
UNLV Theses, Dissertations, Professional Papers, and Capstones 

5-1-2013 

Generalizations of Pascal's Triangle: A Construction Based Generalizations of Pascal's Triangle: A Construction Based 

Approach Approach 

Michael Anton Kuhlmann 
University of Nevada, Las Vegas 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Discrete Mathematics and Combinatorics Commons 

Repository Citation Repository Citation 
Kuhlmann, Michael Anton, "Generalizations of Pascal's Triangle: A Construction Based Approach" (2013). 
UNLV Theses, Dissertations, Professional Papers, and Capstones. 1851. 
http://dx.doi.org/10.34917/4478270 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by 
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1851&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F1851&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/4478270
mailto:digitalscholarship@unlv.edu


 

GENERALIZATIONS OF PASCAL'S TRIANGLE: 

A CONSTRUCTION BASED APPROACH 

 

By 

 

Michael Anton Kuhlmann 

 

Bachelor of Arts in Mathematics 

University of Nevada, Las Vegas 

2011 

 

 

Thesis Submitted in Partial Fulfillment 

of the Requirements for the 

 

Master of Science in Mathematical Sciences 

 

Department of Mathematical Sciences 

College of Sciences 

The Graduate College 

 

 

University of Nevada, Las Vegas 

May 2013 



ii 

 
 

 

 

THE GRADUATE COLLEGE 

 

 

We recommend the thesis prepared under our supervision by 

 

Michael Kuhlmann  
 

 

entitled 

 

Generalizations of Pascal’s Triangle: A Construction Based Approach 

 

 
be accepted in partial fulfillment of the requirements for the degree of 

 

Master of Science in Mathematical Sciences 
Department of Mathematical Sciences 

 

Peter Shiue, Ph.D., Committee Chair 

 

Gennady Bachman, Ph.D., Committee Member 

 

Michelle Robinette, Ph.D., Committee Member 

 

Laxmi Gewali, Ph.D., Graduate College Representative 

 

Tom Piechota, Ph.D., Interim Vice President for Research &  

Dean of the Graduate College 

 

May 2013 



iii 
 

ABSTRACT 

Generalizations of Pascal's Triangle: 

A Construction Based Approach 

by 

Michael Anton Kuhlmann 

Dr. Peter Shiue, Examination Committee Chair 
Professor of Mathematics 

University of Nevada, Las Vegas 
 

 The study of this paper is based on current generalizations of Pascal's Triangle, 

both the expansion of the polynomial of one variable and the multivariate case.  Our 

goal is to establish relationships between these generalizations, and to use the 

properties of the generalizations to create a new type of generalization for the 

multivariate case that can be represented in the third dimension. 

 In the first part of this paper we look at Pascal's original Triangle with properties 

and classical applications.  We then look at contemporary extensions of the triangle to 

coefficient arrays for polynomials of the forms: 

                 

and 

                 
  

 We look at construction of the resulting objects, properties and applications.  We 

then relate the two objects together through substitution and observe a general process 

in which to do so. 
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 In the second part of the paper I observe an application of the current 

generalizations to the classical problem "The Gambler's Game of Points" to games of 

alternative point structures.  The paper culminates with a generalization I have made for 

a particular case of the second equation, moving the current four dimensional 

generalization into the third dimension for observation and study.  We see the 

relationships of this generalization to those from our overview in part one, and develop 

the main theorem of study from the construction of its arrangement.  From this 

theorem we are able to derive several interesting combinatorial identities from our 

construction. 
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Chapter 1: Pascal's Arithmetical Triangle 

Yang Hui (1261) listed the coefficients of (a + b)n up to the sixth power, and credited this 

expansion from the Shih-so suan-shu of Chia Hsien (1100), where it is called "the 

tabulation system for unlocking binomial coefficients"[4]*.  This early Binomial Triangle 

was also given in 1303 in Chu Shih-chieh's Precious Mirror of the Four Elements.  The 

tabulation system used is the same as that used in Europe, and thus the Binomial 

Triangle can properly be attributed to China sometime around 1100A.D. 

 It was from Persia, however, that we can trace lines back from the European 

figuration of the binomial coefficients.  The Al-bahir of Al-Samawal, who died around 

1180 B.C., is reported to contain a calculation of the coefficients, the method of which is 

attributed to Al-Karaji sometime soon after 1007.  An early form of the Binomial 

Theorem was given by Al-Kashi (1427) along with the Binomial Triangle up to the ninth 

power in his Key of Arithmetic.  However, it is Pascal who gave us the proof of these 

results. 

 Blaise Pascal was born on June 19, 1623 in Clermont, and in 1631 was moved by 

his father Etienne Pascal to Paris to receive a better education.  Etienne, a 

mathematician himself, was one of the founders of Marin Mersennes's "Academy", 

where Pascal began study at fourteen.  At age sixteen he produced his famous Essay 

pour les coniques based on the work of Desargues. 

  In 1654, Pascal wrote his famous Traité du triangle arithmétique.  His interest 

was combinatorial, having solved the gambler's Problem of Points.  The problem was 
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regarding the division of stakes between players when a game has to be left unfinished.  

We address the solution of this problem at a later part of this paper. 

 The Traité du triangle arithmétique was published in 1665, from papers found 

amongst Pascal's papers after his death.  Pascal's work defined the triangle with 

corollaries, applied it in the theory of both figurate numbers and combinations, and 

gave applications including finding the powers of binomial expressions. 

  *- All historical information in the preceding section is attributed to [4]. 

 In this paper we take a close look at Pascal's Triangle, particularly interested in 

its construction.  We will then look at the construction of two major generalizations, 

which we will refer to as the  -Triangles and  -Simplices.  Relating these constructions 

together and observing their basic attributes will allow us to then observe a new 

construction, which I have named Pascal's Square and Pyramid.  This new construction 

has many interesting properties of its own, and in particular the construction of the 

Square will provide us immediate results of combinatorial identities, several of them of 

famous nature but not before shown through this construction.  I believe that many 

such results can come from similar constructions, a discussion which we leave later as 

concluding remarks. 

 1.1 Overview and Properties 

The Triangle 

 Although Pascal himself used a rectangular version of this triangle based on the 

figurate numbers (visited later), the contemporary version of arrangement is that of an 
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equilateral triangle of the binomial coefficients   
 
  

  

        
, where each row 

represents the exhaustion of coefficients of a particular  , beginning with     and 

increasing by one with each subsequent row, where in any given row  ,            .  

The first few lines of the triangle are as follows: 

 

n=0      1 

n=1     1  1 

n=2    1  2  1 

n=3   1  3  3  1 

n=4  1  4  6  4  1 

n=5 1  5  10  10  5  1 

Figure 1: Pascal's Triangle 

 

 

Each row can also be seen as the coefficients of the expansion given by the Binomial 

Theorem,           
 
  

         , something worth noting in exploring the 

properties of the triangle. 

Properties 

Pascal's Triangle has many interesting and convenient properties, most of which deal 

with its symmetry, but all of which hold an innate beauty. 

Theorem: The Pascal Triangle has the following properties: 
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1. Every row starts and terminates with 1. 

2.  Every row is symmetric about its center, and thus the triangle as a whole is 

symmetric about the vertical line running through its center. 

3. The sum of the numbers on any row   is   .   

4. The sum of the rows 0 through   is       . 

5. Every entry in each row is the sum of the numbers to its left and right on the previous 

row.   

Proofs: 

1. This comes from the identities   
 
    

 
   . 

2. The symmetry comes directly from the observation that   
 
  

  

        
   

   
 . 

3. This is easily seen from setting both variables to 1 in the Binomial Theorem, as 

             
 
  

                 
 
  

   . 

4. Follows directly from (3) with the additional note that      
          . 

5.  This is Pascal's Identity given as Lemma 4 in Part II of his Treatise: 

        
   

    
 
    

   
  

While this result was known before Pascal's writing of it, he was the first to prove it.  He 

did so using combinations, with what was arguably one of the first proofs using 

induction: 



5 
 

 "For consider any particular one of the       things: [  
 
 ] gives the number of 

 combinations that contain it, whilst [  
   

 ] gives the number that exclude it, the 

 two numbers together giving the total.  Pascal does not give a formal proof by 

 induction but uses the above argument with     and    , indicating its 

 generality".[4] 

This last property is often used to construct the triangle quickly, and is familiar to many 

in the use of quickly calculating the coefficients of binomial expansion to some  .  This 

can also be seen to be true by the action of multiplication in a certain way.  Consider: 

                                      

We can think of constructing the third row from the second by finishing out this 

multiplication in a way that each step gives only, and all of, one of the resultant terms.  

We do this by flipping     and following the multiplication as follows: 

 

                             

                                                                

                                              

                                 

Figure 2: Multiplication Construction of Pascal's Triangle 

 

This process works because of our coefficients of 1 in our linear term    .  We 

generalize this idea later in the construction of the T-triangle. 
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 There are many more properties to this triangle, but since the intended focus of 

this paper is generalization, I shall stop here and show a few of them as applications. 

 1.2 Applications 

Row   of Pascal's Triangle can be used to compute  th powers of 11.  This comes 

directly from the Binomial Theorem, as                
 
  

              .  For 

example,                                                .  

Once we move beyond a power of four the process changes slightly, since once a 

coefficient exceeds 10 we cannot simply list the coefficients in order, but rather need to 

"carry over" any increments of 10 in the     coefficient as increments of 1 in the 

        coefficient.  For example,                                

                  .  Since              and             , so we 

have                                               .  

Writing it out this way is tedious and simply illustrates the method.  Typically one can 

simply look at the line of the triangle and do this simple calculation to very quickly come 

to a result. 

 This can be generalized to the power of any number beginning and ending with 

1s, where all intermediate digits are 0s.  The process is the same, one just needs to keep 

in mind what our "base" is, and write each term appropriately.  For example, in 

calculating                , we represent all values from the     row as numbers 

with two terms, and carry over numbers when the coefficients exceed 100 in higher 

powers.  So                 . 
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 I also include here two famous applications of the Triangle given by Pascal.  One 

to an unsolved problem at the time, and the second to a problem presented by him with 

a solution, and my suspicions to his reasoning. 

  The Gambler's Game of Points 

Consider a game of chance with two players, interrupted before completion.  The game 

is based on points gained by either player with a successful event of equal chance, the 

first player to reach a total number of points being the winner.  Say, for example, the 

game is based on flipping a coin, where a flip of "heads" awards a point to player A, and 

a flip of "tails" to player B.  The problem is to determine how to split the stakes between 

the two players based on current standings should the game need to end before 

completion. 

 Suppose that in order to win, A needs a points and B needs b points.  Pascal and 

Fermat solved the problem initially by the method of "combinations", noting that at 

most (a + b - 1) more tosses will settle the game, and that this resulted in 2a + b - 1 

possible games of equal probability.[4]  These could then be classified as games which A 

or B would be the winner, and the resultant proportion should be the same in which the 

stakes should be split.  With this construction, the order of heads or tails is not 

important, only the total number after the (a + b - 1) tosses.  Furthermore, once a tosses 

are in player A's favor, player B can have at most (b - 1) in theirs, which makes 

calculation almost trivial with the properties of the Triangle in mind.  At the time of the 

solution, however, Pascal had not yet finished his treatise, and used enumeration to 

exemplify the general case with an example where a = 2 and b = 3.  (a + b -1) = 4 tosses 
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at most are needed to complete the game, with 16 possible games.  They are 

enumerated, and Pascal writes in a letter to Fermat dated 24 August 1654: 

 "because the first player needs two wins, he must win the game whenever there 

are two [heads]: thus there are 11 [games] for him; and because the second player 

needs three, he must win the game whenever there are three [tails]: therefore there are 

5 [games] for him".[4] In this case it should be decided that the first player receive 
  

  
 ths 

of the stakes, and the second player 
 

  
 ths. 

 Now, with the Triangle in our understanding, we can simply look at the row 

correspondent to        a + b -1, and consider   to signify a point for A and   a point for 

B.  Then the coefficients of terms with a power of   equal to or higher than a indicate a 

game in favor of player A, where those with a power of y equal to or higher than b 

indicate a game in favor of player B.  That is, we have: 

        
 

    
      games in favor of player A, and: 

        
 

      
      games in favor of player B. 

The stakes should then be split with 
 

       to player A and 
 

        to player B. 

In the example given by Pascal in his letter, we see that we do indeed have: 

    
 
  

             games in favor of the first player, and: 

    
 
  

          games in favor of the second player. 
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 Although Pascal did not blatantly identify what we know as the Binomial 

Distribution at this time, he implicitly did so in his application of his triangle to this 

Problem of Points, a problem clearly using the distribution of total outcomes with an 

event of probability   
 

 
.  He wrote "Proper calculation masters fickle fortune", and 

concerning the Problem of Points "each player always has assigned to him precisely 

what justice demands".[4] 

  The Gambler's Ruin 

The "Gambler's Ruin" was a problem posed by Pascal to his friend Fermat some time 

after their correspondence and solution of the Problem of Points, likely as he thought it 

to be too unfriendly to enumeration that he would be able to demonstrate the power of 

his Triangle, and his notion of expectations.  Fermat was quickly able to solve the 

problem when posed, giving a range in which the odds must lie as the numbers were 

quite large, and Pascal then gave his exact solution in response.  Although the method 

used by either of them is unknown, there has been much speculation on what they may 

have been with the tendencies of the two in mind.  The speculation I have seen 

regarding Pascal's method have been algebraic, using his notion of expectation.  I would 

like to pose here an alternative method that I believe he may have employed, simply by 

direct observation of the properties and symmetry of his Triangle. 

I give the problem here as described by Carcavi: 

 "Let two men play with three dice, the first player scoring a point whenever 11 is 

thrown, and the second whenever 14 is thrown.  But instead of the points accumulating 
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in the ordinary way, let a point be added to a player's score only if his opponent's score 

is nil, but otherwise let it instead be subtracted from his opponent's score.  It is as if 

opposing points form "pairs", and annihilate each other, so that the trailing player 

always has zero points.  The winner is the first to reach twelve points; what are the 

relative chances of each player winning?"[4] 

 As foreshadowed above, this problem is quickly concluded upon observation of 

the symmetry of the triangle.  It is a simple matter of calculation to see that the relative 

odds of tossing an 11 verses 14 are 9:5, which here I denote as    .  Using the 

combinatorial properties of the triangle formed by       , we see that a possible 

conclusion of the game occurs first on the row with     .  In fact, there are two 

endings of the game on this row, represented by     and    , being wins in favor of the 

first player and second player, respectively.  These are the "blowout" games, where only 

one player ever obtains a point, and here we see the relative odds of winning for the 

players are simply        .   

 The next possible resolution to the game happens at 14 tosses, where one player 

has won 13 of them.  Here we look at the line correspondent to     , specifically at 

the terms        and       .  Since two of the wins represented by each term actually 

stem from wins that already occurred after twelve tosses, looking at wins at 14 tosses 

gives the relative odds              , which of course reduces down to        .  We 

note, however, that since the included previous wins are symmetrically included on 
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both sides, it would be equivalent to simply consider the relative odds provided by the 

terms themselves,              . 

 Continuing in this fashion, we quickly see that the relative odds for either player 

at our possible number of tosses that can end a game,                  , are 

simply   
 
          

   
       .  With our properties of the binomial coefficient and 

symmetry of the triangle, this always resolves to        , which of course we now see 

are the relative odds of each player winning regardless of the amount of tosses made to 

conclude the game.   

 It is with this observation of symmetry in the Triangle that I believe Pascal made 

his solution.  More accurately, I believe that Pascal posed the problem itself with this 

symmetry in mind, giving him an opportunity to exhibit the power of his prized object. 

 1.3 Generating Fibonacci Numbers with Skewed Diagonals 

The Fibonacci Numbers are found to be present in Pascal's Triangle using the result 

known as Lucas' Formula:[6] 

            
 

 
         
     

Which can be seen as taking the sums of certain northeastern diagonals in the following 

way: 
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        1            1 

n=0      1       2                 3 

n=1     1  1               5           

n=2    1  2  1   8 

n=3   1  3  3  1 

n=4  1  4  6  4  1 

n=5 1  5  10  10  5  1 

Figure 3: Fibonacci Numbers on Pascal's Triangle 

 

 

A result which we will see an analogue to in the following generalization of Pascal's 

Triangle. 

 

Chapter 2: Current Generalizations with Applications 

 2.1 The T-Triangle 

Just as Pascal's Triangle can be seen as the expansion of       , we can construct two 

dimensional arrays for the coefficients of the expansion             or     

            .  For simplicity, we can think of these triangles as simply the 

expansions of          ,             , etc.. Since the homogeneous nature 

of the equations given in two unknowns is easily related to the case where    , as the 

coefficients of        in the prior are the same as    in the latter.  We can illustrate 

the construction of these triangles with that same method of multiplication that we 

exhibited in the binomial case. 
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  2.1.1 Construction 

Consider                           .  Observing the pattern in 

coefficients using our "flipping" method gives: 

 

                                                                                         

                                                                                       

                                                                            

                                                               

Figure 4: Multiplication Construction of the T-Triangle 

 

 

Repeating this process with this new result gives: 

                                   

 We see through the illustration of this process that the coefficients of the new 

line of our desired triangle are the sums of three consecutive coefficients of the 

preceding line, similar to our binomial case.  The first few lines of the triangle of 

coefficients of           are given in figure 5, and similarly the first few lines of the 

coefficients for              are given in figure 6. 

 In the same way that we construct the coefficients for the triangle of the 

polynomial with three terms, we can quickly construct this second triangle.  We obtain a 

coefficient in the     row by summing the four coefficients centered above it in the 

        row, considering any coefficient to the left or right of the triangle to be 0.   
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n=0      1 

n=1     1 1 1 

n=2    1 2 3 2 1 

n=3   1 3 6 7 6 3 1 

n=4  1 4 10 16 19 16 10 4 1 

n=5 1 5 15 30 45 51 45 30 15 5 1 

Figure 5: The 3-Triangle 

 

 

n=0       1 

n=1           1       1       1       1 

n=2    1 2 3 4 3 2 1 

n=3        1       3       6       10       12       12       10       6       3    1 

n=4 1        4         10          20          31           40       44        40        31         20      10      4    1 

Figure 6: The 4-Triangle 

 

This construction is consistent for the powers of any length of polynomial of this type.  

We will call the first triangle the 3-Triangle, the second the 4-Triangle, and so on, the 

number indicating the number of terms in the polynomial being considered.   

  2.1.2 Properties and Applications 

We first list some of the basic properties of the T-Triangle. 
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Theorem: Let     
 
  denote the     coefficient of the     row (  and   beginning at 0) of 

the  -Triangle generated by a polynomial of   terms.  For     or          we 

define     
 
   . 

1.     
 
      

      
    

2. There are          entries in the     row of the corresponding T-Triangle. 

3.     
 
         

 
  

        

 (For example,     
 
       

 
  

              ) 

4.      
 
 

      
      , i.e. the sum of coefficients of the     row of a given T-Triangle is 

  . 

 (This is easily seen by the substitution of     into the respective polynomial.) 

5. A given T-Triangle is symmetric about the vertical line passing through its center.  

That is: 

     
 
      

        
  

6.  Observing that the polynomial               
      

 

      
, we can use this 

generating function to find a formula for      
 
  in terms of binomial coefficients.  

Expanding the numerator and denominator with the binomial theorem and collecting 

the coefficients of    gives: 
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Proofs: Properties 1-5 can be found in [6], property 6 in [3]. 

We also note an observation given in [5], that the first   coefficients of row   in the  -

Triangle match the first   coefficients in row   of the (    -Triangle.  That is: 

    
 
        

 
      

 
        

 
        

 
        

 
 , and these coefficients are also equal 

to the first   coefficients on the         diagonal of the 2-Triangle (Pascal's Triangle). 

Applications 

A power of a number with every digit equal to 1 can be found using a T-Triangle in a 

similar way as we found the powers of 11 with Pascal's Triangle.  To find           

where our number has   digits, we refer to the     row of the T-Triangle considering 

each coefficient to be a single digit in our result.  We "carry over" coefficients of more 

than one digit, letting every 10 in our  th coefficient be a 1 in our      st coefficient.  

This follows in a similar fashion to our previous examples, as                    

       . 

For example, to find        we look at the row for     in our 3-Triangle: 

n=3   1 3 6 7 6 3 1 

And see that               . 

To find         we look at the row for     in our 4-Triangle: 

n=4 1     4 10 20 31 40 44 40 31 20 10 4        1 
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And after "carrying over" multiples of 10 find                     . 

 This method can also be applied to numbers of alternating 1s and 0s, or numbers 

of 1s with the same number of 0s between each by changing our base from 10 to 100, 

1000, etc.. Considering each coefficient from the table to be one digit less than our 

base, as is clear from our previous explanation of the method. 

 For example, 

                                                 from the row 

    in our 3-Triangle. 

                                            from the row     in 

our 4-Triangle. 

 This process can be used in numbers of other bases as well, although for smaller 

bases the "carrying over" procedure can be more tedious. 

      
                          

 The T-Triangle is also a natural setting for many enumeration problems.  

Consider the following problems given by Richard Bollinger in his 1993 paper[3] on the 

subject, which are presented here using our notation. Enumerate the number of ways 

        : 

 a) that a given sum, s, can be thrown with n fair m-sided dice; 
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 b) of solving the equation              in positive integers not 

exceeding a  given integer m; 

 c) of compositions (ordered partitions) of   into exactly n positive parts with no 

part  greater than m; 

 d) that s identical objects can be placed in n cells with each cell containing at 

least one  object and at most m objects. 

 These are equivalent questions taken in different contexts, but if we consider the 

generating function                                            

   , then we can relate the solution to our T-Triangles by observing: 

               
   

 
   

      

   

   
   

 
     

      

   

 

Which gives an immediate result for our coefficient of   , and the formula: 

          
   

   
  

For example, the number of ways of obtaining the sum      with     ordinary 

      dice is [3]: 

           
   

  
   

   

  
       

 J.D. Bankier wrote a paper [2] based on a similar problem to Bollinger's (d) 

above, where we look at the number of ways   objects can be placed in   cells, allowing 
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at most   objects to fall into a given cell, a problem which is the same as Bollinger's 

with the exception of the requirement of at least one item in each cell.  Bankier also 

achieved this result using T-Triangles.  Using generating functions we see that our 

solution can be found with the generating function          , each factor 

representing a cell, and the exponent of   the number of objects placed in that cell, 

yielding the solution       
 

 . 

  2.1.3 Generating N-bonacci Numbers with Skewed Diagonals 

We can define a series of numbers correspondent to any natural number T, the case 

where     the classical Fibonacci Numbers.  We define the cases for T=3 and T=4, the 

general concept then being clear. 

 Let   
  be defined recursively by   

    
   ,   

   ,   
      

      
  

    
  for    . The first few "tribonacci"[6] numbers then, are: 1, 1, 2, 4, 7, 13, 24. 

 Let   
  be defined recursively by   

    
   ,   

   ,   
   , and   

      
  

    
      

      
  for    . The first few "quadronacci"[6] numbers then, are: 1, 1, 2, 

4, 8, 15, 29. 

In general,   
     

    
      for    , where   

   , and   
    for    . 

Then we can generalize all such numbers using our T-Triangle with the following 

formula:* 
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*-generalized from results found in [6] 

This formula can be exhibited with the same northeast diagonal pattern on our T-

Triangles.  The two examples we have given below:  

 

                                        1             1              2     4     

n=0      1                                          7 

n=1     1 1 1   

n=2    1 2 3 2 1 

n=3   1 3 6 7 6 3 1 

n=4  1 4 10 16 19 16 10 4 1 

 

                                                                                                                                    

                                                                                                           1       1              2          4            

n=0       1                            8 

n=1           1       1       1       1 

n=2    1 2 3 4 3 2 1 

n=3        1       3       6       10       12       12       10       6       3       1 

n=4 1        4    10 20 31 40 44 40 31 20 10 4        1 

Figure 7: N-bonacci Numbers on T-Triangles 

   

 

 

 



21 
 

  2.1.4 The T-Triangle and Generalizing the Gambler's Game of Points 

In an application which I believe to be original, we can also generalize the "Gambler's 

Game of Points" problems for games with a more complicated point structure.  Suppose 

for example, that the game being played has three outcomes.  One in which player A 

receives two points, one in which player B receives two points, and one in which they 

each receive a point (note that outcomes resulting in no points for either player can be 

omitted, and we can consider the problem to consist only of throws in which points are 

awarded).  Suppose that player A needs 2 points to win, and player B 4 points.  Then the 

highest number of possible throws remaining to end the game is 3, all resulting in a 

clear victory or tie.  With this in mind, we can look at our third row of our 3-Triangle 

(with corresponding monomials added for emphasis): 

n=3   1   3    6     7     6     3    1   

 And we see that the first four terms correspond to wins in favor of player A, the 

last two wins for player B.  The term  6     corresponds to a tie, and thus we need to 

consider the order in which tosses were made.  This term is generated from the 

previous line of the triangle by the three terms                              , the first term a 

win for player A, the second term the true tie term, and the third term a win for player 

B.  The tie term can be split 1:1 between the players, as omitting it gives favor to player 

A.  Thus the stakes for A:B can be split in the ratio 21:6. 

 2.2 Pascal's Simplices 

Consider the Multinomial Theorem:[6] 
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 Let            be any   real variables, and   any nonnegative integer.  Then 

             
   

  

          
  
    

     
    

 where the sum is taken over every               with             . 

 When    , this reduces down to the Binomial Theorem.  The arrangements of 

the coefficients of the expansion of a multinomial are known generally as Pascal's 

Simplices.  The 2-Simplex is Pascal's original Triangle, the 1-Simplex is a single line (all of 

1s, the coefficients of     
 ), and the 0-Simplex is a single point. 

  2.2.1 Construction 

I shall focus on construction of the 3-Simplex and 4-Simplex, the general idea being 

clear.  We will use the terms "slice", "row" or "layer" to indicate the sub-arrays of 

coefficients for a particular value of   in a respective object.  We will sometimes use two 

of these terms to differentiate in context, for example "the second row of the third layer 

of the     slice of the 4-Simplex".  Before proceeding to the objects themselves, we give 

a simple theorem which helps makes some later relations more apparent. 

Theorem: The sum of coefficients in the  th slice of the T-Simplex is   . 

Proof: Plugging in              to the multinomial formula above gives us 

this result immediately. 

Pascal's Tetrahedron 
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The 3- Simplex is sometimes referred to as Pascal's Pyramid, but as I reserve this name 

for a later topic, I shall refer to it (in a sense, more properly, due to its form) as Pascal's 

Tetrahedron. 

 Pascal's Tetrahedron is a three dimensional array of the coefficients of the 

multinomial expression           
 , where the  th horizontal slice corresponds to 

the power  , just as in the 2-Simplex.  The top is a coefficient of one, given by    , 

and the base is a triangular array of the coefficients given by the largest   considered.  

The slices follow the procession of the triangular numbers in size: 1, 3, 6, 10, 15, 21, ..., 

with the pure powers of a single term lying along the edges.  The faces of the 

Tetrahedron are themselves Pascal's Triangles of two variables, with the mixed terms on 

the interior of the slices. 

Making a slice using Pascal's Triangle 

We can use Pascal's Triangle to create a slice of the 3-Simplex by observing the following 

identity: 

          
              

 
   

 

 
 

 

   

       
     

  

The idea is, we can create a Pascal's Triangle from        
             , and then 

multiply the rows by the corresponding coefficient of   
 
   

 .  I illustrate this idea below 

with the slice where      
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     (    1    ) 

   
     (       +      ) 

   
     (    

   +       +   
   ) 

     (   
  +    

    +      
  +   

  ) 

Figure 8: 3-Simplex Slice Construction 

 

 

Multiplying through and removing operators, we see the     slice to be: 

 

 

        
      

        
         

       

         
                 

    

     
      

          
     

  

Figure 9: 3-Simplex Slice of Terms 

 

 

With the idea in hand, we can quickly construct the slice for   of the 3-Simplex by 

creating the Pascal's Triangle up to the row for  , and then multiplying each row 

through by the corresponding value of the line on its base.  For example, the slice for 

    is as follows: 
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      1 

     4  4 

    6  12  6 

   4  12  12  4 

  1  4  6  4  1 

Figure 10: 3-Simplex Slice of Coefficients 

 

 

The slices have a beautiful three way symmetry with respect to the various terms, and 

when determining which coefficient is assigned to each term it is enough to note that 

the pure powers of a single variable occur in the corners, and the power of that variable 

reduces by one for each (respectively oriented) line it travels from "its" corner.  This is 

easily seen in our example above with the powers of the variables present.  The 

illustration in figure 11 is the first several layers of the Tetrahedron, taken from a paper 

by John F. Putz.[7] 
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Figure 11: The 3-Simplex 

 

 

The 4-Simplex 

Just as the 3-Simplex can be viewed as a series of Pascal-like triangles, the 4-Simplex is a 

series of 3-Simplices.  Similar to our assessment before, this is seen in the identity: 

             
    

 

 
           

     
 

 

   

 

 A "slice" then of the 4-Simplex corresponding to a particular value of   would be 

a tetrahedron of order  , each subsequent layer   (with     the base of the 

tetrahedron) is multiplied through entirely by the corresponding   
 
   

 .  A tetrahedron 

with four way symmetry, each of the four corners being a pure power of a single 

variable, with the power reducing by one with each (respectively oriented) triangular 

layer traveled away from a variable's respective corner.  We see this construction of the 
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"slice" of the 4-Simplex corresponding to a particular value of   is analogous to our 

previous construction to the same of the 3-Simplex. 

 The 5-Simplex then is a series of 4-Simplices, a slice corresponding to a particular 

value of   being a series of Tetrahedrons of four variables, each multiplied through by a 

respective binomial coefficient attached to the natural power of the fifth variable.  This 

generalization carries us through the Simplices of any order. 

  2.2.2 Relation to the Figurate Triangle 

 In a letter dated 8 June 1712, "Montmort remarked to Nicholas Bernoulli that he had 

discovered what no-one he knew had yet found, that the number of terms in a q-nomial 

raised to the pth power is given by the figurate number     
   "(p. 118). [4] 

 The figurate numbers are formed from the integers, themselves being formed in 

the same fashion by a string of 1s, with the formula   
       

    
   .  The first few rows 

are listed below. 

 Consider the triangular numbers (    below): 1, 3, 6, 10, 15, 21, 28...  .  These 

numbers are clearly the procession of the number of coefficients present in the     slice 

of the 3-Simplex. 

 Similarly, we can derive from these numbers the tetrahedral numbers, in 

progression 1, 4, 10, 20, 35, 56, 84, ... where the  th tetrahedral number is the sum of 

the first   triangular numbers.  These form the intuitive total number of nodes (or 

lattice points, here we use the term nodes to indicate the lattice points on which the 
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coefficients lie in the array) in the tetrahedron as a whole up to and including the  th 

slice. 

 We continue in this fashion to notate the number of total nodes in the  -

Simplex, and realize a construction known as the "Figurate Triangle".[4] 

 

T\   1 2 3 4 5 6 7 . . . 

0 1 1 1 1 1 1 1 . . . 
1 1 2 3 4 5 6 7 . . . 
2 1 3 6 10 15 21 28 . . . 
3 1 4 10 20 35 56 84 . . . 
4 1 5 15 35 70 126 210 . . . 
Figure 12: The Figurate Triangle 

 

 

Here we see each row represents the number of vertices in the T-Simplex, of order  .  

That is, the truncated T-Simplex terminating at the slice determined by  .  Each number 

is found in the same fashion as the triangular and tetrahedral numbers, the  th number 

of the  th row being the sum of the first   numbers in the preceding row.  This comes 

intuitively, as the 3-Simplex is simply a series of triangles, the 4-Simplex a series of 

tetrahedrons, the 5-Simplex a series of 4-Simplices, and so on.  So although Montmort 

did not give much detail, he had indeed correctly associated the number of terms in a q-

nomial raised to the pth power with the figurate numbers.  From this observation we 

also note that the number of terms in the     slice of the 3-Simplex (or any tetrahedron 
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in a higher Simplex) is the     triangular number.  These occur in both the third row and 

column of the Figurate Triangle, giving the coefficient     
 
 . 

While the figurate triangle has been well known for millennia, and formulas for the 

sums of the triangular numbers have been found on a papyrus from Ancient Egypt dated 

300 B.C[4], we of course realize this to again be Pascal's Triangle without much 

difficulty.  In fact, this is included in the material of Traité du triangle arithmétique, and 

many such triangles have been used historically for results involving the extraction of 

roots from expressions of the form (a + b)n.    Stifel even derived a formula from his own 

figurate triangle for the binomial coefficient in 1545[4], the first known person to do so 

in the West.  In a sense this table is misplaced in this document as the figurate numbers 

are really the basis for the study of the binomial, but I insert it here more for reference 

on the size of the Simplices.  

Chapter 3: T-Triangles from Simplex Slices 

The slices of the Simplices have a very direct relationship to our T-Triangles.  We know 

from our previous theorems that the sums of coefficients in the  th row in our T-

Triangle matches that of the  th slice in our T-Simplex.  It is easily seen that the T-

Triangles we have discussed earlier are a particular case of the Simplices with the 

substitution        , e.g.                    . Thus we can think of a line 

corresponding to a particular   in any T-Triangle as this substitution in the 

corresponding slice for that   in our T-Simplex.  For example, we see that our slice 
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created before (changing the roles of    and    to match our substitution) of our 3-

Simplex for    :  

 

        
      

        
         

       

         
                 

    

     
      

          
     

  

Figure 13: 3-Simplex Slice of Terms 

 

 

becomes: 

 

 

             

                  

                    

                   

                           

Figure 14: Substituted 3-Simplex Slice 

 

 

Our row corresponding to     in our 3-Triangle. 



31 
 

 This relationship between our 3-Triangle and 3-Simplex is clear for any 

corresponding  .  Dropping our variables, we can see this process with only the 

coefficients for    : 

 

 

       1 

     4  4 

    6  12  6 

   4  12  12  4 

  1  4  6  4  1 

  1 4 10 16 19 16 10 4 1 

Figure 15: Summing the 3-Simplex Slice 

 

 

As our   increases this process becomes more tedious, as our slices of the  -Simplex are 

not as easily generated.  For example, we show the slice of the 4-Simplex with     

and our general substitution method in figure 16.  These triangles can be imbedded 

upon each other according to the powers of   as in figure 17.  Summing after 

substitution gives us a line of coefficients, which of course is the corresponding row to 

    in our 4-Triangle. 
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   1         

  

  3  3     3    

 3  6  3   6  6   

1  3  3  1 3  6  3  

        

 

          1   

 3        

3  3   1 

Figure 16: Substituted 4-Simplex Slice 

      

 

                               

   1    3     

  

  3  3 3 3  3    

  

 3  6 6 3 6      

  

1  3 3 3 6 1 3  1 

1 3 6 10 12 12 10 6 3 1 

Figure 17: Imbedded 4-Simplex Slice and Sum 
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 Recall that for     a slice of our T-Simplex is a series of Tetrahedrons (i.e. a 4-

Simplex multiplied through by respective binomial coefficients), so a similar process 

would entail doing the above with all slices of the altered 4-Simplex generated.  This 

process is simplified in our case, since we already know that the slices of the general 4-

Simplex correspond to our rows in the 4-Triangle.  So for     we multiply rows by the 

respective binomial coefficient   
 
  in a similar way to our construction of our slice of the 

Tetrahedron, and realize a new correspondence between the     row of a T-Triangle 

and the first   rows of the      -Triangle. Using our previous substitution for 

         and setting      : 

 

n=0   
 
          1   

n=1   
 
             1       1       1       1 

n=2   
 
      1 2 3 4 3 2 1 

n=3   
 
          1       3       6       10       12       12       10       6       3       1 

Figure 18: Modified 4-Triangle 

 

 

Multiplying through and aligning with corresponding powers of   gives: 
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1   

 3 3 3 3 

  3 6 9 12 9 6 3 

   1 3 6 10 12 12 10      6        3 1 

1 3 6 10 15 18 19 18 15 10      6        3 1 

Figure 19: Modified 4-Triangle Overlay by Term 

 

 

The line corresponding to     in our 5-Triangle. 

This leads to a very nice identity in the case where    , following from our fact that 

the sum of the coefficients of the  th row of any T-Triangle is   : 

           
 

 
             

 

   
        

 

 
    

 

 
       

 

   

 

An identity which admittedly is much more easily proved with the Binomial Theorem 

using             
 

. 

 When looking at the connection between the Simplices and the T-Triangles, it is 

also interesting to note that the N-bonacci numbers we have seen in our T-Triangle have 

also been observed in the Tetrahedron by John F. Putz in his paper[7].  He gives the 

following illustration, the diagonal plane in the below related to our T-Triangle diagonals 

by the above relationships. 



35 
 

 

Figure 20: N-bonacci Numbers on the 3-Simplex 

 

 

 

Chapter 4: A New Generalization of the 4-Simplex - Pascal's Square and Pyramid 

From the 0-Simplex, we have seen that each consecutive Simplex is generated by an 

additional point in a new dimension.  But what if we considered all Simplices to be in the 

third dimension, where a new point was added in the third dimension to construct the 

next Simplex, with interaction filling the space bounded by all vertex points?  It is in this 

mindset that I proceed with the following generalization, which I believe to be new. 
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 While the 4-Simplex and higher order Simplices have a very distinct beauty, I 

have been making attempts to create three dimensional objects in which to arrange 

their coefficients that carry the same properties as the 3-Simplex (Pascal's Tetrahedron).  

In the 3-Simplex we saw that the top of the entire object corresponded clearly to    , 

and the sides of the object were all Pascal Triangles of two variables.  In fact, all possible 

Pascal Triangles of two variables are present.  This is also true for the Simplices of higher 

order, but to see it (with our dimensionally limited visualization) requires one to 

consider the "top" to be the peak of the smallest Tetrahedron, 4-Simplex, .. etc as the 

top of the entire object, and so see the Pascal Triangles of two variables one must do 

rearrangement depending on the expansion used in the original construction.  Where as 

in the Tetrahedron, assigning one of the variables to be 0 immediately reduces the form 

to the original Pascal's Triangle, in higher orders this action requires different forms of 

"stacking" after reduction depending on which variables are chosen to be  .  Also, as we 

have seen, relating a slice of a  -Simplex to its respective  -triangle becomes 

increasingly difficult as we travel to higher and higher dimensions. 

 The Simplices as we have constructed them in this paper are done so based 

completely on the triangular numbers 1, 3, 6, 10, 15, 21, ... .  We also have what are 

known as the square numbers, representing latticed squares of steadily increasing size.  

These numbers are, in progression, 1, 4, 9, 16, 25, ... .  In a certain sense, we are simply 

creating a square with two triangles, one having length 1 less on each side as the larger.  

With this relationship we can correspond a slice of the 4-Simplex (the tetrahedron 
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generated by  ) to a set of overlaying squares, each constructed by two consecutive 

layers of the slice beginning from the bottom. 

 The construction gives an             square of        coefficients, an 

            square with        coefficients, and so on until reaching   or  .  

Overlaying these we see the arrangement of coefficients in a single square, where each 

node of the square contains the number of coefficients equal to the shortest distance to 

the nearest side.  This construction gives us confirmation that the number of 

coefficients present in the square is the same as that in the tetrahedral slice of the 4-

Simplex. 

 As to which coefficients lie in which node, we can link the generation of this 

square to the idea of the generation of different layers of the 3-Simplex.  In the 3-

Simplex, each consecutive layer is a consecutive triangle with respect to the triangular 

numbers, and each coefficient is generated by the addition of the three coefficients in 

the triangle above it.  We can think of this process similar to that in the original Pascal's 

Triangle, and I will make another comparison for visualization.  For those familiar with 

the long-standing game show "The Price is Right", there was a game played by 

contestants known as "Plinko".  In this game, there was a wall of pegs, with a disc 

dropped above the top row.  Each time the disc fell to a subsequent row, there were 

two possible directions for the disc to fall.  For a given starting point, the distribution of 

ways that the disc would end at a particular space in the final row is directly related to 

the proportion of coefficients in the Pascal Triangle.   
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 In her Master's Thesis[1], Iowa State University student Katie Asplund used the 

Pascal Triangle to give an analysis of the game "Plinko" in depth.  She was able to 

calculate the expectation of winnings given any starting point for the disc, as well as the 

probabilities of each particular prize amount. 

 In the 3-Simplex, we could think of the coefficients being generated in a similar 

way.  If a ball is placed on the top of the tetrahedron, and at each point the ball had 

three directions in which to travel, the coefficients in each slice of the tetrahedron 

would correspond directly to the number of ways the ball could reach any particular 

node on that level.  The three directions here correspond directly to our three variables, 

the power of a variable increasing if movement is in the direction of the corner assigned 

to that variable. 

 It is in this way that I construct the Square.  If we consider a pyramid of such 

squares, all centered about a central axis and with diagonals directly above one another, 

we can generate the coefficients by observing the ways a ball could arrive at a particular 

node, given the opportunity to move in four different directions when traveling to the 

next layer with each direction being toward a particular corner.  The first several layers 

generated in this way would look as follows, corresponding to a layer  , where the peak 

is    . 
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       1     

        1 1 

   1 1 

       1 2 1 

   2 4 2 

   1 2 1 

       1 3 3 1 

   3 9 9 3 

   3 9 9 3 

   1 3 3 1 

       1 4 6 4 1 

   4 16 24 16 4 

   6 24 36 24 6 

    4 16 24 16 4 

   1 4 6 4 1 

       1 5 10 10 5 1 

   5 25 50 50 25 5 

   10 50 100 100 50 10 

   10 50 100 100 50 10 

   5 25 50 50 25 5 

   1 5 10 10 5 1 

Figure 21: Pascal Square Layers of the Pyramid 
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 It is clear that any of the four sides give the coefficients for possible horizontal or 

vertical movement to a particular row or column.  For example, the first row gives all 

possible horizontal movement with vertical movement remaining constant, the first 

column all possible vertical movement with horizontal movement constant.  So, for the 

central coefficients, we can easily calculate this in a multiplication table fashion, giving 

the number of ways to travel to a particular node horizontally times the number of ways 

to travel to that node vertically. 

 To relate this to our tetrahedral slice, we can relate motion in any diagonal 

direction as being an increase in the power of the variable assigned to that direction.  

Recall that a tetrahedral slice of our 4-Simplex is a four way symmetric object with a 

pure power of a single variable at each vertex, and the binomial correspondence 

between any two variables lying along the edge connecting the respective vertices.  If 

we position the tetrahedron so that the variable    has its pure power on the top, then 

each consecutive layer would consist of terms with the power of    reduced by 1.  With 

our relation to motion, each layer would give the coefficients of motion in the Pyramid a 

fixed number of times towards the corner of   , with all possible combinations of 

movement otherwise.  With this correspondence, we see that we can overlay the layers 

of the tetrahedron in the following manner, using     as an example: 
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       1  
  4 6 4 1  

  

   4 16 24 16 4 

   6 24 36 24 6 

    4 16 24 16 4 

   1  
  4 6 4 1  

  

Figure 22: Triangular Overlay of the Pascal Square 

 

 

Here each larger triangle contains a single layer of coefficients with reduced powers of 

  .  This overlay is exactly in line with our expectation from our original idea, where 

each node contains a number of terms equal to the shortest distance to the nearest 

side.  The     square has two terms in each node along its sides, and the     square 

as a single point in the center has three terms. 

 This overlaying also beautifully displays the number of ways the ball could travel 

given a particular distance traveled in a particular direction.  The overlapping of terms 

comes from the fact that traveling towards two opposite corners "cancels" the 

movement.  e.g. the movement of   
    leads to the same node as   

     , as       and 

     both correspond to no diagonal movement at all. 

 The square so far is not as related as we would like it to be to the multinomial 

distribution, as we have not yet found a way to "extract" particular coefficients from the 

sum present at each node.  But with our overlaying observation, we can use the 

properties of the layers in our tetrahedron to reveal a formula for any given node.  
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Observe that along the first row, all coefficients fall along a peak of a triangle, giving 

them the proportion 1 to the coefficient along the edge.  In the second row, each pair of 

consecutive coefficients falls into the second line of a triangle, giving the coefficients in 

the same triangle the proportion 1:1.  Because of the symmetry of the construction, the 

first four coefficients also follow the proportion 1:3:3:1 in a triangle generated by the 

corner   , and the last four coefficients follow the proportion 1:3:3:1 in a triangle 

generated by the corner   . 

 With the four way symmetry of the square, and different arrangements of 

triangles, we can calculate the coefficients of the different terms in each node with the 

following result. 

Main Theorem: Let          denote the node in the Pascal's Square corresponding to 

 , where          is any corner of the square, and     correspond to either (but 

different) directions parallel to the sides of the square.  Then the set          of 

coefficients corresponding to unique terms of the multinomial expansion in          is: 

           
 

 
  

 

 
  

   

   
                  

Due to the symmetry, the roles of   and   can be interchanged, and the formula for 

coefficients nicely gives zero for extraneous values of  , generating only           

               coefficients as desired. 

Proof: Without loss of generality, let us consider the case where    , and both 

    
   

 
.  In any other case we can reorient our initial corner to make this the case.  
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Consider the triangular layering originating from the upper right corner as in our 

previous diagram, where   is the horizontal component and   the vertical.  Then each 

coefficient in          is present in the  th row of a slice of the Tetrahedron, the slice 

being multiplied through by a constant.  There are   such slices intersecting at the node 

        , wherein the smallest slice is the  th slice of the Tetrahedron multiplied 

through by   
 
 , and the desired coefficient is the first in the  th row.  The second 

smallest is the      st slice multiplied through by   
   

  with the desired coefficient 

the second in the  th row and so on, the  th and largest slice being the      st slice of 

the Tetrahedron multiplied through by   
   

  with the desired coefficient the  th in the 

 th row. 

Then the first coefficient is   
 
   

 
   

 
 , the second is   

   
     

 
   

 
 , and continuing in 

this fashion the final coefficient is   
   

     
 
   

 
 .  In all cases we can rewrite these as 

  
   

     
 
   

 
           and see that; 

 
 

   
  

   

 
  

 

 
  

  

              

      

          

  

        
 

 
  

        

  

              

      

          
 

  
 

 
  

 

   
  

   

 
            

Now letting        

 
 

 
  

 

   
  

   

 
   

 

 
  

 

 
  

   

   
            

Completing the proof. 
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Corollary:  With our above theorem, the final equality in its proof and symmetries of the 

square we see that our square also produces the immediate identities: 

  
 

   
  

   

 
  

 

 
 

 

   

   
 

 
  

 

   
  

   

 
 

 

   

   
 

 
  

 

 
  

   

   
 

 

   

  
 

 
  

 

 
   

                                            

In particular, the last two resolve to the identities: 

  
 

   
  

   

 
 

 

   

   
 

 
  

   

   
 

 

   

  
 

 
   

                                            

Which is known as Vandermonde's Identity[9] or Vandermonde's Convolution, an 

identity which can be proved is several different ways but to my knowledge has not 

before been proven by this construction.  Also, we do not have the restriction of     

given by [9].  And we also see that the first sum gives us: 

  
 

   
  

   

 
  

 

 
 

 

   

  
 

 
  

 

 
   

                                            

A rank 3 combinatorial identity, which is an expansion formula for the product of 

binomial coefficients given by John Riordan in [8](pp. 15).  There it is derived by 

repeatedly using the Vandermonde convolution.  This method of derivation comes as no 

surprise to us, as we have seen from our construction they are very closely related. 

 As an example, let's consider the node          which is the same as         .  

We see that we have: 
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Our rank 3 identity working beautifully regardless of the representative node chosen.  

And we have all versions of our Vandermonde's Identity: 
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In all cases, the set of coefficients in our node is: 

                              

Using     as our example again, we see that the square with coefficients of individual 

terms listed would look like the following: 

 

       1 4 6 4 1 

   4 4,12 12,12 12,4 4 

   6 12,12 6,6,24 12,12 6 

    4 4,12 12,12 12,4 4 

   1 4 6 4 1 

Figure 23: Square with Separated Coefficients 

 

 

To see a more intuitive format for generating coefficients, consider the dual triangular 

overlay displayed as follows: 

 

       1 4 6 4 1 

   4 4,12 12,12 12,4 4 

   6 12,12 6,6,24 12,12 6 

    4 4,12 12,12 12,4 4 

   1 4 6 4 1 

Figure 24: Square with Dual Triangle Overlay 
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We can see that the overlay of "Pascalian" rows gives a very nice method to find the 

distinct coefficients of a row quickly.  For example, to calculate all coefficients of the 

second row, we use the first value as an "anchor".  We can calculate out coefficients in 

proportion to either the second or fourth row of Pascal's Triangle, and then use these 

results as anchors to calculate out the other row of proportions.  For example, the 

second row: 

 

4 12 12 4  or 4 4 

 4 12 12 4   12 12 

        12 12 

         4 4 

Figure 25: Coefficient Separation 

 

 

Where each "column" represents a particular node in that row.  Similarly, we can 

calculate the distinct coefficients of the third row, both anchors and rows in the 

proportion 1:2:1 respective to the relevant triangles: 

 

6 12 6 

 12 24 12 

  6 12 6 

Figure 26: Alternative Coefficient Separation 
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This quick and easy to see method is the origination of the above theorem. 

 Now taking our construction of a single square, the pyramid formed by 

consecutive squares forms the Pascal Pyramid, a three dimensional representation of 

our 4-Simplex.  Along each side of the pyramid, and across each diagonal, are Pascal 

Triangles of two variables.  Each diagonal half of the pyramid contains a Tetrahedron of 

three variables, four in total.  Setting any combination of variables to   immediately 

reduces the construction to the relevant Simplex of the remaining variables, without any 

rearrangement.  It is in the resolution of this object to its finer forms where I find the 

true beauty of the construction. 

 One final correspondence with the Square that I will make, is that the 

substitution for our    of the decreasing powers of   that form the monomial which 

generates our 4-Triangle resolves each node to contain a single term, in tandem with 

other nodes along a skewed diagonal (of "slope"   ).  Adding along the skewed 

diagonal produces our respective line of the 4-Triangle.  I display this with our     

square in figure 26.  With the correctly oriented triangle overlay, for the above case the 

smallest triangle in the bottom left corner, we see that this is the same process that we 

saw in Section 3.  Viewing it in this way, however, gives us a nice formula for the 

coefficients of our 4-Triangle: 
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       1 4 6 4 1 

   4 16 24 16 4 

   6 24 36 24 6 

    4 16 24 16 4 

   1 4 6 4 1   

          1    4   10   20   31  40  44   40   31 20  10  4   1 

Figure 27: Skewed Diagonals on the Square 

 

 

Noting that the binomial product will be zero once   exceeds 
 

 
.  In particular, taking all 

such diagonals on the square, or by simply using Property (5) in 2.1.2, we have: 

   
 

    
  

 

 
 

 

   

    

   

    

Where the indices act more as a restriction in evaluation, as in many of the possible 

values of   the product is zero. 

 This same concept, along with our work relating the constructions in part (3) 

gives us a similar formula for the coefficients of the 3-Triangle.  If instead of the 

centered orientation we arrange the triangle with one side vertical, we can use the 

same diagonals ("slope" of -2) as above in our square to resolve to the row in our 3-

Triangle.  I give a visualization of this below: 
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      1 

   4 4 

   6 12 6 

   4 12 12 4 

   1 4 6 4 1 

         1    4    10   16  19  16  10 4    1 

Figure 28: Skewed Diagonals on 3-Simplex Slices 

 

 

The coefficient sums along the diagonals being the same as summing in the "columns" in 

part (3).  This gives us the coefficient formula: 

 
   

 
    

   

    
  

 

 
 

 

   

 

Requiring     in the first binomial coefficient instead of just the   we had for the 

formula of     
 
  due to the columns now being consecutive rows of the Pascal Triangle 

instead of the same row repeated as in the square.  These formulas are the 

constructively derived cousins of the coefficient formula given as Property (7) in 2.1.2, 

which was done with the use of generating functions.  Finally, analogous to the above 

from the square, we have: 
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 It is interesting to note that the diagonals used in the above triangle are the 

same that would normally generate the Fibonacci Numbers in a standard (un-truncated) 

Pascal Triangle that had not had its rows multiplied through as we have done. 

Chapter 5: Discussion on Similar Generalizations for Higher Simplices 

The pentagonal numbers, 1, 5, 12, 22, 35,...  the  th pentagonal number being the  th 

square number added to the      th triangular number.  Formulated geometrically, 

one can quickly convince themselves that the  th pentagon could be formed from the 

 th square with a triangle as a hat, then stretching the upper two vertices of the square 

to the sides with some internal shifting to give symmetry to the diagonals. 

 While I have not had success in generating a general Pascal's Pentagon in the 

same way as the square, or using the traditional pentagonal numbers, I have had some 

success using nested pentagons, maintaining our conventions of sides and diagonals of 

the major pentagon containing the Pascal Triangles of two variables.  Although this 

generalization is possible, and the 5-way symmetry quite entertaining, the construction 

is currently unrefined, so I omit it at this time.  The 5-directional "movement" does not 

correspond geometrically with the construction, and the observations that we made 

with the square and pyramid are not so distinct.  Should one find the proper application 

and method, I believe that such a construction can be made for any T-gon 

corresponding to the T-Simplex.  Below is the pentagon with overlaying squares as we 

used our triangles before.  The coefficients of the pentagon align in this way, but the 

coefficients in the squares sometimes "split", which has been the major cause for the 
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end of the generalization here.  However, the general idea of overlaying "squares" has 

potential, with the overlay looking somewhat as the below diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: The Pascal Pentagon 
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