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ABSTRACT
Forensic Signatures of Chemical Process History in Uranium Oxides
By
Jonathan William Plaue
Dr. Kenneth R. Czerwinski, Examination Committee Chair
Professor of Chemistry
Chair of the Department of Radiochemistry
University of Nevada, Las Vegas

This dissertation comprehensively explores and develops new tools for nuclear
forensic science to facilitate the identification of chemical process history in uranium
oxides. Nuclear forensics is an emerging discipline motivated by the need to prevent
and combat malevolent acts involving nuclear and radiological materials. This
dissertation examined process signatures in uranium oxide powders, precursors, and
sintered fuel pellets.

Signatures were investigated on set of powder and pellet exemplars synthesized
in the laboratory and a set of real-world samples with process information obtained
from the literature or manufacturer. The examined techniques included morphology as
revealed by scanning electron microscopy, near-infrared reflectance (NIR) spectroscopy,
thermogravimetric analysis, powder x-ray diffraction, specific surface area, and oxygen
isotope composition. Overall, this dissertation identified promising process signatures
related to powder morphology, NIR, and thermogravimetric analysis. Additional results

provide insights on the direction of future research in the area of process signatures.
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Chapter 1 Introduction
This chapter discusses the background and motivation for this research and
provides the reader with an overview of the contents of this dissertation. Discussions
include a review of the origins of nuclear forensics, the nature of process signatures, and
the rationale for performing research with uranium oxides.
1.1 Nuclear forensics—the world demands development of a new science
The consequences resulting from the detonation of a nuclear explosive device
are so grave that the international community has recently coalesced to promote the
development and application of the best scientific and engineering capabilities toward a
new technical discipline termed “nuclear forensics.” While there a number of
definitions in use for nuclear forensics, a broadly accepted definition originated from
the Joint Working Group of the American Physical Society and the American Association
for the Advancement of Science [1], which defined nuclear forensics as:
The technical means by which nuclear materials, whether intercepted
intact, or retrieved from post-explosion debris, are characterized (as to
composition, physical condition, age, provenance, history) and
interpreted (as to provenance, industrial history, and implications for
nuclear device design).
Internationally, the Communiqués resulting from the Nuclear Security Summits
of 2010 and 2012 [2][3] each formally recognized and endorsed the need for nuclear

forensics. In the United States, the Congress passed the Nuclear Forensics and



Attribution Act of 2010 [4]. In one of six findings in the Act, Congress succinctly
captured the key objectives for this fledgling discipline:
A robust and well-known capability to identify the source of nuclear or
radiological material intended for or used in an act of terror could also
deter prospective proliferators. Furthermore, the threat of effective
attribution could compel improved security at material storage facilities,
preventing the unwitting transfer of nuclear or radiological materials.

In essence, this finding indicates that effective nuclear forensics provides
decision makers with information necessary to react to unanticipated events involving
nuclear materials that are outside of regulatory control. The nature of these events may
range from the interdiction of smuggled nuclear material or nuclear device (so-called
pre-detonation forensics) to the analysis of debris resulting from the detonation of a
nuclear explosive device (post-detonation forensics). Decision makers’ reactions may
include a desire for attribution (declare who did it), elimination (declare who did not do
it), prosecution (legally prove who did it), and retribution (attack who did it)[5][6] [7].
Further, the sense of Congress captured the views of several authors [8][9][10] who
suggested that nuclear forensics has potential value as a deterrent to non-nation state
actors or nations that choose to aid such groups in nuclear terrorism.

1.2 Process signatures are needed to expand nuclear forensics

Findings in nuclear forensics result from the characterization and interpretation

of physical and chemical information from the nuclear material—this information is

commonly termed a “signature.” Development of signatures began with the advent of



nuclear forensics in the early 1990’s following the dissolution of the Soviet Union and an
associated increase in the incidence of illicit trafficking in nuclear materials. Formative
groups in this new discipline at the Lawrence Livermore National Laboratory (LLNL)
[11][12] and the European Commission’s Institute for Transuranium Elements [13][14]
applied fundamental techniques from the fields of radiochemistry and geochemistry to
develop signatures.

Initially, signatures focused on utilizing the isotopic and elemental composition
of the radioactive material to ascertain the origin, age, and production date of the
material. The utility of signatures broadened with the application of more techniques
adapted from radiochemistry and geochemistry. For example, Keegan [15] and Varga
[16] demonstrated the ability to utilize trace element concentrations and isotope ratios
to identify the provenance of uranium ore concentrates.

Kristo and Tumey [17] recently provided a case study on the attribution of
uranium ore concentrate as part of their assessment of the state of nuclear forensics.
The case study noted a desire to identify the type of milling and mining operations
associated with the sample. The authors further noted that a predictive approach to
attribution (as opposed to a comparative approach leveraging databases), requires
identification of signatures indicative of sought-after findings (e.g, processing method)
and that research in such predictive signatures is “sorely lacking.”

This dissertation aims to contribute to the expansion of signatures indicative of
chemical processing history—termed “process signatures” in this study. For example,

process signatures might include characteristics that enable a forensic scientist to



determine the types of reagents, process conditions (e.g., pH, temperature,
concentrations, etc), or physical manipulation methods associated with nuclear
materials. In essence, process signatures contribute to answering the question—how
was this radioactive material manufactured?

Process signatures represent an underdeveloped area in nuclear forensics,
though research is beginning to emerge. For instance, Hastings [18] examined
characteristics of uranium oxides produced through different methods and Varga [19]
used infrared spectroscopy to classify uranium ore concentrates based on precipitation
chemistry. Researchers have amassed a considerable amount of information on the
nuclear fuel cycle during the past 70 years. While not explicitly derived for forensics
applications, this information can illuminate valuable signatures and guide research
efforts. Consequently, each chapter reviews general fuel cycle research applicable to
the particular investigation.

1.3 A good place to start—process signatures in uranium oxides

Upon first inspection, uranium oxides—particularly in the form of uranium ore
concentrate or nuclear fuel pellets—do not appear to be a threatening material worthy
of significant study for process signature development. Uranium in most isotopic
compositions has a relatively low radiotoxicity and therefore poses little danger as a
component of a radioactive dispersal device or “dirty bomb”. Fuel pellets, in particular,
are robust ceramics that required significant effort to disperse. Despite these points,
there are several compelling reasons to research process signatures in uranium oxides,

which are summarized below.



First, uranium oxides and fuel pellets are the most common forms of interdicted
nuclear materials. According to the International Atomic Energy Agency’s lllicit
Trafficking Database, some isotopic mixture of uranium or thorium was involved in
approximately 95 percent of the known smuggling incidents involving nuclear materials
between 1993 and 2003 [20]. While trafficking in these materials presents relatively low
direct risk, improved signatures may help to illuminate illicit trafficking activities for
materials of greater concern.

Second, given the crucial role of uranium in the commercial and military nuclear
fuel cycles, extensive research exists in the open literature, providing a tremendous
asset to guide research. Furthermore, industry widely utilizes several common chemical
processing technigues. However, the parameters used at each facility will likely vary
resulting in a potentially fertile sample pool for investigation.

Third, an essential element of nuclear forensics is developing international
collaborations and databases. Work on uranium, particularly uranium ore concentrates
and other materials of natural isotopic composition, is less likely to be considered
sensitive and therefore more likely amendable to cooperation. Establishing trust and
demonstrating meaningful outcomes with insensitive materials may help facilitate
further cooperation with more sensitive materials (e.g, HEU or plutonium).

Fourth, while uranium materials of natural or low-enriched isotopic
compositions present low direct risk, improved signatures on these materials may yield
insights into process signatures for higher risk materials (e.g., highly enriched uranium

or plutonium). In particular, the chemical process behavior of uranium is unlikely to be



dependent on enrichment and many of the chemistries used for uranium processing are
suitable for plutonium.

Finally, samples of uranium oxides are easier and safer to handle in the
laboratory. The flexibility associated with working with uranium, as opposed to the
glovebox operations required for other actinides, represents an important characteristic
for initial research into process signatures.

1.4 Organization of this dissertation
Chapter 2 provides background information on the chemistry of applicable
processes in the uranium fuel cycle, stable isotope fractionation processes and
terminology, and the key instrumentation and methods. Each of the subsequent
chapters presents the results of substantive experimental research grouped by topical
area. The chapters are written in standalone manuscript form and include specific
conclusions and suggested areas for further study. The topical areas for each chapter
are as follows:
= Chapter 3 develops and assesses image analysis as an analytical technique.
= Chapter 4 systematically identifies the set of uranium precipitates and oxides most
likely to be encountered in a nuclear forensics application, develops a set of samples
for study, and characterizes the sample set for potential signatures indicative of
chemical process history.
=  Chapter 5 continues the study of uranium precipitates and oxides for signatures

indicative of chemical process history with an exclusive focus on morphology.



Chapter 6 examines uranium oxide nuclear fuel pellets for signatures indicative of
chemical processing history.

Chapter 7 examines the potential for stable oxygen isotope ratios in triuranium
octoxide to provide a signature indicative of the geographic location of origin or
chemical process.

Chapter 8 summarizes the major contributions from this research and provides

perspectives on areas for future study.



Chapter 2 Pertinent background information

This chapter provides pertinent background information to prepare the reader for
the subsequent chapters. Background information is provided on the chemistry of
applicable processes in the uranium fuel cycle, stable isotope fractionation processes
and terminology, and the key instrumentation and methods used in this research. The
material is to provide the reader with an adequate base of understanding for
subsequent chapters and is not intended to be a comprehensive treatment of these
topics.
2.1 Overview of applicable nuclear fuel cycle chemistry

The fuel cycle for uranium can be broken into a number of steps in which uranium
is: (1) chemically separated and concentrated from ore, (2) further refined into a
chemically pure form, (3) converted into uranium hexafluoride and enriched in the

2%y, and (4) reacted to oxide or metal for the manufacture of fuel for a nuclear

isotope
reactor or explosive device. Many references provide comprehensive treatments on the
chemistry of uranium in the nuclear fuel cycle [21][22][23][24]. This section provides a
summary of common chemical processes associated with the precipitation processes—
termed “wet” processes in the fuel manufacturing industry—used in steps 1, 2, and 4 for
application in Chapter 4. This section also provides a summary of gas phase

pyrohydrolysis reactions—termed “dry” processes—that are commercially utilized for

the production of uranium dioxide for application in Chapter 6.



2.1.1 Wet processes

The separation of the uranyl ion from aqueous solutions through precipitation is a
common step in the nuclear fuel cycle. Uranylions (UO,**) form when uranium ore or
other uranium-rich material (e.g., used nuclear fuel, scrap materials, etc) is dissolved in
acid. The uranyl ion is then purified from other undesirable constituents through
solvent extraction or ion exchange separation processes. The uranyl ion, in the form of
uranyl difluoride, may also be produced in some fuel manufacturing processes through
the introduction of uranium hexafluoride gas into aqueous solutions.

In all cases, uranyl ion is removed from aqueous solution through the
introduction of reagent resulting in conditions favorable to precipitate uranium. There
are five reagents commonly used for this process: (1) ammonium hydroxide (or
ammonia gas), (2) hydrogen peroxide, (3) ammonium carbonate (or ammonia and
carbon dioxide gases), (4) magnesia, and (5) sodium hydroxide. Each process is briefly
reviewed below and will be applied further in Section 4.1.

The most widely known precipitation route utilizes ammonia gas or ammonium

hydroxide to precipitate uranium from solution according to the following equation:

2 UOZ(N03)2 + 6 NH,OH 9(NH4)2U207\1/ +4 NH4N03 + 3 H,0 Eq 2-1

The precipitate is commonly referred to as ammonium diuranate (ADU), which is
actually a mixture of ammonium and uranyl with varying ratios. The precipitate is
physically separated from solution and rinsed prior to thermal oxidation or reduction to

form triuranium octooxide (U30g) or uranium dioxide (UO,), respectively.



UO, derived from ADU typically results in a powder consisting of large
agglomerates that require further attrition or granulation to create an acceptable
flowing powder for nuclear fuel manufacturing. Several authors [25] [26] [27] have
noted that variations in precipitation conditions resulted in differences in the ADU
precipitate that, in turn, impacted the properties of the resulting UO,. The ADU process
has been widely used in United States and Australia.

The process utilizing ammonium carbonate was developed in Germany in the
late 1970s by Nukem GmbH and the Reactor Brennelement/Kraftwerk Union [28]. The
process involves precipitation through the introduction of gaseous ammonia and carbon
dioxide as represented in the following reaction:

UO,(NO3),:6 HO + 6 NH3 + 3CO; —>(NHg4)4 UO, (CO3)3 + 2 NH4NO; Eq 2-2
Alternatively, a solution of ammonium hydroxide and ammonium carbonate can be
used. Mellah [29] determined this precipitation to be a second order reaction with an
Arrhenius activation energy of 17.4 kJ/mol and k; of 0.31-0.437 L/mol min at 313 and
330 K. The precipitate, termed ammonium uranyl carbonate (AUC), is known to form
large, easily filtered precipitates. Once filtered and washed, the precipitates are
amenable to decomposition and reduction in a single step according the following
reaction:

(NH4)4 UO; (CO3)3 + H; = UO, +3 CO, + 4 NH3 + 3 H,0 Eq 2-3
The resulting oxide is free-flowing and can be directly pressed into a high grade ceramic
without additional pre-processing (e.g., granulation, binders, lubricants, etc). The AUC

process has been employed in Germany, Sweden, South Korea and Argentina.
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Another common process utilizes hydrogen peroxide. Peroxide reacts with
uranyl to form the uranyl peroxide complex, which is insoluble in acidic conditions
according to the following equation:

UO,(NOs3), + H,0,~> UO, - 2H,04 + HNO; Eq 2-4
Peroxide precipitation is commonly utilized with in situ leaching operations, in part due
to the ability of peroxide to solubilize uranyl under alkaline conditions [30][31].
Peroxide precipitates tend to be very pure compared to the variety of metals that are
co-precipitated under the hydroxide conditions associated with the four other processes
discussed in the section.

Historically, magnesia was used as a cost effective reagent for precipitations
associated with uranium ore milling and concentration [22]. Generally, magnesia forms
hydroxide ions, which precipitate uranium as a hydrate oxide according to the following
equation:

UO,(NO3), +MgO + xH,0 = UO3 - xH,01 + Mg(NOs), Eq2-5
In practice, some magnesium is transferred with the solid precipitant phase,
necessitating further purification steps prior to conversion or other operations sensitive
to impurity.

In some less common processes, particularly carbonate leaches, sodium
hydroxide may be utilized [22][32]. The reaction can be generalized with the following
equation:

2U02(N03)2 +2 NaOH = Na,U,0, + 4NaN03+ 3H,0 Eq 2-6
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Use of sodium hydroxide also results in the precipitation of uranium hydroxide phases,
similar to magnesia. In both cases, some sodium is transferred with the solid, usually
necessitating additional purification steps.
2.1.2 Dry processes

In a dry process, uranium hexafluoride is sublimed to a gas, heated, and reacted
in an atmosphere containing water vapor and hydrogen gas. All reactions are either
gas-gas or solid-gas. The overall reaction, which results in the direct production of
ceramic grade uranium dioxide, can be represented by:

UFg + Hy + 2H,0 - UO; + 6HF Eq 2-7

This reaction is, in fact, a complicated series of parallel reactions better represented by:

UF6+ 2 Hzo > UOze + 4HF Eq 2-8
UF6+H29 UF4+ 2HF Eq 2-9
UO,F, + H, > UO, + 2HF Eq 2-10

UOyF; + H,0 2 1/3 U305 + 2HF +1/6 O, Eq 2-11
1/3 U505+ 2/3 H, > UO;, +2/3 H,0 Eq 2-12
There are three commercially prevalent forms of the dry process with the
differences arising primarily from the choice in the design of the gas phase chemical
reactor: (1) rotary kiln, (2) fluidized bed, and (3) gas flame. Figure 2-1 depicts a
generalized schematic for each of the chemical reactors.
The rotary kiln method is represented by the Integrated Dry Route (IDR), which
was developed by British Nuclear Fuels Limited [33] [34]. The IDR process involves a

single-stage rotary kiln furnace providing three temperature zones ranging between
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Figure 2-1: Common dry process reactors for production of uranium dioxide:
Integrated Dry Route (top), Direct Conversion Fluid Bed (middle), General Electric
Company'’s gas flame (bottom). Figures from [23][35][36].
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600-800 °C [37]. Product reacts as it works its way through the rotating and baffled
kiln. A similar process was patented by the French, with temperature zones ranging
from 600-1200°C and the primary difference being an elevated initial reaction
temperature of 850-900°C [38]. Manufacturers in the United Kingdom, France, and the
United States have licensed IDR processes.

The fluidized bed methodology is represented by the Direct Conversion Fluid Bed
(DCFB) process. DCFB was originally developed in the early 1960’s at Argonne National
Laboratory [39][40] and later commercially adopted by the Westinghouse Corporation
[41][42] in the mid-1970s. Rather than a single reaction chamber, DCFB utilizes three to
four fluidized bed reactors. In the first reactor, uranium hexafluoride is hydrolyzed with
water to produce uranyl difluoride. Next, a hydrogen and steam flow is used to strip
fluoride resulting in uranium dioxide. The product from the second reactor tends to
have high fluorine levels, so a second exposure to steam and hydrogen is used to purify
the uranium dioxide to reactor grade levels in a third reactor. Temperatures for the first
reactor and the two defluorination reactors are. typically in the range of 475—600 °C
and 575-675 °C, respectively [43]If necessary, a fourth reactor is used to accurately
control the oxidation state of the uranium (UO,.,) through a heating step in a limited
oxygen atmosphere. The DFCB process has been used in the United States and Sweden.

The gas flame methodology is represented by the General Electric Company’s
(GECO) gas flame reactor process [36]. Initial development work on gas flame
technology was performed at Oak Ridge National Laboratory [44] [45]. The GECO

process works through a single stage reduction and hydrolysis reaction within a flame
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zone. The flame reaction temperature is in the range of 1300-1800 °C. In practice,
flows rates include excess hydrogen and oxygen resulting in the production of water as a
by-product of combustion. A second heat treatment step under hydrogen atmosphere
near 1000 °C is often employed to reduce fluoride content in the final product.
Considerable research and design effort has gone into the flame nozzle design to enable
appropriate reactant mixing and prevent product buildup, facilitating a continuous
process. Of note, the GECO process does not use water as a reactant, thus it is unlikely
that the resulting product would be a candidate for geolocation based on the oxygen
isotopic ratio of local process water, discussed in Chapter 7.
2.2 Oxygen isotope fractionation

Differences in the mass between isotopes can result in the fractionation—or
preferential separation—of isotopes during chemical reactions through both kinetic and
equilibrium processes. These fractionations are most pronounced in the stable isotopes
of the light elements, such as oxygen. Consequently, the study and application of
oxygen isotope fractionation is a cornerstone of geochemistry [46] [47].

Briefly, kinetic fractionation processes result from differences in kinetic energy
derived from differences in molecular mass between molecules substituted with a
heavier isotope. For example, at any given temperature, the velocity of H,'®0is 5.4

percent greater than H,*®0, which impacts a range of physicochemical behavior.

m181)128 = m20U220—> m = % = 1.054 Eq 2-13
V20 \’ mao
Equilibrium fractionation processes are driven by the quantum mechanical

property known as zero-point energy—molecules containing the heavy isotope will have
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a lower vibration frequency in the ground state than the molecule incorporating the
light isotope. As a result, chemical bonds involving the heavier isotope are slightly less
favored to react compared to the bonds involving the light isotope.

The geochemical community commonly utilizes a set of terms to describe stable
isotope fractionation—these terms will be adopted in this study and are briefly
summarized below to assist other disciplines. Oxygen isotopic fractionation is

commonly expressed as a 6 value, which is defined by the following equation:

180

16 16

(o]
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e

where SMOW represents Standard Mean Oceanic Water with a 180/160 taken as

[180

Sample 1%1000  Eq: 2-14

SMOW

2005.20 + 0.45 x 10 [48] and the & value is expressed in units of per mil (%o).
The fractionation between two substances A and B is expressed by a
fractionation factor, termed a, defined by the following equation and equated to the 6

unit for convenience:

__Rp __ 1000+ 84

T Rg 1000+ 8 Eq: 2-15

XA-B
where R is the ratio of *0/*0 in phases A and B.

The study of stable isotopes has yielded significant understanding in
geochemistry for many decades and is now being applied to a wide range of forensic
problems [49]. Fractionation of oxygen isotopes in water molecules through
evaporation and condensation in the natural environment contributes to systematic

variations in oxygen isotope ratios around the world (Figure 2-2). The potential to
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exploit this phenomenon as a forensic tool for geolocation purposes is the subject of

Chapter 7.
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Figure 2-2: Schematic of oxygen isotope fractionation processes
associated with the environmental water cycle. Image from [50].

2.3 Instrumentation and analytical methods

This section provides an overview of the primary instrumentation and analytical
methods used for this study. The intent is to provide the reader with a summary of the
basic principles of the instrumentation, the basis for selecting the technique for nuclear
forensic applications, a discussion of alternatives, and general aspects of sample
preparation. Subsequent chapters provide specific details on the instrumentation and
the precise methods applied in this dissertation.
2.3.1 Scanning electron microscopy

Scanning electron microscopy (SEM) is a versatile and commonly utilized form of

microscopy that is well suited for the observation of topological and morphological
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sample features on a nanometer to micrometer scale [51]. The SEM works by rastering
electrons, generated through thermal and/or electrostatic means and focused into a
beam using electromagnetic lenses, across an area of the sample (Figure 2-3). As the
electrons interact with the sample, useful signals are generated as secondary electrons,
backscattered electrons, and characteristic x-rays, which are detected and transformed
into an image.

Secondary electron images provide excellent depth of field to aid in the study of
morphological features. Backscattered electron images provide contrast as a function of
the mean atomic number of the constituent atoms in the sample. Similarly,
characteristic x-rays are emitted through the excitation of individual atoms and can be
used for the semi-quantitative analysis of sample composition on the micrometer scale.

For SEM analysis, samples must be non-volatile to survive the vacuum
environment and must be conductive to prevent charging by the electron beam. Non-
conductive samples may be coated with a thin (typically a few tens of nanometers) layer
of a conductive substance such as carbon, gold, or iridium. Powdered samples
consisting of a fraction of a milligram are typically adhered to a specimen stub using
conductive tape, adhesives, or set into epoxy resin and polished. Researchers must take
significant care to ensure that the sample is adequately dispersed (discussed further in

Chapter 3).
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Figure 2-3: Simplified diagram of a scanning electron microscope (top) and associated
electron beam interactions with a sample (bottom). Images from [52] and [53].

Alternatives to the SEM include optical microscopy, transmission electron

microscopy, and laser scattering techniques. The SEM offers superior resolution
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(typically at the nanometer range) and depth of field compared to optical microscopy, as
well as simplified sample preparation compared to transmission electron microscopy.
Laser scattering techniques offer a potentially viable alternative; however, these
systems tend to provide results that are abstractions of the actual particle dimensions.
A more thorough discussion of the tradeoffs on laser scattering is provided in Chapter 3.
2.3.2 Gas adsorption methods

The adsorption of gases to surfaces provides an important tool for the
characterization of porous solids [54]. The best known application of this behavior is the
methodology used to determine the specific surface area of a solid developed by
Brauner, Emmett, and Teller (known as the BET method) [55]. The BET method extends
the Langmuir equation, which relates the adsorption of a monolayer of gas molecules to
a solid surface as a function of gas pressure and temperature, to a multilayer system.

Gas adsorption analyzers work through the introduction of a known quantity of
absorbate (typically nitrogen or krypton) into a sealed glass cell containing the sample
under investigation (Figure 2-4). The cell is kept at liquid nitrogen temperature and
changes in the system pressure are monitored as incremental doses of absorbate are
introduced into the system. The process continues at an incrementally increased initial

pressure.
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Figure 2-4: Simplified diagram of a specific surface area analyzer. Image from [56].

Preparation for BET analysis requires samples to be degassed—typically under
elevated temperatures and vacuum, although some samples may be successfully
degassed using a flowing inert gas. BET measurements are essentially non-destructive,
other than the exposure to elevated and reduced temperatures for degassing and
measurement, respectively. Most materials of interest to nuclear forensics will not be
perturbed by these conditions and samples are easily retrieved for further chemical and
physical analyses.

In theory, surface area measurements can be performed using any approach that
provides quantitative information on sample morphology (e.g., SEM or laser methods).
The tradeoffs with these alternatives include a potentially less representative
measurement for heterogeneous powders due the small sample size and lack of sample

recovery.
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2.3.3 Powder x-ray diffraction

Powder x-ray diffraction (XRD) is a powerful and common tool for the
identification of solid crystalline phases. XRD works through the detection of x-rays
diffracted from a primary x-ray beam incident to a thin layer of powder sample (Figure
2-5). The resulting diffraction pattern is governed by Bragg’s law and is indicative of the
compound or relative mixture of compounds in the sample. In this study, powder XRD
will be applied for phase analysis; a straightforward application of the technology in
which the diffraction pattern of the powder is compared to a standard, such as those
maintained by the International Centre for Diffraction Data. There are no simple
alternatives to powder XRD [57].

Samples for powder XRD analysis need to be distributed randomly, homogenous,
and fine in particle size. These conditions are typically achieved by first grinding the
powder and then applying it to the sample holder using a compatible liquid solvent. For
radioactive materials, the samples are placed in either a sealed holder engineered for

confinement or affixed using high x-ray transmittance materials.
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Figure 2-5: Illlustration of Bragg’s law (top) and simplified diagram of a powder x-ray
diffractometer (bottom). Images from [58].

2.3.4 Near-infrared reflectance spectroscopy

Chapter 4 examines near-infrared reflectance (NIR) spectroscopy as a potential
new technique in nuclear forensics. The NIR portion of the spectrum (about 800 to 2500
nm) is dominated by molecular overtone and combination bands, resulting in complex
spectra that can be difficult to interpret directly and often require the use of
multivariate methods [59]. In practice, the NIR technique requires an appropriate light

source (commonly halogen), fiber optic cabling to transmit light to and from the sample,
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and a detector. This equipment can be made very compact and ruggedized, resulting in
a technique that is appropriate for measurements in the field. Furthermore, NIR is a
non-contact technique, meaning that no sample preparation is required and anti-
contamination precautions are minimized. In contrast, significant grinding and pellet
processing procedures are required to obtain similar chemical information using a more
traditional infrared spectroscopy device.
2.3.5 Oxygen isotope ratio measurements

Oxygen isotope ratios of uranium oxides were measured using the High Vacuum
Fluorination System (HVFS) at the Lawrence Livermore National Laboratory (LLNL). The
HVFS provides a one-of-a-kind capability within the Department of Energy’s national
laboratory system for oxygen isotope measurements in minerals and metal oxides of
anthropogenic origin (Figure 2-6). The HVFS utilizes the oxidizing action of chlorine
trifluoride (CIF3) to quantitatively liberate oxygen gas from uranium oxides [60] [61].
The liberated gas is then reacted with carbon to form carbon dioxide, which is sealed
into a glass ampoule and analyzed using a gas isotope ratio mass spectrometer for
isotopic analysis. The overall process is represented by the following equations:

2CIF; + UO, 2 UFg + O, + 2Cl, Eq 2-16
0, + C) =2 CO, Eq 2-17
A companion technique to HVFS is secondary ion mass spectroscopy (SIMS). The

accuracy of SIMS has been demonstrated on individual particles [62]; however, HVFS
provides better accuracy for bulk samples (20-30 mg) that are potentially

inhomogeneous.
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Figure 2-6: Image (top) and simplified one-line diagram (bottom) of the High Vacuum
Fluorination System at Lawrence Livermore National Laboratory
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Chapter 3 Method development and assessment of state-of-the-art quantitative

image analysis for nuclear forensics

The objectives of this chapter are to assess available software tools used for
guantitative image analysis assuming minimal development by the end-user and
develop a recommended approach for examination of morphology as a signature in
nuclear forensics. Quantitative image analysis is desired to strengthen the value of
morphological signatures from simple qualitative comparisons of images. This study
examined capabilities of image analysis for: (1) discrete particles, (2) planar grain
structures in ceramics, and (3) textures of particle agglomerates.

3.1 Basics of applied image analysis

Image analysis is a technique where visual information is digitally transformed
into numerical descriptors that can be used to quantitatively compare images. Image
analysis is a growing field and its application to scanning electron microscopy (SEM) and
optical microscopy are popular [63] [64], including use with ceramics [65]. An acquired
image is transformed through thresholding and binary segmentation—processes that
use various algorithms to identify lines or other connective features. Development of
these algorithms is the subject of an entire field of computer science research and was
not investigated beyond simple sensitivity studies to determine the most effective user
defined values for a given algorithm with the uranium materials under study.

Figure 3-1 illustrates the thresholding and segmentation process for a fuel pellet.
Once discrete units are segmented, measurements are made for various morphological

descriptors. Unfortunately, many descriptors—a term used to describe aspects of an
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image using mathematics—are used in the literature and universal definitions for

descriptors do not exist, including those used by image analysis software packages.

(a) Original backscatter  (b) Image thresholded (c) Final segmented entities

electron image through a manual trace for automated measurement
(scale baris 50 um) (may also be performed by  of morphological descriptors
software)

Figure 3-1: lllustration of the thresholding and segmentation process for image
analysis of an uranium dioxide fuel pellet specimen

This work examined the ImagelJ freeware developed by the National Institutes of
Health [66] and the Morphological Assessment of Materials for Attribution (MAMA)
software currently under development by the Los Alamos National Laboratory [67]. The
descriptors examined in this work are defined in Table 3-1 and are consistent between
the two software packages.
3.2 Existing methods and standards for image analysis
A survey of literature using image analysis to derive quantitative morphology of various
samples revealed a general lack of standards, calibration, or other attempts to state the
accuracy of the measured value compared to the real value. In most cases, researchers
simply utilized the software output without any further verification. The application of
image analysis to nuclear forensics necessitates a more robust approach that, at a

minimum, provides an understanding of the sources and magnitudes of error.
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Table 3-1: Definitions of common morphological descriptors

Descriptor

Area

Perimeter

Feret
diameter

Aspect
ratio

Circularity

Definition

The number of pixels within an object
converted into area

The number of pixels around an object
converted into distance

The distance between two parallel tangents of
an object; typically reported as the maximum,
but may also be specified for the minimum or
average distances within the object. The Feret
diameter is also commonly referred to as the
caliper diameter.

The distance of the major axis divided by the
minor axis. Aspect ratio for a true circle is one.

A derived measure of the closeness to a true
circle and is defined as 47t Area/Perimeter?.
Circularity for a true circle is one.

28




As a result, the state of standardized methodologies, techniques, and supporting
equipment was reviewed to gather best practices.

Historically, standardized methods for determining morphological characteristics
of materials were crude. For example, ASTM [68] developed a standard for determining
the average grain size in metals that included several simple methodologies such as
visual comparison to reference grids and manual counts of grain boundaries intercepted
by the diameter of a given circle size. This study judged the crudeness of these methods
to potentially lose valuable forensic information and to incompletely leverage the
advantages of improved quality and reduced imaging times offered by modern SEMs.

The International Standards Organization (ISO) developed a standard for the use
of image analysis to determine particle size distributions applicable to static (as opposed
to dynamic) images from both optical and SEM microscopy [69]. Although this standard
focused on measurement of particle size, it was hoped that the approach could be
adapted to the other relevant descriptors. However, a review of the standard revealed
the lack of examination on the effects resulting from the user and the SEM-software
system. In fact, ISO noted in numerous instances that parameters such as feature
enhancement and thresholding depend on the imaging equipment and image analysis
software. ISO recommends the use of either a certified standard graticule (a reference
grid) or reference particles for development of calibration and distortion values to be
reported with—but not actually used in the calculation of —particle size measurements.
The ISO standard did not further address the effectiveness and accuracy of image

analysis software algorithms.
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This study found the commercial availability of morphological calibration
standards for the SEM to be limited. Two products were identified and used for process
development: (1) the Metrochip manufactured by MetroBoost, Santa Clara, California
and (2) the MRS-3 measurement standard manufactured by Gellar MicroAnalytical
Laboratory, Topsfield, Massachusetts. Both of these products provide high-contrast
measurement features engineered for the SEM environment and are produced using
semi-conductor manufacturing technologies.

As a result of this production method, neither manufacturer provides certified
dimensions for most features. Instead, the Metrochip manufacturer claims traceability
of the feature pitch (regular repetition, either edge to edge or center to center) with an
accuracy at 100 ppm and a feature width at 10 %. The MRS-3 standard includes pitch
patterns and planar arrays of circles and squares with a distribution of sizes.
Unfortunately, the manufacturer reports measurements for these shape distributions as
nominal, meaning that no absolute value can be given due to the level of uncertainty.
Given the lack of availability of certified shape features, the nominal measurements
were treated as the known values for this evaluation.

In theory, the use of a polydisperse particle standard would provide the best tool
to assess the accuracy of the entire process from sampling, sample preparation and
mounting, image capture, and image analysis. Several commercial vendors offer
certified particle standards in monodisperse (defined as a distribution where 90 % of the
particles are within 5 % of the median) or polydisperse (a wide distribution of sizes)

varieties. The standards are typically made from glass, polystyrene, or metal and sold as
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either dry powders or aqueous dispersions; however, neither type is explicitly designed
for use in the SEM. Several types of particle standards were tested and the results are
discussed below.

3.3 Challenges with sample preparation and image analysis for discrete particles

Testing various samples of discrete particles revealed concerns with sample
dispersion, adequate standard availability, accurate segmenting (see Section 3.1) for
particles with significant height, and agglomeration (Figure 3-2). Sample dispersion is a
commonly encountered problem with image analysis, and while there are several
recommended practices [69], an overall satisfactory method was not identified in this
study. To improve dispersion, this study examined the use of ultrasonication, liquid
dispersion with a variety of solvents and surfactants, and multiple direct transfers. In
particular, samples with reasonable dispersion at lower magnifications revealed the
presence of agglomerates for uranium oxide samples (Figure 3-2 c and d) when
examined at higher magnifications. In such agglomerates, it is extremely difficult to
discern the boundaries of a distinct grain.

This study also found the particle standards currently available to be
problematic. Tungsten metal was explored to simulate the density of uranium
materials, but the material received was obviously not monodispersed and included
numerous, large irregular forms. Examination of available polystyrene or glass
polydispersed sphere standards revealed non-spherical debris, and an additional issue
with particle dimensionality. In an SEM image, the height of a particle can result in

differences in the brightness of the signal (i.e., shadowing) across the exposed face.
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(a) Difficulties in sample dispersion and (b) Sample dispersion and dimensionality
standard availability for a tungsten metal issues observed with a polydisperse glass
powder marketed as a nominal 12 um sphere standard. Note the variation in
monodisperse. Sample was ultrasonicated brightness present with the larger spheres;
and dispersed in a water/alcohol mixture.  accurate segmentation for these spheres is
Note large irregular artifacts present and very challenging.

obvious polydisperse distribution.

— Hm

ETD 00 11.5 mm

5 1.5 mm n Canada 1 # 5.0 n #
(c) Sample of uranium oxide with apparent (d) Discrete “particle” from image (c) at
reasonable dispersion at low increased magnification revealed
magnification. characteristics of an agglomerate. Insert

confirms un-sintered agglomerate (scale
bar is 500 nm).

Figure 3-2: Challenges encountered with the preparation of discrete particle samples
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This difference in brightness created a significant impediment for the software to
segment correctly the entire area of the sphere, since many of the segmentation
algorithms are based on the detection of gradients in brightness.

Based on these observations, sample preparation techniques and image analysis
technologies were determined to be insufficiently mature to proceed with accurate
analysis of the morphologies of discrete uranium particles. Development and
assessment efforts then focused on the utility of image analysis techniques for planar
features, such as the ceramic sintered grain structure of a uranium dioxide fuel pellet.
These types of materials do not require dispersion of the sample, thereby simplifying
the process to imaging and subsequent software analysis.

3.4 Assessment of planar standards applicable to sintered grains

The Metrochip and MRS-3 standards were utilized to assess the efficacy of the
imaging and automated software analysis process for planar features. Figure 3-3
demonstrates two of the primary issues encountered. First, the MAMA software
experienced difficulty correctly identifying and segmenting the disk test features of the
standard. Features examined included various sizes of disks, squares, and grids. Rates
for missed features ranged from about 15 to 35 percent, depending on the feature type
and size. It should be noted that the MAMA software allows users to manually correct
missed features; however, the segmentation must be performed using an imprecise
mouse interface and can be time consuming for complex samples.

Similar issues were encountered during limited testing using ImageJ on these

test images. For both programs, adjustments to the image could be made to improve
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(a) Original secondary electron image of a
planar array of disks from the Metrochip.

LEI 5.0kv X100

(c) Original secondary electron image of
four sets of size distributed disks from the
MRS-3 standard. Image acquired using the
JEOL instrument.

(b) Segmented image of (a) revealed 25
percent of the disks were missed by the
software. Note also the ragged edges
apparent on some of the disks.

WD 75mm  100um

(d) Segmented image of (c) revealed
missing disks circled in yellow, as well as
size and spatial variation in distortion.
Shaded circles represent disks with
circularity values of about 0.80-0.90
(green), 0.90-0.95 (grey), and 0.95-1.05
(orange).

Figure 3-3: Challenges encountered with imaging and analysis of planar features
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segmentation. However, these adjustments depended on the image under scrutiny and
would not reproducibly result in the same effects when applied to different images. The
use of such adjustments also raised the potential to increase bias introduced by the
researcher.

The MRS-3 standard provided four sets of size distributed disks (Figure 3-3-4 c
and d). This configuration allowed for the examination of measurement accuracy and
reproducibility as a function of feature size and spatial location within the field of view.
This evaluation also added a comparison between two SEM instruments (FEl and JEOL).
Images from the FEI utilized the manufacturer’s software algorithms for adjustment of
image contrast, focus, and stigmation. A skilled operator adjusted focus, contrast, and
stigmation for the images obtained from the JEOL. Results for selected morphological
descriptors compared between SEM instruments revealed differences between each

instrument (Figure 3-4).
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of view.

Figure 3-4: Comparison of morphological descriptors for the MRS-3 standard between

different scanning electron microscopes
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Conclusions resulting from these observations on the planar feature references

included the following:

= Difficulties with segmentation were observed for images produced from both SEM
instruments, particularly for smaller features. A limited size range would need to be
established to enable reliable measurements

= Accuracy improved considerably for features with dimensions greater than about 2
percent of the width of the field of view

= Area measurements were accurate to better than 2 percent and consistent between
instruments, likely because area provides the most signal per feature thereby
minimizing error

= Feret diameters were accurate to 1 percent for the mean and about 7 percent for
the maximum or minimum values—this error may have resulted from either ragged
segmentation or distortions as function of spatial location in the field of view

= For description of feature shape, aspect ratio provided a more accurate and
consistent measurement than circularity—error in the circularity measurements

likely resulted from the perimeter established by a ragged segmentation
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3.4.1 Comparison between automated and manual methods for planar features

The results of testing using planar standards indicated weaknesses in the
accuracy of the segmentation processes and the need for human intervention to make
corrections. Subsequently, in order to gauge the accuracy of the segmentation process
a comparison was performed between an entirely manual process and the use of the
MAMA software aided with manual correction. The objectives of the comparison were
to: (1) ascertain whether the observed distributions of morphological descriptors were
consistent, considering both methods relied on an element of human intervention, and
(2) determine the most effective means of characterizing and reporting the distributions

for use in nuclear forensic applications.

(a) Original backscattered (b) Manual trace performed  (c) Results of automated

electron image (1 of 10 for edge finding and thresholding and

images examined). Scale thresholding. segmentation using Mama

bar is 40 um. (Light and dark blue areas
indicate exclusion from
analysis).

Figure 3-5: Comparison between manual and automated image analysis techniques
for a uranium dioxide fuel pellet specimen; example of 1 of 10 compared images

The comparison examined 10 images of a single uranium dioxide fuel pellet

(Figure 3-5). For the manual method, grains were traced to perform edge finding, the
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images scanned, and then analyzed using the ImagelJ software. For the MAMA method,
the original backscatter electron image was processed and then manual adjustments
were performed to capture missed or incorrectly segmented grains. As anticipated,
significant efficiencies were realized using MAMA with a process rate of less than 5
minutes per image as compared to about 20 minutes per image for the manual trace
method.

Data for each of the five morphological descriptors previously discussed were
collected. Data on particle size characteristics are often displayed using frequency
histograms or cumulative distributions curves [70]. Figure 3-6 presents histograms and
cumulative distribution curves for grain size area and Feret diameter. Note the total
grain counts were 715 and 726 for the MAMA and manual methods, respectively. Alone,
the observed difference of two percent in grain count suggested good consistency
between the methods. Qualitative visual examination of the histograms also suggested
good consistency; however, making such a visual comparison was significantly easier
using the cumulative distribution curves. The use of cumulative distributions also
provides the reader with immediate access to quantitative characteristics (e.g., median
value). As a result, cumulative distribution curves were chosen to present all further
comparisons of morphology data in this work.

This study also examined quantitative descriptions of distributions using several
statistical approaches commonly used in particle analysis (Table 3-2). Data are presented
as the values of the cumulative distribution at the 10", 50", and 90" percentiles

(indicated as Dyy), as well as the derived term “Span”, defined as the difference between
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Dgo and Do divided by Dsg. These values provide direct, normalized values for
comparison between samples without an inherent assumption in the shape of
distribution. Data are also presented for the first four statistical moments—mean,
variance, kurtosis, and skewness. The moments also provide measures of the shape of

the data distribution, respectively the central tendency, spread, symmetry, and flatness.
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Figure 3-6: Comparison of distributions for grain area and Feret diameter between
Mama and manually traced methods
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The numerical comparisons in Table 3-2 sugges generally good agreement
between the MamA and manual methods. The difference between the measurements is
generally less than 15 percent; however, the distributions for variance, kurtosis, and
skewness is more substantial and explanations are not apparent. As an example of one
of the exceptions, the difference on kurtosis for the Feret diameter measure was 10*
percent, despite differences of about 2 percent for the percentile measures and the
mean. A visual comparison of the distributions (see Figure 3-6) further suggests strong
agreement.

Table 3-2: Comparison of values for morphological descriptors on the same sample set between
Mama (n =715) and manual analysis methods (n =726)

Do Dso Dgg Span Mean Variance Kurtosis Skewness

Area, Mama 13.2 659 203.7 29 91.0 6641.9 4.1 1.7
um? Manual 11.5 57.8 1835 3.0 79.7 5706.6 4.8 1.8
A, % 146 141 11.0 2.9 14.3 16.4 14.6 7.5
Perimeter, Mama 15.6 33.6 60.1 1.3 35.9 292.3 0.0 0.5
um Manual 15.0 319 57.1 1.3 34.1 275.3 0.5 0.7
A % 4.0 5.5 5.3 0.3 5.5 6.2 90.3 24.1
Feret Mama 52 112 191 1.2 11.9 36.4 28.1 2.8
Diameter, Manual 53 109 19.3 13 11.7 29.5 0.2 0.6
pm A % 2.6 2.5 0.6 2.4 2.0 23.5 15183.7 344.9
Mama 0.6 0.7 0.8 0.2 0.7 0.0 5.9 -1.3
Circularity Manual 0.6 0.7 0.8 0.2 0.7 0.0 3.2 -1.4
A, % 5.8 3.7 3.0 10.2 4.3 5.8 81.8 8.4
Mama 11 1.3 1.7 0.5 14 0.1 16.0 3.0
Aspect
Ratio Manual 1.1 1.4 2.0 0.6 1.5 0.2 6.1 2.1
A, % 4.0 8.5 140 21.2 9.6 44.7 159.8 40.4

The testing with planar standards indicates that area, Feret diameter, and aspect
ratio were the most accurate descriptors using image analysis. Given that some level of
human intervention was required for both the manual and Mama methods, no

reference point existed to gauge accuracy. Further, the differences between methods
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for each of the five descriptors were similar, though the values for area were slightly
higher than the other categories. As a result, no further information was gleamed from
the comparison and the results from the planar testing were therefore applied in the
recommendations below.

3.4.2 Recommendations and treatment of error for analysis of planar grains

The overall goal of this work is to make comparisons that can distinguish and
classify samples of unknown origin against samples with known process pedigrees. In
the examination of a given sample, two important sources of error and uncertainty can
impact characterization: (1) sampling and imaging—how representative is the imaged
sample of the true population and (2) measurement—for a measurement of a given
morphological descriptor, how accurate is the value.

A discussion on the inaccuracies associated with the measurement of
morphological descriptors was previously addressed (Sections 3.3 and 3.4). For
comparison, the effect of sampling and imaging errors can largely be ignored if identical
preparation and imaging methods are used. Nonetheless, the rigor required for forensic
applications and the desire to generate large databases from multiple institutions using
potentially different methodologies demands additional treatment to provide an overall
error for the method.

Determining the error associated with imaging grains on the surface of a fuel
pellet largely involves calculating the number of grains to be examined in order to make
statistically valid statements. This inherently assumes that the population of grains is

spatially homogenous (i.e., no localized differences in morphology).

42



Calculating the number of grains to be examined is a non-trivial problem. For
perspective, a simple order of magnitude analysis indicated that a typical commercial
fuel pellet requires about 9000 images, assuming a cross sectional area (0.9 cm
diameter) is about 6.4 x 10’ umz with a mean grain area of about 100 umz at a field of
view at 2500 X magnification (to facilitate manual correction during the segmentation
process). Using these numbers, about 900 images would be necessary to directly
measure 10 percent of the grain population of a single pellet. Given the time consuming
manual intervention required to accurately segment grain images using current
technology (> 5 minutes per image), this number represents an unrealistic task.

In the literature, Pons [63] recommended analysis of 80 to 100 particles for
routine morphological analysis based upon a stability analysis of descriptors under
investigation. The stability analysis examined the number of grain measurements
required for the mean and standard deviation to plateau.

A sample fuel pellet was examined for the four descriptors under investigation in
order to assess the number of grains needed to establish stable averages (Figure 3-7)
The analysis revealed that values generally stabilized after the examination of about 500
grains. As a result, a minimum of 500 grains will be utilized in this work for forensic
comparisons. However, a count of 500 grains represents a sample size of 0.07 percent
of the grain population on a typical pellet face and additional quantification of error was
desired. Using manual methods, analysis of 500 grains represents at least 45 minutes of
work. Using automated methods with manual intervention, the necessary time is about

30 percent of the manual method, depending on the complexity of the sample.
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Figure 3-7: Examination of the number of grains required to properly characterize a
sample. Note that values for most descriptors stabilize after 500 measurements.
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Masuda and coworkers [71] [72] [73] performed an analytical estimation, and
tested it using computer simulation, of the number of particles to be examined to
determine the population mean with a stated error and confidence limit. This
methodology was embraced in ISO Standard 13322-1:2004 [69]. The methodology
assumed a log-normal distribution and required advance knowledge of the value of the

geometric standard deviation. The assumption of a log-normal distribution may not
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always be valid in nuclear forensic applications; however, there is considerable data to
suggest that the log-normal distributions are common in man-made processes [70].
Likewise, the geometric standard deviations will not always be known ahead of time.
For the purposes of this evaluation, Masuda’s methodology was applied to the
pellet investigated in Figure 3-6 and Figure 3-7 in order to provide insights into the
relative error and associated confidence for a measurement involving 500 grains. The
principal equations from Appendix A of ISO 13322-1 are as follows:
log n* =-21log & + log w
w=uv'a’o’ (2o +1)
where
n* is the number of particles to be counted, taken as 500
6 is the relative error to be determined
u is a function of the desired confidence limit and provided by the standard
a is a constant associated with the process, taken as 2 by the standard

o is the population standard deviation treated as In og, and found to be 0.44
cis a constant equal to B + a/2, where B is O for distributions based on count

Using the value of u provided in the standard for 95 percent confidence, the
relative error 6 was found to be 0.19. Combining this sampling error with measurement
errors previously determined (2 to 7 percent depending on the descriptor type) the
overall error associated with the distribution of a given morphological descriptor for
analysis of 500 grains was determined to be £ 0.20 with 95 percent confidence.

3.5 Texture as a quantitative tool for image analysis
Image analysis of textures is particularly useful when clearly defined grains are

not present. As discussed previously, uranium materials have a propensity to
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agglomerate, thus making texture analysis a prime candidate for sample classification in
nuclear forensics.

The term “texture” connotes a qualitative description of the look and feel of a
given surface. For example, in comparing road surfaces an asphalt pavement may be
considered “smooth,” a gravel road “rough,” and a cobblestone pathway “bumpy.”
These descriptions result from the periodicity, orientation, and variations in magnitudes
of the observed surface features. Mathematics can be used in a similar manner to
develop descriptions of visual textures. This science is the subject of considerable
research in the fields of machine vision and image analysis. An example of visual
textures used by Bharati et al [74] to demonstrate the use of texture to correctly classify
samples of stainless steel based on quality is presented in Figure 3-9. Thorough

background on the mathematics behind texture can be found in work by Tuceryan [75]

and Soille [76] and will not be discussed in detail.

Figure 3-8: Example of visual textures displayed by different stainless steels used by
Bharati [12] to classify samples by quality (degrades from left to right)

The texture analysis techniques investigated were those implemented within the
MaMmA software (version 0.9.6) available at the time of this study. The primary

technique utilized is known as a pattern spectra or granulometric curve. These values
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are generated through the comparison of a hypothetical structural element with a
portion of the image—conceptually similar to applying a mathematical sieve to the
image content, measuring what remains, changing the sieve size, and continuing
onward. MaMmA utilizes disks as the structural elements, which are then varied in both
size and grey level to create the pattern spectra [67].

The second technique examined the spatial distribution of grey values in an
image using an approach known as the gray-level co-occurrence matrix, first described
by Haralick [77]. The MAMA software uses the gray-level co-occurrence implementation
method developed by Connors [78], which results in outputs termed energy, entropy,
difference moment, cluster shade, and cluster prominence. Each of these terms
examines sets of pixels under different spatial relationships and provides values using
the same size range and scale as the pattern spectra.

Although texture is now widely used in many image analysis applications, no
reference materials or other standards currently exist to validate texture results.
Consequently, the accuracy of the algorithms was assumed and efforts instead focused
on applying and refining the existing texture tools for the uranium precipitates and
oxides under examination. Application and refinement of the texture tool required the
following: (1) selection of the magnification for examination of texture, (2)
determination of the optimal user-defined parameters for the texture algorithms, and
(3) identification of the error associated with method.

A qualitative visual comparison of the same uranium precipitate sample under a

range of magnifications was used to select the optimal magnification for texture analysis
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(Figure 3-9). The comparison suggested an optimum at a magnification of 50,000 X at
which the field of view is entirely consumed with sample and the microstructure is

clearly evident. Lower magnifications resulted in a reduced signal-to-noise ratio

resulting from a field of view that includes significant background.

(d) 30,000 X (€)50,000X " (f) 100,000 X

Figure 3-9: Representative secondary electron images used to select a magnification of
50,000 X for texture measurements. The images are of the precipitate of uranyl
nitrate and ammonium hydroxide heated to 85 °C.

Higher magnifications also resulted in reduced signal-to-noise ratios and an increased
fraction of the field of view occupied by vacant space in the microstructure.

The optimal values for the user-defined scale range and step size parameters
were determined through the examination of four of the common uranium precipitates

dried to 85 °C (Figure 3-10). In texture applications, scale is measured by the number of
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pixels, with the minimum scale representing the size of the texture feature and the
maximum scale representing the distance between repeating features. The step size
represents the number of measurements taken across the scale range. The scale ranges
examined included minimums of 1, 5, and 10 pixels with corresponding maximums of
40, 60, and 80 and step sizes of 10 and 20 pixels. Image areas were manually selected
when background or significant air gaps where evident, otherwise the entire image was
measured. The scale range and step size that maximized the differences between each
precipitate was determined to be scale range of 1 to 80 with a step size of 2.

The pattern spectra for hydrogen peroxide and ammonium hydroxide derived
precipitates were similar despite distinct visual differences (Figure 3-11 a and c). This
observation suggested that additional opportunities exist to refine or apply alternative
texture algorithms to improve matching and classification concepts. However, such
work is beyond the scope of this study.

Next, pattern spectra for 10 images of the same material were compared to
provide an indication of the variability within a sample and thus a measure of the
sensitivity of the texture method (Figure 3-11). The variation of the pattern spectra for
the 10 images was quantified by determining the coefficient of variation (ratio of the
standard deviation to the mean) at each structural element size. Across the full-scale
range of structural elements, the coefficient of variation averaged 0.13 with a variance
of 0.01 (Figure 3-11). The significance of this sensitivity to distinguish uranium materials

of different process origins will be explored in Chapter 5.
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(c) Ammonium hydroxide (d) Sodium hydroxide

Figure 3-10: Secondary electron images of uranium precipitates used to determine the
optimal user-defined values for scale and step size in texture measurements.
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Figure 3-11: Study on the variation of texture within a single sample of uranium oxide

3.6 Discussion of alternatives to image analysis for morphological study

Alternative particle characterization techniques to image analysis are widely
described at the textbook level [70]; however, some discussion on their viability for
nuclear forensic applications is warranted. Two techniques were further examined as
part of this evaluation: (1) laser scattering methods, due to their popularity and (2) the
electrical sensing zone method (also known as the Coulter counting method), due to the

unique measurements offered by this technique.
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In a laser scattering technique, the light scattering pattern of flowing, dispersed
particles is measured and deconvoluted into a particle size distribution using one of
several theoretical models (e.g., Fraunhofer or Mie) [70]. These models generally
assume a spherical geometry and perform thousands of measurements on a given
particle as it is continuously cycled through the measurement cell producing a
distribution by volume, rather than number. For non-spherical particles, corrections can
be applied to convert observed distribution into spherical equivalents; however, the
scattering will depend on the particle’s orientation during each measurement. Hence, a
single non-spherical particle measured using laser scattering will result in a distribution
of sizes. A good comparison between laser scattering and static image analysis methods
is provided by Tinke [79].

Since the materials of interest in nuclear forensics are generally non-spherical,
laser scattering was determined to be non-ideal because of the significant abstraction
associated with the data. Other drawbacks to this method included typically large
sample sizes (forensic applications may be limited to small quantities) and the common
use of pressurized air as the dispersion medium (safety concerns with radioactive
materials).

In the electrical sensing zone method, particles are suspended in a weak
electrolyte and individually passed through an aperture with an applied electrical
voltage. As each particle passes through the aperture, changes are detected in the

impedance, which are correlated to the volume characteristics of the particle. As a
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result, the electrical sensing zone technique provides number, volume, mass, and
surface area size distributions in a single measurement.

Of particular interest to nuclear forensics, powders are dispersed in liquid,
thereby alleviating the dispersion issues encountered in preparation of samples for
microscopy, as well as offering improved confinement of radioactive contamination.
Potential concerns with the method include a larger minimum detectable particle as
compared to other methods (~100 versus 10 nm), and limitations on the size range that
can be served by a given an aperture (typically ranges about 10 to 60 percent of the
aperture size).

3.7 Suggested areas for further study
Based on the research performed during this assessment, the following
recommendations are made for future work:
= The nuclear forensics community ought to develop morphology standards for use in
SEM and associated image analysis processes. Comparisons across institutions and
contributions to databases will be weakened without such standards.

= Additional focus is warranted on new sample preparation techniques. Adequate
sample dispersion continues to be the Achilles heel for the application of image
analysis to nuclear forensics.

= |mage analysis software should be developed using better integration with the SEM
hardware. Today, imaging is highly dependent on visual judgments made by the
operator; however, the aspects of a good image determined by the human eye may

not necessarily correspond to those aspects best utilized by algorithms.
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= Alternative particle characterization technologies should be investigated that offer
true measurements on individual particles that bypass the pitfalls of sample
dispersion encountered with microscopy. The electrical sensing zone devices show

particular promise for this purpose.
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Chapter 4 Process signatures in uranium precipitates and oxide powders

The objectives of this chapter are to systematically identify the set of uranium
precipitates and oxides most likely to be encountered in a nuclear forensics application,
develop a set of samples for study, and characterize the sample set for potential
signatures indicative of chemical process history. Examination of the chemical lifecycle
of uranium revealed the prevalence of uranium oxides originating from the thermal
treatment of precipates from solutions of the uranyl ion during chemical separations.

Consequently, a set of reference uranium materials was synthesized in the
laboratory using the commonly encountered aqueous precipitation reactions (Chapter
2). This set of laboratory-derived exemplars was characterized using the coventional
techniques of powder x-ray diffraction (XRD), specific surface area, thermogravimetic
methods, as well as the novel application of near-infrared reflectance (NIR)
spectroscopy. Similar analyses were performed using a set of real-world samples, with
process information obtained from the literature, to provide a comparison between
materials synthesized in the laboratory and samples representative of actual industrial
processes.

Results of this study indicate that powder XRD, thermogravimetric methods, and
NIR spectroscopy can be used to properly identify uranium oxides and precipitates for
the purposes of discerning their chemical process history. Furthermore, the
development of NIR offers a new, potentially field-deployable forensic tool for rapid and
non-destructive analysis. Specific surface area measurements were insufficient to

distinguish process history. Overall, these techniques were unable to distinguish
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identical compounds derived through different processes; however, morphology was
found to be successful in this respect and is the subject of Chapter 5.
4.1 Identification of processes likely to produce uranium oxides

There are a variety of chemical processes that are utilized in the lifecycle of
uranium [23][22][21] (See Chapter 2). These processes were systematically examined
for common chemical forms, which reveal the prevalence of uranium oxides (UO,, U3Os,
and UQ3) (Figure 4-1). Uranium oxides serve both as an important process intermediate
(e.g., a precurosor to fluorination and a recycle form) and a final product form for
application to nuclear fuel ceramics (i.e., UO,) and storage (i.e., U30g), due to their
thermodynamic chemical stability.

Processes that produce uranium oxides (Table 4-1) can be grouped into three
categories: (1) thermal oxidation of the products from precipitation reactions in
aqueous systems used for elemental separation during ore concentration, chemical
purification, or recycling, (2) solid phase thermal decomposition reactions, and (3) gas
phase reactions associated with the direct conversion of uranium hexafluoride (UFs) to
uranium oxide. This study placed greater emphasis on the aqueous precipitation routes
given their commonality in uranium ore concentration, refinement, and recycling
processes. Selected dry processes, primarily direct oxidation of metal, nitrate, and
fluorides, were examined as part of the study on morphology in Chapter 5. The study of
oxides resulting from the gas phase reactions was impeded by the scarcity of available
commercial samples and the complexities of reproducing these techniques in the

laboratory.
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Figure 4-1: Common chemical forms of uranium in the fuel cycles. Images adapted from [80]-[86].




In commonly utilized aqueous processing schemes, whether for initial
concentration from ore or purification activities associated with refining or recycling,
uranium is generally precipitated from solution using one of five reagents (Table 4-2):
(1) ammonium hydroxide (or ammonia gas), (2) hydrogen peroxide, (3) ammonium
carbonate (or ammonia and carbon dioxide gases), (4) magnesia, or (5) sodium
hydroxide (see Section 2.1.1) [23] [22] [24]. Following precipitation, samples are
generally given a heat treatment to either dry or oxidize the material at temperatures
typically ranging from 50 to 800 °C.

Table 4-1: Summary of processes identified to likely result in uranium oxides

Category Process

Ammonium hydroxide / ammonia gas

Sodium hydroxide

Magnesium oxide

Hydrogen peroxide

Oxidation of precipitates in uranium Ammonium hydroxide / ammonia gas

purification processes (refining or Ammonium carbonate

recycling) Hydrogen peroxide

Denitration of solutions and solids

Direct oxidation of metal, hydrides, fluorides

Direct flame reactions

Gas phase reactions Pyrohydrolysis in a rotary kiln or fluidized
bed reactor

Oxidation of precipitates used to
produce uranium ore concentrates
from mining operations

Solid phase thermal reactions

This heat treatment will decompose the precipitate as a function of temperature
depending on its chemistry. A list of generalized reactions (Table 4-2) provides the
routes for various uranium oxide species formation. Of particular forensic interest,
reactions 1-3 utilize organic precipitants that are susceptible to thermal decomposition

and volatilization, while reactions 4 and 5 leave persistent Mg2+ and Na* ions. The
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persistence of elevated concentrations of these ions in product oxides facilitates
identification of these materials and their process history. As a result, this study placed
greater emphasis on ascertaining whether process history could be discerned for oxides
derived from the volatile precipitants.

Table 4-2: Generalized reactions for the commons precipitations of uranium from solution

2U02(N03)2+ 6 NH,OH 9(NH4)2U207\1/ +4 NH4N03 + 3 H,0

% UO,(NO3), + H,0,2 UQy - 2H,04 + HNOs

>O UO,(NO3),:6 HO + 6 NH3 + 3CO; = (NHy4)s UO; (CO3)34d, + 2 NH4NO3
*GC-J’ UO,(NO3); +MgO + xH,0 = UOs - xH,04, + Mg(NO3),

% 2U0,(NO3), +2 NaOH > Na,U,07+ 4NaNOs+ 3H,0

a

The primary analytical techniques employed in this chapter represent
approaches that have not previously been systematically examined for utility in nuclear
forensic applications. These techniques were investigated to evaluate their own utility,
and develop a highly characterized set of exemplars using traditional accepted practices
in order to form a solid foundation for subsequent application to novel methods. One
novel method, NIR spectroscopy is examined in this chapter, and a second, morphology,
is the entire focus of Chapter 5.

4.2 Methods
This study utilized a combination of laboratory synthesized materials serving as
exemplars and samples of real-world origin. This unique, paired sample set provided

enhanced confidence that observed signatures are robust and representative of
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industrial factors not easily replicated in a pristine laboratory setting. For example,
scaling effects on mixing and mass transport and nuances based on variations in flow
sheet conditions may create differences in product characteristics.

4.2.1 Synthesis of uranium precipitates and oxide exemplars

A suite of uranium powder exemplars was synthesized using a variety of
precipitants and temperature conditions, as well as some novel conversions from initial
solid phases (Table 4-3). All precipitation reactions utilized laboratory stocks of uranyl
nitrate hexahydrate. Precipitations were performed from 1.0 M uranyl nitrate stock
solutions and generally 1.0 M reagents. The concentrations were chosen as generically
representative for the reactions of interest rather than to mimic specific process
conditions, as flow sheet concentrations vary in practice. As a result, this work
inherently assumed that concentrations of uranyl and reagents did not result in primary
effects—future efforts should confirm the validity of this assumption. Furthermore, the
work was performed using nitrate species in the starting solutions. In practice, many
uranium ore milling operations operate flow sheets based on the sulfate system. While
it is unlikely that the anion plays a significant role in the signatures studied, future
verification of this assumption would be prudent.

Reactions were generally carried out in disposable centrifuge tubes, utilizing
manual mixing with the end-point monitored using pH paper. As an exception, the
precipitation using ammonium carbonate was performed in a filtration funnel, as the
product was previously reported to be readily filterable. Following precipitation, slurries

were centrifuged, decanted, and rinsed with deionized water before final solid and
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liguid separation by centrifugation. Precipitate cakes were air dried in an 85 °C oven

overnight and confirmed to be at constant mass. Dried precipitates were then

comminuted by hand with a mortar and pestle. These powders served as the base

material for additional heat treatments, which were performed in a muffle furnace with

the powder placed in acid cleaned quartz or alumina boats. Selected samples were

reduced to the UO; phase in a tube furnace using a flowing atmosphere of 4 percent

hydrogen in argon.

Table 4-3: Summary of conditions used to synthesize uranium oxide exemplars

Type Agent Preparation Conditions Temps., °C
Ammonium 1.0 M uranyl nitrate precipitated with 1.0 M 85, 150, 400
hydroxide ammonium hydroxide solution to a pH ~8 600, 750

%’ Ammonia gas Gas bubbled into 0.5 M uranyl nitrate solution 85

= toapH~8

5 Sodium 1.0 M uranyl nitrate precipitated with 1.0 M 85, 150, 400

'S hydroxide sodium hydroxide solution to a pH ~8 600, 750

§ Magnesia 1.0 M uranyl nitrate precipitated with 15wt % 85, 150, 400

3 magnesia slurry 600, 750

$  Hydrogen 1.0 M uranyl nitrate precipitated with 30 % 85, 150, 400

=) peroxide hydrogen peroxide solution 600, 750
Ammonium 1.0 M uranyl nitrate precipitated with 85, 150, 400
carbonate saturated ammonium carbonate to pH ~8 600, 750
Direct metal Uranium metal turnings directly oxidized in (1) 400

o oxidation air and (2) moist air

ﬁ Oxidation of Uranium metal turnings hydrided and then 400

g  uranium oxidized in flowing moist argon

S hydride

% Denitration Ground uranyl nitrate oxidized in air 300, 600

Y Oxidation of Uranium tetrafluoride powder oxidized in 400

tetrafluoride

moist, flowing air

For the solid processes, materials were treated as described in Table 4-3.

Generally, the starting compounds were ground by hand in mortar and pestle,

transferred to an acid cleaned furnace boat, and then heated under the stated
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conditions. Reactions involving flowing argon, hydrogen, or humidified atmospheres

were performed in a quartz tube furnace. Uranium metal turnings were first rinsed in
acetone and dilute nitric acid in order to remove mineral oil residue from storage and
eliminate minor oxide layers.

4.2.2 Analytical Methods

Thermogravimetric analysis and differential scanning calorimetry were
performed using a Netzsch Jupiter simultaneous thermal analysis instrument. Sample
sizes were approximately 10 mg with a compressed air flow rate of 20 mL/min and
heating rate of 20 °C/min for the range 25-750 °C. All precipitates were initially dried to
constant mass at 85 °C.

Specific surface area measurements were performed using a Quantachrome
Quadrasorb instrument along 20 point adsorption and desorption isotherms using
nitrogen as the absorbate at liquid nitrogen temperature. Prior to analysis, samples
were degassed at 50 °C under vacuum for at least 12 hours. Quality control was
established with periodic measurements of Quantachrome’s reference standards 2001
(10.24 + 0.57 m?/g) and 2007 (2.85 + 0.20 m?/g). Calculations of the specific surface
area were performed using the instrument software based on Brauner, Emmett and
Teller theory [55]. Isotherms were taken using krypton as the absorbate in an attempt
to obtain porosity information; however, these were found to be unsuccessful due to a
pore size range that was too large.

Powder XRD was performed using a Bruker-AXS D8 Advance powder

diffractometer using a step size of 0.019 at a rate of 2 seconds per step. Prior to
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analysis, samples were hand ground in a mortar and pestle and deposited using a
dispersion in alcohol onto a low-background silicon wafer sample holder fitted with a
dome for confinement of the dispersible radioactive material. Phase identification was
performed using Bruker’s DIFFRACplus EVA software package against the 2009 database
issued by the International Centre for Diffraction Data.

NIR spectra were acquired using an Analytical Spectral Devices Inc. Labspec Pro
spectrometer with three detectors spanning the spectral range from 350-1000, 1000—
1800, and 1800-2500 nm. Fiber optic bundles transmitted light from a 20 W tungsten
halogen source to and from the sample. Spectra were scanned in 1 nm steps with a
spectral resolution of approximately 10 nm. The samples required no preparation and
10 spectra were acquired for each sample in about 1 second. Spectral processing was
accomplished using The Unscrambler® software package, version 10.1 (CAMO Inc, Oslo
Norway). Raw spectra were preprocessed and presented using the standard normal
variate to minimize baseline shifts and multiplicative interferences of particle size as
recommended by Barnes [87].

4.2.3 Real-world samples

Lawrence Livermore National Laboratory (LLNL) possesses a large collection of
uranium ore concentrate samples obtained from various sources. The literature was
comprehensively reviewed to identify applicable process information pertinent to these
samples (Table 4-4). For purposes of this study, process parameters of interest included

the precipitation reagent and the conditions of post-precipitation thermal treatments
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(i.e., drying or oxidation). The results of phase analysis performed using XRD are also

provided in Table 4-4.
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Table 4-4: Process history derived from the literature and phase analysis of several commercially produced uranium ore concentrates

Precipitant Plant Location Temperature, °C References Major phases determined by XRD
Crow Butte Dawes County, Nebraska Vacuum dryer [88] U0O,-2H,0, U304
Rabbit Lake Saskatchewan, Canada 110 [89] [90][91] U0,-2H,0, U05:0.8H,0
Hydrogen El Mesquite Duval County, TX 177 [92] UO0,:2H,0, U0,4-4H,0, U03:2H,0
peroxide Irigaray Johnson County, Wyoming Not reported [93] U0,4:2H,0, UO,4-4H,0
Uranium Resources Duval County, Texas Vacuum dryer [94] U0,-2H,0, 2U05-NH3:3H,0
Inc
Mobil Bruni, TX or Crownpoint, NM Not reported [95] U0,-2H,0
Ranger Northern Territory, Australia 600-800 [96] [97] UO;and U30g
Key Lake Saskatchewan, Canada 750 [98] [99][100] [90] U304
Federal American Gas Hills, WY 600 [101][24] U304
Ammonia Partners
Olympic Dam South Australia 760 [91][90] U;0g
ROssing Swakopmund, Namibia 500 [102] [103][90] UO;and U;0g
NUFCOR Westonaria, South Africa 500 [104] UO;and U;0g
Milliken Lake Elliot Lake, Ontario, Canada Not reported [105] [22] [106] 2U03:3NH3:3H,0
South Alligator N. Territory, Australia 84 [96] No match
Anaconda Bluewater  Grants, New Mexico 90-120 [24] No match
Facility
Magnesia Rum Jungle N. Territory, Australia 320 [96] No match
COMUF Mounana, Gabon Not reported [107] No match
Dyno Bancroft, Ontario, Canada Not reported [108] No match
Gunnar Lake Athabasca, Saskatchewan, Steam heated [105] No match
Canada
Ranstad Sweden Not Reported [109] Na(UO,)O(OH)
[110]
SOMAIR Niamey, Niger Not Reported [111] Na(UO,)O(OH)
Sodium Na,U,0;
hydroxide Susquehanna- Falls City, TX Not Reported [24] No match
Western, Inc
El Dorado Beaverlodge, Canada Not reported [91] [101][105] Nag35U0; 95
[22] Nag.31U30g, UsOg




4.3 Results and Discussion

The laboratory-derived precipitates and resulting oxides formed the stereotypical
yellow (Figure 4-2) and blackish-green powders commonly associated with these
uranium compounds. While there are color differences detectable by eye, the objective
of this study is to develop unbiased, quantifiable, and reliable techniques suitable for

forensic applications.

7N

Hydrogen Ammonium Ammonium Magnesia Sodium
Peroxide Carbonate Hydroxide Hydroxide

Figure 4-2: Images of powdered aqueous uranium precipitates heated to 85 °C

4.3.1 Thermogravimetric methods can distinguish uranyl precipitates

Simultaneous thermogravimetric analysis and differential scanning calorimetry
performed on each of the uranyl precipitate compounds revealed distinct curves for
mass loss and reaction energetics (Figure 4-3). While this result is expected for different
initial chemical compounds, thermogravimetric methods have not been explored for the
purposes of nuclear forensics. This observation is surprising given that
thermogravimetric methods are widely applied in conventional forensics, simple to
perform, and are widely used to characterize unknown materials; for example, the
differentiation of glove materials [112]. Other than the application by Hausen [113] for

the general study of yellow cakes, the thermogravimetric behavior of uranyl compounds
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has been limited to the study of individual compounds rather than comparative

applications.
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Figure 4-3: Thermogravimetric (solid lines) and differential scanning calorimetry
(dotted lines) traces for uranyl precipitates. Heating rate was 20 °C/min. All
precipitates were initially dried to constant mass at 85 °C.

Characteristic temperatures and associated mass losses were obtained from the
thermogravimetric behaviors (Figure 4-3) and compiled with corroborating literature for
each precipitate (Table 4-5). The literature provides insights into the specific reaction
mechanisms as a function of temperature. Overall, thermogravimetric analysis
demonstrated the ability to distinguish uranium precipitates produced by different

processes. As discussed below in Section 4.3.3, phase analysis of uranium precipitates
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using powder XRD analysis often yields incomplete or amorphous results.

Thermogravimetric analysis is complementary technique, which utilizes only a small

sample size and provides a relatively quick analysis. The addition of coupled off-gas

analysis instrumentation (either infrared or mass spectroscopy) could further strengthen

thermogravimetric analysis as a robust tool for the analytical characterization of a

sample of interest to nuclear forensics.

Table 4-5: Thermogravimetric signatures for common uranyl precipitates

Precipitate Characteristic Associated Characteristic Corroborating
P Temperature, °C | Mass Loss, % | Energetic Events, °C References
Ammonium
hydroxide 100-350 10 125, 195, 260 [114][115][116]
A -
mmonitm 120-210 20 200, 600 [117][118][119]
carbonate
Hydrogen 150-250 12 235 [120][121]
peroxide
Sodium
hydroxide 100-500 6 90 [122][123]
Magnesia 330-370 3 195, 360 none

4.3.2 Specific surface area is not indicative of process history

Specific surface areas were measured for the laboratory-derived exemplars and

selected real-world powders (Tables 4-6 and 4-7). The measurements revealed a wide

range of specific surface areas across the different precipitation chemistries. In general,

a trend of decreasing surface area with increasing process temperature was observed

for the laboratory-derived exemplars, with the exception of a minor increase in surface

area noted for several of the 400 °C samples. This result is consistent with the

observations of Woolfrey [124], who noted maximum specific surface areas associated

with the thermal decomposition of ammonium uranates occurred in the range of 350—
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450 °C. Woolfrey explained the increase in surface area as the likely result of the
competition between the increased surface area associated with the decomposition of
the initial precipitate and the decreased surface area associated with sintering of the
resulting oxide phases. His theory appears reasonable.

While a comparison of the specific surfaces areas for the exemplars at 85 °C
suggests the potential to discriminate based on precipitation process, these differences
are minimized as process temperature is increased. Furthermore, examination of the
real-world samples suggests that substantial overlap exists in the range of surface areas
produced by a given precipitation process with most samples in the range of 1-20 mz/g.
This wide range is likely the result of the accumulation of impacts from additional
process parameters, such as mixing and mass transfer effects, liquid-solid separations,

and solids handling.

Table 4-6: Measured specific surface area values for laboratory-derived exemplars, m’/g

Process 85°C 150 °C 400 °C 600 °C 750 °C
Mean Error | Mean Error | Mean | Error | Mean Error | Mean Error
Ammonium 13.54 | 0.07 | 13.11 | 0.15 | 15.18 | 0.09 | 7.83 | 0.36 1.82 | 0.12
hydroxide
Ammonia gas 3298 | 0.14 -- -- -- -- -- -- -- --
Sodium hydroxide 20.55 | 0.42 | 13.66 | 0.20 | 13.08 | 0.05 | 11.20 | 0.20 | 2.83 -
Magnesia 37.54 | 0.13 | 26.51 | 0.90 | 44.37 | 0.27 | 16.64 | 0.17 | 7.23 | 0.06
Hydrogen peroxide 6.92 | 0.20 | 7.81 | 0.22 | 6.56 - 1.66 | 0.05 | 1.05 | 0.15
Ammonium 196 | 026 | - - - ~ 239 012 - -
carbonate

Note: Error expressed as the 95 % confidence level of 3 measurements
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Table 4-7: Measured specific surface areas for selected real-world samples, m*/g

Precipitant Sample Mean Error
Crow Butte 6.44 0.08

Hydrogen peroxide Rabbit Lake 5.26 0.21
Mobil 8.67 0.41

Ammonia Ranger 4.15 0.03
Roéssing 4.10 0.13

NUFCOR 12.18 0.14

South Alligator 18.27 0.07

Magnesia Anaconda 21.13 0.11
COMUF 9.35 0.06

Ranstad 1.76 0.07

Sodium hydroxide SOMAIR 6.61 0.11
El Dorado 20.82 0.08

Note: Error expressed as the 95 % confidence level of 3 measurements

Additional research on process dependent trends with specific surface area was
performed using data obtained from the literature for samples of UO, (Table 4-8), which
also permitted the examination of the gas phase process routes. The resulting data
(Figure 4-4) reinforce the two general conclusions of this study: (1) specific surface areas
do not appear to correlate with production method in a manner sufficient to
discriminate process history and (2) specific surface areas tend to decrease with

increasing process temperature.
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Figure 4-4: Literature values for the specific surface area of uranium dioxide as a
function of temperature and production process. Aqueous and gas phase processes
are noted in red and blue, respectively.

Table 4-8: Summary of literature sources used in Figure 4-4

Author Process examined

Woolfrey [125] Ammonia

Janov [26] Ammonia

Balakrishna [126] Ammonia

Ching-Tsven Huang [127] Ammonia

Doi [128] Ammonia

Kim [129] Ammonium carbonate

Lee [130] Ammonium carbonate

Pan [131] Ammonium carbonate

Choi [132] Ammonium carbonate
Marajofsky [133] Ammonium carbonate

Lee and Yang [134] Ammonium carbonate

Clayton [135] Ammonia, ammonia carbonate, peroxide,
Hastings [18] Peroxide

lon [33] Integrated dry route

Knudsen [136] Direct conversion fluidized bed
Carter [137] Integrate dry route

de Hollander [138] Flame

Dada [36] Flame
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4.3.3 Phase analysis by powder XRD

Powder XRD was performed on each of the laboratory derived exemplars and
real-world samples to determine chemical phase. Identified chemical phases as a
function of precipitation process and thermal treatment are provided in Table 4-9 for
the exemplars and in Table 4-4 for the real-world samples. In general, the identified
phases correlate well between both sample sets when precipitant and temperature
treatment are considered. Phase information as a function of temperature also agrees
well with the previously discussed thermogravimetric methods in Section 4.3.1 and the
associated literature. However, XRD analysis alone is insufficient to ascertain
definitively the process history for many of the samples as indicated by the shaded
regions in Table 4-9. Results are summarized below for each precipitant:

Hydrogen peroxide: At low temperatures (85 and 150 °C), the exemplars were
determined to be uranyl peroxide hydrates, known as studite and metastudite
(UO4-2H,0 and UQ4-4H,0). These same phases were identified in the real-world
samples with reported low process temperatures (Rabbit Lake and El Mesquite). Based
on this information, a low process temperature can reasonably be inferred for the Crow
Point, Irigaray, Uranium Resources Inc., and Mobil samples. Atincreased temperatures,
the peroxide decomposes into UO3at 400 °C, which is in turn converted to U30g at 600
and 750 °C.

Ammonium hydroxide: At low temperatures (85 and 150 °C), precipitates with

ammonia were found to form ammonia uranium oxide hydrates (UOs: zNH3-xH,0).
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These compounds represent a mixture of stoichiometries and are commonly referred to
in industry as ammonium uranates or ammonium diuranate.

The Milliken Lake sample matches this phase, suggesting that it was dried at
similar temperatures. At increased temperatures, the ammonium and water volatize
leaving UO3at 400 °C, which is in turn converted to U30g at 600 and 750 °C. The other
six real-world samples display identical process history and resulting phases of U3Og.

Ammonium carbonate: At 85 °C, the original ammonium uranyl carbonate
precipitate is found. At increased temperatures, the precipitate is decomposed into UO;
and Us0g. The real-world samples available for this precipitant have very limited source
information; however, XRD identified ammonium uranyl carbonate, suggesting a low
temperature drying of an ammonium carbonate precipitate.

Magnesia: At low temperatures (85-400 °C), uranyl precipitated with magnesia
results in an amorphous phase not readily identifiable through XRD pattern matching.
This result is consistent with all of the real-world samples processed at low
temperatures and which also resulted in amorphous XRD patterns. Crystallinity returns
at 600 and 750 °C with the formation of magnesium uranium oxides of various
stoichiometries. For further confirmation, several of the real-world samples were
heated to 750 °C and the resulting powders were identified as magnesium uranium
oxides of the same stoichiometries as the exemplars. The presence of a significant

magnesium rich phase is a strong indicator that magnesia was used as a precipitant.
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Table 4-9: Major phase composition of laboratory-derived exemplars by powder x-ray diffraction

Processing temperature, °C

Precipi
recipitant 85 150 400 600 750
Ammonium Ammonia uranium Amorphous uranium Triuranium octoxide

hydroxide oxide hydrate UOj3- zNH3-xH,0 trioxide (UsOs) U30g

(UO3: zZNH3-xH,0) (A-UO;) 38
Hydrogen .
; Metastudite
perOX|de (UO4'2H20) UQO,4-2H,0 U03 U308 U308
. Ammonium uranyl
Ammonium carbonate
bonat A-UO A-UO Us0 Us0
carbonate (NH4)4(UO2)(CO3)3 ’ ’ 8 e
Sodium uranium Clarkeite Sodium uranium
h\s/gtrjcl)?(?;e No match oxide hydrate (;\Ioad(i(tlJJr:zliz(r(mjiEr)z) NazU20 oxide
(Na;U3040-H,0) . (NayU,.50s35)
oxide U-0
(Na;U,07) e
Magnesium uranium
Magnesia No match oxides MgUQ,
No match No match
(MgUO0,) MgU3010
(MgU304o)

Note: shaded areas represent regions where XRD analysis yields insufficient information to determine process origin.




Sodium hydroxide: At 85 °C, uranyl precipitated with sodium hydroxide results in
an amorphous phase not readily identifiable through XRD pattern matching. Above this
temperature, sodium uranium oxides of various compositions were identified. Similar
compounds were identified in the real-world samples suggesting processing
temperatures above 150 °C, although confirmatory information was not available in the
literature. As with magnesium, the presence of significant sodium rich phase is a strong
indicator that sodium hydroxide was used as a precipitant.

4.3.4 NIR can distinguish uranyl precitates and identify oxides

With some additions and modifications, the work in this section has been
reported in the literature [139]. NIR spectra were taken for all laboratory-derived
exemplars and are presented with chemical phase information obtained through
powder XRD pattern matching (Figure 4-5). The two NIR regions are presented
separately since different detectors are used in each region. Peak assignments for O-H,
N-H, and other groups are indicated in Figure 4-5 and are discussed later. Each uranium
phase resulted in a unique spectrum, sufficient to distinguish the origin of a given
sample by visual evaluation of the spectra. These differences are evident for each type
of precipitate heated to 85 °C (top of Figure 4-6) in the first NIR detector region. Note
that common absorption wavelengths were shared by several samples because of

common functional groups (e.g, O-H).
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Precipitant/ Phase

Ammonium Hydroxide
A. UOg' ZNH3'XH20
B. U03' ZNH3'XH20

C. Amorphous (A)-UO3

D. U30g
E. UsOg

Hydrogen Peroxide
A. UO4-2H,0
B. UO4-2H,0
C.UOs
D. U303
E. UsOg

Ammonium Carbonate
A. (NH4)4(U0O,)(CO3)3
B. A-UO3
C. A-UO;

D. U30g
E. UsOg

Magnesia
A. No match
B. No match
C. No match
D. MgUO4, MgU3010
E. MgUO4,MgU3010

Sodium Hydroxide
A. No match

B. Na;U3040.H,0
C. N32U207
D. N32U207

E. Na,U;, 5055 U303
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Figure 4-5: Complete set of NIR spectra for laboratory-derived exemplars as a function
of temperature and resulting chemical phase
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As process temperatures increased, spectral changes occurred consistent with
the change in chemical species. The NIR spectra were nearly identical for each of the
UsO0gsamples with dominant absorption features at 1505 and 1565 nm (bottom of
Figure 4-6 bottom). This result suggests that NIR is insufficiently sensitive to
morphological differences to distinguish reliably between chemically identical species
derived through different routes, as discussed in Chapter 5.

The complexity of the NIR spectral region can make specific assignment of
features difficult; however, absorption bands were assigned corresponding to the
functional groups of the various uranium compounds using available information and
simple experiments. The literature on NIR spectroscopy of uranium compounds is very
limited with most of the published information authored by Frost and focused on the
examination of mineral phases including, calcium uranyl phosphates (autunites) [140],
uranyl arsenates [141], uranyl selenites (haynesite) [141], uranyl carbonates
(rutherfordines) [142], uranyl selenites (haynesite) [143], and copper uranyl phosphates
(torbernites and metatorbernites) [144].

No spectral similarities were observed between the laboratory-derived
exemplars and these mineral phases, despite the analogous functionalities of the
carbonate group (observed by Frost at 1650, 1700, and 1750 nm), and the uranyl group
(observed by Frost at 1060 and 1144, nm). Hanchar [145] also assigned uranyl to a
broad absorption at 714 nm, which was not observed in any of these minerals.

In general, NIR spectral features are primarily attributable to the overtone and

combination bands of C-H, O-H, and N-H bonds [146]. In addition, there are some
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absorption features that arise from crystal field effects and electronic transitions in the
actinides [147]. In Figure 4-5 and Figure 4-6, many of the low temperature samples,
particularly the 85° C set, exhibit characteristic absorption peaks for the water O-H
bonds at 1450 and 1940 nm, which arise from the first overtone and combination of
asymmetric stretching and bending, respectively.

Similarly, the overtone of the N-H stretch near 1480 nm and the stretch and
bend combinations at 2050 and 2150 nm were observed in the ammonium hydroxide
and ammonium carbonate derived precipitates. Other overtones for functional groups
expected based on the species were not observed, including carbonate (2550 and 2350
nm) and peroxide (2060 nm for aqueous species). The absorption features near 1505
and 1565 nm observed in the UsOgsamples do not appear to be overtones as there are
no corresponding absorptions in the higher wavelength region typically associated with
combination bands, thus these absorptions are likely the result of crystal field effects or
electronic transitions.

Analyses of pure solid reagents (magnesia and ammonium carbonate) were also
performed for comparative peak assignments. For magnesia, the spectra demonstrate a
unique absorption feature at 1395 nm, which was found to be present in all but the 750
°C synthetic sample. For ammonium carbonate, absorption features were observed at
1640, 1975, 2040, 2175nm—only the 2040 nm peak was found for the 85 °C ammonium

uranyl carbonate synthetic samples.
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Figure 4-6: Comparison of NIR spectra for laboratory-derived precipitates heated to 85
°C (top) and 750 °C (bottom) for detector region 1

Edison [148] and Varga [19] provide infrared analysis of some relevant uranium
ore concentrates where the O-H and N-H fundamentals located around 2900 and 3185

nm were identified, respectively. Corresponding first fundamental overtones would
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appear around 1440 and 1580 nm, of which the 1440 nm absorption was observed for
all samples and the 1580 nm absorption observed with the ammonium carbonate (1585
nm) and ammonium hydroxide samples (1570 nm). The other fundamental infrared
spectrum features observed in these studies occur at wavelengths outside the NIR
region.

Overall, comparisons of NIR spectra between the lab-derived exemplars and the
real-world samples were favorable (Figure 4-7). This result suggests that the NIR spectra
for the chemical phases produced for a given process and temperature are not
significantly perturbed by real-world factors (e.g., minor constituents), thereby
providing confidence that this technique offers a valid tool for nuclear forensic
applications. In fact, the NIR technique was further advanced by Klunder [149] through
the application of principal component analysis to the investigation of additional real-
world samples and was able to demonstrate generally good segregation of chemical

species.
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Figure 4-7: Comparison of NIR spectra for laboratory-derived exemplars and real-
world samples for (a) hydrogen peroxide precipitates heated to low temperatures, all
determined to be metastudite (UO422H,0) by x-ray diffraction, (b) ammonium
hydroxide precipitates heated all determined to be triuranium octooxide (U30g), (c)
magnesia precipitates heated to low temperatures all determined to be amorphous,
and (d) ammonium carbonate precipitates all determined to be ammonium uranyl
carbonate (NH4)4(UO,)(CO:s)s.
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4.4 Conclusions and suggested areas for further study
This study identified the uranium precipitates and oxides mostly likely to be

encountered in a nuclear forensic application and developed a systematic set of well-

characterized laboratory-derived exemplars and real-world samples for application of

conventional and novel analytical forensics tools. This study reached the following

conclusions and suggested areas for future study:

= Thermogravimetric methods can distinguish uranyl precipitants of different process
origins. Further, differences in the rates of mass loss at elevated temperatures
suggest that additional research is warranted to ascertain whether this tool is
capable of distinguishing process origins for chemically similar oxide phases
produced at elevated temperature.

= Despite common application in industry, specific surface area is not indicative of
process history. This study identified significant overlap in surface areas for powders
derived from different processes, particularly as process temperatures are
increased. As a result, while a given process line may produce material of a
characteristic specific surface area, the value may be insufficient to distinguish it
from other processes.

= Characterization by powder XRD demonstrated good agreement in the identified
chemical phases between the laboratory-derived exemplars and the real-world
samples. XRD can reveal process history for powders of certain precipitant and

temperature combinations; however, higher temperatures result in either
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amorphous phases or identical chemical species that require additional techniques
to discern the process history.

= NIR spectroscopy can distinguish uranyl precipitants and identify uranium oxides.
NIR also demonstrated good spectral agreement between laboratory-derived
exemplars and real-world samples. Consequently, NIR represents a promising new
tool for nuclear forensic applications warranting additional study with diverse
samples.
The sample set developed in this chapter was also utilized in Chapter 5. Suggested

areas of research that are pertinent to both chapters are presented in Chapter 5.
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Chapter 5 Morphology as a signature in uranium precipitates and oxides

This chapter continues the study of uranium precipitates and oxides for signatures
indicative of chemical process history with an exclusive focus on morphology. The set of
laboratory-derived exemplars and real-world samples developed and characterized in
Chapter 4 was systematically studied for morphology using scanning electron
microscopy (SEM). The results of this study indicate that each process results in a
precipitate with a unique, characteristic morphology and that each precipitate
subsequently decomposes to an oxide in a pseudomorphic manner. In other words, the
morphology of the original precipitate is largely preserved in the resulting oxide.
Consequently, morphology offers a distinctive forensic tool to help elucidate the process
history of otherwise chemically identical uranium oxides. Consistency between
laboratory-derived exemplars and real-world samples further underpins these results;
however, the effects of sintering at elevated temperatures mask morphology and make
differentiation difficult.
5.1 Literature suggests a link between process and morphology

A review of the literature provided indications suggestive of a link between

chemical process history and morphology advantageous to nuclear forensics. In
particular, several authors observed differences in the physical properties of uranium
oxide powders as a function of production method. In the only published research with
an explicit focus on forensics, Hastings [18] compared uranium oxides produced as a

function of the firing temperature and noted differences in physical appearance,
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density, and particle size distribution. These properties are often correlated with
morphology.

Historically, researchers examined properties of uranium oxide powders to
understand and optimize subsequent production of nuclear fuels. Their experiments
focused largely on characteristics of the fuel, including the morphology of grains in the
sintered pellets, as a function of the properties of the precursor oxide powder. The
objective of Chapter 6 is to carefully examine this link between powder and resulting
fuel pellet. However, since these researchers invariably provided some characterization
and discussion of the processes used to produce the precursor powders, the literature is
reviewed below for insights into forensic applications for both powders and pellets.

Andreev [150] investigated the macro- and micro-structure of uranium dioxides
produce through precipitation with ammonia and the dry routes of gas flame and
fluidized beds. The author found remarkably different morphologies based on SEM
analysis. Similarly, Burk [151] found a distinction in the particle size distributions
between uranium dioxide powders originating from the reduction of the precipitate
with ammonia as compared to the reduction of uranium trioxide pretreated with
ammonium nitrate.

Pajo [152] [153] found differences in the surface roughness of fuel pellets to be
specific to the production plant and pellet type, but did not discuss the specific
production processes. Lee and Yang [134] compared uranium dioxide derived from
precipitation with ammonia and ammonium carbonate by mercury porosimetry and

found differences in the pore size distribution between the powders. These differences
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translated into variations in the pore structure and density of the final pellet. Cordfunke
[154] noted differences in fuel pellets produced under identical conditions except for
the precursor powders derived from ammonia and peroxide processes.

Assmann [155] also observed microstructure and surface differences between
fuel derived from powders originating from precipitation with ammonia, ammonium
carbonate, and each of the three dry production routes. In other work, Assmann [156]
observed that precipitation conditions determined properties of the resulting
ammonium carbonate precipitate, which transferred to the subsequent uranium dioxide
powders and onto grains within the final sintered pellet.

Overall, the literature suggests that morphological process signatures do exist in
uranium powders and fuel pellets. Researchers were primarily interested in producing
high quality nuclear fuel, but their results provide confidence that the systematic
examination intended by this study will establish morphology as a useful process
signature.

5.2 Sample imaging and processing

The samples investigated in this chapter were those laboratory-derived exemplars
and real-world samples produced and characterized in Chapter 4. Samples for SEM
analysis were prepared by physical transfer from surfaces onto carbon adhesive stubs
on aluminum pin mounts. For non-conductive matrices, a 5 nm iridium metal coating
was applied to minimize charging effects on the sample. Imagery was obtained using a
FEI Inspect F SEM instrument (Chapter 2). Secondary electron imaging generally utilized

an accelerating voltage of 5 kV. Backscatter electron imaging generally utilized an
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accelerating voltage of 15 kV. Working distances were typically 11.5 mm. Energy
dispersive spectroscopy (EDS) was performed using an EDAX Apollo silicon drift detector
with the associated Genesis software package.

In most cases, multiple images of each sample were obtained over a range of
magnifications. This method resulted in the most accurate characterization of a given
sample. For example, many of the powders exhibit variable morphologies that are often
difficult to capture in a single frame. As a result, the reader is cautioned that the single
instance images used for qualitative comparisons throughout this chapter may
inherently contain bias. While a conscientious effort was made to select representative
images, the reader is strongly encouraged to consult the additional images provided in
the Appendix to allow for the broader perspective and individual interpretation.

Image analysis was accomplished using the Morphological Assessment of
Materials for Attribution (MAMA) software under development by Los Alamos National
Laboratory [67]. Image analysis was performed using algorithms for texture and most of

the images are presented at a magnification of 50,000X based on the finding in Chapter

5.3 Results and Discussion
5.3.1 SEM imagery reveals morphology characteristic to precipitation process

The morphology of uranyl precipitates and resulting oxide exemplars was
examined as a function of process temperature (Figure 5-1 and Figure 5-2). Table 5-1

provides qualitative descriptions of the observed morphology using terminology
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consistent with the Particle Morphology Glossary developed by the National Institute of

Standards and Testing [157].

Table 5-1: Qualitative descriptions of the morphological signatures associated with

uranium precipitates

Precipitant Qualitative description of morphology
Ammonium Agglomerates of thin platelets that decompose into grapelike
hydroxide clusters and begin to sinter at 600 °C
Thin shards that begin bridging at 400 °C and continue to sinter
Hvdrogen as temperatures are increased. The sintered material is similar
Y g in appearance to the clusters observed with ammonium
peroxide

Ammonia carbonate

Magnesia

Sodium hydroxide

hydroxide; however, slightly more directional order remains
consistent with the original shards

Distinct euhedral rhomboids or broken rhomboids preserved as
temperature increases, though the surfaces become porous

Clusters of needle-like formations that individually expand with
increased temperature, but preserve their general arrangement

Agglomerates of thin platelets similar in appearance to
ammonium hydroxide, though generally flatter or more spread
at all temperatures

The key observations from these image sets include: (1) each precipitate generally

displays a uniqgue morphology and (2) substantial aspects of this unique morphology are

maintained in most of the powders through temperatures up to 600 °C. The first

observation is not particularly surprising—each precipitate represents a unique

compound(s) with its own distinct crystal structure and associated morphology.
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Figure 5-1: orphology asa function o tmperature for the xemplars deried rom
volatile precipitants: ammonium hydroxide (left), hydrogen peroxide (middle), and
ammonium carbonate (right, note also different scale).
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Figure 5-2: Morphology as a function of temperature for
the exemplars derived from non-volatile precipitants:
magnesia (left) and sodium hydroxide (right)
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However, this result substantiates the value of morphology as a standalone technique
for the determination of the process history.

The second observation—morphology is generally maintained as precipitates are
decomposed into various uranium oxides—is unexpected and may have important
implications for forensics. In particular, the thermogravimetric and powder x-ray
diffraction (XRD) results presented in Chapter 4 indicate that in all cases the volatile
precipitating agents were decomposed at temperatures of 400 and 600 °C, resulting UO3
and UsOg species that provide no other indicator of process origin. The observation that
morphological features are distinguishable for these samples provides a new tool to
discern the history of otherwise chemically identical powders.

The utility of morphology is reinforced further by the examination of real-world
samples representing each precipitation process (Figures 5-3 through 5-7). These
images demonstrate favorable qualitative comparisons with the laboratory-derived
exemplars for similar precipitation and thermal treatments. For example, the images of
the real-world samples in Figure 5-4 all depict the shard-like morphology characteristic
of precipitation with hydrogen peroxide, also displayed by the exemplars.

Unfortunately, the available set of real-world samples does not provide an
opportunity to examine the comparative morphologies of uranium oxides produced
with known different precipitation histories. In particular, a comparison of real-world
U30g produced using the ammonia, hydrogen peroxide, and ammonium carbonate
precipitation processes would be useful to determine if the distinct morphologies

observed with the laboratory exemplars are preserved. These particular precipitation
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processes are real-world significant; however, the majority of the samples currently
available at Lawrence Livermore National Laboratory are uranium ore concentrates and
are, therefore, more likely to be precipitates dried at low temperatures rather than

refined oxides or process intermediates.
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(a) Mixture of UOsand Us0g (b) Mixture of UO3and UsOg (c) UsOgheated to 750 °C
heated to about 600 °C heated to 500 °C from the from the facility at Key
from the Ranger facility in Rossing facility in Namibia.  Lake, Canada.

Australia.
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(d) Mixture of UO3and UsOg (e) UsOg heated to about (f) UsOg heated to 760 °C
heated to about 500 °C 600 °C from the Federal from the Olympic Dam
from the NUFCOR facility in  American Partners facility facility in Australia.
Westonia, South Africa. in Gas Hills, Wyoming.
Exemplars created from the precipitate of 1.0 M uranyl nitrate and 1.0 M Nli4OH
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(g) Mixture of UO; and (h) UsOg heated to 600 °C (1) UsOg heated to 750 °C
heated to 400 °C

Figure 5-3: Comparison of secondary electron images of uranium oxides derived from
precipitation with ammonium hydroxide (all same magnification)

93



(a) Mixture of UO4-2H,0 and  (b) Mixture of UO4:2H,0 and  (c) Mixture of UO4-2H,0 and
U0O5-0.8H,0 from the Rabbit U30g from the Crow Butte 2UO3-NH3-3H,0 from the
Lake facility in Saskatchewan, facility in Dawes County, Uranium Resource Inc. facility
Canada. in Duval County, Texas.

(d) Mixture of UO4-2H,0 and (f) Mixture of UO4-2H,0,
UQ4-4H,0 from the Irigaray UO4+4H,0, and UO3-2H,0
facility in Johnson County, from the El Mesquite facility
Wyoming. in Duval County, Texas.

Exemplars created from the precipitate of 1.0 M uranyl nitrate and 30 % hydrogen peroxide

"rr-.__‘_ o ’_I-'. i' ,‘x A‘ 4

(h) UO4-2H,0 heated to 150°C

() UO4-2H,0 heated to 85 °C

Figure 5-4: Comparison of secondary electron images of uranium oxides derived from
precipitation with hydrogen peroxide (all same magnification).
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(a) Uranium ore concentrate  (b) Uranium ore concentrate  (c) Uranium ore concentrate

from the South Alligator from the Anaconda facility in ~ from the Rum Jungle facility
facility in N. Territory, Grants, New Mexico. in N. Territory, Australia.
Australia.

(d) Uranium ore concentrate  (e) Uranium ore concentrate  (f) Uranium ore concentrate

from the Compagnie des from the Gunnar facility in from the Dyno facility in
Mines d’Uranium de Saskatchewan, Canada. Bancroft, Canada
Franceville in Mounan,

Gabon.

(g) Prepitate drid at85°C (h) Precipitate dried at 150 °C

(i) Precitat drid atO °C

Figure 5-5: Comparison of secondary electron images of uranium oxides derived from
precipitation with magnesia (all same magnification).

95




(a) Uranium ore concentrate  (b) Uranium ore concentrate
from the Ranstad facility in from the El Dorado

Sweden. Beaverlodge facility in
Saskatchewan, Canada.

(c) Uranium ore concentrate  (d) Uranium ore concentrate
from the facility in Falls City,  from the Société des Mines
Texas de I'Air facility in Niger.

Exemplars created from the precipitate of 1.0 M uranyl
nitrate and 1.0 M sodium hydroxide

(g) Prepitate dried at 40 °C (h) Preipitate did a 600 °C
Figure 5-6: Comparison of secondary electron images of
uranium oxides derived from precipitation with sodium
hydroxide (all same magnification)
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(f) Precipitate dried at 85 °C

(g) Precipitate dried a

Figure 5-7: Comparison of secondary electron images of
uranium oxides derived from precipitation with ammonium
carbonate (all same magnification)

5.3.2 Quantitative image analysis using texture requires additional efforts

This section examines the application of quantitative image analysis techniques
in an attempt to strengthen the utility of morphology as a forensics tool. Section 5.3.1
presented compelling qualitative evidence in the similarity of morphology for uranium
oxides and precipitates with common process histories. Section 3.5 examined texture as
a quantitative tool for image analysis and determined the optimum magnification,
texture analysis parameters, and characterized the variation in texture observed within

a given sample. These results were used to perform image analysis on the textures
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displayed in the image sets previously presented. The objective of this study was to
evaluate the application without further investigation or refinement of image analysis
algorithms, which is beyond the scope of this radiochemistry dissertation. Note that the
system associated with precipitation using ammonium carbonate was excluded from
this study given the obvious morphology and lack of textural qualities displayed by these
samples.

The application of texture analysis to three images of each of the precipitates (85
°C samples) revealed good distinction and separation (Figure 5-8). This texture analysis
was performed using the pattern spectra function in MAmMA with the default settings.
The pattern spectra algorithm is conceptually similar to the granulometric curve
presentation commonly used in geosciences—a mathematical sieve is applied to the
light and dark image content, measuring what remains, changing the sieve size, and
continuing onward. Section 3.5 examined the repeatability of pattern spectra for 10
samples of the same powder and observed a mean value of the spread of spectra across
the full range of 0.4 with a variance of 0.05. Application of these values to Figure 5-8
indicates that adequate separation exists to distinguish quantitatively the powders using
pattern spectra.

Encouraged by this observation, image analysis of textures was applied to the
exemplars and real-world samples presented in Figures 5-3 to 5-7. The texture values
for each of the images in these figures were determined using MAMA for pattern
spectra, as well as the three other texture metrics judged most promising techniques

based on sensitivity studies. These metrics include the features described by Connors
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[78] for cluster prominence, inertia, and inverse difference based on an implementation

of the gray-level co-occurrence matrix described by Haralick [77].

I
—s— Peroxide

""" === Ammonia |

Pattern Spectra, arbitrary units

Dark Content Light Content

Structural Element Size, pixels

Figure 5-8: Pattern spectra analysis of uranium precipitants heated to 85 °C

The spectra for each of these four texture metrics were determined and the
results analyzed using principal components analysis. Principal component analysis is a
multivariate technique commonly applied to data exploration and pattern recognition
[158]. Principal components analysis transforms the multivariate data set of texture
values into a derived coordinate system representing the directions of the first and
second highest variance for the data—these are the first and second principal
component. The scores plot resulting from the analysis in this study (Figure 5-9)

indicates that the combination of these texture metrics resulted in poor clustering,
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meaning that the differences in textures were insufficient to make quantitatively

reliable determinations.
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Figure 5-9: Principal component analysis scores plot of texture values for laboratory-
derived exemplars and real-world samples presented in Figures 5-3 to 5-6.

Overall, these two studies indicate that image analysis using texture offers
promise as a quantitative forensics tool. Specifically, textural analysis demonstrated
distinct groupings for triplicate images of each exemplar. However, application of this
method to a broader sample set was unsuccessful and indicates additional efforts are
necessary for this technique to succeed. Fundamentally, if a qualitative visual
comparison is successful as shown in this study, technological improvements should
enable eventual quantitative comparisons.

5.3.3 Morphological signatures driven by a psuedomorphic behavior in uranium

A key observation from Section 5.3.1 was that morphological features are

preserved when uranium precipitates are heated and transition to oxides. The
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significance of this observation is that morphology can provide a forensics tool to
elucidate the process history for otherwise chemically identically uranium oxides (Figure
5-10). Given the high potential utility of this tool, this section reviews the literature in
order to establish a fundamental understanding of the phenomenon and characterize its
reliability as a signature.

Cordfunke [159] first noted a phase transition that preserved morphology—
termed pseudomorphism in the geosciences community [160]—in uranium. The
pseudomorphic decomposition of uranyl peroxide to amorphous uranium trioxide
preserving the needle-like morphology at temperatures up to 500 °C was observed.
Similarly, Doi [128] found that the morphology of ammonia precipitates of uranyl nitrate
persisted at temperatures below 600 °C and further noted that the morphology of
subsequent uranium dioxide was highly driven by the initial precipitate, which in turn
appeared to be a function of the concentration of uranium nitrate. This study
reproduced the behaviors observed by both Cordfunke and Doi. Pseudomorphs have
also been observed in uranium ores [161]. Reetz and Haase [162] generalized an
observation of pseudomorphic decompositions in the preparation of oxide powders
based on the morphology of the initial precipitate in thorium, yttrium, and beryllium

oxide systems.
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Figure 5-10: Demonstration of the utility of pseudomorphic transitions in the
comparison of uranium oxides produced at 600 °C resulting from precipitation with
ammonium carbonate (top), ammonia (middle), and hydrogen peroxide (bottom)
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However, none of these authors proposed a mechanism for the observed
pseudomorphic transitions. In geochemistry, pseudomorphism is frequently explained
by substitution processes or simultaneous dissolution and precipitation reactions [163]
[164][165]. Neither of these mechanisms provides satisfactory explanations for the
solid-gas environments associated with these thermal oxidation transitions.

To explore pseudomorphic behavior in uranium oxide powder systems, this
study examined the persistence of the rhombohedral grain morphology of ammonium
uranyl carbonate (AUC) exposed to repeated cycles under oxidizing and reducing
atmospheres. The distinctive nature of the AUC grains makes it an excellent choice to
probe this phenomenon. AUC also represents a specific compound and associated
crystal structure, as compared to some of the mixed species produced through the
other precipitation processes (e.g., ammonium uranates).

AUC powder was placed in a furnace boat and exposed to either room air or 4 %
hydrogen in argon for 12 hour cycles at 600 °C in a tube furnace. An aliquot of the
powder was removed and analyzed after each cycle. SEM analysis indicated that the
rhombohedral morphology generally persisted through all 6 cycles (Figure 5-11) with
two exceptions. First, the crystal sizes appeared to shrink from the precipitate to the
first UsOg phase (Cycle 0). Second, porosity and fragility (e.g., crystals that appear
fractured or broken) increased with each cycle. Note that the experiment terminated at
Cycle 6 due to insufficient remaining material rather than loss of original morphology.
Powder XRD analysis (Figure 5-12) revealed a consistent return to the UsOg structure

upon oxidizing cycles and formation of the hyperstochiometric UO,.4 structure upon
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reducing cycles. Values of x ranged from 0.12 to 0.33 (U307) and increased with each
cycle.

The persistence of the rhombohedral morphology through these cycles is quite
remarkable and difficult to rationalize given the crystal properties of the associated
phases (Table 5-2). The transition from AUC to U3Og represents a threefold increase in
density, a change in symmetry, and associated changes in lattice parameters. The
shrinkage in crystal size accounts for the density differences, but it is unclear how the

changes to the symmetry and lattice parameters were accommodated.

104



SOT

Ammonium uranyl carbonate Cycle 0: U30g Cycle 1: UOj.y Cycle 2: U30g
precipitate dried at 85 °C

Cycle 3: U0, Cycle 4: UsOg
Figure 5-11: Secondary electron images of ammonium uranyl carbonate and resulting uranium oxides demonstrating
persistence in morphology. Beginning with Cycle 0, material was heated for 12 hours at 600 °C in alternating conditions of
air or 4 percent hydrogen in argon. Phase information determined by x-ray diffraction is presented for each cycle. Scale
bar is 10 um for all images.
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Figure 5-12: Powder x-ray diffraction patterns for morphology persistence study under
reducing (4 % hydrogen in argon) conditions (top) and air (bottom).
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Likewise, the transition from UsOg to UO, ., represents a 23 % change in density, a
change in symmetry, and associated changes in lattice parameters.

Table 5-2: Crystal properties for species relevant to persistence study

Phase Space Symmetry Lattice Density, Ref.
Group Parameters, A g/cm3
AUC C2/c Monoclinic a=10.68 2.7 [166]
(NH4)4(UO2)(COs)3 b=9.38
c=12.85
uo, Fm3m fcc a=5.47 10.95 [21]
U409 143d bcc a=5411 10.299 [21]
B-Us05 tetragonal a=5.383 10.60 [21]
¢ =5.497
a-U30g C2mm  orthorhombic a=6.716 8.395 [21]
b =11.960
c=4.147

The study of the transition mechanisms between species in the uranium-oxygen
system s an area of active debate and several authors have recently published
investigations putting forth theories on the topic. Garrido [167] examined the oxidation
of UO, to U305 using neutron diffraction and found that all of the uranium atoms and 70
% of the oxygen atoms were unaffected by the phase change. Garrido concluded that
oxygen clusters transfer within a postulated cuboctahedral arrangement.

More recently Desgranges [168][169][170] performed research, including similar
neutron scattering experiments on the in situ oxidation of UO, to U30g, and concluded
that the transition occurs in three stages: (1) formation of oxygen cuboctahedra, (2)
development of a gradient and rearrangement of the cuboctahedra, and (3) yield of the
“topological frustration” imposed by the cuboctahedra permitting the ordered stacking

in UsOg . One could postulate the reversibility of these stages and conclude that slight
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shifts of the oxygen cuboctahedra result in insignificant outward distortion of the overall
crystal responsible for the pseudomorphic transition.

These findings offer a potential explanation for the pseudomorphic behavior
observed during the oxide cycling of the persistence study; however, an explanation is
also needed for phase transitions from non-oxide species, such as the precipitates
examined in the balance of this chapter. Furthermore, this study also observed similar
pseudomorphic behavior during the thermal oxidation of uranium tetrafluoride and
uranium hydride solids (Figure 5-13). At this point, the best available explanation is that
during oxidation reactions of non-oxide uranium compound, oxygen diffuses into the
crystal structure displacing non-uranium atoms forming a sea of clusters that generally
permits the retention of the outward structure. Clearly, additional study is needed to
validate this explanation.

Overall, the persistence of the rhombohedral morphology in the AUC cycling
study indicates that pseudomorphic transitions are a robust phenomenon suitably
reliable for forensic applications. However, the mechanisms responsible for
pseudomorphic phase transitions are poorly understood and represent a topic of
intrigue for solid-state chemists requiring further detailed study beyond the scope of

this dissertation.
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(a) Uranium tetrafluoride (b) Uranium oxide produced from the
oxidation of uranium tetrafluoride
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(c) Uranium oxide produced from the (d) Uranium oxide produced from the
direct oxidation of uranium metal oxidation of uranium hydride

Figure 5-13: Examples of pseudomorphic transitions in other uranium bearing
compounds
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5.4 Conclusions and suggested areas for further study
Overall, this chapter demonstrated that morphology represents a useful signature to

distinguish the process history in uranium precipitates and resulting oxides. Key

supporting conclusions and suggested areas for future study include the following:

= Each of the commonly encountered precipitation processes for the uranyl ion
displayed a unique morphology in the laboratory-derived exemplars. Furthermore,
real-world samples produced using similar process chemistry displayed
morphologies resulting in good qualitative visual comparisons with exemplars of
comparable process history. Additional research is warranted to prepare and
compare exemplars utilizing variations in flow sheet parameters and chemistry (e.g,
sulfate instead of nitrate).

= Uranium precipitates decompose and transition to oxides in a pseudomorphic
manner. This property represents an important development in nuclear forensics
that enables the determination of process history for samples of otherwise
chemically identical uranium oxides. Confirmation of this phenomenon in real-world
samples is necessary. Subsequently, industrial samples of uranium oxides derived
using the ammonia, hydrogen peroxide, and ammonium carbonate processes should
be obtained and analyzed to validate that the pseudomorphic transitions observed
in the laboratory are reproducible in industry.

= |mage analysis using algorithms for texture shows promise as a tool to quantitatively

distinguish and classify the process origin of uranium precipitates and oxides;
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however, additional research and refinement of texture algorithms is required to
mature this technique to a level suitable for forensics.

The pseudomorphic phase transition phenomena observed in uranium species is
robust and can be relied upon for forensics applications. Further probing of the
chemical mechanism(s) that facilitate these transitions is warranted. Furthermore,
the effects of milling and other physical insults encountered in industrial product

conveyance should be examined.
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Chapter 6 Process signatures in uranium oxide nuclear fuels

This chapter examines uranium oxide nuclear fuel pellets for signatures indicative of
chemical processing history. Examination of a series of fuel pellets synthesized in the
laboratory and pellets obtained from commercial nuclear manufacturers for physical
and chemical signatures using secondary electron microscopy (SEM) revealed qualitative
visual differences in the grain structures. However, measurement of simple
morphological descriptors using image analysis methods failed to identify sufficient
guantitative differences to elucidate effects of the type of precursor oxide or binder
type. Additional investigation of the commercial fuel pellets revealed several features
indicative of their known process flowsheets, as well as several currently unexplained
features that require addition efforts to evaluate their forensic value. Overall, the study
identified a few signatures in fuel pellets and several potential signatures that require
investigation with the aid of additional process specific information.
6.1 Identification of potential signature generating aspects of fuel manufacturing

Historically, uranium dioxide has been the prevalent fuel for nuclear reactors
worldwide. Consequently, there is considerable information in the literature, including
textbooks, regarding the commonly utilized fuel manufacturing processes [23] [171]. An
understanding of the various manufacturing processes is necessary to identify sources
of potential manufacturing signatures. This section provides a summary of the
manufacturing process and identifies process steps that may create forensic signatures.
The fuel manufacturing process begins with the arrival of uranium feedstock at

the manufacturing facility as either: (1) a cylinder of uranium hexafluoride from an

112



enrichment facility, (2) uranyl nitrate solution resulting from the nitric acid dissolution of
either scrap uranium oxides or nuclear fuel as part of a reprocessing operation, or (3)
prepared uranium dioxide (UO,) from another facility. For convenience, it is common to
segregate the uranium conversion step into dry processes and wet processes (Chapter
2). In a dry process, uranium hexafluoride is sublimed to a gas, heated, and reacted in
an atmosphere containing water vapor and hydrogen gas. The dry process results in the
direct production of ceramic grade UO,. In a wet process, uranium is precipitated from
an aqueous solution, rinsed, thermally decomposed, and then reduced in a hydrogen
atmosphere to form UO,.

Once UO,is produced, powders are blended to achieve the desired isotopic
enrichment and prepared to attain the density of the final pellet including the following
possible steps:

=  Milling

=  Pre-compaction and granulation to improve the flow and packing
properties of the powder

=  Mixing with additives (e.g., sintering aids, binders, and burnable poisons),
and blending with other UO, powders or recovered triuranium octoxide
(U30s)

The blended powder is then compacted—forming what is commonly referred to
as a green pellet—and sintered in a reducing atmosphere at temperatures in the range
of 1600-1800 °C. Sintered pellets are typically ground to precise dimensions, rinsed,

and dried prior to assembly into a fuel rod, which will represent the end point of this
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study. Pajo [172] and Kristo [173] previously demonstrated that basic geometric
measurements and macroscopic features can be indicative of the manufacturer. This
study will expand beyond these signatures to examine morphology and microscopic
features.

In addition to the processing method used to generate UO,, there are several
other steps in the fuel manufacturing process that warrant study for potential
signatures (Figure 6-1). In particular, pellet characteristics are typically improved using
additives, which can be grouped into three categories: (1) inorganic sinter aids, (2)
organic binders, pore formers and lubricants, and (3) burnable lanthanide poisons. The
type of additive and its impact on the resulting pellet properties warrants study. The
type of binders and pore formers may have different decomposition behaviors resulting
in different pores with different geometric characteristics. Similarly, other powder
preparation techniques such as milling and granulation may result in signatures in the

final sintered pellet.
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Figure 6-1: Summary flow sheet of common processes for the manufacture of uranium
dioxide nuclear fuel. Bubbles indicate parameters relevant to potential process
signatures.

6.2 Evidence of morphological signatures in the literature
As introduced in Chapter 5, several researchers identified links between the final

sinterered fuel pellet and the properties of the precursor oxide powder. Additional

115




literature supports this link and suggests the potential value of morphological signatures
in fuel pellets. For example, Chorokov [153] found differences in the surface roughness
of fuel pellets to be specific to the production plant and pellet type. Lee and Yang [134]
compared uranium dioxide derived from ammonia and ammonium carbonate by
mercury porosimetry and found differences in the pore size distribution between the
powders, which translated into differences in the pore structure and density of the final
pellet. Similarly, Choi [132] examined the influence of conditions used to derive UO,
using the ammonium carbonate precipitation process and observed differences in the
open pore volumes of the sintered pellets. Glodeanu [174] reached similar conclusions
on the need for stringent powder characteristics to ensure appropriate quality for pellet
microstructure.

In general, the above authors obtained measurements on the pellets that should
directly correlate with the morphology of UO, grains. For example, open pore volume
and grain size directly contribute to morphology of the pellet grain structure. Published
research utilizing direct measurements of grain morphology in sintered uranium bodies
is limited. GOnd0z [175] studied the microstructure of uranium—gadolinium oxide fuels
using the measurement of fractal dimensions to characterize the effects on pellet grain
structure. Arnould [65] applied image analysis to study the densification of cerium

oxide compacts, which is commonly utilized as a surrogate for the actinides.
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6.3 Methods
6.3.1 Process analysis of commercially produced fuel pellets

Larwence Livermore National Laboratory (LLNL) previously obtained samples of
nuclear fuel pellets from three commerical manufacturers for nuclear forensics
research. The pellets were accompanied with limited information related to their
manufacturing process (e.g., specifications, analytical data, etc) and were examined for
foresenic signatures in a preliminary study [173]. Manufacturing process information
from each of the vendors was compiled using the strategy outlined in Figure 6-1 as a
guide (Table 6-1). The names of the vendors are protected in support of an agreement
to access their proprietary information and the process conditions are condensed to

reflect an overall summary of the various pellet designs offered by each vendor.
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Table 6-1: Comparison by manufacturer of selected process parameters for commercial nuclear fuel pellets

Process Parameter

A

Manufacturer
B

C

UO; Production
Method

Wet conversion using
ammonium hydroxide

Direct Conversion Fluidized Bed

Integrated dry process

Blend
Additives

Ethylene stearamide (binder)

Ethylene stearamide (binder)
Ammonium oxalate

(pore former)
Azodicarboamide (pore former)

Silicon dioxide (sintering aid)
Aluminum stearate (binder)

Azobisformamide (pore
former)

Limits on recycled

< Not ified <
Us0s add-back, wt % 8 ot specitie 30
Powder Physical - Pre-pressed to unspecified Hammer milled, roll
, Unspecified pressure and granulated to 12 compacted, and granulated to
Preparation o -
mesh unspecified conditions
. 3
Green density, g/cm 6.45 ~6 57-6.6

Sintering
Conditions

4 hours at 1735 °C
7.3 hours total

2.3 hours at 1750 °C
8 hours total time

4 hours at 1800 °C
21 hours total time




6.3.2 Synthesis of miniaturized fuel pellets in the laboratory
This study synthesized miniature uranium oxide fuel pellets in the laboratory to
examine the effects of the precursor oxide production route and binder type on grain
morphology. Pellets were produced using precursor UO, powders derived through
precipitations from 1.0 M uranyl nitrate stock solutions using the following:
= 1.0 M ammonium hydroxide to pH 8-9
= 30 % hydrogen peroxide
= Saturated ammonium carbonate to pH 89
The ammonium carbonate and hydrogen peroxide precipitations were conducted
in centrifuge cones, washed with equal volumes of deionized water, centrifuged, and
decanted. The ammonium carbonate precipitation was conducted in a filtered funnel
and similarly washed. All precipitates were air dried overnight in an oven at 85 °C, hand
ground with mortar and pestle, and oxidized overnight to UsOg in a box furnace at 750
°C. Each sample of Us0g was ground again in mortar and pestle before reducing in
batches for 6-12 hours in a tube furnace at 600 °C with an atmosphere of 5 % percent
hydrogen in argon. All of the batches for a given precipitate were blended and the
phase of the resulting mixture confirmed using powder x-ray diffraction. In addition,
experiments utilized a fourth precursor UO, powder based on a commercially produced
material by Alfa Aesar (#12108, Lot K22M140), henceforth referred to as the “store”
powder.
Previous investigations on the morphology of these precursor powders (Chapter

5) suggested that each type of UO, powder would result in unique morphology.
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Scanning electron microscopy confirmed that each of these precursor powders
exhibited a uniqgue morphology (Figure 6-2). Based on experience gained in Chapter 5,

the store powder exhibited morphology consistent with uranium oxides produce by the

thermal denitration of uranyl nitrate.

Figure 6-2: Secondary electron images of the UO; precursor powders : (a) precipitation
with ammonium hydroxide, (b) store purchased, (c) precipitation with hydrogen
peroxide, and (d) precipitation with ammonium carbonate (note different scale than
other samples).
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As discussed in Section 6.2, the literature suggested that differences in
morphology would manifest as density changes in the resulting sintered pellet.
Commercial nuclear fuel manufacturers typically produce pellets with a final sintered
density of better than 90 % of the theoretical density and in many cases 95-97 % of
theoretical, depending on the reactor customer. The theoretical density of UO,is 10.96
g/cm3 [23][21]. Scoping experiments determined the conditions necessary to produce
pellets with consistent, high densities for each binder and the four types of precursor
powder. The binders investigated were ethylene stearamide, aluminum stearate, and
zinc stearate.

Allen and McConnell [176] performed these scoping studies as part of the
Radiochemistry Fuel Cycle Summer School. They examined the use of 0.25-1.25 weight
percent ethylene stearamide and aluminum stearate with store and ammonium
carbonate-derived UO,. They identified optimal binder contents in the range of 0.3—0.8
weight percent for each combination of binder and powder. This binder content
resulted in pellets with peak densities greater than 90 % of theoretical. Subsequently,
all pellets used a nominal binder content of about 0.5 weight %.

The synthesis of the miniaturized fuel pellets used the following procedure. The
desired additives and UO, powder were mixed in a vortex mixer for approximately 30
seconds. About 0.5 g of the homogenized powder mixture was weighed, poured into a
6.35 mm (1/4 inch) die, and pressed to 500 MPa with the pressure held approximately
constant for 1 minute. These unsintered pellets, otherwise known as “green pellets”,

were extracted from the die set, weighed, height measured, and placed in a high
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temperature alumina furnace boat lined with molybdenum metal plate to prevent
interaction with the boat. The use of molybdenum boats is also a common industry
practice.

The pellets were sintered in a flowing mixture of 5 % hydrogen in argon using a
controlled atmosphere tube furnace manufactured by MTI Corporation in Richmond,
California. All pellets were sintered for 7 hours at 1700° C according to a prescribed
time at temperature profile (Figure 6-3). The profile included 90 minutes at 500 °C for
binder decomposition. The heating rates used in the profile were dictated by limitations
on the furnace components. The consistency of sintering conditions between furnace

runs was monitored using TempTabs (www.temptab.com), which are ceramic materials

engineered to contract at consistent rates when exposed to elevated temperature.

Sintering conditions, as indicated by TempTab size, varied less than 1 percent.
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Figure 6-3: Time at temperature profile for sintering miniaturized fuel pellets
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6.3.3 SEM imaging and image analysis

Commercial pellets and pellets synthesized in the laboratory were analyzed using
an FEl Inspect F SEM instrument. A spring-loaded, top-justified sample mount using
tantalum washers as spacers was used to hold the uncoated and unpolished pellets for
imaging. Backscatter electron imaging provided the best contrast for grain boundary
analysis and was performed with an accelerating voltage of 15 kV and a working
distance of 11.5 mm. In select cases, energy dispersive x-ray spectroscopy was
performed using an EDAX Apollo silicon drift detector with the associated Genesis
software package.

Image analysis was performed on the SEM imagery of pellet grain structures
consistent with the development discussed in Chapter 3. Images of commercial pellets
were manually segmented and the morphological descriptors measured using the
Imagel software [66]. Images of laboratory-derived pellets were fully processed using
the Mama software [67]. Most of the pellets were imaged at a magnification of 2500 X
with 5-10 images obtained from spatially diverse locations on the pellet surface.
Qualitative scoping studies did not indicate any systematic spatial variations. The
number of images obtained and analyzed was driven by the need to obtain total counts
of about 500 or more grains.

6.4 Results and discussion
Commercially produced and laboratory-derived nuclear fuel pellets (Figure 6-4)
were examined for signatures of interest to nuclear forensics. The grain morphology

was evaluated in both sets of pellets to identify possible trends with process. The
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commercial pellets were also broadly examined for other microscopic features that

might be indicative of the process history or environment.

&

2

CENTIMETERS

Figure 6-4: Examples of three commercial nuclear fuel pellets (top left) and two
miniature pellets synthesized in the laboratory (bottom right).

6.4.1 Grain morphology is visually distinct, but quantitatively non-specific

This study produced a set of 36 laboratory-derived miniature nuclear fuel pellets
to examine the effects of the binder type and the chemical production method used for
precursor UO, powder on sintered grain morphology. The pellet set included 4
precursor oxide types and 3 binders (Section 6.3.2). Triplicate pellets were produced
from a common powder blend representing each combination of oxide and binder;

however, each of the triplicate pellets was sintered separately. The blends of powder
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and binder were selected to produce pellets of similar densities and quality comparable
to industry (greater than 90 % of theoretical density).

The observed final pellet densities were more diverse and lower than desired
(Figure 6-5). A definitive explanation for these results is not readily apparent, though
likely causes include insufficient sintering or lack of homogeneity in the powder blends
prior to pressing. Note that several of the sintered pellets split, particularly those
created using zinc stearate as a binder, rendering precise density measurements difficult
using manual measurements. Despite some pellets with densities approximately 6 %
lower than desired, the overall quality and porosity of pellet surfaces remained

sufficient to support examination of the grain morphology.
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Figure 6-5: Density of laboratory-derived fuel pellets as a function of precursor oxide
type and binder.

Overall, the laboratory-derived pellets exhibited some visually evident

differences in porosity and grain size as a function of their process origin (Figure 6-6).
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An obvious feature of interest is the vivid variation in shading among grains on several

of the pellets (e.g., ammonium carbonate with ethylene stearamide). Such variation in

signal is unexpected for a backscattered electron image of a homogenous material.

Precursor UO, Powder Type

Binder Type

Ethylene Stearamide Aluminum Stearate Zinc Stearate

Ammonium Store Ammonium
Carbonate hvdroxide

Hydrogen peroxide

Figure 6-6: Backscattered electron images representative of each of the laboratory-
derived fuel pellets. Scale bar is 30 um for all images.
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Energy-dispersive x-ray spectrometry of contrasting grains confirmed no detectable
difference in composition. Several pellets were then polished to investigate the
potential for differences in grain heights to contribute to the phenomenon. The
polishing significantly reduced the phenomenon, suggesting that it may have originated
from conductivity variations in each grain. The phenomenon was also observed with
some of the commercial pellets. As discussed in Section 6.4.2, this phenomenon may
also be an artifact of minor variations in grain oxygen to uranium ratios resulting in
subtle conductivity differences.

Quantitative measurements of morphological descriptors for grains were taken
to support an objective comparison between pellets. Further, reliable qualitative
comparison is also difficult when using the single images displayed in Figure 6-6.
Consistent with the outcomes from Chapter 3, measurements and associated
descriptive statistics were taken for grain area, maximum Feret diameter, and aspect
ratio (Table 6-2 to Table 6-4).

The data for maximum Feret diameter (Figure 6-7) fail to indicate trends useful
for grain morphology as a signature. In particular, the distributions are similar in shape
and little consistency is exhibited between triplicate pellets. Similarly, the data for
mean grain area and aspect ratio (Figure 6-8) fail to reveal obvious trends with respect
to either precursor powder type or binder. These results are unexpected for a number
of reasons. First, while qualitative, the grain structures displayed in Figure 6-6
demonstrate some obvious variations. Appropriate quantitative methods should be

able to observe this variation. Second, addition of aluminum stearate as binder is
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commonly thought to result in increased grain sizes, which was not observed in this
study.

Overall, the measurement of simple morphological descriptors performed on the
grain structures was insufficient to differentiate reliably between the type of precursor
UO, powder and binder of laboratory-derived fuel pellets. Given the slight qualitative
visual differences, it is possible that application of more sophisticated morphological
descriptors (e.g., fractal analysis) or techniques not yet developed will prove better at
distinguishing the pellets. It is also possible that grain morphology is not as sensitive to
precursor material and binder type as indicated in the literature for pore geometries,

densities, and other pellet properties.
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Figure 6-8: Variation of median grain area (top) and aspect ratio (bottom) as a
function of binder and precursor UO, powder. Error bars represent the standard
deviation (n=3).

130




TET

Table 6-2: Measurements of morphological descriptors in pellets using ethylene stearate as a binder
Ammonia Store Ammonium Carbonate Hydrogen Peroxide

Count 317 965 743 558 706 915 648 632 679 530 525 600
D10 50.8 6.0 26.4 12.1 6.6 2.7 10.8 174 6.0 26.1 23.9 7.2
D50 156.2 17.8 90.6 53.8 21.0 164 38.6 62.0 20.2 93.8 101.0 36.1
NE D90 4154 46.7 256.8 | 165.4 61.0 545 1356 185.6 65.7 268.5 344.0 151.3
3 | Span 2.3 2.3 2.5 2.8 2.6 3.2 3.2 2.7 3.0 2.6 3.2 4.0
g Mean 202.8 22.9 120.2 77.4 304 24.1 61.1 86.3 29.1 1239 155.6 64.0
<C | Variance | 25591.0 366.3 11402.5|5535.4 1591.4 648.6 |4384.4 6356.7 807.3 |12061.2 28819.5 5813.7
Kurtosis 4.2 5.6 5.8 6.9 1413 20.6 8.7 57 18.1 6.4 6.9 9.4
Skewness 1.8 2.1 2.1 2.2 9.2 3.1 2.5 2.1 3.1 2.1 2.4 2.6
D10 10.0 3.6 7.1 5.3 3.6 3.6 4.5 5.9 3.6 7.1 6.9 3.8
c D50 17.4 5.9 13.0 10.3 6.3 6.3 8.5 11.3 6.3 13.2 13.8 8.3
< D90 27.6 9.7 21.7 17.8 109 10.9 15.8 189 114 21.9 25.1 17.3
§ Span 1.0 1.0 1.1 1.2 1.2 1.2 1.3 1.2 1.3 1.1 1.3 1.6
L | Mean 18.0 6.2 13.8 11.1 7.0 7.0 9.6 11.8 6.9 14.0 15.2 9.6
s | Variance 46.5 5.8 359 26.9 104 104 23.0 28.6 9.7 36.9 62.4 31.2
= Kurtosis 0.2 1.2 1.6 0.9 154 154 1.5 2.5 2.5 1.1 1.3 1.6
Skewness 0.6 0.9 1.0 0.8 2.4 2.4 1.2 1.1 1.2 0.8 1.1 1.2
D10 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
D50 13 1.3 13 1.3 13 13 1.3 13 13 13 13 13
% D90 1.6 1.6 1.6 1.7 1.6 1.7 1.6 1.6 1.6 1.6 1.6 1.6
f Span 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
§_ Mean 1.3 1.3 13 14 13 14 1.3 14 13 13 13 13
& | Variance 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1
Kurtosis 9.2 8.8 42.5 72.3 44 11.0 17.5 5.8 4.2 6.6 8.0 7.6
Skewness 2.3 2.2 4.4 6.4 1.6 2.5 2.9 2.0 1.6 1.9 2.1 2.0
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Table 6-3: Measurements of morphological descriptors in pellets using aluminum stearate as a binder

Ammonia Store Ammonium Carbonate Hydrogen Peroxide
Count 574 845 640 585 548 557 654 571 518 580 539 522
D10 22.0 6.8 6.2 10.7 10.3 5.1 16.7 6.4 8.7 20.2 14.6 15.5
D50 72.5 20.6 68.7 56.2 56.6 17.7 76.0 31.2 35.4 72.5 71.3 61.0
~ D90 213.4 51.1 209.0 164.9 182.7 54.1 220.4 100.1 109.6 190.1 218.3 203.4
g. Span 26 21 3.0 2.7 3.0 2.8 2.7 3.0 2.8 2.3 2.9 3.1
g Mean 98.5 25.6 97.0 77.6 81.6 25.3 97.5 45.6 50.4 95.0 99.6 915
< |Variance 7927.2 386.5 9819.00 6278.1 6786.5 539.00 6779.7 24847 23989 7166.8 8085.7 9689.8
Kurtosis 6.2 4.7 5.6 104 7.2 5.3 3.6 12.3 10.0 11.5 3.8 8.9
Skewness 2.1 1.8 2.0 2.6 2.3 2.0 1.6 2.9 2.5 2.5 1.8 2.6
D10 6.3 3.6 4.1 4.8 4.6 3.2 5.9 3.8 4.2 6.5 5.5 5.4
D50 116 6.1 11.7 10.5 10.6 6.0 12.1 7.7 8.4 11.9 11.9 11.0
g. D90 199 9.7 20.0 18.4 18.5 10.3 20.1 13.8 14.0 19.1 20.6 19.9
@r Span 1.2 1.0 1.4 13 13 1.2 1.2 13 1.2 1.1 1.3 13
'-E Mean 124 6.5 12.2 11.2 11.3 6.4 12.5 8.4 9.0 12.3 12.7 11.9
§ Variance 285 6.0 39.4 29.9 30.4 8.1 28.8 18.2 16.7 26.6 335 36.1
Kurtosis 1.1 0.8 0.6 1.8 0.9 0.8 0.0 34 1.6 2.0 0.6 15
Skewness 09 0.7 0.7 1.0 0.8 0.9 0.5 1.4 1.0 0.9 0.7 1.1
D10 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
D50 13 13 1.3 13 1.3 1.3 1.3 1.3 1.3 1.3 1.3 13
-8 D90 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.6 1.8 1.7 1.7 1.7
';‘: Span 04 04 0.5 0.4 0.4 0.4 0.5 0.4 0.5 0.4 0.4 0.4
§_ Mean 13 13 1.6 1.4 1.4 1.4 14 1.3 1.4 1.3 14 1.4
< Variance 0.1 0.0 1.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1
Kurtosis 2800 6.6 33.7 39.3 8.5 4.7 4.2 4.8 3.7 4.6 217.1 8.5
Skewness 3.5 1.9 5.6 4.7 2.2 1.6 1.7 1.7 1.6 1.8 12.1 1.9
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Table 6-4: Measurements of morphological descriptors in pellets using zinc stearate as a binder

Ammonia Store Ammonium Carbonate Hydrogen Peroxide
Count 552 409 583 374 501 525 573 525
D10 10.7 21.6 9.9 10.9 19.9 6.9 13.0 12.5
D50 61.9 76.9 324 69.9 104.0 26.9 68.4 57.3
D90 152.4 204.8 131.3 211.7 276.9 94.0 204.5 195.4
i Span 2.3 2.4 3.7 2.9 2.5 3.2 2.8 3.2
< Mean 76.5 103.0 55.3 93.9 128.1 38.5 93.7 87.1
Variance 4311.8 8673.9 4577.3 7727.9 12276.5 1364.4 8845.4 8219.3
Kurtosis 8.4 19.1 225 7.1 5.9 5.0 13.0 10.1
Skewness 2.1 3.1 3.7 2.0 2.0 2.0 2.7 2.6
D10 3.8 4.0 4.5 5.2 3.8 23 31 3.6
D50 9.2 8.1 8.1 12.0 9.2 4.7 7.2 9.2
= D90 15.7 13.2 16.2 20.2 15.5 8.7 12.9 17.6
QL Span 1.3 11 14 1.2 1.3 14 14 15
3 Mean 9.5 8.1 9.3 12.4 9.4 5.1 7.6 10.1
= Variance 22.9 54.8 24.4 33.5 19.8 6.4 26.9 32.7
Kurtosis 0.9 136.9 4.2 0.2 0.3 0.8 90.7 2.3
Skewness 0.6 -9.5 1.6 0.5 0.4 0.9 -5.8 1.2
D10 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
D50 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
2 D90 1.8 1.7 1.7 1.8 1.8 1.6 1.7 1.8
% Span 0.5 0.5 0.4 0.5 0.5 0.4 0.4 0.5
§_ Mean 1.5 14 1.4 1.5 14 1.3 1.4 14
< Variance 0.9 0.2 0.1 0.5 0.3 0.0 0.1 0.1
Kurtosis 36.2 63.4 34.7 83.6 82.7 3.4 21.0 16.3
Skewness 5.6 6.5 4.0 7.8 7.7 1.5 3.4 3.0




Examination of 24 commercially produced fuel pellets indicated obvious qualitative
differences (Figure 6-9). However, manufacturers typically produce multiple types of
pellets using different specifications, resulting in comparisons that may be inappropriate
to generalize. The qualitative visual differences for two pellet types from each
manufacturer displayed in Figure 6-9 demonstrate this issue.

This study examined 7, 5, and 8 different pellet types from Manufacturers A, B,
and C, respectively. Recognizing the complexity introduced from multiple pellet types,
the approach for assessing the quantitative morphological measurements considered all

pellet types and then examined process information to develop signatures based on a

link with a particular aspect of the process, rather than by manufacturer.

Figure 6-9: Examples of grain morphologies in two fuel pellets types from
Manufacturer A (left), B (middle), and C (right). Backscattered electron images all
with 40 um scale bar.
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The grain area and aspect ratio was measured for all pellets (Figure 6-10). The
data on grain area indicate some groupings by manufacturer, though Manufacturers B
and C appear to produce pellet types with two distinct grain size distributions. A limited
study of two pellets from a given batch from each of these manufacturers indicates that
there is some variation of grain area within a given batch, but the magnitude of this
variation is insufficient to explain the wider differences observed. The most likely
source of this variation is the use of different precursor powders or blends of powders.
Unfortunately, insufficient information on the powder blends used in each pellet batch
is available to ascertain the validity of this premise.

The morphological measurements also indicate that a very narrow range of
aspect ratios is present in the grains of commercial pellets (Figure 6-10 bottom). The
typical median value observed for the commercial pellets was similar to the laboratory-
derived pellets, suggesting that this morphological descriptor is inherent to UO, grains
and insensitive to differences associated with processing. As a result, aspect ratio does

not appear to be a candidate process signature.
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Figure 6-10: Morphological descriptor measurements for commercial pellets from
three manufacturers: distribution of grain area (top), sample of variation in grain area
within a pellet type (middle), and aspect ratio (bottom)
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6.4.2 Other pellet features of forensic interest

Systematic examination of the commercial fuel pellets identified several types of
features that may be indicative of process history (Table 6-5). These features stem from
more traditional forensic origins, yet may be indicative of aspects of the processing
history for the fuel pellets. In some cases, examination of common flow sheets (Figure
6-1) explained the features. These features were reproduced with synthetic pellets to
confirm the suspected source of the signature. In other cases, additional research is
required to ascertain a source and assess the forensic value. The remainder of this
section presents the features and discusses their possible origin.

Table 6-5: Potential features of forensic interest observed on commercial fuel pellets

Feature Likely source
Alumina particles present on the Aluminum stearate binder
pellet surface
Grain surface textures Stoichiometric variation between grains
Molybdenum particles Furnace boat material

Unexplained features of potential value

Aluminum enriched grain eruptions
Ring pores
Micrograin areas
Sand-like surface debris
Dimples and bumps

This study observed the prevalence of features containing aluminum in fuel
pellets produced by each of the three commercial manufacturers. Potential sources of
aluminum in a fuel pellet include the following:

= Binder or sintering aid, likely as aluminum stearate

= Die lubricant, likely as aluminum stearate dissolved in solvent
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= Residual from separation processes, either as part of the matrix (used
fuel) or as a process additive (salting agent)

=  Grinding compound

= Refractory materials used in furnace

Most of the pellets from Manufacturer C exhibited aluminum features on the
pellet surface varying in size from about 5-50 um (Figure 6-11 a-c). These features tend
to emerge at the triple points and grain boundaries. Compositional analysis using EDS
indicated stoichiometries consistent with alumina (Al,O3). Review of the flow sheet
information indicated that Manufacturer C uses aluminum stearate as binder, but also
utilized this compound as die lubricant. The presence of alumina on the inside of a
surface pore and an internal void exposed from pellet sectioning (Figure 6-12) suggests
an origin inherent to the matrix, consistent with binder, rather than contamination from
the processing environment resulting from a die lubricant.

A pellet was synthesized in the laboratory with aluminum stearate binder to test
this theory. The resulting pellet, created using an exaggerated quantity of aluminum
stearate binder (1.0 weight percent), produced similar alumina features, confirming the
theory (Figure 6-11 d). The increased quantity of alumina features in the laboratory-
derived pellet suggested that a possible explaination for the variation in the quantity
and size of these features was the variation in the amount of aluminum stearate
required for each specification. However, review of the specifications and batch blend
information for the three pellet types identified that similar binder contented was used

(about 0.2 weight %).
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Figure 6-11: Alumina surface features resulting from the use of aluminum stearate as
binder observed in pellets from Manufacturer C (a—c) and a laboratory-derived pellet
replicating the feature (d).

Differences were also observed in the morphology of the alumina features
(Figure 6-12). Some features were highly structured and crystalline, while others were
amorphous and diffuse. A satisfying explanation is not apparent and requires additional

specific processing details (e.g., precise time at temperature curves) for the
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Figure 6-12: Additional alumina features observed in pellets from Manufacturer C:
inside a surface pore (top), at triple points (middle), and within a mid-volume pore
exposed through pellet sectioning (bottom). Paired electron images are backscatter
(left) and secondary (right).
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given pellet, as well as additional measurements on the features. However, these
differences may be a source of further information indicative of the process
environment and warrant additional study. For example, Wriedt [177] reports at least
five polymorphs of Al,03 and eight other potential stoichiometries for aluminum oxide
compounds.

Pellets from Manufacturer A also displayed some unique features (Figure 6-13
top). Specifically, most of these pellets displayed what appeared to be large collections
of micrometer to nanometer sized surface debris. EDS indicated that the composition of
this material was consistent with the UO; of the bulk pellet. The obvious explanation is
that this debris originates from final grinding steps used for finishing. However, all of
the manufacturers grind their pellets using wet centerless grinding operations and
similar features were not observed on pellets produced by the other Manufacturers or
with the laboratory-derived pellets. A further explaination may reside in differences
associated with the subsequent rinsing process. As a result, there is insufficient detail to
provide a more conclusive explaination of the occurrence of this feature with
Manufacturer A.

Several pellets from Manufacturer A displayed irregular grain surface eruptions
enriched in aluminum (Figure 6-13 bottom). The process information received from
Manufacturer A indicates that no aluminum containing additives or environmental
lubricants were used in the production process. Further, all uranium is initially derived
from a uranium hexafluoride source—aluminum fluoride is not volatile—eliminating the

potential for carry-over of either dissolved aluminum (e.g., from aluminum cladding) or
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aluminum salting agent. As a result, the origin of this feature is unclear, but warrants

additional research given its prevalance and uniqueness to this manufacturer.

Figure 6-13: Unique features observed on pellets from Manufacturer A: sand-like
surface debris (top) and aluminum-rich grain eruptions (bottom). Paired secondary
(left) and backscattered electron images at same scale.

Unique grain surface textures represent another class of features observed on
the commercial pellets. The pellets exhibited grain surfaces that were smooth, rippled,
or stepped (Figure 6-14). He [178] and O’Neil [179] observed similar textures and used

EDS, micro-Raman, and current sensing atomic force microscopy techniques to identify
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the cause as subtle grain specific variation in the U/O ratio. From a nuclear forensics
standpoint, these surface texture features may provide insights into techniques used to

control stoichiometry during the sintering processing. Unfortunately, details are not

available on this aspect of the process for the manufacturers.

Figure 6-14: Grain surface textures found on commercial pellets: stepped (top) and
ripples (bottom). Paired backscattered (left) and secondary electron (right) images.

143



Several pellets from Manufacturers C and An exhibited bumps and dimples,
respectively (Figure 6-16). These features are specific to an individual manufacturer and
their origin is currently unexplained. EDS indicated no significant compositional
differences between the feature and other nearby grains and a review of flowsheet
information provided no obvious link to the feature. The features are reported to

facilitate further research should a need develop and are listed in Table 6-5.

HV mag O | det | HFW |spot] WD | —— 10 pm-

20.00 kW10 000 x [vCD |256 um| 50 (12.1 mm F5.0

Figure 6-15: Unexplained surface features found on commercial pellets: bumps (top)
and dimples (bottom). Paired backscattered (left) and secondary electron (right)
images.
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Pellets from Manufacturers C and A also exhibited unique micrograin areas and
ring pores, respectively (Figure 6-16). An apparent explanation for the micrograins could
be the addition of Us0g add-back into the powder blend; however, pellet batch
information indicated that several pellet types did not present the feature and

contained equivalent or greater amounts of add-back.

Figure 6-16: Other unexplained features found on commercial pellets: micrograin
areas (top) and ring pores (bottom). Paired backscattered (left) and secondary
electron (right) images for the micrograin area and separate backscattered electron
images for the ring pores.
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Further, pellets synthesized in the laboratory to test this hypothesis failed to reproduce
the phenomenon. Similarly, an obvious explanation for the presence of ring pores could
be the use of pore former; however, Manufacturer A did not indicate the use of pore
formers. In addition, ring pores were not observed in pellets from Manufacturer C,
which is known to utilize pore former. The origin of these features remains
unexplained.

The remaining observed features are indicative of the processing environment.
Numerous pellets from Manufacturer A exhibited surface particles containing
molybdenum (Figure 6-17). EDS indicated that the molybdenum particles were an oxide
form; however, the relative ratios were inconsistent with MoO; suggesting that the
particles were likely partially oxidized metal. Each of the manufacturers utilizes
molybdenum metal furnace boats, which is the most likely source of the particles. It is
unclear why only Manufacturer A’s pellets contained the molybdenum particles. Other
observed features included surface deposits consisting of carbon compounds and
various metals, such as stainless steel. Traditional forensic analysis of these materials

may reveal useful information, but is beyond the scope of this study.
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Figure 6-17: Molybdenum features observed on commercial fuel pellets. All images
backscatter electron

6.5 Conclusions and suggested areas for further study
This study examined uranium oxide nuclear fuel pellets synthesized in the
laboratory and obtained from commercial manufacturers to ascertain whether grain

morphology served as signature indicative of production processes. This study also
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compared features observed on the commercial pellets with flowsheet information to

assess other possible process signatures. Results include the following:

= Measurement of simple morphological descriptors (i.e., Feret diameter, aspect ratio,
and area) failed to provide a reliable signature to distinguish between precursor
oxide or binder type for the laboratory-derived and commercial pellets. Of these
descriptors, grain area shows the most potential for future research. As a result, this
study recommends similar experiments with improved control and quantitative
characterization of the particle sizes in powder blends for comparison with the
sintered pellet.

= Qualitative visual differences in the grain structures of the pellets suggest that
application of more advanced morphological descriptors may identify features that
correlate with process parameters. In any case, reference samples are needed to
confirm the validity of the method.

= This study observed a number of interesting features on the commercial pellets that
may eventually prove to be useful forensic signatures; however, additional process
detail and further measurements are necessary to validate these signatures. For
example, process information failed to explain areas of micrograins, circle pores, and
surface bumps. These potential signatures are likely the result of very specific
characteristics of the process and their applicability to guide broader research on
process signatures is likely limited. As a result, other researchers should consider

revised priority on continued research in this area.
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Chapter 7 Insights into oxygen isotope ratios as a process signature

This chapter examines the potential for stable oxygen isotope ratios in triuranium
octoxide (U30g) to provide a signature indicative of the geographic location of origin or
chemical process. The chemical processes that could create such a signature are
examined and experiments performed to investigate oxygen isotope ratios in real-world
samples of known origin. The performed experiments also provided fundamental
information on the previously unknown equilibrium oxygen isotope fractionation in the
U30g—air system. The equilibrium fractionation data aids in the interpretation of the
real-world sample measurements and facilitates assessment of the overall viability of
using oxygen isotope ratios in UsOg as a signature in nuclear forensics.

Overall, this study suggests that the ability to use oxygen isotope ratios as a
geolocation signature is unfounded for samples of UsOg. The oxygen isotope ratios
measured in 15 real-world samples neither correlated with the *0/°0 ratio of local
meteoric waters nor consistently supported an alternative fractionation value. Further
comparison with the air equilibrium value appropriate for the process temperature also
failed to explain the oxygen isotope ratios observed in the real-world samples. Limited
analysis of oxygen self-diffusion rates in this system highlighted the sensitivity to the
particle size and morphology of the Us0g and time at temperature profiles for the
process. Consequently, diffusion processes during the thermal treatment of the real-
world oxides likely constrained oxygen exchange such that the final value failed to

reflect the conditions of either the origin or the process.
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7.1 The premise of oxygen isotope fractionation as a geolocation signature

The premise that the oxygen isotope ratio in uranium oxides might serve as a
geolocation signature is based on the fact that oxygen atoms in uranium oxides
exchange with oxygen atoms in water from their local environment. These oxygen
exchange processes occur both in nature, as well as in aqueous nuclear chemical
processing environments. As described in Chapter 2, the oxygen isotopes in water
molecules fractionate in the natural environment based on conditions that vary
systematically around the world. These conditions are nearly constant in time and well
monitored. For example, the International Atomic Energy Agency monitors the oxygen
isotope ratio in meteoric waters through their Global Network on Isotopes in
Precipitation [180]. Data for oxygen isotope ratios are commonly presented relative to
Standard Mean Ocean Water (SMOW) [48] and noted as §'20 (see Chapter 2 for
terminology). The ratio data from geographic monitoring can be applied to models
accounting for spatial, elevation, and temperature differences, such as Bowen
[181][182] used to create maps of §'80 in meteoric water as a function of geography
(Figure 7-1).

The wide geographic variation of 50 in meteoric waters depicted in Figure 7-1
clearly indicates that a capability to trace nuclear material based on this variation
represents an alluring forensic technique. The development of such a technique
necessitates an understanding of the exchange and fractionation processes between
oxygen atoms in meteoric water and materials of interest to nuclear forensics.

Unfortunately, the literature contains sparse data illuminating these processes.
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Figure 7-1: Global variation of 60 in meteoric waters as modeled by Bowen [182]

Pajo [183] studied five samples of U30g and six uranium dioxide (UQ,) fuel pellets
and found that the oxygen isotope ratios of the materials varied with their geographic
origin and also correlated with the respective oxygen isotope ratio of the local
precipitation. Recently, Fayek [184] comprehensively reviewed data on the oxygen
isotope composition of more than 250 samples of uranium ore. The author observed
significant geographic variation in oxygen isotope ratios and concluded that it may
provide a useful forensic indicator, particularly if combined with other indicators such as
lanthanide ratios. However, Fayek did not attempt to correlate observed oxygen
isotope ratios with meteoric waters.

Data applicable to the fundamental fractionation reactions are also incomplete,

inconsistent, and founded on mostly modeling results with limited experimental data.
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Fayek’s [184] review of uranium ores also summarized the sources of fractionation data
for uranium mineral-water systems and developed a figure for comparison (Figure 7-2).
As an example of the inconsistency, there are discrepancies in the fractionation
factors—noted as 1000 In a (mineral-water)—for UO, of about 100 percent at 100 °C
and about 25 percent above 500 °C. Similar inconsistencies exist for the uranium

trioxide (UO3) system.
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Figure 7-2: Compilation of available oxygen isotope fractionation data for uranium
mineral-water system as a function of temperature by Fayek [5]. Data for UO,
indicated in green, UO3in blue, and USiO, in pink.

Fayek and Kayser [185] performed the only experimental measurements with data

represented in Figure 7-2. They measured the oxygen fractionation between carbon
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dioxide and samples of natural uraninite and synthetic UOs to calculate indirectly the
fractionation between these compounds and water at temperatures of 0—300 °C. While
not included in the figure, Johnston [186] measured the oxygen exchange between
water and UOs, UO,, and U30g. However, Johnston’s data focused on exchange rates
rather than equilibrium values.

The remaining curves in Figure 7-2 originate from the results of modeling.
Hattori and Halas [187] utilized crystal field models to calculate theoretical fractionation
factors between water and UO, and UO3 at temperatures in the range of 0—1000 °C.
Zheng [188] [189] utilized the modified increment method to calculate the fractionation
factor for a number of metal oxides, including uranium dioxide, over the temperature
range of 0—1200 °C. Fang [190] used spectroscopic data to calculate fractionation
factors between water and UOs.

7.2 Approach to study the fate of oxygen from meteoric water in the fuel cycle

This section analyzes the chemistry governing the fate of oxygen isotope ratios
originating from meteoric water in the nuclear fuel cycle and develops an approach for
targeted experiments to assess the viability of these ratios as a geolocation signature.
Table 7-1 presents the key reactions governing the balance of oxygen isotope ratios in
the nuclear fuel cycle grouped into reactions that imprint or perturb this ratio. The
potential to imprint meteoric oxygen isotope ratios on product uranium oxide can occur
during any of three types of exchange reactions: (1) oxides with locally derived water,
(2) pyrohydrolyis reactions involving uranium hexafluoride and local process water, and

(3) uranyl oxygen atoms with local process water used during aqueous processing. The
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oxygen isotope fractionation expected for each of these reactions is poorly constrained
(Section 7.1) and involves a complex fractionation process controlled by equilibrium,
kinetics, and mass transfer. Aqueous reactions, in particular, involve additional
potential sources of oxygen from other species in the system (e.g., reagents). Research
on the pyrohydrolysis reactions may prove fruitful given the initial results of Pajo [183],
but is beyond the scope of this study.

Table 7-1: Key chemical reactions governing the fate of oxygen isotope ratios from
meteoric water in the nuclear fuel cycle

Simplified example reactions Fuel cycle applications
" . . " Ore body with ground
UTOx+H; "0 <> U"0x+H, "0 water or corrosion in the
Equilibrium environment
exchange Fuel manufacturing or
reactions ;
tal releases
i U0,F, + H» 50 <> U*®0,F, + H, 20 environmen
with the S arem during enrichment
potential to
imprint an Solution exchange with
oxygen the uranyl ion during

isotope ratio 4180, (NO)g+ H, 1°0 ¢> U™0,(NOs)s + H,'20  chemical separations for
ore concentration,
purification, or recycling

Atmospheric

oxygen Thermal oxidation of
perturbs uo, + 0, < U0, + 0, precipitates, scrap
imprinted recycle

ratio

Alternatively, any potential oxygen isotope ratio imprinted in uranium oxide is
likely to be perturbed during its lifetime through exchange with atmospheric oxygen,
particularly during treatments at elevated temperatures such as a calcination process.

Dole [191] determined the worldwide fractionation of oxygen isotopes in the
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atmosphere is nearly constant and 23.5 %o higher than that of average seawater (see
Chapter 2 for terminology). As a result, an understanding of the equilibrium
fractionation between uranium oxides and air would be useful in the interpretation of
fractionation results on real world oxides. The literature does not currently contain
these data.
7.3 Methods

Guided by the analysis in Section 7.2, this study focused on two experimental
approaches: (1) analysis of the oxygen isotope fractionation in real-world samples of
oxides with a comparison against local meteoric water and (2) determination of the
equilibrium fractionation between air and uranium oxide. For both approaches, UsOg
was chosen as the best candidate for investigation given its ubiquity in the nuclear fuel
cycle (Chapter 4) and its thermodynamic stability for reactions between uranium and
air.
7.3.1 Analysis of real-world samples

Oxygen isotope ratios were measured on real-world samples of UsOg possessed

by Lawrence Livermore National Laboratory (LLNL). The oxygen isotope ratios for these
samples were then compared to the nearest monitored meteoric water source, as
reported by the International Atomic Energy Agency’s Global Network on Isotopes in
Precipitation [180]. Information for these samples related to processing, particularly the
temperature for thermal oxidation, was compiled from the literature. For several of the
samples, the oxygen isotope ratios and accompanying information on the origin of the

samples were obtained from LLNL’s Uranium Sourcing Database [192][193].
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The information available on the origin of a particular sample warrants caution,
as chain of custody procedures were not applied for the samples and there are a
number of potential scenarios that could result in inaccurate information. For example,
facilities may handle uranium ores, ore concentrates, and other process intermediates
imported from other geographic areas. Similarly, facilities may have multiple process
lines that could produce U30g under different conditions. Nonetheless, this approach is
the best available outside of a concerted effort to collect samples under stringently
monitored conditions.
7.3.2  Equilibrium oxygen isotope fractionation measurements

This study applied the partial exchange technique of Northrop and Clayton [194]
to experimentally determine the equilibrium oxygen isotope fractionation in the Us0g —
dry air system. Briefly summarized following the explanation by O’Neil [195], the partial
exchange technique utilizes a set of companion reactions with reactants similar in all
aspects except for their initial isotopic composition. These reactants endure the same
experimental conditions, particularly the time at temperature profile. The following
general equation describes the technique:

In ipiia) = INK 4+ B (In Kjpigia) — In Lfinar)

Where

o is the oxygen isotopic fractionation of the reactants (UsOg and dry air)

K is the equilibrium fractionation for the system
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Therefore, a plot of In ajnitia @against (IN Ainitial - IN Afinal) for a companion set of three or
more samples provides the final fractionation factor, In asna = In K, as the y-intercept
and the percent of exchange (-100/B) as a function of the slope.

The companion experiments utilized four samples of U30g with varying initial
oxygen isotope ratios. Two samples were produced by direct oxidation in air at 400 and
800 °C for 12 hours of uranium metal turnings cleaned with nitric acid. The third sample
was produced through the air oxidation of isotopically altered UO; previously
synthesized using the hydrothermal reaction of uranium metal turnings and *20
enriched water (Cambridge Isotope Laboratories) at 200 °C in an argon purged Parr
pressure vessel. The fourth sample was a commercially produced uranium ore
concentrate of a previously measured oxygen isotope composition that complemented
the range of initial fractionations. X-ray fluorescence measurements revealed no
impurities above detection limits (generally 50-200 ppm) for all of the samples. The
resulting sample set provided a diverse spread of 20 from -2.6 to 19.6 %o.

Companion exchange experiments were conducted in a controlled atmosphere
tube furnace with approximately 100 mg of each sample placed in gold foil thimbles
collected in an alumina furnace boat (Figure 7-3). Prior to each use, the gold thimbles
were cleaned in 2 percent nitric acid. Dry air for the experimental atmosphere was
obtained by drawing normal room air through a Drierite gas purifying column and into
the furnace tube using the house vacuum system. Dry air was utilized in order to

eliminate potential fluctuations in §'20 from variations in atmospheric water.
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Partial exchange experiments examined the temperature range of 500-800 °C,
which represented the temperatures most likely to be encountered for thermal
oxidation of uranium precipitates [21]. Independent thermocouple measurements
verified that isothermal conditions within £ 0.1 ° C existed for the entire length of the
furnace boat. At the end of each experimental run, the furnace clamshell was opened
to facilitate rapid cooling of the sample, which typically cooled to less than 50 °C in 45

minutes.

Figure 7-3: Experimental configuration for partial exchange experiments in a
controlled-atmosphere tube furnace (top) with a set of companion samples in gold foil
thimbles (bottom).

The prerequisites for valid application of the partial exchange technique were
verified as follows. Powder XRD confirmed that the initial and final chemical phase for

each sample was a-U30g. Scanning electron microscopy of each sample indicated
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similar grain sizes for each powder with typical grains and agglomerates in the size range

of 5 to 50 um for each sample (Figure 7-4).

Figure 7-4: Secondary electron images of the UsOg powders utilized
in companion equilibrium fractionation experiments. Note same
magnification for all images.

7.3.3 Synthesis approach to equilibrium

Two additional types of experiments helped to identify the equilibrium oxygen
isotope fractionation between U3zOg and dry air. These experiments utilized an
approach where the initial reactants are compounds other than Uz;0g While these do

not represent true exchange reactions, the chemistries involve simple oxygen addition,
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which should minimize the common concerns with using the synthesis route to measure
isotope equilibrium [195].

In one experiment, a set of synthesized UO, samples with variable initial oxygen
isotope ratios underwent a companion type partial exchange experiment, as described
in Section 7.3.2. The isotopically altered UO, samples were prepared through the
hydrothermal reaction between uranium metal and a stoichiometric excess of waters
with variable 20 enrichments. The reactions were conducted in 23 mL Parr vessels
purged with argon gas prior to closure. After 3 hours at 200 °C, the vessels were
opened, headspace purged with additional argon, and an additional charge of water
added to minimize the potential formation of uranium hydride. The vessels were then
held at 200 °C overnight. This method was successful in producing UO, powders with an
initial §'°0 of between -39.7 and 144.4 %o.

In the second experiment, uranium metal foils were directly oxidized in air at
temperatures between 400 and 900 °C. With this approach Us;0g was directly formed
through the reaction of air with uranium metal—an oxygen-free matrix. The metal foils
were rinsed with nitric acid and acetone prior to placement in a gold foil thimble to
ensure removal of initial surface oxide (Figure 7-5).

7.3.4 Measurement of oxygen isotopic ratios

Samples of uranium oxides were analyzed for oxygen isotope ratios utilizing the
High Vacuum Fluorination System (HVFS) at LLNL. Chapter 2 provides details on the
principles of operation and design of the HVFS. For measurements in this study, 20-25

mg of sample was weighed into an acetone cleaned nickel sample holder. Each holder
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was placed into a reaction vessel on the HVFS, the system pumped to vacuum, and the
samples degassed for about 2 hours at 150 °C while under vacuum. After cooling, an
excess of chlorine trifluoride reagent was cryogenically frozen into each reaction vessel,
the vessel valve sealed, and the oxygen liberating reaction allowed to progress at 450 °C

for at least 12 hours.

Figure 7-5: Experimental configuration for direct metal oxidation oxygen isotope
fractionation experiments; furnace boat with gold foil thimble containing initial acid
cleaned uranium metal (left) and resulting UsOg sample after exposure to air at
elevated temperature (right).

The liberated oxygen then reacted with an electrically heated carbon rod and
was converted into carbon dioxide. The total volume of carbon dioxide generated was
measured using a calibrated manometer and the gas sample frozen into a glass tube,
which was flame sealed and removed from the line. The oxygen isotope ratios of the
carbon dioxide samples were measured using a dual-inlet isotope ratio Prism 3 VG gas
mass spectrometer.

Each run of the HVFS utilized two standards to account for potential

fractionation during the analysis: (1) National Bureau of Standards material NBS-28, a
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silicon dioxide material with a certified oxygen isotope ratio of 820 = 9.57 %o and (2)
New Brunswick Laboratories Certified Reference Material 125a, a fuel pellet standard
for uranium assay benchmarked at LLNL with an oxygen isotope ratio of 0 = -11.4 %o.
The typical analytical uncertainty for these measurements is about 0.1 %.. All oxygen
isotope fractionations are reported against the Standard Mean Ocean Water (SMOW)
convention with an *¥0/*°0 ratio of (2005.20 +0.43) x 10°° [48].

7.4 Results and discussion

7.4.1 Oxygen isotope ratios of real-world samples poorly correlate with local waters

Oxygen isotope ratios were measured for 15 real-world samples of U30g with
information available on their probable geographic origin (Table 7-2). The samples were
all obtained from ore milling facilities, increasing the likelihood that they originated
from nearby deposits and used local meteoric water for processing. In contrast,
uranium conversion facilities are likely to have received uranium materials from many
different geographic origins. Powder x-ray diffraction (XRD) indicated that all samples
were a-U30g. Likely temperatures used for thermal oxidation were obtained from the
literature and are reported in Table 7-2.

The Ranger, Olympic Dam, and Key Lake facilities each had three samples
measured (Table 7-2). For all three facilities, two of the three samples were consistent;
however, the value of the third sample point was significantly beyond of the range of
reproducibility commonly observed with standards. This result suggests that
considerable variability may exist in the oxygen isotope ratios of material produced at

the sample facility.
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Table 7-2: Oxygen isotope ratios of real-world uranium oxides and nearby meteoric waters

Possible process 520 sample 8”0 Meteoric
Facility Location tem era:,ure °c References Phase by XRD %o * Pie, Meteoric Water
P ! o0 Water, %o * Location
U30g -2.6
Saskatchewan, [98][99] Wynyard,
Key Lake 750 UsOg -2.6 -15.52
Canada [100][90] U0s 47 Canada
U3Og 1.4 .
. South Adelaide,
Olympic Dam Australia 750 [91][90] U30g 1.4 -4.60 Australia
Us30g 0.2
Northern UsOg 5.7 .
) -5.32 D ,
Ranger Territory, 600 [96][97] U30g 5.7 Auasrtvrva:ﬂa
Australia Us0g 2.6
Federal . Eastern
. Gas Hills, .
American Wyomin 600 [101][24] Us0g 5.4 -18.43** Powder River
Partners y g Basin, WY
Karatou, s Bishkek,
Karatou Kazakhstan Unknown U305 6.2 6.59 Kyrgyzstan
Mary Queensland, Alice Springs,
Kathleen Australia 700 [26] UsOs 3.0 6.6 Australia
NUFCOR Westonaria, 500 [104] Pretoria,
South Africa UsOs 124 3.81 South Africa
Queensland Jabiru, 500 [96] U30g -3.75 Darwin,
. 10.5 .
Australia Australia
Palabora Phalaborwa, 700 [196][197] U504 55 276 Pretoria,

South Africa

South Africa

*Analytical uncertainty is about 0.1 %o
**Result represents the mean of ground water data provided by the United States Geological Survey [198]

JfLong-term weighted mean not provided by GNIP; value instead reflects simple mean of precipitation events




However, there are several caveats to consider associated with the samples. For
example, the samples had incomplete collection date information and the date of
collection has an uncertain nexus with the date of production. A future effort would be
useful to obtain multiple samples under well-defined and monitored conditions.

The measured oxygen isotope ratios for the U3Og samples were plotted against
the ratios for the nearest source of monitored meteoric water mostly using the long-
term weighted mean station data provided by the International Atomic Energy Agency’s
Global Network on Isotopes in Precipitation [180] (Figure 7-6). The oxide ratios correlate
poorly with the water ratios even after accounting for the potential range of
fractionation factors reported in the literature for UO3; and UO, with water (Figure 7-2).
Considering these equilibrium fractionations are with liquid phase water, they likely
would have occurred at temperatures of less than 100 °C during either groundwater
interaction with ore deposits or agueous phase chemical separations. At these
temperatures, the reported and modeled fractionations are bounded by about +15 %o
for UO3 at 25 °C to about -12%o. for UO, at 100 °C. For additional perspective, Zheng
[189] calculated a fractionation between water and pitchblend, modeled by the author
as UO,-2U0;, of about -2 %o at 100 °C.

No equilibrium fractionation data have been reported for the aqueous uranyl
system. However, Gordon and Taube [199] studied the kinetics of oxygen exchange
between water and the uranyl ion in a perchloric acid system under various conditions
and reported half lives for the exchange reaction ranging from 145 days to 4 years. In

other work, these same authors [200] note that the presence of pentavalent uranium
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ions, which is unlikely under most conditions, catalyzes the exchange between uranyl
and water, but found it difficult to quantify this effect. More recent work by Mashirov
[201] also found neglible exchange rates between uranyl oxygen atoms and water for
acid concentrations above 0.2 M. At these rates the ability of aqueous phase processing

to perturb previously imprinted oxygen isotopes appears quite limited.
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Figure 7-6: Comparison of oxygen isotope fractionation in samples of anthropogenic
U30g with the nearest monitored source of meteoric water. Analytical uncertainty
approximately represented by the data points.

If isotope exchange with oxygen in uranyl ions represents an implausible route to
imprinting the oxygen isotope ratios of local waters, the other likely route would be
oxidation during dissolution of uranium ore, in which uranium atoms are typically in the
tetravalent state, such as in uraninite [21]. Gordon and Taube [202] studied oxgyen
transfer during the oxidation of aqueous tetravalent uranium ions and found that

oxygen atoms are preferentially transferred from the oxidizing agent rather than the
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aqueous solvent, suggesting that this process is unlikely to represent a signature
imprinting step.

Overall, the data show a broad range in observed 180/160 ratios that fail to
correlate with any particular value. The literature indicates that oxygen exchange during
aqueous processing is complicated by several factors and is unlikely to result in
significant development of oxygen isotope ratio signatures.

7.4.2 Experiments yield first equilibrium oxygen isotope fractionation data for U;0s—
air system

The equilibrium oxygen isotope fractionation between UsOg and air was
measured using the partial exchange technigue and two types of synthesis reactions
utilizing uranium metal and UO, as initial reactants. The reaction between U30g and air
represents the last step for most common processes involving the thermal treatment of
many uranium compounds. The literature currently does not contain any experimental
or modeling data for oxygen isotope fractionation in this system.

The partial exchange measurements were conducted at temperatures between
500 and 800 °C, corresponding to the temperatures expected for the formation of Us0g
in industrial applications [21]. The companion experiments demonstrated generally
good linearity, indicating the validity of the experimental system (Figure 7-7). As
discussed in Section 7.3.2, the slope and intercepts of these lines determine the percent
of oxygen exchange and the equilibrium fractionation, noted as 50 Equilibrium in the

tables.
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The full results of the companion exchange experiments (Table 7-3) demonstrate

the technique was valid. With the exception of the 800 °C experiment, the equilibrium

values approached from both directions—the initial ratios in the reactants were both

above and below the determined equilibrium value. For the 800 °C experiment, the

initial powder with a 50 of 19.6 %o was just below the error range on the equilibrium

value. The fractionation factors, noted as 1000 In oly3os-air, are all of reasonable

magnitude and sign when gauged against the published fractionation factors for other

uranium oxides and water (Figure 7-2).
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Figure 7-7: Partial exchange experiment plots as a function of temperature for U;Og—
dry air system

The results of the synthesis companion reaction using UO, validated the

equilibrium fractionation results (Table 7-4). Powder XRD indicated that the initial UO,
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samples all converted to U30sg, as expected. At 800 °C, the value for 1000 In cLy30s-air
using the synthesis approach with was -3.7 + 0.1, compared to -3.5 + 0.2 for the
exchange experiment using UsOg. Based on this agreement, the need for additional
data at other temperature points was dismissed.

Table 7-3: Oxygen isotope fractionation from U30g — dry air
partial exchange experiments

Temperature, °C 500 600 700 800
Time, hr 120 140 96 90
520 Us0g Samples, %o

Initial Final
-2.6 8.6 16.2 16.4 19.6
0.9 14.3 13.6 17.4 19.3
11.5 139 15.1 17.8 19.8
19.6 14.2 17.1 18.4 20.0
% Exchanged 87.9 94.3 92.4 97.6
1000 In Oly308-air -9.8 -7.4 -5.1 -3.5
6'%0 Equilibrium 13.7 16.1 18.4 20.0
Standard Error 1.9 1.2 0.3 0.2

Table 7-4: Oxygen isotope fractionation resulting from the
companion oxidation of UO, samples heated in dry air for 20

hours at 800 °C
520, %o
Initial UO, Final U3Og

-39.7 19.5

-5.5 19.9

12.3 19.7
144.4 19.6

% Exchanged 100
1000 In Oly308-air -3.7
580 Equilibrium 19.8
Standard Error 0.1

The results of the approach utilizing the direct-metal oxidation experiments were
far less informative (Table 7-5). Two independent experiments lasting about 20 hours

168



each were performed at each temperature point ranging from 400-900 °C, except at
800 °C, which had an additional experiment held for 60 hours. The temperature range
was broadened for these experiments due to the relative ease of conducting this style of
reaction. The XRD results indicated that all samples phases were in the expected
chemical form—U30s except for the 400 °C sample, which included some UOs.

The observed fractionation values were highly inconsistent within any given
temperature point and demonstrated no trend across the full range of temperatures.
These results reinforce O’Neil’s [195] sage words, “Synthesis is not the fruitful line of
approach that it would appear to be...” Possible explanations for these results include
inconsistencies with either the reaction temperature or variation in the oxygen isotope
ratio of the air, due to the presence of moisture, used in the reaction.

Table 7-5: Oxygen isotope fractionation for direct-
metal oxidation experiments

Temp, °C Time, hr  Product Phase 520, %o
400 20 U30g UO3 0.92
400 22 U30g, UO3 -21.04
500 23 UsOg -21.17
500 19.5 UsOg -18.78
600 23 UsOg -6.85
600 22 UsOg 2.42
700 22 UsOg -5.71
700 22 UsOg -2.68
800 21 UsOg 11.50
800 22 UsOg 2.22
800 60 UsOg 15.75
900 20 UsOg 3.89
900 19.5 Us30g 1.40
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Baker [203] identified that the auto-ignition point of uranium metal was in the
range of 500-600 °C depending on metallurgical preparation. As a result, localized
hotspots or elevated temperatures associated with a flame may have significantly
perturbed fractionations in an inconsistent manner. However, a lack of melted gold,
disturbed powder, or automatic furnace shutoff due to high temperature suggests that
pyrophoric events did not occur.

Another possible explanation for the inconsistent results involves the role of
variations in the oxygen isotope ratio of the air used for these reactions. Since the
oxygen isotope ratio of atmospheric molecular oxygen is well known and nearly
constant [191], any variation would likely have resulted from atmospheric water content
in the untreated room air used for the experiments. These experiments were
performed at LLNL during the months of August and September 2012. According to
meteorological instrumentation at LLNL [204], the daily average absolute humidity
varied from 5.5 to 11.0 g/m? (i.e., peak relative humidity was 50 %) during this time
period. These values reflect relatively dry air and generally insignificant daily variation.
As a result, it is difficult to assign this as the primary contributor to the observed
inconsistent data. Nonetheless, additional experiments utilizing dried air would
eliminate this as a potential and should be considered for future research. Conversely,
experiments using a controlled and significantly perturbed source of humidity could
illuminate this issue. For purposes of this study, the companion exchange experiments

and confirming UO; synthesis experiment yielded sufficient data.
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Generally, the data in Table 7-5 yield an important insight on the utility of
oxygen isotope fractionations as a forensic signature. These experiments were
extremely straightforward with little obvious cause for experimental variation, yet the
results are highly inconsistent, suggesting that there are significant key parameters that
remain unidentified. Since the oxidation of metal to oxide for scrap recovery is a
common route for the production of Us0g, the results of these experiments suggest the
need for skepticism in attempting to interpret oxygen isotope ratios for nuclear forensic
applications.

7.4.3 Equilibrium oxygen isotope fractionation for U3Og —air fails to explain ratios in
real-world samples

The application of the results in Table 7-3 to explain the oxygen isotope
fractionation observed for real-world samples as a function of processing temperature is
summarized in Figure 7-1Figure 7-8. Note that this figure contains data for 27 other
real-world U30g samples with uncertain geographic origin in addition to the samples
listed in Table 7-2. Since the origin of these additional samples is unknown, literature
indications of the process temperature were unavailable. However, the assumption
that these samples were processed in the range of 500-800 °C is valid since powder XRD
results confirmed the chemical phase of these samples as U30s.

The data in Figure 7-8 indicates that the real-world samples have not reached
equilibrium with oxygen in the ambient air. One likely explanation is insufficient time at
temperature to support complete diffusion of oxygen into the uranium particles during

thermal oxidation of the precipitant. The key parameters for this process are the time
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spent at elevated temperature and the rate of diffusion for oxygen within UsOg and the

various precursor precipitates.
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Figure 7-8: Observed oxygen isotope fractionation for real-world samples as a function
of temperature as compared to the measured equilibrium for the UsOg— air system.

The literature providing chemical process information for the real-world samples
referenced in this chapter, as well as in Chapters 2 and 4, was reviewed to obtain
information on the duration of thermal treatments. While temperatures were often
available, little information was available on duration. Since these oxides are produced
by commercial entities, it is reasonable to assume that efforts have been applied to
minimize the duration of this energy intensive and, therefore, costly processing step. As
aresult, it is likely that the time spent at peak temperature was approximately a few

hours and unlikely to exceed 10 hours.
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Diffusion rates for oxygen in UsOg are not currently available in the literature;
however, there is significant literature available on UO, given its common application as
a nuclear fuel. Fayek [205] recently reviewed the literature and measured oxygen
diffusion rates in natural UO,. He observed different behaviors for the temperature
regimes of 50-400 °C and 450-700 °C. At the elevated range of interest to this study, he
reported the self-diffusion coefficient as 1.90e” exp (-123,382 J/RT) cmz/s with an
activation energy of 123.4 kJ/mol. At these rates, diffusion processes could be
expected to require equilibration times on the order of hours to hundreds of days,
depending on particle size and the time-temperature profile.

A limited kinetic study for the UsOg—air system using the companion partial
exchange methodology provided a rough estimate of diffusion times and a comparison
point to assess the applicability of the literature diffusion data for UO,. The experiment
examined three durations at 800 °C and was not intended or designed to obtain a
precise diffusion rate. Precise determination of diffusion rates would necessitate
improved control of oxygen potential, impurities, and crystal properties (e.g.,
polycrystalline particle size and morphology or use of single crystals)[206].

The results of this limited kinetic study (Table 7-6) suggest that oxygen isotope
equilibrium occurred rapidly—an exchange of approximately 95% was achieved in 6
hours—for these particular polycrystalline samples of U30g at 800 °C. Quantitative
information on particle size and morphology, specifically the dimension that limits the
diffusion rate for the morphology in these samples, is necessary to facilitate comparison

with the literature. For example, particle sizes with a diffusion limiting dimension of 1
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um or less would be necessary for the oxygen diffusion rate in UsOg to be similar to UO,,
as measured by Fayek [205].

Table 7-6: Limited kinetic study of oxygen isotope
exchange in U30g at 800°C

Time, hr 6 22.5 90
60, %o

Initial Final
-2.6 18.9 19.0 19.6
0.9 16.7 17.7 19.3
11.5 18.9 18.4 19.8
19.6 19.3 19.0 20.0
% Exchanged 94.9 98.5 97.6
Error 7.8 4.2 1.2

Unfortunately, only qualitative scanning electron microscopy images were
obtained for the powders (Figure 7-4). The combination of the thin, platelet-type
morphology and the porosity of the powders used in this experiment (Figure 7-4) could
plausibly be interpreted to result in a diffusion-limiting dimension of a similar
magnitude. As a result, it is reasonable to conclude that the diffusion rates for both
types of oxide are similar.

While additional study of the diffusion rates and particle sizes could refine
these results, the critical outcome from this study is that the real-world samples,
including those likely treated at 750 °C, failed to achieve equilibrium with air. This
strongly suggests that, irrespective of the oxygen diffusion rate in UsOg and its precursor
compounds, the actual particle sizes and time at temperature profiles used in
commercial facilities result in partial equilibrium during thermal treatment.
Consequently, oxygen isotope ratios in UsOgare unlikely to provide a signature of

interest to nuclear forensics. However, sensitivity analyses utilizing better information
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on diffusion rates and real-world particle size information should be performed to
confirm this conclusion.

The results of this study contradict the findings of Pajo [183], who observed a
strong correlation between the oxygen isotope ratio of five samples of U3Og and that of
the associated meteoric water. An obvious explanation for this difference is not
apparent. This study examined two of the samples measured by Pajo (Ranger and
Olympic Dam) and found inconsistent oxygen isotope ratios (Section7.4.1) for three
samples from each facility. As previously discussed, a dedicated effort to obtain
samples under controlled conditions for a period is necessary to resolve this question.

Another explanation could be the sample size associated with the Thermal
lonization Mass Spectrometry (TIMS) method that Pajo utilized for the determination of
the oxygen isotope ratios. TIMS utilizes approximately a hundred nanograms versus the
20-25 milligrams used in this study for with the HVFS methodology. This smaller mass
would be more sensitive to any potential oxide impurities. However, Pajo took care to
compare their technique with more standardized methods of Secondary lon Mass
Spectrometry and Glow Discharge Mass Spectrometry [207]. A cross-institution
exchange of samples would facilitate a better understanding of the discrepancy.

7.5 Conclusions and suggested areas for further study

This study examined the utility of using the oxygen isotope ratio in samples of
U30g to serve as a forensic signature indicative of geographic origin. Oxygen isotope
ratios were measured on 15 real-world samples with known geographic origin and

process conditions obtained from the literatures. The first data on the oxygen isotope
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equilibrium between U30g and air was also collected to help interpret the oxygen ratios
observed in the real-world samples, including 27 additional real-world samples of
unknown geographic origin. Overall, these experiments informed the following
conclusions and suggested areas of further study:
= Oxygen isotope ratios in the real-world samples neither directly correlate with
the oxygen isotope ratios of local meteoric water nor support a consistent
alternative fractionation. Acquisition of additional samples, including multiple
samples over time from the same facility, using established, uniform protocols
and monitored conditions would fortify this result.
= Oxygen isotope ratios in real-world samples of UsOg do not agree with the
values for the UsOg—air equilibrium fractionation experimentally determined in
this study. Examination of oxygen self-diffusion coefficients in the literature and
limited experimental results conducted in this study indicate that the real-world
variability in particle sizes and time at temperature profiles is sufficient to
complicate interpretation oxygen isotope ratios in UsOg samples as a reliable
geolocation signature.
= Given the negative results of this study and the multiple hours necessary to
analyze oxygen isotope ratios in a single sample of uranium oxide, additional
research should prioritize the conduct of sensitivity studies on the impacts of
diffusion. These studies should be informed by acquisition of additional
information on limiting diffusion lengths in common uranium particle

morphologies and typical time at temperature profiles used in industrial
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applications. Alternatively, the study of signatures resulting from reaction with

uranium hexfluoride may represent a better application of resouces.
Chapter 8 Summary of contributions

This chapter summarizes the primary contributions resulting from this dissertation.

The preceding chapters each contained detailed conclusions, associated discussions, and
suggested areas for further study. This chapter aggregates the primary conclusions and
provides perspectives on the state and direction of research needed to mature process
signatures. The primary contributions from this dissertation are listed below based on
the author’s assessment of significance:

1. ldentified that uranium precipitates decompose and transition to oxides in a
pseudomorphic manner. This property enables the determination of process
history for samples of otherwise chemically identical uranium oxides—a
capability that no other technique has demonstrated. [Chapter 5]

2. Reported the first equilibrium oxygen isotope fractionation measurements
between dry atmospheric air and UsOg. This result supported the conclusion
that oxygen isotope ratios in U3sOg are not readily linked to meteoric waters,
contrary to the literature. [Chapter 7]

3. Performed the first measurements using near-infrared reflectance (NIR)
spectroscopy on a number of uranium precipitates and oxides, identified insights
into their spectral features, and demonstrated the potential to distinguish and

identify these phases. [Chapter 4]
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4. Demonstrated the efficacy of thermogravimetric methods as a signature,
eliminated specific surface area as a signature, and highlighted process
conditions where powder x-ray diffraction may be insufficient to determine
process history. [Chapter 4]

5. Excluded simple grain morphological descriptors as signatures of precursor oxide
production route or binder type in nuclear fuel pellets, as well as observed a
number of features that may provide potential signatures. [Chapter 6]

6. Identified areas where additional research is required to mature the use of
guantitative morphology through image analysis as a forensic technique.
[Chapter 3]

7. Developed and characterized an extensive set of exemplars and real-world

powder and pellet samples for future studies. [Chapter 4]

Overall, the process signatures identified in this dissertation should be
strengthened through additional validation using independent personnel, equipment,
and blind samples. The nature of process signatures is that the resulting information is
likely to be one element of a broad picture providing all discernable information
regarding a given sample. The results of this study indicate the potential types of
process information that may be identified using these techniques. This study also
informs future analysts with the requirements on the samples sizes and sequencing
requirements for consideration in their approach. In general, all of the promising

techniques utilized in this study require small sample masses ranging from 10 mg for

178



thermogravimetric analysis to sub-microgram amounts for scanning electron
microscopy.

A number of additional studies are suggested throughout this dissertation.
Priority should be given to refining the utility of the morphological signatures resulting
from pseudomorphic decomposition reactions, given this unique capability to
distinguish the history between otherwise chemically identical samples. Refinement
may be accomplished by systematically broadening the chemical conditions used for
precipitations and monitoring the resulting changes in final oxide morphology. The
novel nature of these pseudomorphic reactions also demands priority to probe the
fundamental chemistry associated with these transitions.

Next, given the findings in this study and the enormous potential value of
developing a geolocation signature, efforts should shift from examining oxides to
investigating fractionation during the pyrohydrolysis reaction of uranium hexafluoride.
While the application of this reaction is limited, pyrohydrolysis is naturally focused on
processing of enriched uranium, an activity of high interest to nuclear forensics.
Similarly, the promising results associated with NIR and the robust simplicity of the
associated equipment, suggests the need to mature this tool and associated signatures.

Continued work on quantitative morphology is also warranted, but should first
focus on the development of improved algorithms, calibration methods for the
software-imaging hardware interface, sample preparation, and standards. These steps
can be accomplished entirely without using radioactive materials, but should be

performed in consultation with researchers who are knowledgeable on the techniques
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and requirements for working with radioactive materials. The value of continued
research on fuel pellets is questionable. This study suggests that very specific process
information will be necessary to derive broader signatures on grain morphology and the
other identified surface features of potential forensic value. In reality, fuel pellets of any
element pose relatively low risk and efforts would likely be better spent on refining
techniques for powders or metals, such as morphology and thermogravimetric analysis.
In conclusion, this dissertation explored and expanded process signatures
available to the nuclear forensics community. Some of the examined areas warrant
additional efforts and many other areas likely remain available for assessment. The
importance of this field requires continued investment in training, equipment, and
acquisition of suitable samples to advance techniques and fully validate preliminary

signatures.
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APPENDIX: Scanning electron image sets and x-ray diffraction patterns

Ammonia

Precipitate uranyl nitrate and ammonia gas heated to 85 °C

Precipitate of uranyl nitrate and ammonium hydroxide heated to 85 °C
Precipitate of uranyl nitrate and ammonium hydroxide heated to 150 °C
Precipitate of uranyl nitrate and ammonium hydroxide heated to 400 °C
Precipitate of uranyl nitrate and ammonium hydroxide heated to 600 °C
Precipitate of uranyl nitrate and ammonium hydroxide heated to 750 °C
Uranium ore concentrate from the Federal American Partners facility in Gas Hills,
Wyoming, USA

Uranium ore concentrate from the Key Lake facility in Saskatchewan, Canada
Uranium ore concentrate from the Milliken Lake facility in Canada

Uranium ore concentrate from the Rdssing facility in Namibia

Uranium ore concentrate from the NUFCOR facility Westonaria, South Africa
Uranium ore concentrate from the Olympic Dam facility in Western Australia

Uranium ore concentrate produced at the Ranger facility in the Northwest Territory,

Australia

Hydrogen Peroxide

Precipitate of uranyl nitrate and hydrogen peroxide heated to 85 °C
Precipitate of uranyl nitrate and hydrogen peroxide heated to 150 °C
Precipitate of uranyl nitrate and hydrogen peroxide heated to 400 °C
Precipitate of uranyl nitrate and hydrogen peroxide heated to 600 °C
Precipitate of uranyl nitrate and hydrogen peroxide heated to 750 °C
Uranium ore concentrate from Crowe Butte, USA

Uranium ore concentrate from the El Mesquite facility in Duval County, Texas, USA
Uranium ore concentrate from the Irigaray facility in Johnson County, Wyoming, USA

Uranium ore concentrate from Mobil, USA
Uranium ore concentrate from the Rabbit Lake facility in Saskatchewan, Canada

Uranium ore concentrate from the Uranium Resources Inc. facility in Duval County

Texas, USA

Ammonium Carbonate

Precipitate of uranyl nitrate and ammonium carbonate heated to 85 °C
Precipitate of uranyl nitrate and ammonium carbonate heated to 85 °C
Precipitate of uranyl nitrate and ammonium carbonate heated to 400 °C
Precipitate of uranyl nitrate and ammonium carbonate heated to 600 °C
Precipitate of uranyl nitrate and ammonium carbonate heated to 750 °C
Industrial Sample NF-55

Industrial Sample NF-56
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Magnesia

Precipitate of uranyl nitrate and magnesia heated to 85 °C

Precipitate of uranyl nitrate and magnesia heated to 150 °C

Precipitate of uranyl nitrate and magnesia heated to 400 °C

Precipitate of uranyl nitrate and magnesia heated to 600 °C

Precipitate of uranyl nitrate and magnesia heated to 750 °C

Uranium ore concentrate from the Anaconda Company Bluewater Plant in Grants,
New Mexico

Uranium ore concentrate from the COMUF facility Mounana, Gabon

Uranium ore concentrate from the Dyno facility in Bancroft, Ontario, Canada
Uranium ore concentrate from the Gunnar facility in Lake Athabasca, Saskatchewan,
Canada

Uranium ore concentrate from the Rum Jungle facility in Australia

Uranium ore concentrate from South Alligator, Australia

Sodium Hydroxide

Precipitate of uranyl nitrate and sodium hydroxide heated to 85 °C

Precipitate of uranyl nitrate and sodium hydroxide heated to 150 °C

Precipitate of uranyl nitrate and sodium hydroxide heated to 400 °C

Precipitate of uranyl nitrate and sodium hydroxide heated to 600 °C

Precipitate of uranyl nitrate and sodium hydroxide heated to 750 °C

Uranium ore concentrate from the El Dorado facility in Northwest Territories, Canada
Uranium ore concentrate from the Sequehanna Western Facility in Falls City, Texas,
USA

Uranium ore concentrate from the Ranstad facility in Sweden

Uranium ore concentrate from the SOMAIR facility in Niger

Other Processes

Uranyl hexanitrate heated to 600 °C

Uranium metal turnings directly heated to 400 °C
Uranium hydride heated to 400 °C

Uranium tetrafluoride, purchased

Uranium tetrafluoride heated in moist air to 400 °C
Commercially produced uranium dioxide powder blend
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Morphology of the precipitate of uranyl nitrate and ammonia gas heated to 85 °C
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X-ray Diffraction Pattern

NH; (g) 85 °C
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Paired Secondary Electron Image

NOT TAKEN

Paired Backscatter Electron Image

NOT TAKEN

Process history summary

Sample precipitated from 1.0 M uranyl nitrate using ammonia gas to about pH 8. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle.
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Morphology of precipitate of uranyl nitrate and ammonium hydroxide heated to 85 °C
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X-ray diffraction pattern Paired Secondary Electron Image
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Paired Backscatter Electron Image

NOT TAKEN

Process history summary

Sample precipitated from 1.0 M uranyl nitrate using 1.0 M ammonium hydoxide to about pH 8. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle.
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Morphology of the precipitate of uranyl nitrate and ammonium hydroxide heated to 150 °C
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XRD

NH,OH 150 °C

16000

15000 —

14000 —

13000

12000 —

11000 —

Limo¢Cqunts)

9000 —

&
|

g
|

2-Theta - Scale
MINHAOH 150 - File: NHAOH 150.raw - Type: Locked Coupled - Start: 10.000 ° - End: 69.194 ° - Step: 0.019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 12 s - 2-Theta: 10.000 ° - Theta: 5.000
Operations: Background 100.000,1.000 | Import
[#100-039-0587 (Q) - Ammonium Uranium Oxide Hydrate - UO3-NH3-H20 - Y: 70.69 % - d X by: 1. - WL: 1.5406 -
[8100-031-1427 (1) - Uranium Oxide Ammonia Hydrate - 2U03-NH3-3H20 - Y: 42.75 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 14.03000 - b 14.03000 - ¢ 15.02000 - alpha 90.000 - beta 90.000 - gamma 120.0

Paired Secondary Electron Image

NOT TAKEN

Paired Backscatter Electron Image

NOT TAKEN

Process history summary

The sample was precipitated from 1.0 M uranyl nitrate using 1.0 M ammonium hydroxide to about pH 8. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and

pestle. An aliquot of this material was then heated in air at 150 °C for 12 hours.
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Morphology of the precipitate of uranyl nitrate and ammonium hydroxide heated to 400 °C
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X-Ray Diffraction Pattern
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Paired Secondary Electron Image

NOT TAKEN

Paired Backscatter Electron Image

NOT TAKEN

Process history summary

The sample was precipitated from 1.0 M uranyl nitrate using 1.0 M ammonium hydroxide to about pH 8. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and

pestle. An aliquot of this material was then heated in air at 400 °C for 12 hours.
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X-ray Diffraction Pattern Paired Secondary Electron Image
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Paired Backscatter Electron Image

NOT TAKEN

Process history summary

The sample was precipitated from 1.0 M uranyl nitrate using 1.0 M ammonium hydroxide to about pH 8. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and

pestle. An aliquot of this material was then heated in air at 600 °C for 12 hours.
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Morphology of the precipitate of uranyl nitrate and ammonium hydroxide heated to 750 °C
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Paired Secondary Electron Image

NOT TAKEN

Paired Backscatter Electron Image

NOT TAKEN

Process History Summary

pestle. An aliquot of this material was then heated in air at 750 °C for 12 hours.

The sample was precipitated from 1.0 M uranyl nitrate using 1.0 M ammonium hydroxide to about pH 8. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and
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Morphology of uranium ore concentrate from the Federal American Partners facility in Gas Hills, Wyoming, USA
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X-Ray Diffraction Pattern
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Paired Secondary Electron Image

NOT TAKEN

Paired Backscatter Electron Image

Process History Summary

Uranyl was precipitated from a sulfate-based ion exchange stripping solution using ammonia and calcined to 600 °C in a Skinner roaster.
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Morphology of uranium ore concentrate from the Key Lake facility in Saskatchewan, Canada
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Paired Secondary Electron Image

Paired Backscatter Electron Image

Process History Summary

Uranyl was precipitated from a sulfate-based solvent extraction stripping solution using ammonia and calcined to 750 °C.
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Morphology of uranium ore concentrate from the Milliken Lake facility in Canada
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Paired Secondary Electron Image

Paired Backscatter Electron Image

Process History Summary

Uranyl was precipitated from a sulfate-based ion exchange stripping solution using ammonia and calcined (no reported temperature).
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Morphology of uranium ore concentrate from the Rossing facility in Namibia
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Process History Summary

Uranyl was precipitated from a sulfate-based ion exchange stripping solution using ammonia and calcined to 500 °C in a rotary furnace.
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Morphology of uranium ore concentrate from the NUFCOR facility Westonaria, South Africa
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Process history summary

Ammonium dirunate supplies from multiple mines are blended and extruded into 6 mm granules that are dried at 130 °C. The granules are then calcined at 500 °C in a rotary furnace.
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Morphology of uranium ore concentrate from the Olympic Dam facility in Western Australia
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Process History Summary

Uranyl is precipitated from a sulphate-based solvent extraction stripping solution and calcined to 750 °C
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Morphology of uranium ore concentrate from the Ranger facility in the Northwest Territory, Australia
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Process History Summary

Uranyl is continuously precipitated with ammonia to pH 7.0-8.0, centrifuged to 40 % solids, and calcined in oil-fired multiple hearth calciners to 600-800 °C




60¢

Morphology of the precipitate of uranyl nitrate and hydrogen peroxide heated to 85 °C
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Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using 30 % hydrogen peroxide. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle.
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Morphology of the precipitate of uranyl nitrate and hydrogen peroxide heated to 150 °C
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Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using 30 % hydrogen peroxide. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle. An aliquot was then
heated in air at 150 °C for 12 hours.
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Morphology of the precipitate of uranyl nitrate and hydrogen peroxide heated to 400 °C
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[AH202 C 400 - File: H202 C 400.raw - Type: Locked Coupled - Start: 10,000 ° - End: 69,194 ° - Step: 0.019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 16 s - 2-Theta: 10,000 ° - Theta: 5.000
Operations: Background 46.74,1.000 | Import
[#]00-031-1416 (C) - Uranium Oxide - UO3 - Y: 99.10 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 3.95000 - b 3.95000 - ¢ 415700 - alpha 90.000 - beta 90.000 - gamma 120,000 - Primitive - P-3m1 (164) - 1 -
[#]01-075-1943 (1) - Uranium Oxide - UO3 - Y: 90.07 %- d x by: 1. - WL: 1.5406 - Hexagonal - a 3.97100 - b 3.97100 - ¢ 4.16800 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - P-3m1 (164) - 1-5

Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using 30 % hydrogen peroxide. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle. An aliquot was then
heated in air at 400 °C for 12 hours.
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Morphology of the precipitate of uranyl nitrate and hydrogen peroxide heated to 600 °C
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BAJH202 B 600 - File: H202 B 600.raw - Type: Locked Coupled - Start: 10.000 ° - End: 69,194 - Step: 0,019 ° - Step time: 384. 5 - Temp.: 25 °C (Room) - Time Started: 12 s - 2-Theta: 10.000° - Theta: 5,000
Operations: Background 63.096,1.000 | Import
[#]00-031-1424 (C) - Uranium Oxide - U308 - Y: 176.16 %- d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.71600 - b 11.96000 - ¢ 4. Ipha. betz 2mm

Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using 30 % hydrogen peroxide. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle. An aliquot was then
heated in air at 600 °C for 12 hours.
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Morphology of the precipitate of uranyl nitrate and hydrogen peroxide heated to 750 °C
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202 C3 750 - File: H202 C3.raw - Type: Locked Coupled - Start: 10.000 ° - End: 69.194 ° - Step: 0.019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 12's - 2-Theta: 10,000 ° - Theta: 5.000 °

Operations; Background 38.019,1.000 | Import
[#]00-031-1424 (C) - Uranium Oxide - U308 - Y: 179.18 %- d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.71600 - b 11,9600 - ¢ 4.14700 - alpha. beta 2mm

Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using 30 % hydrogen peroxide. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle. An aliquot was then
heated in air at 750 °C for 12 hours.
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Morphology of uranium ore concentrate from Crowe Butte, USA




0cc
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[AlCrow Butte - File: Crow Butte.raw - Type: Locked Coupled - Start: 10.000 ° - End: 69,194 ° - Step: 0.019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 115 - 2-Theta: 10.000 ° - Theta: 5.000 ° -
rations: Smooth 0150 | Background 14.454,1.000 | Import
[#]00-016-0207 (1) - Metastudite, syn - UO4-2H20 - Y: 165.21 %- d x by: 1. - WL: 1.5406 - Orthorhombic - a 6. b4.20900- c 8. ipha 90.000 - beta 90. |
mmml—lAZA(C)—UranmmOmﬁe—m—V 141.19%- d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.71600 - b 11.96000 - ¢ 4.14700 - alpha 90.000 - beta 90.000 - gamma 90.000 - Base-centered - C2mm

Process History Summary

Uranyl is precipitated using hydrogen peroxide from a carbonate-based ion exchange stripping solution, which is pH adjusted with sodium hydroxide, concentrated using a thickener and belt filter, and dried to 1 wt % moisture in a
vacuum dryer
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Morphology of uranium ore concentrate from the El Mesquite facility in Duval County, Texas, USA
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HJE! Mesaquite - File: E] Mesquite.raw - Type: Locked Coupled - Start: 10.000 ° - End: 69,194 ° - Step: 0.019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 12 s - 2-Theta: 10,000 ° - Theta: 5.000 *
Operations: Background 38.019,1.000 | Import

[W]00-016-0207 (1) - Metastudite, syn - UO4-2H20 - Y: 141.31 % d x by: 1. - WL: 1.5406 - Orthorhombii 20900 - ¢ 8.77400 -

[]00.013-0241 (1) - Schoepite - UO3:2H20 - Y: 13.76 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 14.33000 - b 1679000 - ¢ 14.73000 - alpha 90.000 - nexasoooo ganmascooo Primitive - Pbcatex)

[#100-016-0206 (1) - Studite, syn - UO4-4H20 - Y: 27.64 9% - d x by: 1. - WL 1.5406 - Monoclinic - a 11.85000 - b 6.78500 - ¢ 4.24500 -

Paired Secondary Electron Image

Paired Backscatter Electron Image

Process History Summary

Uranyl is precipitated using hydrogen peroxide. No other information was located.
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Morphology of uranium ore concentrate from the Irigaray facility in Johnson County, Wyoming, USA
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lirigaray - File: Irigaray.raw - Type: Locked Coupled - Start: 10.000 ° - End: 69.194 ° - Step: 0.019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 11 s - 2-Theta: 10,000 ° - Theta: 5.000 ° - Chi: 0.
‘Operations: Background 21.380,1.000 | Import
[#]00-016-0207 (1) - Metastudite, syn - UO4-2H20 - Y: 133.76 %- d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.50100 - b 4.20900 - ¢ 8. ipha 90. Y |
[#100-016-0206 (1) - Studtite, syn - UO4-4H20 - Y: 119.37 %- d x by: 1. - WL: 1. a11.85000 - b 6.78500 - ¢ 4. ! ©-

Paired Secondary Electron Image

Paired Backscatter Electron Image

Process History Summary

Uranyl is precipitated using hydrogen peroxide. No other information was found.
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Morphology of uranium ore concentrate from Mobil, USA
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Operations: Background 83.176,1.000 | Import
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Paired Secondary Electron Image

Paired Backscatter Electron Image

Process History Summary

Uranyl is precipitated using hydrogen peroxide. No other information was found.
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Morphology of uranium ore concentrate from the Rabbit Lake facility in Saskatchewan, Canada
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X-ray diffraction pattern
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[fRabbit Lake - File: Rabbit Lake.raw - Type: Locked Coupled - Start: 10,000 ° - End: 69.194 ° - Step: 0.019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 12 s - 2-Thetar 10.000 ° - Theta: 5.000°*
Operations: Background 14.454,1.000 | Import
[#100-016-0207 (1) - Metastudite, syn - UO42H20 - Y: 10557 %- d x by: 1. - WL 1.5406 - Orthorhombic - @ 6.50100 - b 4.20900 - ¢ 8 I !
iorhormtic -a

[100-053-0877 (1) - Uranium Oride Hydrate - UO3.0.8H20 - Y: 11.02 %6 - d x by: 1. - WL: 1.5406 - Ort Iph bet

20

Paired Secondary Electron Image

NOT TAKEN

Paired Backscatter Electron Image

Process history summary

Uranyl is precipitated from a sulfate-based solvent extraction stripping solution using hydrogen peroxide and
dried at 110 °C

Energy Dispersive Spectroscopy

NOT TAKEN
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Morphology of uranium ore concentrate from the Uranium Resources Inc. facility in Duval County Texas, USA
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USA 5 - File: USA 5.raw - Type: Locked Coupled - Start: 10,000 ° - End: 69.194 ° - Step: 0.019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 12 5 - 2-Theta: 10.000 * - Theta: 5.000 ° - Chi: 0.00
Operations: Background 46.774,1.000 | Import

[%100-016-0207 (1) - Metastudite, syn - UO4-2H20 - Y: 112.25 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.50100 - b 4.20900 - ¢ 8.77400 - alpha 90.000 - beta 90.000 - gamma 90.000 - Body-centered - |

[#100-031-1427 (1) - Uranium Oxide Ammonia Hydrate - 2U03-NH3-3H20 - Y: 20.88 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 14.03000 - b 14.03000 - ¢ 15.02000 - alpha 90.000 - beta 90.000 - gamma 120.0

Paired Secondary Electron Image

Paired Backscatter Electron Image

Process History Summary

Hydrogen peroxide is used. No other information was identified.
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Morphology of the precipitate of uranyl nitrate and ammonium carbonate heated to 85 °C
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AAUC F 85 - File: AUC F 85.raw - Type: Locked Coupled - Start: 10,000 ° - End: 69,194 ° - Step: 0.019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 16 s - 2-Theta: 10,000 ° - Theta: 5.000° - C
Operations: Background 38.019,1.000 | Import
[#100-049-1192 (1) - Ammonium Uranyl Carbonate - (NH4)4UO2(CO3)3 - Y: 26.48 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 10.65400 - b 9.35600 - ¢ 12.82400 - alpha 90.000 - beta 96.420 - gamma 90.000 -

Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using saturated ammonium carbonate solution to about pH 8. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar
and pestle.
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Operations: Import

Paired Secondary Electron Image

NOT TAKEN

Paired Backscatter Electron Image

NOT TAKEN

Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using saturated ammonium carbonate solution to about pH 8. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar

and pestle. An aliquot was further heated in air at 150 °C for 12 hours.
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Morphology of the precipitate of uranyl nitrate and ammonium carbonate heated to 400 °C
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Paired Secondary Electron Image

NOT TAKEN

Paired Backscatter Electron Image

NOT TAKEN

Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using saturated ammonium carbonate solution to about pH 8. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar

and pestle. An aliquot was further heated in air at 400 °C for 12 hours.
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X-ray Diffraction Pattern
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BAJAUC F 600 - File: AUC FF 600.raw - Type: Locked Coupled - Start: 10,000 - End: 69.194° - Step: 0019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 115 - 2-Theta: 10.000 ° - Theta: 5.000° -

Operations: Background 31.623,1.000 | Import
[#]00-031-1424 (C) - Uranium Oxide - U308 - Y: 127.11 %- d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.71600 - b 11.96000 - ¢ 4. Ipha. betz

2mm

Paired Secondary Electron Image

NOT TAKEN

Paired Backscatter Electron Image

NOT TAKEN

Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using saturated ammonium carbonate solution to about pH 8. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar

and pestle. An aliquot was further heated in air at 600 °C for 12 hours.
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BAIAUC F 750 - File: AUC F 750.raw - Type: Locked Coupled - Start: 10.000 ° - End: 69.194 ° - Step: 0.019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 11 s - 2-Theta: 10.000 ° - Theta: 5.000° -
jons: Background 38.019,1.000 | Import
[#]00-031-1424 (C) - Uranium Oxide - U308 - Y: 165.84 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.71600 - b 11.96000 - ¢ 4.14700 - alpha 90.000 - beta 90.000 - gamma 90,000 - Base-centered - C2mm

Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using saturated ammonium carbonate solution to about pH 8. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar
and pestle. An aliquot was further heated in air at 750 °C for 12 hours.
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Morphology of Industrial Sample NF-55
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EFIAUC-NFS5 - File: AUC-NFSS.raw - Type: Locked Coupled - Start: 10.000 ° - End: 69.194 ° - Step: 0.019 ° - Step time: 384, s - Temp.: 25 °C (Room) - Time Started: 115 - 2-Theta: 10.000 ° - Theta: 5.000° -
Operations: Background 67.608,1.000 | Import
[#101-072.0687 () - Ammonium Uranyl Carboniate - (NH4)4(UO2)(CO2)3 - Y: 109,86 %- d xby: 1. - WL: 1.5406 - Monoglinc - a b9.:38000- ¢ Iph e

Paired Secondary Electron Image

NOT TAKEN

Paired Backscatter Electron Image

NOT TAKEN

Process History Summary

Sample was received as a uranium uranyl carbonate. No information was identified




1344

Morphology of Industrial Sample NF-56
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ERIAUC-NFS6 - File: AUC-NFS6.raw - Type: Locked Coupled - Start: 10,000 ° - End: 69.194 ° - Step: 0.019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 12 s - 2-Thetat 10,000 ° - Theta: 5.000° -
Operations: Background 67.608,1.000 | Import

[#101-072.0687 () - Ammonium Uranyl Carbonate - (NH4)4(UO2)(CO)3 - Y: 60.63 %- d x by: 1. - WL: 1.5406 - Monoclinic - a 10,6800 - b 9.38000 - ¢ 12.85000 - apha 90,000 - beta 96.450 - gamma 90.000

Paired Secondary Electron Image

NOT TAKEN

Paired Backscatter Electron Image

NOT TAKEN

Process History Summary

Sample was received as ammonium uranyl carbonate. No information was identified.
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Morphology of the precipitate of uranyl nitrate and magnesia heated to 85 °C
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X-ray diffraction pattern Paired Secondary Electron Image Paired Backscatter Electron Image
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BAIMgO A - File: MgO A raw - Type: Locked Coupled - Start: 10.000 ° - End: 69.194 ° - Step: 0,019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 12 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - Chi: 0.0
Operations: Smooth 0.150 | Background 56.234,1.000 | Import

Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using a 15 wt % slurry of magnesia. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle. An aliquot was
further heated in air at 750 °C for 12 hours.




LT

Morphology of the precipitate of uranyl nitrate and magnesia dried to 150 °C
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Operations: Background 38.019,1.000 | Import
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Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using a 15 wt % slurry of magnesia. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle. An aliquot was
further heated in air at 150 °C for 12 hours.
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Morphology of the precipitate of uranyl nitrate and magnesia dried to 400 °C
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MO A 400 - File: MgO A 400.raw - Type: Locked Coupled - Start: 10.000 ° - End: 69.194 ° - Step: 0.019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 12 s - 2-Theta: 10.000 ° - Theta: 5.000 ° -
Operations: Background 46.774,1.000 | Import

Paired Secondary Electron Image

NOT TAKEN

Paired Backscatter Electron Image

NOT TAKEN

Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using a 15 wt % slurry of magnesia. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle. An aliquot was

further heated in air at 400 °C for 12 hours.
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Morphology of the precipitate of uranyl nitrate and magnesia dried to 600 °C




(414

X-ray Diffraction Pattern Paired Secondary Electron Image Paired Backscatter Electron Image

MgO Al

2700 NOT TAKEN NOT TAKEN

g
=3 ﬂj ngﬁv\,m Mu
E
O MO I | O ST . O . L fh o
» » o o - o
2-Theta - Scale

MO A1 - File: MgO Al raw - Type: Locked Coupled - Start: 10,000 ° - End: 69.194 ° - Step: 0.019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 12 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - Chi:

rations: Background 100.000,1.000 | Import
[#101-073-2171 (1) - Magnesium Uranium Oxide - MgUO4 - Y: 114,86 % - d X by: 1. - WL: 15406 - Orthorhombic - a 6.52000 - b 6.59500 - ¢ 6.92400 - alph
[#]00-034-0985 (1) - Magnesium Uranium Oxide - MgU3010 - Y: 79.89 % - d x by: 1. - WL: 1.5406 - Orthorhombic - & 6.57300 - b 7.56300 - ¢ 16.32000 - alpha 90.000 - beta 90.000 - gamima 90.000 - 4 - 811.2

Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using a 15 wt % slurry of magnesia. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle. An aliquot was
further heated in air at 600 °C for 12 hours.
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Morphology of the precipitate of uranyl nitrate and magnesia heated to 750 °C
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HAIMgO A3 - File: MgO A3.raw - Type: Locked Coupled - Start: 10,000 ° - End: 69.194 ° - Step: 0.019 ° - Step time: 384. s - Temp.: 25 °C (Room) - Time Started: 12 s - 2-Theta: 10.000 ° - Theta: 5.000 ° - Chi:
rations: Background 100.000,1.000 | Import
[#101-073-2171 (1) - Magnesium Uranium Oxide - MgUO4 - Y: 17146 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.52000 - b 6.59500 - ¢ 6.924(
[#]00-034-0985 (1) - Magnesium Uranium Oxide - MgU3O10 - Y: 46.58 % - d x by: 1. - WL 15406 - Ot 7.56300 - ¢ 16.32000 - alph -8112

Paired Secondary Electron Image

NOT TAKEN

Paired Backscatter Electron Image

NOT TAKEN

Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using a 15 wt % slurry of magnesia. Precipitate was rinsed in
deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle. An aliquot
was further heated in air at 750 °C for 12 hours.
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Morphology of uranium ore concentrate from the Anaconda Company Bluewater Plant in Grants, New Mexico
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Process History Summary

A 6-step precipitation to pH 7.1 in a 48 hour period is used. The precipitate is concentrated with frame filters and dried in double drum steam-heated dryers to 90-120 °C
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Morphology of uranium ore concentrate from the COMUF facility Mounana, Gabon
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Process Hi

story Summary

A 3-stage continuous precipitation to a final pH of 7.2 in a 16 hour period is used. The precipitate is thickened to 25 % solids, washed and rotary vacuum stage, before entering a screw fed dryer (temperature not reported).
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Morphology of uranium ore concentrate from the Dyno facility in Bancroft, Ontario, Canada
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Process History Summary

Uranium is precipitated from a sulfate-based ion exchange stripping solution using magnesia. The precipitate is dried in a steam dryer (temperature not reported).
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Morphology of uranium ore concentrate from the Gunnar facility in Lake Athabasca, Saskatchewan, Canada
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Process History Summary

Uranium is precipitated from a solvent extraction stripping solution using magnesia. No other details identified.
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Morphology of uranium ore concentrate from the Rum Jungle facility in Australia
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Process History Summary

Uranium is precipitated from a solvent extraction stripping solution using magnesia. The precipitate is dried in a belt dryer at 320 °C
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Morphology of uranium ore concentrate from South Alligator, Australia




99¢

X-ray ray Diffraction Pattern

Counts

South Aligator as 1ece]

10000

2500 -

°

[South Aligator 750 C

10000 -

2500 -

L e
Bt 20 30 40 50 60

Position [‘2Theta]

Process History Summary

Paired Secondary Electron Image

Paired Backscatter Electron Image

Uranium is precipitated from a solvent extraction stripping solution using magnesia. The precipitate is dried in a batch tray dryer at 84 °C
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Morphology of the precipitate of uranyl nitrate and sodium hydroxide heated to 85 °C
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Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using 1.0 M sodium hydroxide. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle.




69¢

Morphology of the precipitate uranyl nitrate and sodium hydroxide heated to 150 °C
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Process History Summary

further heated in air at 150 °C for 12 hours.

Sample precipitated from 1.0 M uranyl nitrate using 1.0 M sodium hydroxide. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle. An aliquot was




TLT

Morphology of the precipitate of uranyl nitrate and sodium hydroxide heated to 400 °C
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Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using 1.0 M sodium hydroxide. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle. An aliquot was

further heated in air at 400 °C for 12 hours.
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Morphology of the precipitate uranyl nitrate and sodium hydroxide heated to 600 °C
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Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using 1.0 M sodium hydroxide. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle. An aliquot was

further heated in air at 600 °C for 12 hours.
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Morphology of the precipitate uranyl nitrate and sodium hydroxide heated to 750 °C
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Process History Summary

Sample precipitated from 1.0 M uranyl nitrate using 1.0 M sodium hydroxide. Precipitate was rinsed in deionized water, dried in air at 85 °C for 12 hours, and ground by hand with mortar and pestle. An aliquot was

further heated in air at 750 °C for 12 hours.
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Morphology of uranium ore concentrate from the El Dorado facility in Northwest Territories, Canada
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Process History Summary

Uranium is precipitated using sodium hydroxide. No other details were identified.
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Morphology of uranium ore concentrate from the Sequehanna Western Facility in Falls City, Texas, USA
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Process History Summary

Uranium is precipitated from a solvent extraction stripping solution using sodium hydroxide. No other details were identified.
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Morphology of uranium ore concentrate from the Ranstad facility in Sweden
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Process History Summary

The uranium is precipitated from solution at 80°C with diluted sodium hydroxide. After washing, the precipitate is thickened and dried in an electric dryer. No temperature reported.
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Morphology of uranium ore concentrate from the SOMAIR facility in Niger
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Process History Summary

Uranium is precipitated from a solvent extraction stripping solution with sodium hydroxide. No other details were identified.
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Morphology of uranyl hexanitrate heated to 600 °C for 4 hours
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Process History Summary

Uranyl nitrate crystals were ground to a fine powder using mortar and pestle and the heated in air at 600 °C for 4 hours.
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Morphology of uranium metal turnings directly heated to 400 °C
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Process History Summary

Uranium metal turnings were cleaned with nitric acid and acetone and then heated in air at 400 °C in for 3 hours
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Morphology of uranium hydride heated to 400 °C
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Process History Summary

Uranium metal turnings were cleaned with nitric acid and acetone, heated to 200 °C in flowing 4 % hydrogen/argon for 4 hours, and then heated to 400 °C in flowing humidified argon for 10 hours.
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Morphology of purchased uranium tetrafluoride
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Process History Summary

Uranium tetrafluoride purchased from International Bioanalytical Industries, Inc, Florida
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Morphology of uranium tetrafluoride heated in moist air at 400 °C
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Process History Summary

Uranium tetrafluoride was oxidized in moist flowing air at 400 °C.
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Morphology of a commercially produced uranium dioxide powder blend
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Process History Summary

Energy Dispersive Spectroscopy

NOT TAKEN
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