φ(R, r)

]
F (R) + ε(R)F (R) = E F (R). (2.39)

The term ∫
d3rΦ∗(R, r)N2Φ(R, r) (2.40)

is diagonal and doesn’t couple different Born-Oppenheimer electronic states in the single channel

Born-Oppenheimer approximation so is equivalent to N2. Eq. (2.39) is kept in this form

1There are three equivalent forms for the radial differential operator and two equivalent forms for the angular
differential operator of the Laplacian in spherical coordinates. These are given by

1

R2

∂

∂R

(
R2 ∂

∂R

)
≡ 1

R

∂2

∂R2
R ≡ ∂2

∂R2
+

2

R

∂

∂R
, (2.34)

and
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
≡ ∂2

∂θ2
+ cot θ

∂

∂θ
. (2.35)
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because in the next section we will relate the nuclear angular momentum to a combination of

total molecular angular momentum and electronic angular momentum, the projections of which

act on the electronic wavefunctions and modify the Born-Oppenheimer energy, ε(R).

The equations (2.33) - (2.40) can be described in a slightly more transparent form. Expanding

(2.33) gives

− 1

2µ

∫
d3rΦ∗(R, r)

[
Φ(R, r)∇2

RF (R) +
(
∇2
RΦ(R, r)

)
F (R) + 2∇RΦ(R, r) ·∇RF (R)

]

+ ε(R)F (R) = E F (R). (2.41)

The third step of the Born-Oppenheimer approximation implies that the terms

− 1

2µ

∫
d3rΦ∗(R, r)

(
∇2
RΦ(R, r)

)
F (R) and − 1

µ

∫
d3rΦ∗(R, r)∇RΦ(R, r) ·∇RF (R)

(2.42)

are considered to be negligible and ignored. These terms couple electronic and nuclear motion

and are called the non-adiabatic coupling terms [11, 32]. Applying these approximations reduces

(2.41) to

− 1

2µ
∇2
RF (R) + ε(R)F (R) = E F (R). (2.43)

This is now the Schrödinger equation for the nuclear wavefunction where ε(R) is now an ef-

fective scalar potential due to the internuclear separation of the nuclei and the electron charge

distribution for this given configuraton. It gives rise to a force on the nuclei in the direction

along the axis of internuclear separation called the Hellman-Feynman force and is given by [24]

FR = −∇R ε(R). (2.44)

12



Chapter 3

BORN OPPENHEIMER APPROXIMATION AND

NON-ADIABATIC COUPLING

For a more complete treatment of the Born-Oppenheimer approximation, the non-adiabatic

coupling of nuclear and electronic motion needs to be considered. These terms were neglected in

the third step of the Born-Oppenheimer approximation in (2.39)-(2.42). The inclusion of these

terms will lead to a modification of the Born-Oppenheimer energy, ε(R) in (2.43) [16, 17, 32, 50].

From (2.39) we recall that the nuclear angular momentum operator acts on the electronic

wavefunctions. Also the electronic wavefunction is given by Φ(R, r) where R = (R, θ, φ) and

the energy is only dependent on the internuclear separation R. This means that the electronic

wavefunction is described by the orientation in space of the diatom. In the molecular motion we

are examining, we are assuming Hund’s case (d) [10, 33]. In this scheme the electronic angular

momentum, L, is not coupled to the internuclear axis, R, but is instead coupled to the nuclear

angular momentum, N , to give the total angular momentum, J , so that

J = N +L

or

N = J −L (3.1)

where N is perpendicular to the internuclear axis from

N = R× P which leads to N ·R = 0. (3.2)

We now briefly discuss some aspects of the electronic wavefunctions in an arbitrary orientation.

3.1 MOLECULAR FRAME

In an atomic system the electronic angular momentum, L2, commutes with the Hamiltonian.

The projection of the angular momentum along any one axis, usually chosen to be the z-axis,

also commutes with the Hamiltonian and the orbital angular momentum so that eigenfunctions
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describing the atom can be constructed and the energy levels of an atom found.

In a diatom the two-center Coulomb interaction breaks spherical symmetry and L2 no longer

commutes with the electronic Hamiltonian, though the component of L along the internuclear

axis does. We can exploit the axial symmetry of the diatom to define a new coordinate frame.

In this frame, the internuclear axis can be chosen to be z′ and the x′ and y′ axes perpendicular

to this. We now briefly discuss rotations.

In order to describe the rotation of a 3-D Cartesian coordinate system or the rotation of a

3 dimensional body, Euler’s theorem needs to be used. This rotation operator can then then

describe any possible orientation of this object or coordinate system.

Euler’s Theorem: Every rotation R ∈ SO(3) can be written as a product of three rotations

[35]

R(φ, θ, χ) = Rz(φ)Ry(θ)Rz(χ) (3.3)

where Ry, and Rz are rotation operators around the original space fixed axes give by Ri(α) =

eiαLi . SO(3) represents the group of all 3 x 3 orthogonal matrices with real elements having

a determinant of 1. The angles φ, θ, χ are known as the Euler angles and are defined for the

ranges

0 ≤ φ, χ ≤ 2π, 0 ≤ θ ≤ π.

The rotation operator is given by

R (φ, θ, χ) = eiφJzeiθJyeiχJz (3.4)

which is a unitary transformation [35]. There are many such ways of defining the rotation

operator in terms of Euler angles. In terms of the Euler angles, the nuclear angular momentum

operator is given by

N2 = − 1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+
( ∂2

∂φ2
+

∂2

∂χ2

)
− 2 cos θ

∂2

∂φχ2

]
. (3.5)

If instead of rotating a 3-D frame, we want to examine the rotation of a single axis, all three of

the Euler angles are no longer required. This rotation can be parametrized in terms of the first

two Euler angles (θ, φ) by taking the internuclear axis of the diatomic molecule that has it’s

center of mass at the origin to be aligned along the z-axis of a space fixed frame, then rotate
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this about the y-axis by the angle θ followed by a rotation about the z-axis by the angle φ.

Traditionally rotations from a lab frame into a molecular frame were done by calculating how

the coordinates transformed from one coordinate system to the other by using the chain rule

on the angular momentum operators in the Laplacian. Details of this method can be found in

various books on molecular mechanics, namely the references [10–12].

We will be using a method in our discussion that uses the rotation operator, which is a unitary

transformation and it’s effect on the electronic wavefunctions [5, 14, 35]. The rotation operator

in this case is given by the unitary transformation U = eiφLzeiθLye−iφLz . The first rotation

e−iφLz doesn’t act on the diatom aligned along (0, φ) but is included for computational purposes.

What this implies is that the rotation about the terms involving the derivatives of χ are zero

in the lab frame and (3.5) reduces to (2.37).

Due to this axial symmetry, a projection of the angular momentum along the internuclear axis,

Lz′ commutes with the adiabatic Hamiltonian, so that [HAD, Lz′ ] = 0. It can be shown that in

the molecular frame that [11]

Lz′ = −i ∂
∂χ

and Lz = i
∂

∂φ
(3.6)

from which the change in sign gives rise to the anomalous commutation relations [13, 20, 31, 50].

The azimuthal portion of the electronic wavefunction is of the form [10]

Φ(R, r) ∝ e−iΛφ (3.7)

and when (3.6) acts on (3.7) gives the eigenvalues ,

Lz′ Φ(R, r) = ML Φ(R, r), ML = 0,±1,±2, . . .

= ±Λ Φ(R, r), Λ = 0, 1, 2, . . . (3.8)

and Λ = |ML|.

When the internuclear axis is along the z-axis, the adiabatic Hamiltonian in this specific con-

figuration is called the Born-Oppenheimer Hamiltonian and the electronic wavefunctions are

the Born-Oppenheimer wavefunctions, whereas they are called the adiabatic Hamiltonian and

wavefunctions respectively in any general orientation [61, 63, 64].
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The homonuclear diatom has a horizontal mirror plane passing through the center of mass of

the molecule An inversion of spatial coordinates across this mirror plane is parity inversion.

The parity operator acting on an eigenstate has the effect of multiplying the eigenstate by ±1.

The molecular term symbol is then also denoted by the label, g or u respectively. This number

reflects whether the electronic wavefunction changes sign upon reflection through the mirror

plane [10]. If the angular momentum projection eigenvalue is Λ ≥ 1, these states of identical

energy are called Lambda doublets.

3.2 NON-ADIABATIC CORRECTIONS

We are now in a position to re-examine (2.38) by taking into account the non-adiabatic coupling

of the electronic and nuclear motion.

The radial portion of (2.43) can be written as [11, 16, 17]

− 1

2µR2

∫
d3rΦ∗(R, r)

∂

∂R

(
R2 ∂

∂R

)
Φ(R, r) =

1

2µ

∫
d3r

(
∂Φ(R, r)

∂R

)2

(3.9)

or

1

2µ

∫
d3r

(
∂Φ(R, r)

∂R

)2

=
B(R)

2µ
(3.10)

where

B(R) ≡
∫
d3r

(
∂Φ(R, r)

∂R

)2

. (3.11)

The angular portion of (2.38) will be discussed below.

From (3.1) and (3.2) it can be seen that

Jz′ = Lz′ . (3.12)

This means that the projection of the total angular momentum along the internuclear axis

is the same as the projection of the electronic angular momentum along the same axis. In

the absence of external forces, the expectation values of the total angular momentum for the

molecular wavefunction, ψ(R, r), as well as the projection of angular momentum along the

internuclear axis can be represented by

〈ψ∗(R, r)J2 ψ(R, r)〉 = J(J + 1) (3.13)

16



and

〈ψ∗(R, r)Jz ψ(R, r)〉 = M (3.14)

respectively as given in Eq. (1.3.6) of [33] where −J ≤MJ ≤ J . Applying (3.8) to the molecular

wavefunction ψ(R, r) gives [10]

Lz′ ψ(R, r) = F (R)Lz′ Φ(R, r)

= ±Λψ(R, r). (3.15)

From (3.12) and (3.15), ψ(R, r) is also an eigenfunction of Jz′ so that

Jz′ ψ(R, r) = ±Λψ(R, r) (3.16)

where J = |Λ|, |Λ|+ 1, |Λ|+ 2, . . ..

Returning to the angular momentum component of the molecule (2.39) we can substitute into

this the square of (3.1) to give

∫
d3rΦ∗(R, r)N2Φ(R, r)F (R) =

∫
d3rΦ∗(R, r)

(
J2 +L2 − 2J ·L

)
Φ(R, r)F (R). (3.17)

The term in brackets on the right side of (3.17) can be rearranged by using (3.12) to give

J2 +L2 − 2J ·L = J2 − L2
z′ + L2

x′ + L2
y′ − 2 Jx′Lx′ − 2Jy′Ly′ . (3.18)

Using (3.13)-(3.16) and that the last two terms on the right of (3.18) are off diagonal terms

which disappear since they are being integrated over a single state

∫
d3rΦ∗(R, r)N2Φ(R, r)F (R) =

[
J(J + 1)− Λ2

]
F (R)

+

∫
d3rΦ∗(R, r)

(
L2
x′ + L2

y′
)
Φ(R, r)F (R). (3.19)

We label the term [61]

Ω2(R) =

∫
d3rΦ∗(R, r)

(
L2
x′ + L2

y′
)
Φ(R, r) (3.20)
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so that (3.19) becomes

∫
d3rΦ∗(R, r)N2Φ(R, r)F (R) =

[
J(J + 1)− Λ2 + Ω2(R)

]
F (R). (3.21)

The first term on the right hand side is the centrifugal barrier contribution to the potential due

to molecular rotation, the second term is a modification to the centrifugal potential, and third

term which is a function of R is a modification of the Λ term.

The molecular Schrödinger equation can finally be expressed as an eigenvalue equation describ-

ing nuclear motion by substituting (3.21) into (2.39).

[
− 1

2µR2

∂

∂R

(
R2 ∂

∂R

)
+
J(J + 1)− Λ2 + Ω2(R)

2µR2

]
F (R) + ε̃(R)F (R) = E F (R) (3.22)

where

ε̃(R) = ε(R) +
B(R)

2µ
(3.23)

is the modified Born-Oppenheimer energy, the constituents of which are all for a given internu-

clear separation.

From (3.22) it can be seen that the Hamiltonian describing nuclear motion is

HN =
1

2µR2

[
− ∂

∂R

(
R2 ∂

∂R

)
+ J2 − Λ2 + Ω2(R)

]
+ ε̃(R). (3.24)

We have shown so far that the adiabatic Born-Oppenheimer approximation leads to an incom-

plete Hamiltonian for nuclear motion in a homo-nuclear diatom.The inclusion of non-adiabatic

coupling in the calculation of the nuclear Hamiltonian accounts for terms which modify the

Born-Oppenheimer energy and the centrifugal potential of the diatom.
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Chapter 4

SOLUTION OF THE NUCLEAR WAVEFUNCTION

4.1 SEPARATION OF RADIAL AND ANGULAR WAVEFUNCTIONS

We are now in a position to solve the wave equation for nuclear motion given by

[
1

2µR2

[
− ∂

∂R

(
R2 ∂

∂R

)
+ J2 − Λ2 + Ω2(R)

]
+ ε̃(R)

]
F (R) = E F (R). (4.1)

The nuclear wavefunction can be separated into radial and angular components given by the

ansatz

F (R) =
FΛ
JM (R)

R
Y Λ
JM (θφ) (4.2)

so that (4.1) becomes

[
− 1

2µ

d2

dR2
+
J2 − Λ2 + Ω2(R)

2µR2
+ ε̃(R)

]
FΛ
JM (R)Y Λ

JM (θφ) = E FΛ
JM (R)Y Λ

JM (θφ). (4.3)

The effect of the the 1
R term puts the radial differential equation into standard form. The

separation of (4.3) into radial and angular components respectively becomes

[
− 1

2µ

d2

dR2
+ ε̃(R)− E + εΛJM (R)

]
FΛ
JM (R) = 0, (4.4)

[
1

2µR2

[
J2 − Λ2 + Ω2(R)

]
− εΛJM (R)

]
Y Λ
JM (θφ) = 0. (4.5)

where the rotational eigenvalue, εΛJM (R), for a given J and Λ, is the separation constant.

The radial portion of the equation has a potential curve, ε̃(R) that determines nuclear vibration.

This can be shown to be described by an anharmonic oscillator, the Morse potential, in the

presence of a centrifugal barrier with solutions given by the associated Laguerre polynomials

[33, 38, 40]. The Morse potential has a minimum at the equilibrium internuclear separation, Re.

The rotational energy of (4.5) needs to be determined in order to solve (4.4). The rotational

solutions will be shown to be the Wigner functions [21, 33, 49].
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4.2 ANGULAR MOTION

4.2.1 SYMMETRIC TOP

The angular component of diatomic motion can be shown to be the wave equation of the

symmetric top which will allow us to find the solutions to (4.5). The following discussion shows

how the quantum mechanical symmetric top can be derived from the classical symmetric top.

The kinetic energy of a classical symmetric top is given by [21]

T =
1

2

[
p2
θ

I1
+
( cos2 θ

I1 sin2 θ
+

1

I3

)
p2
χ +

1

I1 sin2 θ
p2
φ −

2 cos θ

I1 sin2 θ
pφpχ

]
(4.6)

where the pi represent the generalized momenta with respect to the time derivatives of the

Euler angles, i.e. pφ = ∂T
∂φ̇

and the angles θ, φ, andχ represent rotations about the space fixed

x−, y−, and z−axes respectively.

In order to quantize this equation, [13, 21, 34, 43] and obtain the Schrödinger equation for the

symmetric top, the quantum mechanical transformation of momentum must be made pφ →

−i ∂∂φ . There is a problem with making this direct substitution into the above equation as the

generalized coordinates are defined in Cartesian coordinates and will lead to an incorrect form

of the Schrödinger equation . Podolsky showed that the correct transformation is given by the

“Podolsky trick”. The Hamiltonian transforms as [12, 41]

H = −~2

2
|g|−1/2 ∂

∂qi
|g|1/2gij ∂

∂qj

where |g| = I1I2I3 sin2 θ and gij is a metric tensor of the moments of inertia expressed in terms

of Euler angles.

This then leads to the quantum mechanical transformation of the momentum in terms of Euler

angles as p2
φ = − ∂2

∂φ2
, p2

χ = − ∂2

∂χ2 , and p2
θ = − 1

sin θ
∂
∂θ

(
sin θ ∂

∂θ

)
. Suppressing ~ we now have the

Schrödinger equation for a symmetric top

− 1

2I1

[
∂2

∂θ2
+ cot θ

∂

∂θ
+

(
I1

I3
+

cos2 θ

sin2 θ

)
∂2

∂χ2
+

1

sin2 θ

∂2

∂φ2
− 2 cos θ

sin2 θ

∂2

∂φχ2

]
ψ(φθχ) = T ψ(φθχ)

(4.7)

where T is the rotational kinetic energy of the top and ψ(φθχ) is the wavefunction of the top

in the representation of the Euler angles.
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The wavefunction can be separated into components dependent on the Euler angles as

ψ(φθχ) = dJM,Λ(θ)ei(Mφ+Λχ). (4.8)

This substitution gives after applying the differential operators to the wavefunction

− 1

2I1

[
∂2

∂θ2
+ cot θ

∂

∂θ
+
(I1

I3
+

cos2 θ

sin2 θ

)
(−Λ2)

+
1

sin2 θ

(
−M2 + 2MΛ cos θ

)]
dJM,Λ(θ) ei(Mφ+Λχ) = T dJM,Λ(θ) ei(Mφ+Λχ). (4.9)

The exponential functions cancel and we have after rearranging

− 1

2I1

[
∂2

∂θ2
+ cot θ

∂

∂θ
− 1

sin2 θ

(
M2 − 2MΛ cos θ + Λ2 cos2 θ

)
− I1

I3
Λ2

]
dJM,Λ(θ) = T dJM,Λ(θ).

(4.10)

Using Λ2 cos2 θ = Λ2 − Λ2 sin2 θ

− 1

2I1

[
∂2

∂θ2
+cot θ

∂

∂θ
− 1

sin2 θ

(
M2 − 2MΛ cos θ + Λ2

)
+Λ2− I1

I3
Λ2

]
dJM,Λ(θ) = T dJM,Λ(θ) (4.11)

or after rearranging

−
[
∂2

∂θ2
+cot θ

∂

∂θ
− 1

sin2 θ

(
M2−2MΛ cos θ+Λ2

)]
dJM,Λ(θ) =

[
2TI1+Λ2− I1

I3
Λ2

]
dJM,Λ(θ). (4.12)

4.2.2 MOLECULAR ANGULAR MOMENTUM

The angular function given by

Y Λ
JM (θφ) = dJM,Λ(θ)eiMφ (4.13)

is also an eigenfunction for the molecular angular momentum operator, J2, for a given value of

Λ where [10, 33] 1

J2 = − 1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+
( ∂
∂φ
− iΛ cos θ

)2
]
. (4.14)

1(4.13) and (4.14) are the same as (4.8) and (3.5) respectively after applying the differential operator ∂
∂χ

.
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Applying (4.14) to (4.13) gives the total molecular angular momentum eigenvalue, J(J + 1) as

−
[
∂2

∂θ2
+ cot θ

∂

∂θ
− 1

sin2 θ

(
M2 − 2MΛ cos θ + Λ2

)]
dJM,Λ(θ) = J(J + 1) dJM,Λ(θ). (4.15)

A comparison (4.12) of (4.15) shows an equality between the eigenvalues of the symmetric top

and the molecular angular momentum gives

2T I1 + Λ2 − I1

I3
Λ2 = J(J + 1) (4.16)

which can be rearranged for the symmetric top energy, T

T =
J(J + 1)− Λ2

2I1
+

Λ2

2I3
. (4.17)

If we now choose the molecule to be at the equilibrium distance, Re we can make the substitution

[61]

B ≡ 1

2I1
where

1

2I1
=

1

2µR2
e

. (4.18)

We can now compare the energy of the symmetric top, T in (4.17) and the energy eigenvalues

for the nuclear motion, εΛJM (R) which gives [33, 49, 61]

εΛJM (R) = B

[
J(J + 1)− Λ2

(
1− 1

I3

)]
, (4.19)

I3 =
Λ2

Ω2(Re)
.

or

εΛJM (R) = B

[
J(J + 1)− Λ2

(
1− Ω2(Re)

)]
(4.20)

It can be seen from (4.19) that the effect of the Lambda doublets, Λ2 is to decrease the rotational

energy of the diatom. The effect of Ω2(Re), which from (3.20) represents the motion of the

electrons parallel to the z′-axis, increases the the rotational energy of the diatom which thus

reduces the effect of the Lambda term. We can then write (4.19) as

εΛJM (R) = B
[
J(J + 1)− Λ̃2

]
where Λ̃2 ≤ Λ2. (4.21)
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The solution to the nuclear rotational wave equation (4.5), the Y Λ
JM (θφ) = dJM,Λ(θ)eiMφ where

the dJM,Λ(θ) are found to be the Wigner functions which can be written in terms of the hyperge-

ometric functions. These solutions can be found in [10, 33] or in texts on mathematical physics

[1].

4.3 RADIAL MOTION

The radial motion of the diatoms is determined by the Born-Oppenheimer potential, ε̃(R).

There are many potential curves that can be fit to this potential which has the overall shape

of an anharmonic oscillator. References to various potentials can be found in [33]. At low

vibrational energies, the potential can often be approximated by a harmonic oscillator, but

this becomes less realistic as the vibrational energy increases. The harmonic oscillator doesn’t

take into account the Coulombic repulsion approaching infinity as the nuclear separation ap-

proaches zero or the molecule dissociating into two atoms as the nuclear separation increases. A

potential commonly used that gives an accurate representation of diatomic vibrational motion

is the Morse potential [38]. The solution by Morse was done not taking rotational motion into

account, so that J = 0. This solution was expanded on by Pekeris to include rotational motion

for J ≥ 1. We will give a solution to the vibrational energy levels by approximating the Morse

potential as a harmonic oscillator and apply a time-independent non-degenerate pertubation

to it. In Appendix A we elaborate on a detailed derivation of Morse’s analysis. In Appendix

B we outline the method of Pekeris and in Appendix C proceed with a perturbation treatment

of the former.

4.3.1 APPROXIMATING THE MORSE POTENTIAL AS A
HARMONIC OSCILLATOR

A solution can now be obtained for (4.4) now that the energy for the rotational eigenvalues,

εΛJM (R), has been found in (4.21). In this case we have J = 0, and since J ≥ |Λ|, then

εΛJM (R) = 0. The form of the Morse potential is given by [38]

ε̃(R) = Weq +D [1− e−β(r−re)]2 (4.22)
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where Weq is the energy of the potential at the equilibrium separation distance, R = Re, D

is dissociation energy of the diatom and β is a force constant similar to that in a harmonic

oscillator [10]. We will take the equilibrium energy Weq to be zero so that (4.4) becomes after

the substitutions given above

[
− 1

2µ

d2

dR2
+D

[
1− e−β(R−Re)]2 − E

]
FΛ
JM (R) = 0. (4.23)

A Taylor series expansion of the Morse potential keeping the first two non-vanishing terms gives

ε̃(R) ≈ β2(R−Re)2 − β3(R−Re)3. (4.24)

The harmonic oscillator solution to (4.23) is given by using the first term in (4.24). The

Hamiltonian for this case is given by

H = − 1

2µ

d2

dR2
+Dβ2(R−Re)2. (4.25)

The general case for a quantum mechanical harmonic oscillator is given by

H = − 1

2µ

d2

dR2
+

1

2
k(R−Re)2 (4.26)

where the angular frequency is ω =
√

k
µ . Comparing (4.25) and (4.26) we see that k = 2Dβ2

thus

ω =

√
2Dβ2

µ
. (4.27)

The vibrational energy eigenvalues, Eν , for the harmonic oscillator approximation for

[
− 1

2µ

d2

dR2
+ 2Dβ2(R−Re)2 − Eν

]
FΛ
JM (R) = 0, ν = 0, 1, 2 . . . (4.28)

where ν are the vibrational level quantum numbers are given by [10]

Eν = ω
(
ν +

1

2

)
, ν = 0, 1, 2, . . . (4.29)
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The vibrational wavefunctions, FΛ
JM (R)ν , are given by [10]

FΛ
JM (R)ν =

(
α√
π2nn!

)1/2

e−α
2R2/2Hν(αR) (4.30)

where α = (2µDβ2)1/4 and Hν(αR) are the Hermite polynomials given by [1]

Hν(x) = (−1)νe(x)2 d
νe−x

2

d(x)ν
, x = αR. (4.31)

4.3.2 APPLICATION OF A PERTURBATION TO THE HARMONIC
OSCILLATOR APPROXIMATION

As discussed earlier the harmonic oscillator only gives good approximations to the vibrational

eigenenergies for low quantum numbers. Born-Oppenheimer energies for bound diatoms exhibit

anharmonicity for larger values of vibrational quantum numbers, and a more accurate treatment

can be realized by applying a perturbation to the harmonic oscillator. The full steps can be

found in Appendix A and we will present the results here. If we use the expansion given in

(4.24) and treat the third order term as a perturbation, we have the energy eigenvalues given

by [47]

En ≈ E(0) +
〈
n
∣∣∣ Ĥ(1)

∣∣∣n
〉

+
∑

k 6=n

∣∣∣
〈
k
∣∣∣ Ĥ(1)

∣∣∣n
〉 ∣∣∣

2

E
(0)
n − E(0)

k

. (4.32)

After applying raising and lowering operators to the vibrational energy eigenstates, then (4.32)

becomes

En ≈ E(0) + γ2

(∣∣√(n)(n− 1)(n− 2)
∣∣2

E
(0)
n+3 − E

(0)
n

+

∣∣3n√n
∣∣2

E
(0)
n+1 − E

(0)
n

+

∣∣(3n+ 3)
√

(n+ 1)
∣∣2

E
(0)
n−1 − E

(0)
n

+

∣∣√(n+ 1)(n+ 2)(n+ 3)
∣∣2

E
(0)
n−3 − E

(0)
n

)
. (4.33)

Simplifying this becomes

En ≈ ω
(
ν +

1

2

)
− ω2

4D

[15

8

(
ν +

1

2

)2
+

7

32

]
. (4.34)
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4.3.3 MORSE POTENTIAL FOR J = 0

Morse obtained an analytical solution to (4.23) [38]. The steps to solving the eigenvalues are

given in Appendix B. The eigenvalues to this equation are given by

Eν = ω
(
ν +

1

2

)
− ω2

4D

(
ν +

1

2

)2
. (4.35)

The wavefunction solutions are given by the associated Laguerre polynomials [33, 38]which can

be found in texts on mathematical physics [1].

A comparison of (4.29) and (4.34) shows that the application of a perturbation to the harmonic

oscillator has added a term which creates an anharmonicity in the eigenenergies. Namely the

spacing between energy levels decreases as the vibrational quantum number increases. This

anharmonicity is inherent in the vibrational eigenvalues of the Morse potential and it can

be seen in a comparison of (4.34) and (4.35), that the constant term in (4.34) becomes less

significant at higher vibrational quantum numbers.

4.3.4 MORSE POTENTIAL FOR J 6= 0

Pekeris obtained a solution to the nucelar Schrödinger equation with non-zero angular momen-

tum [40]. The results of this are in Appendix C. We state the eigenvalue solutions here

Eν,J
c

= ω

(
ν+

1

2

)
−χω

(
ν+

1

2

)2

+B
[
J(J+1)−Λ2

]
+D

[
J2(J+1)−Λ2]2−α(ν+1/2)J(J+1)

(4.36)

The wavefunction solutions are given by the associated Laguerre polynomials [33, 40] which can

be found in texts on mathematical physics [1].
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Chapter 5

GAUGE THEORIES

5.1 INTRODUCTION TO GAUGE THEORIES

We will now review how the Maxwell field couples to charged particles in the non-relativistic

Schrödinger equation . In modern terminology, the latter describes a gauge theory and here we

give a brief review of important concepts in an Abelian gauge theory. We will then apply these

concepts to our discussion of molecular structure.

Gauge theory was initially developed by Weyl in 1918 in an attempt to explain that the mag-

nitude of physical measurements at specific space-time points are relative and not absolute.

The relation of this change in scale was called gauge invariance. With the development of

modern quantum mechanics in the mid 1920’s, it was realized by Weyl, Fock, London and later

expanded upon by Dirac [18, 52] that instead of a relation of scale between space-time points,

this could reflect a change in the phase of the wavefunction. The vector potential A(R) was

realized to be a gauge potential which connected the phases of different points. In Dirac’s 1931

paper, he used this idea to define magnetic monopoles in order to quantize electric charge.

The Hamiltonian determining the behaviour of the wavefunction in the Schrödinger equation

must also be invariant under specific gauge transformations, namely simultaneous gauge trans-

formations of the matter and gauge fields [5]. These transformations will be discussed below.

5.2 GAUGE TRANSFORMATIONS

The electromagnetic gauge theory is called an Abelian gauge theory [5]. This means that the

gauge functions are composed of 1× 1 matrices, or scalars and the gauge potential is a vector.

Electromagnetism is then called the U(1) gauge group [5, 27, 37].

The matter field, or wavefunction transforms under a unitary transformation. This transfor-
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mation is a phase shift, or a rotation in the complex plane. This can be shown as

F (R)→ F ′(R) = ei λ(R)F (R) (5.1)

where F (R) and F ′(R) both have the same normalization [18] and λ(R) is the gauge function.

The transformation needs to be unitary so that the norm of the wavefunction remains unchanged

under this transformation [18, 44]. The gauge function is in general a function of space and

time, but since we are considering a time independent Hamiltonian, we will label λ(R) as a

function of position only.

The gauge field, or vector potential transforms in general as

A→ A′ = UAU−1 + i U∇U−1 (5.2)

where the gauge transformations U and U−1 are respectively given by

U = ei λ(R) and U−1 = e−i λ(R). (5.3)

In the U(1) case which is Abelian, U and U−1 are scalars and so commute with A so that (5.2)

becomes

A→ A′ = A+ i U∇U−1. (5.4)

Inserting (5.3) into (5.4) and (5.4) finally becomes

A→ A′ = A+ ∇λ (5.5)

which is the gauge transformation seen in electromagnetic textbooks [30]. Thus the gradient of

the gauge function is the electromagnetic vector potential.

The gauge transformation for the potential is generally given by a four-vector since the scalar

potential V (R) is the temporal component of the electromagnetic field and the gauge function

is generally a function of time. Since we are considering the time independent case, the scalar

potential transforms as

ε(R)→ ε′(R) = ε(R) (5.6)
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and so is unchanged.

The elements of the gauge transformations are then given by (5.1) and (5.5).

The gauge transformations are required because the electromagnetic potentials are not unique,

however the choice of gauge should not effect the observable fields, E(R) and B(R). We can

show how the magnetic field is invariant under a gauge transformation. Maxwell’s equations

give us that [46]

∇ ·B = 0. (5.7)

This is shown more clearly because the magnetic field arises from a vector potential

B = ∇×A. (5.8)

So that

∇ ·∇×A = 0 (5.9)

which is known from vector calculus identities. The curl of the gradient of a scalar function is

zero.

∇×∇λ(R) = 0 (5.10)

where λ(R) is the gauge function. The magnetic field is invariant under this transformation as

can be shown. Let

A→ A′ = A + ∇λ(R). (5.11)

Taking the curl gives

B′ = ∇×A′ = ∇×A+ ∇×∇λ(R) = B. (5.12)

5.3 INVARIANCE OF THE SCHRÖDINGER EQUATION

The electromagnetic potentials define the fields, but gauge theory also determines the inter-

action between the electromagnetic field and an electric charge [46]. This interaction should

be invariant under the gauge transformations so that the expectation values of position and

momentum do not change. This is not the case for the canonical momentum. The canonical

momentum, p = −i∇ in the standard Schrödinger equation H = 1
2µp

2 needs to be replaced
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by the operator in the minimally coupled Hamiltonian. This term is called the kinematical

momentum defined as [44]

Π ≡ p−A. (5.13)

Inserting (5.13) into the Hamiltonian for the nuclear Schrödinger equation gives

H =
1

2µ
Π2 + ε(R). (5.14)

Noting that p = −i∇, (5.13) can be written as

Π = −i∇−A(R) = −i(∇− iA(R)) (5.15)

where the gauge covariant derivative is defined as [15]

D ≡∇− iA(R). (5.16)

Eq. (5.15) has the commutation relation [15]

[Dj , Dk] = −i (∂j Ak − ∂k Aj) = −i εjklBl. (5.17)

There are also the commutation relations 1 [15]

[Rj , Rk] = 0 and [Rj , Dk] = i δjk. (5.18)

The gauge covariant derivative can now be used to write the Born-Oppenheimer equation (5.30),

in a form invariant (covariant) way [64]. Inserting (5.16) into (5.30) gives

− 1

2µ
D ·D F (R) + ε̃(R)F (R) = E F (R). (5.19)

It can be shown that the form of (5.19) is invariant under the transformations (5.1) and (5.5)

and that the gauge covariant derivatives (5.16) transform like the wavefunction cf. (5.1) under

the same transformations [5]. In general the gauge potential is written as a four-vector given

by Aµ = (ε̃,A) where ε̃ is the 0th component. Then the commutator of the gauge covariant

1In a cartesian coordinate system Aj = Aj
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derivatives give

[Dµ, Dν ] = −i (∂µAν − ∂ν Aµ) = i Fµ,ν (5.20)

where Fµ,ν is the electromagnetic field strength tensor for the electromagnetic fields [26]

E = −∇A0 − ∂0A, B = ∇×A. (5.21)

5.4 GAUGE THEORY OF NON-ADIABATIC COUPLING TERMS

We are now in want to examine the treatment of diatomic motion using gauge theory. The

application of gauge theory to the motion of diatoms was first done by Moody, Shapere, and

Wilczek [37]. This technique was expanded upon in [29, 61, 64]. In this section we want to

show that (2.38) can be written in terms of gauge potentials.

We now return to (2.33) examine the non-adiabatic coupling terms using gauge theory. Ex-

panding out the first term in (2.33) gives

− 1

2µ

[
∇2
RF (R) +

(∫
d3rΦ∗(R, r)∇2

RΦ(R, r)
)
F (R)

+ 2
(∫

d3rΦ∗(R, r)∇RΦ(R, r)
)
·∇RF (R)

]
+ ε(R)F (R) = E F (R). (5.22)

We now make the following definitions [64]

A(R) ≡ i
∫
d3rΦ∗(R, r)∇RΦ(R, r) (5.23)

and

B(R) ≡ −
∫
d3rΦ∗(R, r)∇2

RΦ(R, r). (5.24)

Substituting these into (5.22) and rearranging gives

− 1

2µ

[
∇2
R − 2iA(R) ·∇R −B(R)

]
F (R) + ε(R)F (R) = E F (R). (5.25)

Using the identity [64]

Bij(R) =
∑

k

Aik ·Akj + i∇ ·Aij
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or

Bij(R) =
∑

k 6=1

Aik ·Akj +Ai1 ·A1j + i∇ ·Aij . (5.26)

Using the single electronic state where i = j = 1 this becomes

B(R) = A ·A+ i∇ ·A+
∑

k 6=1

A1k ·Ak1. (5.27)

Substituting (5.27) into (5.25) and rearranging gives

− 1

2µ

[
∇2
R − i∇R ·A(R)− 2iA(R) ·∇R −A(R) ·A(R)

]
F (R) + ε(R)F (R)

+
1

2µ

∑

k 6=1

(
A1k ·Ak1

)
F (R) = E F (R). (5.28)

Lets expand the following

[∇R − iA(R)
]2
F (R) =

[
∇2
R − i∇R ·A(R)− 2iA ·∇R −A(R) ·A(R)

]
F (R) (5.29)

which is what we have in (5.28) such that (5.28) becomes

− 1

2µ

[∇R − iA(R)
]2
F (R) + ε̃(R)F (R) = E F (R) (5.30)

where [37]

ε̃(R) = ε(R)F (R) +
1

2µ

∑

k 6=1

(
A(R)1k ·A(R)k1

)
F (R). (5.31)

So we see that by including the non-adiabatic coupling terms the Schrödinger equation has taken

on a gauge potential that now acts on the nuclei and the electric potential is now modified by a

scalar term from the vector potential. We will show in sections 8.1 and 8.2 that the traditional

non-adiabatic coupling terms arise out of the gauge fields present in a rotating diatom.
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Chapter 6

MAGNETIC MONOPOLES IN DIATOMS

6.1 ROTATION OF THE ELECTRONIC WAVEFUNCTIONS

In chapter 3.1, we described the orientation of a diatomic molecule and how its related to

the Euler angles. In this chapter we will describe how the electronic wavefunctions transform

under these rotations. We shall label the the electronic wavefunction by their eigenstates in

this chapter. The eigenstates are labeled by the value of their electronic angular momentum

projection on the internuclear axis of the diatom, Λ [61]. In |±ΦΛ(0, φ)〉 the notation (0, φ)

represents that until a rotation about θ occurs φ can take on all possible values. The symbol

±Φ represents whether Λ is ± [61]. This can be shown as [3, 5, 61]

|±ΦΛ(θ, φ)〉 = U+ |±ΦΛ(0, φ)〉 = eiφLzeiθLye−iφLz |±ΦΛ(0, φ)〉 , (6.1)

and also

〈±ΦΛ(θ, φ)| = 〈±ΦΛ(0, φ)|U−1
+ = 〈±ΦΛ(0, φ)| eiφLze−iθLye−iφLz . (6.2)

This rotation describes all possible orientations of the molecule uniquely except at the angle

θ = π. A different transformation can be used to uniquely describe all orientations except those

given for θ = 0 [3, 5]. This is

|±ΦΛ(θ, φ)〉 = U− |±ΦΛ(0, φ)〉 = eiφLzeiθLyeiφLz |±ΦΛ(0, φ)〉 (6.3)

with

〈±ΦΛ(θ, φ)| = 〈±ΦΛ(0, φ)|U−1
− = 〈±ΦΛ(0, φ)| e−iφLze−iθLye−iφLz . (6.4)

The states described by |±ΦΛ(0, φ)〉 are called the electronic Born-Oppenheimer eigenstates

and the states given by |±ΦΛ(θ, φ)〉 are called the electronic adiabatic eigenstates [61]. We will

denote the regions where (6.1) and (6.2) hold as R+, and where (6.3) and (6.4) hold as R−.
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6.2 MAGNETIC MONOPOLE FIELD FROM A GAUGE POTENTIAL

We want to now see what form the gauge potential, A(R) that was defined in (5.23) and

emerged in the molecular Hamiltonian, (5.30) and (5.31) takes by transforming it from a space

fixed frame to a body fixed frame for an arbitrary orientation. After doing this we can see the

effect this has on the adiabatic eigenstates with eigenvalues ±Λ [37, 61]. Thus we transform

A(R) = i 〈±ΦΛ(0, φ)|U−1∇RU |±ΦΛ(0, φ)〉 → i 〈±ΦΛ(θ, φ)|∇R |±ΦΛ(θ, φ)〉 . (6.5)

Expanding out (6.5) we have

A(R) = i 〈±ΦΛ(θ, φ)| R̂ ∂

∂R
|±ΦΛ(θ, φ)〉+ i 〈±ΦΛ(θ, φ)| θ̂

R

∂

∂θ
|±ΦΛ(θ, φ)〉

+ i 〈±ΦΛ(θ, φ)| φ̂

R sin θ

∂

∂φ
|±ΦΛ(θ, φ)〉 . (6.6)

We can now see how each of the components of A(R) act under the unitary transformations.

In the following calculations we will use the Baker-Campbell-Hausdorff relation.

eiαLj/~Lke
−iαLj/~ = Lk +

iα

~
[Lj , Lk] + (

iα

~
)2[Lj , [Lj , Lk] + (

iα

~
)3[Lj , [Lj , [Lj , Lk]]] + . . . . (6.7)

Eq. (6.7) along with the angular momentum commutation relations [35]

[Lj , Lk] = i εjk
lLl and using the complex conjugate

gives the identity

e∓iαLj/~Lke
±iαLj/~ = (cosα)Lk ± εjkl(sinα)Ll. (6.8)

For R+:

R̂ :

i 〈±ΦΛ(θ, φ)| ∂
∂R
|±ΦΛ(θ, φ)〉 = i 〈±ΦΛ(0, φ)| eiφLze−iθLye−iφLz ∂

∂R
eiφLzeiθLye−iφLz |±ΦΛ(0, φ)〉

i 〈±ΦΛ(θ, φ)| ∂
∂R
|±ΦΛ(θ, φ)〉 = i 〈±ΦΛ(0, φ)| ∂

∂R
|±ΦΛ(0, φ)〉 . (6.9)
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θ̂ :

i 〈±ΦΛ(θ, φ)| ∂
∂θ
|±ΦΛ(θ, φ)〉 = i 〈±ΦΛ(0, φ)| eiφLze−iθLye−iφLz ∂

∂θ
eiφLzeiθLye−iφLz |±ΦΛ(0, φ)〉

= −〈±ΦΛ(0, φ)| eiφLzLye−iφLz |±ΦΛ(0, φ)〉

i 〈±ΦΛ(θ, φ)| ∂
∂θ
|±ΦΛ(θ, φ)〉 = − 〈±ΦΛ(0, φ)|Ly cosφ+ Lx sinφ |±ΦΛ(0, φ)〉 . (6.10)

φ̂ :

i 〈±ΦΛ(θ, φ)| ∂
∂φ
|±ΦΛ(θ, φ)〉 = i 〈±ΦΛ(0, φ)| eiφLze−iθLye−iφLz ∂

∂φ
eiφLzeiθLye−iφLz |±ΦΛ(0, φ)〉

= − 〈±ΦΛ(0, φ)| eiφLze−iθLyLzeiθLye−iφLz − Lz |±ΦΛ(0, φ)〉

= − 〈±ΦΛ(0, φ)| eiφLz(Lz cos θ + Lx sin θ)e−iφLz − Lz |±ΦΛ(0, φ)〉

= − 〈±ΦΛ(0, φ)|Lz cos θ − Lz + Lx sin θ cosφ− Ly sin θ sinφ |±ΦΛ(0, φ)〉

i 〈±ΦΛ(θ, φ)| ∂
∂φ
|±ΦΛ(θ, φ)〉 = (1− cos θ) 〈±ΦΛ(0, φ)|Lz |±ΦΛ(0, φ)〉

+ 〈±ΦΛ(0, φ)|Ly sin θ sinφ− Lx sin θ cosφ |±ΦΛ(0, φ)〉 . (6.11)

Now combining (6.9), (6.10), and (6.11) into (6.6) we get

A(R)+ = i R̂ 〈±ΦΛ(0, φ)| ∂
∂R
|±ΦΛ(0, φ)〉 − θ̂

R
〈±ΦΛ(0, φ)|Ly cosφ+ Lx sinφ |±ΦΛ(0, φ)〉

+
φ̂(1− cos θ)

R sin θ
〈±ΦΛ(0, φ)|Lz |±ΦΛ(0, φ)〉+

φ̂

R
〈±ΦΛ(0, φ)|Ly sinφ− Lx cosφ |±ΦΛ(0, φ)〉 .

(6.12)

The gauge potential A(R) has been rotated into a body fixed orientation but given in terms

of the Born-Oppenheimer eigenstates. As was stated in 3.1, the projection of the molecular

electronic angular momentum along the internuclear axis is given by Lz′ . Since we have managed

to transform A(R) into an arbitrary orientation but given in terms of wavefunctions relative

to ẑ, we have from (3.8)

Lz |±ΦΛ(0, φ)〉 = ±Λ |±ΦΛ(0, φ)〉 . (6.13)

Terms can be eliminated in (6.12) by using the raising/lowering operators on the Born-Oppenheimer

states. The operators Lx and Ly can be given in terms of raising/lowering operators as [35]

Lx =
1√
2

(L+ + L−) and Lx =
1

i
√

2
(L+ − L−). (6.14)
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Using [35]

L± |±ΦΛ(0, φ)〉 ∝ |±ΦΛ±1(0, φ)〉 (6.15)

we can see that the act of the rasing/lowering operators is change the state described by the

quantum number Λ by ±1. However using the fact that the states are orthogonal and that

the difference in quantum number between any two doublet states is given by 2|Λ| means that

terms involving Lx and Ly in (6.12) can be eliminated.

This then reduces (6.12) to

A(R)+ = i R̂ 〈±ΦΛ(0, φ)| ∂
∂R
|±ΦΛ(0, φ)〉+

φ̂Λ (1− cos θ)

R sin θ
. (6.16)

The radial portion of A(R) can be removed through the gauge transformation (5.2).

A→ A′ = U−1AU + i U−1∇U. (6.17)

Let U , U−1 and A(R) be given by

U = exp

[
i

∫ R

A(R′) · dR′
]
, U−1 = exp

[
−i
∫ R

A(R′) · dR′
]

and A(R) = i R̂ f(R)

(6.18)

respectively.

Then

U−1AU = i R̂U−1f(R)U (6.19)

and ∇R U = iA(R)U → −R̂ f(R)U so that

i U−1∇U = −i R̂U−1f(R)U. (6.20)

Adding (6.19) and (6.20) gives zero and the radial portion of the vector potential has been

gauged away. Thus (6.16) becomes

A(R)+ =
φ̂Λ (1− cos θ)

R sin θ
. (6.21)

A similar calculation for R− will show that

A(R)− =
φ̂Λ (−1− cos θ)

R sin θ
. (6.22)
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Taking the curl of A(R)+ and A(R)− in the respective regions gives a magnetic monopole of

strength |Λ|

∇×A± = B = Λ
R̂

R2
. (6.23)

This is the key result from our analysis. We have shown the vector potential that arises

from the adiabatic coupling of electronic and nuclear motion in the modern Born-Oppenheimer

approximation, given by (5.23) is non-trivial. We were not able to gauge the potential away

and taking the curl of this potential gives a non-zero magnetic field. We will see in the Chapter

7 that this gauge potential is the same as that from a Dirac or a Wu and Yang monopole. In

Chapter 8 we will show that this vector potential applied to the modern Born-Oppenheimer

approximation gives the same Hamiltonian as that described by the traditional method.
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Chapter 7

MAGNETIC MONOPOLES

Magnetic monopoles had been discussed in a classical context before Dirac’s 1931 paper, notably

by Poincaré [42, 46]. In 1931 Dirac published the first paper on magnetic monopoles in quantum

theory. In his paper monopoles were thought of point charges like an electric charge, however

there was one significant difference. Unlike a point electric charge, there is a singularity along

the semi-infinite z axis which can be described as an infinitely thin solenoid that has the

property of returning a magnetic flux to the monopole so that the total magnetic flux is zero.

This singularity is known as the Dirac string. This extra piece satisfies Maxwell’s equation

∇ · B = 0. The presence of the string was reconciled by allowing it to be rotated to any

other position with the assumption being made that all possible configurations were equally

likely. This led to the string as being seen as an unphysical construct and the magnetic field

of the string as not real [46, 51]. However in the Wu and Yang monopole formalism,[53, 60]

they allow the magnetic monopole to have a magnetic flux of 4πg where g is the charge of

the monopole. We will call Wu and Yang as Wu-Yang. In the introduction to Dirac’s 1931

paper he comments on how the advancement of physical theories would need to rely on the

advancement of mathematical progress and the ability to relate the two. This indeed turned

out to be the case in this very paper as the mathematics of differential geometry progressed

and connections were made between gauge theories and differential geometry. In the field of

magnetic monopoles, Wu-Yang made this connection in a series of papers [53–59].

7.1 DIRAC MONOPOLES

As was discussed earlier, Maxwell’s equations tell us that the divergence of the magnetic field

is zero, or ∇ · B = 0. If the assumption is made that magnetic monopoles exist, then it is

expected that they will behave like a point charge with a “Coulombic” magnetic field. The

magnetic field of a monopole is then given by

B = g
R̂

R2
(7.1)
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which satisfies B = ∇×A so that ∇ ·∇×A = 0. This holds as long as the origin is excluded

but it is singular at R = 0. Using the divergence theorem, we have

∫

V
∇ ·B =

∫

V
∇ · g R̂

R2
= g

∮

S

R̂

R2
· dσ = 4πg = Φm. (7.2)

This then means that ∇·B = 4π g δ3(R) which is a contradiction to the divergenceless magnetic

field given by Maxwell’s equation. It is Dirac’s string that reconciles this by allowing for a return

magnetic flux along an infinitely thin solenoid into the monopole so that the net flux out of

the monopole is zero [18, 19]. Dirac defines the vector potential of a monopole in spherical

coordinates as being given by [18]

A =
g

2R
tan

θ

2
φ̂. (7.3)

or more commonly seen in modern writings by the trigonometrically equivalent forms [28, 36]

A =
g

R

(1− cos θ)

sin θ
φ̂ or,

A =
g

R

sin θ

(1 + cos θ)
φ̂. (7.4)

As was discussed in the previous chapter, the vector potential is the gradient of the gauge

function, and in this case the vector potential can be written as [46]

A = −g(1 + cos θ)∇φ = (1 + cos θ)U−1∇U where U = e−i g φ. (7.5)

There is a problem in this definition of the vector potential as it is singular along the negative

z-axis. As such, we will denote A as A+ to mean an exclusion of the negative z-axis. Taking

the curl of this equation over all space excluding the negative z-axis gives

B = ∇×A+ = g
R̂

R2
. (7.6)

The middle term satisfies the condition that ∇ ·∇×A+ = 0 but the right hand term is given by

∇ ·B = 4πgδ3(R). Because the vector potential has a singularity along the along the negative

z-axis, it is a distribution and as such the curl of A+ is correctly given by [6, 51]

∇×A+ = g
R̂

R2
+ 4π gΘ(−z)δ(x)δ(y)k̂ (7.7)
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where Θ(z) is the unit step function defined by Θ(z) = 1 for z > 0 and Θ(z) = 0 for z < 0. The

condition satisfying Maxwell’s equation has now been met that

∇ ·B = ∇ ·∇×A+ = 0 (7.8)

which gives

Φ =

∫
B · dσ =

∫
g

R̂

R2
· dσ +

∫
4πgΘ(−z)δ(x)δ(y)k̂ · dσ = 4πg − 4πg = 0 (7.9)

and the magnetic field is now fluxless and Maxwell’s equation is satisfied.

As was discussed in the previous section the vector potential is not unique and can be trans-

formed as

A+ → A+ + iU−1∇U = A+ ±∇λ (7.10)

depending on the sign of the gauge function. This allows the string singularity to be rotated

to another position. An example of this is the gauge U = e2iµφ with the gauge function being

given by λ = 2gφ. Substituting this into (7.10) we get

A+ → A− = A+ −∇2gφ =
g

r

(1− cos θ)

sin θ
φ̂− 2g

R sin θ
φ̂ =

g

R

(−1− cos θ)

sin θ
φ̂. (7.11)

This now describes a vector potential that is singular along the positive z-axis. Taking the curl

of this equation gives

∇×A− = g
R̂

R2
− 4πgΘ(z)δ(x)δ(y)k̂. (7.12)

A similar calculation to the one done above shows that integrating this vector potential again

leads to a fluxless magnetic field.

The discussion above shows that there is no global vector potential that uniquely describes the

magnetic field of a monopole and two different vector potentials are required to give a magnetic

monopole. Dirac explained the rotational invariance of the string by using “Dirac’s veto” which

states that the trajectory of an electrically charged particle must never cross the string, i.e. its

wavefunction vanishes there [18, 19, 23].

There is another gauge transformation that can be used which splits the string singularity into

two strings and as such the vector potential is singular along the entire z-axis. This gauge

was due to Schwinger [45] who thought it was better suited to quantum field theory [46, 60].
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Consider the gauge U = eiΛφ. Then

A+ → A± = A+ −∇gφ =
g

R

(1− cos θ)

sin θ
φ̂− g

R sin θ
φ̂ = − g

R

cos θ

sin θ
φ̂. (7.13)

7.2 WU-YANG MONOPOLES

In the Wu-Yang version of magnetic monopoles [53, 54, 56, 56–59], a different mathematical

approach (possibly even more physically realistic) is employed in order to remove the string of

singularities that plagued the Dirac version of monopoles. Wu and Yang were able to make the

connection between the physics of gauge fields and the mathematics of differential geometry.

This advancement in mathematics and it’s connection to physics is exactly what Dirac had

predicted would be needed in order to explain more phenomena [18].

The Wu-Yang formalism to describe the the magnetic monopole is to reconsider the idea of

the wavefunction and instead consider it a wave section [53]. Instead of trying to consider one

wavefunction to describe the monopole, the space surrounding it is divided into two sections.

Each section has a differing wave section for the monopole, but in a region of overlap between

these two sections they are related through a gauge transformation. The space that a given

section occupies is singularity free. Thus instead of trying to find one vector potential for the

entire monopole, one is found in each section, the curl of which gives the correct description

for the magnetic field of a monopole. Starting again with the magnetic field of the monopole

given by

B =
g

R2
R̂ (7.14)

and it’s divergence ∇ ·B = 4πgδ3(R). We have the same situation described in the discussion

on Dirac monopoles where the monopole has a flux of Φm = 4πg. In the Wu-Yang version of

the monopole, Yang states that the correct version of the monopole does have a flux, and is not

fluxless as described by Maxwell’s equations [51, 59, 60].

In order to arrive at this condition for the monopole, the space surrounding it is divided into two

spaces, each a semi-spherical surface with a common region of overlap. The vector potentials

given in each region are defined by

A+ =

[
g (1− cos θ)

R sin θ

]
φ̂ and A− =

[
g (−1− cos θ)

R sin θ

]
φ̂ (7.15)
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where the sections are given by

A+ ∈ 0 ≤ θ < π − ε,

A− ∈ ε < θ ≤ π. (7.16)

The two surfaces overlap where ε < θ < π − ε which can be minimized with the overlap along

the equator of π/2− δ < θ < π/2 + δ and θ is the polar angle. It is to be noted that these are

the same vector potentials that are described in the previous section under Dirac’s monopole.

As such you get the flux that you would expect from a point magnetic charge without a string

of returning magnetic flux. The total flux through a surface is then

∫
B · dσ =

∫
∇×A · dσ =

∫
∇×A+ · dσ+ + ∇×A− · dσ− = 4πg (7.17)

where the vector potential has been split into it’s two components and integrated over the

respective surface. An application of Stokes’ Theorem gives

∫
∇×A+ · dσ+ + ∇×A− · dσ− =

∮

C
A+ · dl+ +A− · dl− = 4πg (7.18)

where C is the closed curve bordering the surface. The standard orientation convention is

observed so the right hand rule determines the direction of the outward normal. As such the

upper and lower surfaces integrate in opposite directions. Thus the dl’s of the two surfaces are

of opposite sign and we can rewrite the above equation as

∮

C
(A+ −A−) · dl+ = 4πg (7.19)

by the assumption that the flux is non-zero. Since the same curve is being integrated over with

different vector potentials, a gauge transformation is needed between A+ and A− along the

overlap. This can be given by,

A+ → A− = A+ + i U−1∇U (7.20)
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where U = e2iΛφ is the gauge and the transition function is given by λ(r) = 2iµφ. Inserting

this into (7.20) gives

A+ → A− = A+ −∇2gφ =
g

R

(−1− cos θ)

sin θ
φ̂. (7.21)

It is to be noted that this is exactly the same gauge transformation that rotates the Dirac string

around the monopole.

The wave sections must also be related through a gauge transformation that is given by

ψ+(R) = ψ−(R)e2iΛφ. (7.22)

This ensures that the wave sections describe a uniform magnetic field over the entire space

surrounding the monopole.

7.3 NON-INTEGRABILITY OF PHASE AND MAGNETIC
MONOPOLE QUANTIZATION

In Dirac’s seminal papers on magnetic monopoles, he considered the quantum effect of a charged

particle in the presence of an electromagnetic potential and how this effected the wavefunction

in (5.1) [18, 19]. If there is no electromagnetic potential present, then the transportation of the

wavefunction about a closed path is unchanged and [14]

F (0) = F (2π). (7.23)

Dirac noted that the phase of the wavefunction of a charged particle can change in the presence

of a potential and that the phase of the wavefunction under transport can be written as [18, 46]

F (R) = F0(R)ei e
∫R A(R′)·dR′

(7.24)

where F0(R) is the wavefunction of a free particle. From (5.12) the vector potential is propor-

tional to the gradient of the gauge function which means that the gauge function is the line

integral of A(R). Dirac noted that this change in phase need not be zero, however the change

in phase around a closed path in the presence of a magnetic monopole must be an integer

multiple of 2π in order that the wavefunction maintains single-valuedness. This can be shown
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by [46]

e

∮
A(R′) · dR′ = 2π n. (7.25)

This integral is also recognized as the flux of a magnetic field through a surface, σ. This gives

e

∮
A(R′) · dR′ = e

∫

σ
dσ ·B = 4πe g. (7.26)

This gives

2π n = 4πe g or g =
n

2 e
. (7.27)

This condition holds in the case of a Dirac string [18]. In a general vector potential this

restriction on single valuedness is not required and the flux through a closed loop is given by

[14]

F (2π) = F0(0)ei4πe g. (7.28)

44



Chapter 8

COMPARISON OF TRADITIONAL QUANTUM

DESCRIPTION AND GAUGE THEORETIC TREATMENT

Now that we have shown that the potentials appearing in the Schrödinger equation for nu-

clear motion are gauge fields, we are in a position to compare the equality of the Hamiltonians

appearing in (3.24) and (5.19). Our analysis in section 8.2 will show that the non-adiabatic cor-

rection terms appearing in the traditional Born-Oppenheimer approximation arise from gauge

fields.

Substituting the definition of the gauge covariant derivative into the nuclear Hamiltonian gives

− 1

2µ

[∇R − i eA(R)
]2

+ e ε̃(R) = − 1

2µ
D2 + e ε̃(R) (8.1)

and there are two different approaches to solving the nuclear Schrödinger equation for each side

of (8.1). We will sketch these approaches below.

8.1 MAGNETIC MONOPOLE ANGULAR MOMENTUM

In the presence of a magnetic monopole, the angular momentum vector of a charged particle

needs to modified in order that the angular momentum is a integral of the motion, that is

[30, 46]

dL̃

dt
= 0 (8.2)

where L̃ is the generalized angular momentum. This was first considered by Poincaré and

Thomson [42, 48] Take a magnetic monopole to be located at the origin and a charged particle

of strength e located at the point r′. The magnetic and electric fields at the point r are given

by

B = g
r̂

r2
and E = e

r − r′
|r − r′|3

(8.3)
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respectively. In order for (8.2) to hold, there needs to be a modification to the standard angular

momentum given by

L = r × p. (8.4)

The modification Thomson made was to integrate the cross product of the position vector with

the Poynting vector to generate an angular momentum of the electromagnetic field.

L̃ =

∫
r ×

(
E ×B

)
dτ = −e g r̂. (8.5)

The details to the solution of this integral can be found in [26].

The generalized angular momentum of a charged particle in the presence of a magnetic monopole

can then be given by

L̃ = (r × p)− e g r̂ = L− e g r̂. (8.6)

In our case, we have the momentum operator as given by the gauge covariant derivative, D.

Similarly we have [5, 15, 37, 46, 61]

J̃ = −i(R×D)− e g R̂ (8.7)

which has the following commutation relations [15]:

[J̃j , Dk] = i εjklDl,

[J̃j , Rk] = i εjklRl,

[J̃j , Jk] = i εjkl J̃l,

[J̃j , H] = 0, (8.8)

where H is the Hamiltonian of the gauge covariant Born-Oppenheimer approximation (5.19).

These are the standard commutation relations for a spherically symmetric system [47]. In this

form it is easy to show now that the angular momentum commutes with Hamiltonian of the

diatom (5.19).

[J̃i, H] =
1

2µ
[J̃i,D ·D] + [J̃i, ε̃(R)]

=
1

2µ
[J̃j , DjDj ] = 0 (8.9)
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upon applying the first of the relations in (8.8).

8.1.1 METHOD USING GAUGE COVARIANT DERIVATIVE

Using the identity [15]

D ·D = (D ·R)
1

R2
(R ·D)− (D ×R)

1

R2
(R×D). (8.10)

Using the commutation relations found is section 5.4, the first term is

(D ·R)
1

R2
(R ·D) =

1

R2

∂

∂R

(
R2 ∂

∂R

)
.. (8.11)

The second term can be rewritten as

−(D ×R)
1

R2
(R×D) =

1

R2
(R×D)2. (8.12)

Inserting (8.11) and (8.12) into (8.10) gives

D ·D =
1

R2

∂

∂R

(
R2 ∂

∂R

)
+

1

R2
(R×D)2. (8.13)

From (8.7) we see that

J̃
2

= −(R×D)2 + e2 g2 (8.14)

which can rearranged to give

(R×D)2 = −J̃2
+ e2 g2. (8.15)

Inserting (8.15) into (8.13) gives

D ·D =
1

R2

∂

∂R

(
R2 ∂

∂R

)
− J̃

2
+ e2 g2

R2
. (8.16)

This can be inserted into the right side of the Hamiltonian of (8.1) giving

H = − 1

2µR2

[
∂

∂R

(
R2 ∂

∂R

)
+
J̃

2 − e2 g2

R2

]
= − 1

2µR2

[
∂

∂R

(
R2 ∂

∂R

)
− J(J + 1)− e2 g2

R2

]
. (8.17)

The third term is expanded on a subspace of states of given total angular momentum [15].

This is seen to be equivalent to the first the terms of (4.1) which describes the Hamiltonian
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governing the nuclear motion of the diatom. A comparison of these Hamiltonians shows that

Λ2 = e2 g2, and so the angular momentum projection of the electrons along the axis of the

diatom is akin to the angular momentum of the electromagnetic field, the second term in (8.7).

The φ dependence shows up as the e g term in the Hamiltonian and the solutions are given by

the Wigner function [15], dJM,Λ(θ) where J = |e g|, |e g|+ 1, |e g|+ 2, . . .

8.1.2 METHOD USING THE GAUGE POTENTIAL

We will be inserting the gauge potential of (7.13) into the left side of the Hamiltonian (8.1),

where

[∇R − i eA(R)
]2

= ∇2
R − i e∇R ·A(R)− 2i eA ·∇R − e2A(R) ·A(R). (8.18)

and

A(R) =
g

R

cos θ

sin θ
φ̂. (8.19)

Substituting (8.19) into (8.18) gives

1

2µR2

[∇R − iA(R)
]2

=
1

2µR2

[
− ∂

∂R

(
R2 ∂

∂R

)

− 1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+
( ∂
∂φ
− iΛ cos θ

)2
]

+ Λ2

]
(8.20)

where

J2 = − 1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+
( ∂
∂φ
− iΛ cos θ

)2
]
. (8.21)

This is the same operator as (4.14) for rotation of the diatom. If we apply the angular wave-

function of (4.13) we obtain after rearranging

[∇R − iA(R)
]2

= − 1

2µR2

[
∂

∂R

(
R2 ∂

∂R

)
− J(J + 1)− Λ2

R2

]
. (8.22)

There is a problem with the analysis used above to get the same differential equation as the

molecular symmetric top (4.14). The gauge potential given in (8.19) is singular at θ = 0, π,

however the solution to the differential equation, the Wigner d-function, dJM,Λ is regular every-

where. If we choose a different gauge, namely the gauge used in the A+ region of the Wu-Yang
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monopole,

A+ =

[
g(1− cos θ)

R sin θ

]
φ̂ where A+ ∈ 0 ≤ θ < π − ε. (8.23)

Substituting this gauge potential into (8.18) gives in place of (8.20)

1

2µR2

[∇R − iA(R)
]2

=
1

2µR2

[
− ∂

∂R

(
R2 ∂

∂R

)

− 1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+
( ∂
∂φ
− iΛ(1− cos θ)

)2
]

+ Λ2

]
.

(8.24)

The solution to this equation is given by [4, 55]

Y Λ
JM (θφ) = ei(M+Λ)φdJM,−Λ. (8.25)

The gauge in (8.23) is regular everywhere in it’s domain as is the solution in (8.25). Similarly

applying the gauge

A− =

[
g(−1− cos θ)

r sin θ

]
φ̂ where A− ∈ ε < θ ≤ π (8.26)

Substituting this gauge potential into (8.18) gives in place of (8.20)

1

2µR2

[∇R − iA(R)
]2

=
1

2µR2

[
− ∂

∂R

(
R2 ∂

∂R

)

− 1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+
( ∂
∂φ
− iΛ(−1− cos θ)

)2
]

+ Λ2

]
.

(8.27)

The solution to this equation is given by [4, 55]

Y Λ
JM (θφ) = ei(M−Λ)φdJM,−Λ. (8.28)

The solutions given in (8.25) and (8.28) are called the monopole harmonics [55] As was described

in Chapter 7.2, the gauge potentials are related through a gauge transformation in the regions

of overlap. By applying the theory of gauge potentials, we see there are two solutions required

to the nuclear Schrödinger equation so that the gauge potential is regular everywhere. This

situation in not discussed in the traditional description of diatomic rotation given in (4.15).
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8.2 CORRECTION TERMS

By using gauge theoretic methods we have obtained the angular momentum eigenvalues of the

nuclei along with the projection of the angular momentum of the electrons along the internuclear

axis. We will now show how the following two correction terms are derived.

Ω2(R)

2µR2
and

B(R)

2µ
. (8.29)

We first expand scalar correction of (5.31).

1

2µ

∑

k 6=1

A1k ·Ak1 =
1

2µ

∑

k 6=1

A1k
R ·Ak1

R +
1

2µR2

∑

k 6=1

A1k
θ ·Ak1

θ +
1

2µR2 sin2 θ

∑

k 6=1

A1k
φ ·Ak1

φ . (8.30)

Where the gauge potential is written in terms of the adiabatic eigenstates that were calculated

in chapter 6.2. This gives for the gauge potential

A1k ·Ak1 =i R̂ 〈Φ1| ∂R |Φk〉 −
θ̂

R
〈Φ1| cosφLy′ − sinφLx′ |Φk〉

− φ̂

R sin θ
〈Φ1| (cos θ − 1)Lz′ − sin θ cosφLx′ − sin θ sinφLy′ |Φk〉 . (8.31)

We now expand each of the terms in (8.31).

1

2µ
A1k
R ·Ak1

R = − 1

2µ
〈Φ1| ∂R |Φk〉 · 〈Φk| ∂R |Φ1〉 . (8.32)

Using
(
〈Φ1| ∂R

)
|Φk〉 = −〈Φ1|

(
∂R |Φk〉

)
(8.33)

gives [61]

1

2µ
A1k
R ·Ak1

R =
1

2µ

∣∣ 〈Φ1| ∂R |Φk〉
∣∣2. (8.34)

which is equivalent to B(R) in (3.10). The angular components of (8.30) are:

1

2µR2
A1k
θ ·Ak1

θ =
1

2µR2
〈Φ1| cos2 φL2

z′ − cosφ sinφ {Lx′ , Ly′}+ sin2 φL2
y′ |Φk〉 , (8.35)
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1

2µR2 sin2 θ
A1k
φ ·Ak1

φ =
1

2µR2 sin2 θ
〈Φ1| (cos θ − 1)L2

z′ + sin2 θ cos2 φL2
x′ + sin2 θ sin2 φL2

y′

− (cos θ − 1) sin θ cosφ {Lx′ , Lz′} − (cos θ − 1) sin θ sinφ {Ly′ , Lz′}

+ sin2 θ sinφ cosφ{Lx′ , Ly′} |φk〉 (8.36)

where {Lj′ , Lk′} is the anti-commutator of two operators and (8.33) was used. Combining

(2.6), (2.7) and (2.8), using the fact that 〈Φ1|Lz′ |Φk〉 = 0 for 1 6= k since Lz′ is diagonal, and

simplifying then (2.3) becomes

1

2µ

∑

k 6=1

A1k ·Ak1 =
1

2µ
〈Φ1|L2

x′ + L2
y′ |Φ2〉 (8.37)

which is equivalent to Ω2(R) in (3.20). We have shown that by using a gauge theoretic treat-

ment, that the traditional terms describing rovibrational motion in diatoms can be recreated.

8.3 LORENTZ FORCE

In Chapter 2 of the traditional Born-Oppenheimer approximation, a Hellman-Feynman force

was related to the scalar potential governing nuclear motion as in (2.44) [24]. In the gauge

covariant Born-Oppenheimer approximation [37, 61, 64], it has been shown that a Lorentz type

force, or an induced effective “magnetic force” can appear [2, 61, 62, 64].

Ehrenfest’s theorem describes how the expectation values of the position and momentum of a

particle change with time [47]. First find the expectation value of the position

d〈R〉
dt

= −i
〈
[R, H]

〉
+
〈∂R
∂t

〉
(8.38)

where

H = − 1

2µ
D ·D + ε̃(R). (8.39)

R is not a function of time so that the second term on the right of (8.38) is zero. Using the

gauge covariant form of the Born-Oppenheimer equation from (8.39) and substituting this into

(8.38)

−i〈[Rj , H]〉 =
i

2µ

〈
[Rj ,D ·D]

〉
− i
〈

[Rj , ε̃(R)]
〉
. (8.40)
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The third term is zero since scalars commute and taking the jth term of R and expanding out

gives.

d〈Rj〉
dt

=
i

2µ

∑

k

(〈
Dk [Rj , Dk]

〉
+
〈
[Rj , Dk]Dk

〉)
. (8.41)

Using (5.18) gives

d〈Rj〉
dt

=
〈Dj〉
µ

or
d〈R〉
dt

=
〈D〉
µ
. (8.42)

From (5.15), D is −i times the kinematical momentum. So the expectation value of the position

with respect to time gives a momentum divided by a mass, which is equivalent to a velocity.

To find the expectation value of the velocity we have

d〈D〉
dt

= −i
〈
[D, H]

〉
+
〈∂D
∂t

〉
(8.43)

where H is given by (8.39). Choosing the jth component

d〈Dj〉
dt

=
i

2µ

〈
[Dj ,D ·D]

〉
− i
〈

[Dj , ε̃(R)]
〉

+
〈∂Dj

∂t

〉
. (8.44)

D is not a function of time so the last term in (8.44) is zero. Expanding this out gives

d〈Dj〉
dt

=
i

2µ

∑

k

(〈
Dk [Dj , Dk] + [Dj , Dk]Dk

〉)
− i
〈

[∂j − i eAj , ε̃(R)]
〉
. (8.45)

Using (5.17), [Dj , Dk] = −i e εjklBl and (5.18), (8.45) becomes

d〈Dj〉
dt

=
(i)(−i)

2µ

∑

k

∑

l

εjkl

(〈
Dk Bl +BlDk

〉)
− i (−i)

〈
[∂j , ε̃(R)]

〉
. (8.46)

Applying the Levi-Civita symbol the term in brackets can be written as

εjkl

(〈
Dk Bl +BlDk

〉)
= εjkl

(〈
Dk Bl −BkDl

〉)
. (8.47)

We can see that these represent cross product terms and thus (8.47) represents the expectation

value as

d〈D〉
dt

=
1

2

〈
v ×B −B × v

〉
−∇R

〈
ε̃(R)

〉
. (8.48)

where we have used D
µ = v. The application of Ehrenfest’s theorem to the gauge covariant

Born-Oppenheimer approximation has led to a Lorentz type force as well as the Hellman-
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Feynman force that appeared in the traditional Born-Oppenheimer approximation.

8.4 CONCLUSIONS

We have treated the Born-Oppenheimer approximation for molecular motion with non-adiabatic

coupling through the application of gauge theory. All terms in the Hamiltonian describing

nuclear motion that arise from non-adiabatic coupling in the traditional approach to molecular

dynamics appear in a gauge theoretic framework. In place of applying differential operators to

the electronic wavefunctions to derive the nuclear Hamiltonian, a unitary operator is applied to

the electronic wavefunctions giving rise to a gauge potential. This allows the Hamiltonian for

the nuclear motion to be cast in a gauge covariant form. The gauge covariant treatment shows

how an effective magnetic monopole appears in a rotating diatom giving rise to a Lorentz type

force. An unexplored problem that arises in the gauge theoretic treatment is that two wave

section solutions, which are related through a gauge transformation, are required to describe

the nuclear angular motion through all arbitrary angles in order to deal with the monopole

singularity. This situation is not discussed in traditional molecular dynamics.

We feel that the gauge theoretic treatment of rovibrational motion in diatoms is an advancement

over the traditional techniques.

Firstly, the mathematical calculations to derive the non-adiabatic coupling terms are more

straightforward than the traditional approach. Secondly, gauge theory is used to describe our

current understanding of interactions among elementary particles, and in the context of this

thesis, appears to explain molecular interactions also. In the introduction to Dirac’s 1931 paper,

he presciently comments on how the advancement of physical theories would need to rely on

the advancement of mathematical progress and the ability to relate the two. This was the

case for Wu and Yang’s magnetic monopole and we posit that this is also the case for a gauge

theoretic approach to molecular dynamics. The adoption of gauge theory to describe diatomic

motion can be compared to a quote from Feynman [25] in 1963 where he is describing the

Aharonov-Bohm effect, “It is interesting that something like this can be around for thirty years

but, because of certain prejudices of what is and is not significant, continues to be ignored.”
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Appendix A

PERTURBATION OF THE MORSE POTENTIAL

We consider H = H(0) + H(1) where H(0) = Dβ2(R − Re)2 and H(1) = −Dβ3(R − Re)3. Let

R′ = (R − Re) and p be the canonical position and momentum operators respectively for the

nuclei.

The unperturbed eigenvalues are given by

En = ω(n+ 1/2). (A.1)

The vibrational eigenstates within a given Born-Oppenheimer state are denoted by |n〉.

Raising and lowering operators are given by [47]

A =

√
µω

2
R′ +

i√
2µω

P and A† =

√
µω

2
R′ − i√

2µω
P (A.2)

where ω =
√

2Dβ2

µ . These operators acting on the states |n〉 give

A |n〉 =
√
n |n− 1〉 and A† |n〉 =

√
n+ 1 |n+ 1〉 . (A.3)

Adding gives

A+A† =
√

2µωR′ ⇒ R′ = (A+A†)

√
1

2µω
. (A.4)

Using H(1) = −Dβ3R′3 ⇒ H(1) = −Dβ3
(

1
2µω

)3/2
(Â+ Â†)3.

Define

γ ≡ −Dβ3
( 1

2µω

)3/2
. (A.5)
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We want to find the matrix elements of the perturbation in terms of the unperturbed basis

states.

H |n〉 = γ (A+A†)(A+A†)(A+A†) |n〉

= γ (A+A†)(A+A†)(
√
n |n− 1〉+

√
n+ 1 |n+ 1〉)

= γ (A+A†)(
√
n
√
n− 1 |n− 2〉+ (n+ 1) |n〉+ n |n〉+

√
n+ 1

√
n+ 2 |n+ 2〉)

= γ (A+A†)(
√

(n)(n− 1) |n− 2〉+ (2n+ 1) |n〉+
√

(n+ 1)(n+ 2) |n+ 2〉)

= γ (
√

(n)(n− 1)(n− 2) |n− 3〉+ (2n+ 1)
√
n |n− 1〉+ (n+ 2)

√
n+ 1 |n+ 1〉

+ (n− 1)
√
n |n− 1〉+ (2n+ 1)

√
n+ 1 |n+ 1〉+

√
(n+ 1)(n+ 2)(n+ 3) |n+ 3〉)

= γ(
√

(n)(n− 1)(n− 2) |n− 3〉+ (3n)
√
n |n− 1〉

+ (3n+ 3)
√
n+ 1 |n+ 1〉+

√
(n+ 1)(n+ 2)(n+ 3) |n+ 3〉). (A.6)

To 2nd order the energy of the eigenstates of the Hamiltonian is given by [47]

En ≈ E(0) +
〈
n
∣∣∣ Ĥ(1)

∣∣∣n
〉

+
∑

k 6=n

∣∣∣
〈
k
∣∣∣ Ĥ(1)

∣∣∣n
〉 ∣∣∣

2

E
(0)
n − E(0)

k

(A.7)

where E(0) is the energy of the unperturbed state and

〈
k
∣∣∣H(1)

∣∣∣n
〉

= γ (
√

(n)(n− 1)(n− 2) δk,n−3 + (3n)
√
n δk,n−1

+ (3n+ 3)
√
n+ 1 δk,n+1 +

√
(n+ 1)(n+ 2)(n+ 3) δk,n+3). (A.8)

From the Kronecker delta’s we see that
〈
n
∣∣∣ Ĥ(1)

∣∣∣n
〉

= 0. This gives

En ≈ E(0) + γ2

(∣∣√(n)(n− 1)(n− 2)
∣∣2

E
(0)
n+3 − E

(0)
n

+

∣∣3n√n
∣∣2

E
(0)
n+1 − E

(0)
n

+

∣∣(3n+ 3)
√

(n+ 1)
∣∣2

E
(0)
n−1 − E

(0)
n

+

∣∣√(n+ 1)(n+ 2)(n+ 3)
∣∣2

E
(0)
n−3 − E

(0)
n

)
. (A.9)
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Where

E
(0)
(n+3) − E

(0)
n = ω(n+ 3 + 1/2)− ω(n+ 1/2) = 3ω,

E
(0)
(n+1) − E

(0)
n = ω(n+ 1 + 1/2)− ω(n+ 1/2) = ω,

E
(0)
(n−1) − E

(0)
n = ω(n− 1 + 1/2)− ω(n+ 1/2) = −ω,

E
(0)
(n−3) − E

(0)
n = ω(n− 3 + 1/2)− ω(n+ 1/2) = −3ω. (A.10)

Inserting (A.1) and (A.10) into (A.9) gives

En ≈ ω(n+ 1/2) + γ2
(n(n− 1)(n− 2)

3ω
+

9n3

ω
− 9(n+ 1)3

ω
− (n+ 1)(n+ 2)(n−+3)

3ω

)
. (A.11)

Rearranging the term in brackets gives

En ≈ ω
(
n+

1

2

)
− 30γ2

ω

(
n2 + n+

11

30

)
. (A.12)

Using completion of squares on 30(n2 + n) + 11 gives

30(n2 + n) + 11 = 30
(
n+

1

2

)2
− 30

4
+ 11 = 30(n+ 1/2)2 + 7/2. (A.13)

Substituting (A.13) into (A.12) gives

En ≈ ω
(
n+

1

2

)
− 30γ2

ω

(
n+

1

2

)2
− 7

2

γ2

ω
(A.14)

where from (A.5)

γ2 =
D2β6

8µ3ω3
⇒ γ2

ω
=

D2β6

8µ3ω4
. (A.15)

Insertion of (A.15) into (A.14) gives

En ≈ ω
(
n+

1

2

)
− 15

4

D2β6

µ3ω4

(
n+

1

2

)2
− 7

16

D2β6

µ3ω4
. (A.16)

From (4.27) we have β6 = ω6µ3

8D3 .

Inserting into (A.16) finally gives

En ≈ ω
(
n+

1

2

)
−

2ω2

4D

[15

8

(
n+

1

2

)2
+

7

32

]
. (A.17)
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Appendix B

SOLUTION OF SCHRÖDINGER EQUATION FOR J = 0

AND ε̃(R) = D[1− E−β(R−RE)]2

In this appendix we will fill in the details of Morse’s solution to the Morse potential [38].

Substitution of the potential ε̃(R) = D[1 − e−β(R−Re)]2 into the nuclear Schrödinger equation

with J = 0 gives

− 1

2µ

d2

dR2
F (R) + [D − 2De−β(R−Re) +De−2β(R−Re)]F (R)− EF (R) = 0. (B.1)

Let y = e−β(R−Re) then

dF (R)

dR
=
dF (y)

dy

dy

dR
= −β e−β(R−Re)dF (y)

dy
= −β ydF (y)

dy
(B.2)

and

d2F (R)

dR2
= −β y d

dR

(
y
dF (y)

dy

)
= −β

(
dF (y)

dy

dy

dR
+ y

d

dR

(
dF (y)

dy

))
(B.3)

thus

d2F (R)

dR2
= −β

(
− β ydF (y)

dy
− β y2d

2F (y)

dy2

)
= β2y2

(
d2F (y)

dy2
+

1

y

dF (y)

dy

)
(B.4)

so that (B.1) becomes

β2y2

(
d2F (y)

dy2
+

1

y

dF (y)

dy

)
− 2µ

(
D − E − 2Dy +Dy2

)
F (y) = 0. (B.5)

Now let

F (y) = e−z/2zb/2S(z) where z =
2

β

√
2µD y and b =

2

β

√
2µ(D − E) (B.6)

so that

dF (y)

dy
=
dS(z)

dz

dz

dy
=

2

β

√
2µD

[
− 1

2
e−z/2zb/2S(z) +

b

2
e−z/2

zb/2

z
S(z) + e−z/2zb/2

dS(z)

dz

]

=
2

β

√
2µD e−z/2zb/2

[
dS(z)

dz
+

(
b

2z
− 1

2

)
S(z)

]
(B.7)
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and from (B.6), 1/y = 2/β
√

2µD · 1/z so that

1

y

dF (y)

dy
=

(
2

β

√
2µD

)2

e−z/2zb/2
[

1

z

dS(z)

dz
+

(
b

2z2
− 1

2z

)
S(z)

]
. (B.8)

Let δ = 2/β
√

2µD so that z/y = δ and then

1

y

dF (y)

dy
= δ2e−z/2zb/2

[
1

z

dS(z)

dz
+

(
b

2z2
− 1

2z

)
S(z)

]
(B.9)

Now using d2F (y)
dy2

= d
dy

(dS(z)
dz

dz
dy

)
= d

dz

(dS(z)
dz

dz
dy

)
dz
dy we have

d2F (y)

dy2
= δ2 d

dz

[
e−z/2zb/2

(
dS(z)

dz
+

(
b

2z
− 1

2

)
S(z)

)]

= δ2

[
− 1

2
e−z/2zb/2

(
dS(z)

dz
+

(
b

2z
− 1

2

)
S(z)

)
− b

2z
e−z/2zb/2

(
dS(z)

dz
+

(
b

2z
− 1

2

)
S(z)

)

+ e−z/2zb/2
(
d2S

dz2
+

b

2z

dS

dz
− 1

2

dS

dz
− b

2z

dS

dz

)]

d2F (y)

dy2
= δ2e−z/2zb/2

[
d2S(z)

dz2
+

(
b

z
− 1

)
dS(z)

dZ
+

(
b2

4z2
− b

2z2
− b

2z
+

1

4

)
S(z)

]
. (B.10)

After substituting (B.10) and (B.9) into (B.4) and then (B.4) into (B.1), dividing by β2 δ2 y2 e−z/2 zb/2,

and combining like terms we have

d2S(z)

dz2
+

(
b+ 1

z
− 1

)
dS(z)

dz
+

(
b2

4z2
− (b+ 1)

2z
+

1

4

)
S(z)− 2µ

β2

y2

z2

(
D − E
y2

− 2D

y
+D

)
S(z) = 0

(B.11)

where 1/δ2 = y2/z2 was used.

The term D − E is equivalent to −W in Morse’s paper so that

D − E =
b2β2

8µ
but D =

β2

8µ

z2

y2
⇒ D − E = D b2

y2

z2
. (B.12)

Substituting D into the third term of (B.11) and rearranging gives

−2µ

β2

y2

z2

(
b2D

z2
− 2D

y
+D

)
S(z) =

(−b2
4z2

+
1

2y
− 1

4

)
S(z). (B.13)

Substitute (B.13) into (B.11), canceling terms and rearranging gives

d2S(z)

dz2
+

(
b+ 1

z
− 1

)
dS(z)

dz
+

1

z

(
δ

2
− (b+ 1)

2

)
S(z) = 0. (B.14)
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This equation now has the form of the associated Laguerre differential equation [1]

d2S(z)

dz2
+

(
b+ 1

z
− 1

)
dS(z)

dz
+
ν

z
S(z) = 0. (B.15)

The solution will be a finite polynomial if δ
2 −

(b+1)
2 = ν where ν ∈ Z.

Solving for b gives b = δ − 1− 2ν, but

D − E =
β2 b2

8µ
=
β2

8µ
(δ − 1− 2ν)2 where D =

δ2 β2

8µ
. (B.16)

Solving for E gives

E =
β2

8µ
(2δ + 4δν)− β2

8µ
(4ν2 + 4ν + 1) where δ =

2
√

2µD

β
. (B.17)

Inserting δ and rearranging gives

E =
β
√

2µD

µ

(
ν +

1

2

)
− β2

2µ

(
ν +

1

2

)2
. (B.18)

But ω =
√

2β2D
µ and β2

µ = ω2

2D . Inserting these into (B.18) gives

E = ω
(
ν +

1

2

)
− ω2

4D

(
ν +

1

2

)2
(B.19)

or

E = ω

[(
ν +

1

2

)
− χ

(
ν +

1

2

)2
]
. (B.20)

where χ = ω
4D .
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Appendix C

SOLUTION OF SCHRÖDINGER EQUATION FOR J 6= 0

AND ε̃(R) = D[1− E−β(R−RE)]2

Pekeris generalized Morse’s solution to the Schrödinger equation by including a non-zero angular

momentum contribution. The results of this Appendix were taken from [33, 39]

− 1

2µ

d2

dR2
F (R) +

[
J(J + 1)− Λ2

2µR2
−D[1− e−β(R−Re)]2

]
F (R) = E F (R). (C.1)

Rearranging gives

d2F (R)

dR2
+

[−J(J + 1) + Λ2

R2
+ 2µ

(
E −D −De−2β(R−Re) + 2De−β(r−re))

]
F (R) = 0. (C.2)

As in the case where J = 0 let y = e−β(R−Re). This transforms the differential equation into

d2F (y)

dy2
+

1

y

dF (y)

dy
+

2µ

β2

[
E −D
y2

+
2D

y
−D − J(J + 1)− Λ2

2µ y2R2

]
F (y) = 0. (C.3)

which we did for the l=0 case. Let A = J(J+1)−Λ2

2µRe
. Then (C.3) becomes

d2F (y)

dy2
+

1

y

dF (y)

dy
+

2µ

β2

[
E −D
y2

+
2D

y
−D − AR2

e

y2R2

]
F (y) = 0. (C.4)

Expand R2
e/R

2 as

R2
e

R2
=

1
(

1− ln y
βRe

)2 = 1 +
2

βRe
(y − 1) +

(
− 1

βRe
+

3

β2R2
e

)
(y − 1)2 + . . . (C.5)

Inserting this into (C.4) gives

d2F (y)

dy2
+

1

y

dF (y)

dy
+

2µ

β2

[
E −D − c0

y2
+

2D − c1

y
−D − c0

]
F (y) = 0 (C.6)
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where

c0 = A

[
1− 3

β Re
+

3

β2R2
e

]
, c1 = A

[
4

β Re
− 6

β2R2
e

]
, c2 = A

[
− 1

β Re
+

3

β2R2
e

]
. (C.7)

Now making the substitutions

F (y) = e−z/2zb/2S(z),

z = 2dy,

d2 =
2µ

β2
(D + c2),

b2 = −8µ

β2
(E −D − c0),

leads to the differential equation

d2S

dz2
+

(
b+ 1

z
− 1

)
dS

dz
+
ν

z
S = 0

where

ν =
2µ

β2d
(2D − c1)− 1

2
(b+ 1).

Solving for E gives

Eν,J = D + c0 −
(D − 1/2 c1)2

(D + c2)
+
β~(D − 1/2 c1)

π
√

2µ
√
D + c2

(
ν +

1

2

)
− β2

2µ

(
ν +

1

2

)2

. (C.8)

Expanding this in terms of c1/D and c2/D give

Eν,J
c

= ω

(
ν+

1

2

)
−χω

(
ν+

1

2

)2

+B
[
J(J+1)−Λ2

]
+D

[
J2(J+1)−Λ2]2−α(ν+1/2)J(J+1)

(C.9)

where

ω=

√
2Dβ2

µ
,

χe =
ω c

4D
,

Be =
1

8π µR2
e c
,
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De =
−1

16π3 µ3 ω2 c3R6
e

,

α=
3 ν

4µR2D

(
1

aRe
− 1

a2R2
e

)
.

As in the J = 0 case the first 2 terms represent the vibrational energy of the molecule with

correction. The third term is the rotational energy of the molecule treated as a rigid rotor. The

fourth term is a centrifugal distortion due to the rotation of the molecule and the fifth terms is

rovibrational coupling.
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