Oxidative Stress for an Acute Bout of Bikram Yoga in Healthy, Trained Adults

Kimberly Anne Trocio

University of Nevada, Las Vegas, ktrocio@gmail.com

Follow this and additional works at: http://digitalscholarship.unlv.edu/thesesdissertations

Part of the Cell Biology Commons, Exercise Science Commons, Medical Physiology Commons, and the Physiology Commons

Repository Citation
Trocio, Kimberly Anne, "Oxidative Stress for an Acute Bout of Bikram Yoga in Healthy, Trained Adults" (2013). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1899.
http://digitalscholarship.unlv.edu/thesesdissertations/1899

This Thesis is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
OXIDATIVE STRESS FOR AN ACUTE BOUT OF BIKRAM YOGA IN
HEALTHY, TRAINED ADULTS

by

Kimberly Anne Trocio
Bachelor of Science in Kinesiology
Indiana University
2005

A thesis submitted in partial fulfillment
of the requirements for the

Masters of Science in Exercise Physiology

Department of Kinesiology and Nutrition Sciences
School of Allied Health Sciences
Division of Health Sciences
The Graduate College

University of Nevada, Las Vegas
May 2013
THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Kimberly Trocio

entitled

Oxidative Stress for an Acute Bout of Bikram Yoga in Healthy, Trained Adults

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Exercise Physiology
Department of Kinesiology and Nutrition Sciences

Antonio Santo, Ph.D., Committee Chair

Lawrence Golding, Ph.D., Committee Member

Richard Tandy, Ph.D., Committee Member

James Navalta, Ph.D., Committee Member

Daniel Young, D.P.T., Graduate College Representative

Tom Piechota, Ph.D., Interim Vice President for Research &
Dean of the Graduate College

May 2013
ABSTRACT

Oxidative Stress for an Acute Bout of Bikram Yoga in Healthy, Trained Adults

by

Kimberly Trocio

Dr. Antonio Santo, Thesis Committee Chair
Professor of Kinesiology and Nutrition Sciences
University of Nevada, Las Vegas

BACKGROUND: Generation of free radicals resulting in oxidative damage has been linked to cellular damage, aging, and human disease. Many studies have reported that physical exercise can contribute to oxidative stress. Further, exercise in a hyperthermic environment can promote additional oxidative stress. It is important to consider that practices in yoga may be beneficial in reducing oxidative stress according to some studies. The compound effects of exercise and hyperthermic exposure are experienced in the practice of Bikram yoga, the original “hot” yoga. Because Bikram yoga and other hot exercise classes are an increasingly growing fitness trend, it is necessary to investigate whether there are benefits and inherent risks associated with participation. Specifically, markers of oxidative stress may provide insight into the safety and benefit for practical application of Bikram yoga. The proposed research will acknowledge two products of oxidative stress by means of lipid peroxidation and the antioxidant defense mechanism.

PURPOSE: The purpose of this study is to examine the effect of one Bikram Yoga session on oxidative stress markers in healthy, trained adults. METHODS: Fourteen healthy, Bikram yoga trained adults (7 females & 7 males) with a mean age, height, weight, BMI, and % body fat of 35.86 ± 9.09 y, 171.51 ± 9.37 cm, 76.23 ± 15.03 kg, 25.90 ± 4.83, and 20.96 ± 5.17 respectively, with 2.13 ± 1.82 years of experience,
completed a Bikram yoga session in its standard hot environment (approximately 40.6°Celsius, 40% humidity) (HOT) and a Bikram yoga session in a thermoneutral environment (22.2°Celsius and 50% humidity) (CON) on two separate laboratory visits. Oxidative stress variables, plasma thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) were investigated. Hematocrit (HMT), heart rate (HR), and oral body temperature (TEMP) were also observed. PASW Statistics 20 software was used to analyze the data. **RESULTS:** Oxidative stress in participation of one session of Bikram yoga performed in its standard hot environment is not significantly different when performed in a thermoneutral environment by healthy, trained adults. There was no significant interaction or main effects for TBARS (time: \(p=0.886 \), condition: \(p=0.480 \), interaction: \(p=0.507 \)), GSH (time: \(p=0.161 \), condition: \(p=0.414 \), interaction: \(p=0.525 \)), or hematocrit (time: \(p=0.581 \), condition: \(p=0.148 \), interaction: \(p=0.106 \)). The practice of Bikram yoga in the HOT revealed elevated HR (60 min: \(p=0.005 \), 75 min: \(p=0.034 \), 105 min: \(p=0.033 \)) and TEMP (15-90min: \(p<0.001 \) throughout testing in comparison to CON. HR was significantly different dependent upon the specific Bikram yoga pose. Oral temperatures reached significance throughout class participation. **CONCLUSION:** The lack of significant change observed in TBARS, GSH, and hematocrit indicates that the trained participants did not undergo significant oxidative stress regardless of increased oral body temperature or heart rates from the practice of Bikram yoga in the heat. Explanation of comparable levels of oxidative stress may be due to the experience and acclimatization to the practice. These data suggests that while the hyperthermic environment provides cardiovascular benefits, it does not significantly contribute to more oxidative stress in an acute bout of Bikram yoga for the Bikram trained.
ACKNOWLEDGEMENTS

I would first like to thank Dr. Antonio Santo, my thesis committee chair, for his guidance throughout the entire process of compiling and completing this research project. He believed in me, challenged me to do my very best, and taught me the importance of resilience and hard work. I greatly appreciate Dr. James Navalta for his assistance in executing this project. His ideas of blood withdrawal procedures were a substantial part for completion, and his willingness to be available for me this last semester with data collection, analysis, presentation preparation, and thesis writing means absolutely the world to me. He enabled me to see the light at the end of the tunnel. I would like to thank Dr. Richard Tandy for his statistical expertise, and especially his never-ending support and encouragement for me to persevere through it all. Thank you to Dr. Lawrence Golding for presenting the idea of constructing the environmental chamber for this project, his challenging comments and questions to substantiate the project, and for his continued support. I also would like to thank Dr. Daniel Young, my graduate college representative, for his feedback and suggestions in strengthening the project.

The support of my family and friends has been so valuable and important to me through this entire journey. There have been many trials and tribulations throughout this entire experience and without their love and support, I’m not sure this all would have been possible. They have always believed in me and pushed me to overcome the obstacles to accomplish my goals. Thank you to my mom and dad who both have always supported me and encouraged me to strive and achieve excellence. Much thanks to my brothers, who have always understood me and supported me through everything. And lastly, thank you to MP who has been my rock through all the blood, sweat, and tears in this project and in my graduate career.
TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

CHAPTER 1 INTRODUCTION ... 1
 Purpose of the Study ... 3
 Research Questions ... 3
 Research Hypothesis ... 3
 Null Hypothesis ... 4
 Alternate Hypothesis ... 4
 Significance of the Study .. 4

CHAPTER 2 REVIEW OF LITERATURE ... 5
 Free Radicals ... 5
 Superoxide Ion \((O_2^- \cdot)\) ... 7
 Hydroxyl Radical \((\cdot\text{OH})\) .. 8
 Hydrogen Peroxide \((H_2O_2)\) .. 9
 Singlet Oxygen \((^1O2)\) ... 9
 Oxidative stress .. 10
 Biological Effects of ROS ... 11
 Lipid Peroxidation .. 13
 Antioxidant Defense ... 16
 Glutathione .. 17
 Exercise-Induced Oxidative Stress .. 19
 Exercise in Hyperthermic Environments .. 20
 Yoga and Oxidative Stress .. 22

CHAPTER 3 METHODOLOGY .. 26
 Limitations and Delimitations ... 26
 Limitations .. 26
 Delimitations .. 27
 Subject Characteristics ... 28
 Instrumentation .. 29
 Research Design ... 31
 Collection of the Data ... 35
 Subject Characteristics ... 35
 Temperature and Humidity ... 35
 Hydration ... 35
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Subject Characteristics</td>
<td>29</td>
</tr>
<tr>
<td>Table 2</td>
<td>BIA Guidelines</td>
<td>29</td>
</tr>
<tr>
<td>Table 3</td>
<td>Research Design</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Reactive Oxygen Species</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Haber-Weiss Reaction</td>
<td>8</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Balance</td>
<td>10</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Imbalance</td>
<td>11</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Oxidative Stress</td>
<td>13</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Lipid Peroxidation</td>
<td>15</td>
</tr>
<tr>
<td>Figure 7</td>
<td>F-2 Isoprostanes</td>
<td>21</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Lipid Hydroperoxides</td>
<td>22</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Antioxidant Variables</td>
<td>24</td>
</tr>
<tr>
<td>Figure 10</td>
<td>TBARS</td>
<td>38</td>
</tr>
<tr>
<td>Figure 11</td>
<td>GSH</td>
<td>39</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Hematocrit</td>
<td>40</td>
</tr>
<tr>
<td>Figure 13a</td>
<td>Water Consumption</td>
<td>40</td>
</tr>
<tr>
<td>Figure 13b</td>
<td>Body Weight Lost</td>
<td>40</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Heart Rate</td>
<td>41</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Oral Body Temperature</td>
<td>42</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

It is important to investigate free radicals and oxidative stress, because it is associated with cellular damage, the aging process, and human disease (Golden, Hinerfeld, & Melov, 2002). Free radicals are unstable, highly reactive molecules that are generated as a result of normal metabolism of all living organisms and have biological advantage if maintained. However, free radicals can potentially be dangerous products of cellular metabolism in that they can directly influence cell growth, development, and survival. In an effort to achieve stability, free radicals desire and attempt to "steal" an electron from healthy molecules to fulfill their unpaired electron in their valence electron shell. The end result is damage to healthy cells and commences a chain reaction of free radical production potentially causing significant cellular damage. The cellular damage by free radicals is referred to as oxidative stress, and it occurs when the generation of free radicals exceeds the body's ability to neutralize and repair the resulting damage via the antioxidant defense system. Accumulation of these free radicals can result in failure of normal cell function, consequently causing an inflammatory response, cell death, and oxidation of lipids, proteins, and DNA (Fisher-Wellman & Bloomer, 2009; Mattson, 2006; Powers & Jackson, 2008). More importantly, excessive exposure to oxidative stress can contribute to the acceleration of aging and implication in the cause of diseases including cancer, cardiovascular disease, arthritis, Parkinson’s disease, Alzheimer’s
disease, and other biological diseases. For those predisposed to these types of devastating conditions, it is important to be aware of what can happen at the basic cellular level in order to explore preventative measures. Furthermore, external factors such as environmental and physical stress has the ability to increase radical production causing a disturbance in normal redox state (Vollaard, Shearman, & Cooper, 2005; Zhao, Fujiwara, & Kondo, 2006). The compound effects of prolonged aerobic exercise and a hyperthermic environment in hot exercise classes such as Bikram yoga have the potential to exacerbate cellular damage.

Because Bikram yoga is considered to be an aerobic activity and is performed in a heated environment, participants are susceptible to free radical production and oxidative damage as opposed to a practice in a neutral thermal environment. Specifically, Bikram yoga classes are performed for exactly 90 minutes, consist of a sequence of 26 postures (Appendix I) and two breathing techniques, and are required to be practiced in a room heated to the extreme temperature of 105°F (approximately 40.6°C) with 40% humidity. It is purported that performing the exercise in the heated room is essential to receiving maximum benefits and not to harm the body ("About Bikram Yoga," 2010). Additionally, it is claimed that this practice offers advantages on a cellular and biochemical level, but there is a dearth of scientific evidence to support the benefits.

Because of Bikram yoga’s increasing recognition, clinical trials are necessary to draw adequate conclusions regarding its effectiveness and safety for its participants. In addition to the obvious concerns of heat stress, it is important to examine the oxidative influence of Bikram yoga so participants can apply these findings to their own practice.
and take precautions if necessary. The proposed study will allow comparison and identification of any disparity between Bikram sessions performed in its standard hot condition versus a thermal neutral condition. The proposed study will investigate two different products of oxidative stress in regard to lipid peroxidation and antioxidant defense. Examining each product of oxidative stress will reveal any significant oxidative stresses caused by a Bikram session and the capability of the antioxidant defense system of the participants. Furthermore, elements of heat stress including participants’ heart rates, oral body temperature, and dehydration statuses will be investigated for both sessions. In any event, the results will reveal awareness in the safety and impact of Bikram yoga at a cellular level. The findings of the proposed research will assist in understanding the relationship of heat stress and prolonged exercise on oxidative status in one session of Bikram yoga.

Purpose of the Study

The purpose of this study is to examine the effect of one Bikram Yoga session on oxidative stress markers in healthy, trained adults.

Research Questions

Research Hypothesis

There will be significantly greater levels of oxidative stress in healthy, trained adults for one session of Bikram yoga in comparison to a thermal neutral environment.
Null Hypothesis

There will be no change in oxidative stress in healthy, trained adults for one session of Bikram yoga between the hyperthermic and thermal neutral environments.

Alternate Hypothesis

There will be significantly lower levels of oxidative stress in healthy, trained adults for one session of Bikram yoga in comparison to a thermal neutral environment.

Significance of the Study

There has been very limited research regarding the safety and efficacy of Bikram yoga. Because Bikram yoga and other hot exercise classes are an increasingly growing fitness trend, it is necessary to elucidate whether there are benefits and inherent risks associated with participation. Specifically, markers of oxidative stress may provide insight into the safety and benefit for practical application of Bikram yoga. The proposed research will acknowledge two products of oxidative stress by means of lipid peroxidation and the antioxidant defense mechanism. Further, the study will be able to disclose information regarding the competence of antioxidant defenses in Bikram trained participants. Because there has been limited research, performing this experiment may open the door of opportunity for other students and researchers to make further investigations on the subject of this study. Research application and testing are vital in the advancement of scientific knowledge of answering why oxidative stress occurs and how to prevent and treat the cellular damage that are inflicted on humans and other living things.
CHAPTER 2

REVIEW OF LITERATURE

Free Radicals

A free radical is any species capable of independent existence, containing one or more unpaired electron in its outermost shell (Halliwell, 1991). Free radicals are produced by an electron transfer that requires a high input of energy (Cheeseman & Slater, 1993). An electron is a negatively charged particle that revolves around the nucleus of an atom. Nearly all electrons in the human body exist in pairs, and these atoms or molecules with paired electrons are considered to be stable. Conversely, when there is only one electron in the outer orbital or when an electron becomes unpaired, that atom or molecule is considered unstable and converts to a free radical. A free radical is easily formed when a covalent bond between entities is broken and one electron remains with each newly formed atom (Karlsson, 1997). A covalent bond is a chemical bond that involves sharing a pair of electrons between atoms in a molecule. When reacting with other radicals or molecules, a free radical has the ability to generate additional radicals (Sen, 2001). Reduction is the process in which free radicals attempt to become stable by "stealing" electrons from nucleic acids, lipids, or any nearby molecule. The molecule that acquires an electron is considered reduced, or stabilized, and the molecule that loses an
electron is considered oxidized. The loss of an electron through oxidation is what drives the generation of free radicals. If this acquiring of electrons is left rampant by the body's natural defense systems, the generation of free radicals promotes a chain reaction potentially resulting in cellular damage and disease.

The most imperative and critical of free radicals in the biological system are derived from oxygen. Due to its atomic structure comprising of two unpaired electrons in its outermost shells, oxygen is highly reactive and extremely susceptible to radical formation or oxidation (Sen, 2001). These free radicals and non-radical derivatives of oxygen are collectively termed as reactive oxygen species (ROS). ROS are formed during the reduction of oxygen to water. About 98% of inspired oxygen is reduced to water (H₂O) during lipolysis, processes of inflammation, the production of chemical energy, along with several other biologic processes (Kerr, Bender, & Monti, 1996; Wilson, Pierce, & Clancy, 2001). However, the incomplete reduction of the remaining 2% leads to the formation of three major ROS: superoxide (O₂•⁻), hydrogen peroxide (H₂O₂), and hydroxyl (•OH). Another radical derived from oxygen is singlet oxygen, ¹O₂. This is an excited form of oxygen in which one of the electrons transfers to a superior orbital following absorption of energy. Figure 1 displays the atomic structured of the ROS, superoxide anion, peroxide, and hydroxyl radical, in comparison to the stable oxygen and hydroxyl ion.
Superoxide ion (O$_{2}$•)

Superoxide anions (O$_{2}$•) are generated when oxygen (O$_{2}$) acquires an additional electron, leaving the molecule with only one unpaired electron. Reduction of oxygen results in the production of superoxide anions [Equation 1]. Superoxide anion has an oxidizing function, where it is reduced to hydrogen peroxide (H$_{2}$O$_{2}$), or a reducing function, in which it is oxidized back to oxygen [Equation 2]. Hydrogen peroxide is a strong oxidizing agent and can easily be converted to form a number of oxidants including the most reactive hydroxyl radical (•OH). O$_{2}$• is continuously being formed within the mitochondria, and the rate of generation is dependent upon the amount of oxygen in circulation at a given time.

Equation 1 (superoxide anion): O$_{2}$ + e$^{-}$ → O$_{2}$•

Equation 2 (hydrogen peroxide): O$_{2}$ + 2e$^{-}$ + 2H$^{+}$ → H$_{2}$O$_{2}$
Hydroxyl Radical (•OH)

Though hydroxyl is short-lived, it is an extremely reactive radical that can damage various cellular components, unless further reduced to water (Dillard, Litov, Savin, Dumelin, & Tappe, 1978). Detrimental effects of ROS can include DNA damage, cell membrane destruction, and protein mutation. Hydroxyl radical can be formed from O$_2$. and H$_2$O$_2$ via the Harber-Weiss reaction (Kehrer, 2000) in Figure 2.

Figure 2 Haber-Weiss Reaction
(Tedesco, Martínez, & González, 1997)

\[
\begin{align*}
\text{Fe}^{3+} + \text{O}_2{•^-} & \rightarrow \text{Fe}^{2+} + \text{O}_2 \\
\text{Fe}^{2+} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe}^{3+} + \text{OH}^- + \text{•OH} \\
\text{O}_2{•^-} + \text{H}_2\text{O}_2 & \rightarrow \text{OH}^- + \text{•OH} + \text{O}_2 \\
\text{Fe}^{3+} & \text{Fe}^{3+}
\end{align*}
\]

The presence of a transition metal, such as ferrous iron (Fe$^{3+}$), is necessary for hydroxyl radical formation. The interaction of copper or iron and H$_2$O$_2$ also produce OH• as first observed by Fenton. These reactions are significant as the substrates are found within the body and could readily create interactions. The iron-catalyzed Haber–Weiss reaction, involving Fenton chemistry, is considered to be the major mechanism by which the highly reactive hydroxyl radical is generated in biological systems (Liochev, 1999). In the net equation, superoxide reacts with hydrogen peroxide to produce the hydroxyl radical. The Haber-Weiss reaction provide a means to generate more toxic radicals from
the less reactive superoxide and hydrogen peroxide that could be generated enzymatically (Kehrer, 2000).

Hydrogen Peroxide (H$_2$O$_2$)

Hydrogen peroxide formation is derived from numerous reactions including dismutation of superoxide by SOD (superoxide dismutase) and a number of enzyme systems (Powers & Jackson, 2008). H$_2$O$_2$ is stable and has a relatively long half-life (Powers & Jackson, 2008). While H$_2$O$_2$ is unable to oxidize DNA or lipids directly, it can inactivate some enzymes, usually by oxidation of essential thiol groups (Halliwell & Gutteridge, 2007; Powers & Jackson, 2008). Exposure of cells to large doses of H$_2$O$_2$ can cause inhibition of glycolysis resulting in ATP depletion (Halliwell & Gutteridge, 2007). Hydrogen peroxide is distinctive in its ability to be converted to the highly damaging hydroxyl radical or be catalyzed and excreted harmlessly as water. Glutathione peroxidase is essential for the conversion of glutathione to oxidized glutathione, during which H$_2$O$_2$ is converted to water (Hunt et al., 2000). If H$_2$O$_2$ is not converted into water singlet oxygen (¹O$_2$), another free radical, is formed.

Singlet Oxygen (¹O$_2$)

Singlet oxygen is technically not a free radical but can be formed concurrently with radical reactions and may consequently cause further detrimental reactions. Singlet oxygen violates Hund's rule of electron filling in that it has eight outer electrons existing in pairs leaving one orbital of the same energy level empty. When oxygen is energetically excited one of the electrons can jump to empty orbital creating unpaired electrons
Singlet oxygen can then transfer the energy to a new molecule and act as a catalyst for free radical formation. The molecule can also interact with other molecules leading to the formation of new free radicals.

Oxidative Stress

Generation of ROS is a natural process within the aerobic organism during normal metabolism. ROS production is present under normal conditions at rest in which healthy individuals possess an antioxidant defense system that provides a balance between production, removal, and no net increase in ROS, and oxidized antioxidants are regenerated or reduced to keep pace with ROS production (See Figure 3). Inherently, as metabolic processes progress, it can create an immense amount of ROS. When ROS formation exceeds the body’s ability to neutralize and eliminate them, it results in an oxidative imbalance. Further, this imbalance of oxidant and antioxidant levels is referred to as oxidative stress (See Figure 4).

Figure 3 Balance
(Deaton & Marlin, 2003) There is a balance between ROS production and antioxidant defenses under normal conditions for healthy individuals.
The body’s antioxidant defense system serves to protect the cells from excess ROS production and is comprised of endogenous and exogenous compounds (Urso & Clarkson, 2003). Oxidative stress that occurs in the cells, as a consequence of an inequity between the pro-oxidant and antioxidant systems, causes harm to biomolecules such as nucleic acids, proteins, structural carbohydrates, and lipids causing tissue damage and inflammation (Sies & Cadenas, 1985).

Biological Effects of ROS

ROS are vital components in the immunity response, specifically by combating against antigens during phagocytosis. This role is especially high in demand in
developments of inflammation. Inflammation can be caused by physical exercise, in particularly intense exercise. Although many studies emphasize the harmful effects of free radicals, ROS also play an important role in cellular signals or in biogenesis of cells. ROS has the ability to serve as cell messengers and to modify oxidation-reduction (redox) status. Further, ROS are recognized of involvement for enzyme activation, drug detoxification or in facilitation of glycogen repletion. In addition, ROS play an essential role in muscular contraction in which inhibition of ROS production leads to a loss of muscular fibers’ contractile force. Conversely, increasing ROS leads to increased contractile force. However, a significant amount of ROS in muscular tissue is implicated by muscular fatigue and represent one of the negative effects of ROS.

In addition to those favorable effects, ROS also has potential adverse effects. ROS are not inherently harmful; however, in response to chronic exposure to excessive and/or ectopic production, the system can become unbalanced (free radicals > defenses), potentially resulting in a shift in the intracellular redox balance towards a more oxidizing environment, in turn promoting oxidative damage, inflammation, ill-health, and disease (Fisher-Wellman & Bloomer, 2009). More specifically, damaging effects comprise of oxidative damage to nucleic acids, lipids, and proteins, as well as by changes in gene expression that promote apoptosis within healthy cells and systemic inflammation, and lastly, the functional decline with aging and pathophysiology (Chung et al., 2008; Droge, 2002).
Lipid Peroxidation

Highly reactive intermediates of oxidative stress include the superoxide anion radical ($O_2•^{-}$), hydrogen peroxide (H_2O_2), and the hydroxyl radical ($•OH$). These agents have been shown to be responsible for oxidative damage by initiating lipid peroxidation. Lipid peroxidation refers to the oxidative degradation of lipids and their formation of their products that contribute to advancement of free radical reactions. Lipid peroxidation is the mechanism of radical chain reactions consisting of three major stages: initiation, propagation, and termination (Catala, 2006).
Lipid peroxidation is the initiation of free radical attack on the cell when a free radical steals an electron from the lipid membrane. Initiation of lipid peroxidation occurs when a radical species with significant oxidizing effects, such as the hydroxyl radical (•OH), removes an allylic hydrogen from polyunsaturated fatty acids (PUFAs) forming a lipid radical. PUFAs are abundant in cellular membranes and in low-density lipoproteins (LDL) (Dekkers, Van Doornen, & Kemper, 1996). The PUFAs allow for fluidity of cellular membranes, maintenance of an equilibrated gradient of concentration, membrane permeability, and inflammation. In addition, initiation can be stimulated by ions or chelates of transition metals, like iron, which provoke the toxicity of H$_2$O$_2$ by formation of hydroxyl radicals (Hall, 1997).

The carbon-carbon double bonds in PUFAs are targeted by ROS, because the site weakens the carbon-hydrogen bond granting accessible abstraction of hydrogen for transformation of additional ROS. An immediate rearrangement occurs in effort to stabilize the carbon-centered radical, forming a more stable lipid radical, whose dienes are conjugated (Gutteridge, 1995). This conjugated diene (a hydrocarbon chain that has two double bonds separated by a single bond) reacts with oxygen to form a proxy radical, the lipid peroxyl radical (LOO•). Propagation reactions can continue by the lipid peroxyl radical abstracting an allylic hydrogen atom from another adjacent PUFA, resulting in a lipid hydroperoxide (LOOH) and a second lipid radical. This second lipid radical can progress in the corresponding reactions as the first for generation of additional lipid hydroperoxides. The propagation step can undergo numerous rounds of peroxide generation before a termination event occurs. The termination event can be the result of
any reaction with another radical, protein, or compound that acts as a free radical trap, forming a stable end product (Davies, 1996).

The biophysical consequences of peroxidation on membrane phospholipids can be both extensive and highly destructive (Hall, 1997). Lipids altered by peroxidation are subjected to disruption of permeability of cell membranes, reduction to facilitate an equilibrated concentration gradient, decrease in electrical resistance, and inactivation of cross-linked proteins (Radák et al., 1999; Richter, 1987). Lipid peroxidation inflicts the chemical modification of fatty acids resulting in oxidative stress. Since lipid peroxidation is a self-propagating chain-reaction, the initial oxidation of only a few lipid molecules can result in significant tissue damage. An accumulation of lipid peroxides in human cells over time has been known to be associated with numerous pathological conditions.

![Figure 6 Lipid Peroxidation](Wikipedia, 2013)
Antioxidant Defense

An antioxidant can be defined as a substance that has the ability to reduce the severity of oxidative stress by either forming a less active radical or suppressing the damaging free radical chain reaction on substrates such as proteins, lipids, carbohydrates or DNA (Dekkers et al., 1996). The role of the antioxidative defense mechanism is to combat threats posed by the overproduction of ROS and to stabilize the imbalance of the prooxidant-antioxidant system. Scavenging or detoxification of excess ROS is achieved by an efficient antioxidative system comprising of active non-enzymatic (primarily from food sources) and enzymatic (endogenous) antioxidants (Powers & Lennon, 2000). The efficiency of the antioxidant mechanism is dependent on nutritional consumption and endogenous antioxidant enzyme production. Certain factors including exercise, the external environment, training, nutrition, and aging may promote the inclination and modulation of overproduction of ROS. Because exercise and heat stress increases free radical production, the capabilities of the antioxidant defense system is of critical importance.

An acute bout of exercise is known to increase the activities of antioxidant enzymes, including, superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) in skeletal muscle, heart, and liver (Jenkins, 1988; Ji, 1993). Skeletal muscle has one of the lowest antioxidant enzyme levels in the body, however, oxygen flux can increase up to several dozen-fold during strenuous exercise. The resultant large increase in ROS is the likely trigger of antioxidant enzyme synthesis.
Glutathione

Glutathione is the major non-enzymatic endogenous antioxidant that has been the focus of extensive research of exercise induced oxidative stress. GSH plays a multifunctional role in protecting tissues from oxidative damage during exercise. GSH reduces hydrogen peroxides and organic peroxides via reactions catalyzed by glutathione peroxidase (GPX) and serves as a scavenger of singlet oxygen and •OH (Ji, 1995). The primary preventative antioxidant pathway for hydroperoxide (free radical) removal involves the action of GPX that oxidizes glutathione (GSH) into glutathione disulfide (GSSG) in the cytosol and mitochondria (Jones, 2008).

GPX, present in cell cytosol and mitochondria, catalyzes the oxidation of glutathione (GSSG) and has the ability to transform H₂O₂ into water (Equation 3). Oxidized glutathione (GSSG) is subsequently reduced by glutathione reductase (GR) with the expense of NADPH (Equation 4). The ratio of GSSG to total glutathione (GSH + GSSG) also known as the glutathione redox ratio (GRR) is suspected as a sensitive indicator of oxidative stress.

\[
\text{GPX} \\
\text{Equation 3: } 2 \text{GSH} + \text{H}_2\text{O}_2 \rightarrow \text{GSSG} + 2 \text{H}_2\text{O}
\]

\[
\text{GR} \\
\text{Equation 4: } \text{GSSG} + \text{NADPH} + \text{H}^+ \rightarrow \text{NADP}^+ + \text{GSH}
\]

Changes in blood glutathione as decreases in GSH and increases in GSSG, with no change in total glutathione (TGSH) have been reported following a variety of non-eccentric aerobic exercise protocols (Fisher-Wellman & Bloomer, 2009). In addition,
increases in TGSH rarely been reported post-exercise. The authors concluded that increases in TGSH may be due to the distribution of GSSG from other tissues in addition to the blood. Increases in TGSH could also be due to training status, as individuals with higher training status may be better conditioned to maintain adequate GSH levels during exercise (Leeuwenburgh & Heinecke, 2001). According to a few studies, glutathione status typically returns to basal levels within 15-30 minutes of recovery.

Endurance exercise training has been shown to improve glutathione protection against oxidative stress in rats and humans (Douris et al., 2009; Elokd & Nielsen, 2007; Kihlstrom, 1990; Leeuwenburgh & Heinecke, 2001). A previous study showed endurance swim training in rats provided enhanced protection of the heart by way of elevated GSH levels and a more efficient NADPH supply system to the heart (Kihlstrom, 1990). Likewise, rats were trained by running for two hours per day, five days per week, for 10 weeks (Leeuwenburgh & Heinecke, 2001). The authors found a substantial (62%) increase in GPx activity and increased GSH in the skeletal muscle, with no changes in blood GSH levels. In humans, the data on the effects of training on the glutathione system in humans is very limited. Two studies have shown enhanced glutathione protection as a result of superior aerobic fitness (Douris et al., 2009, Ortenblad, Madsen, & Djurhuus, 1997) while others have shown directly the effects of training on the glutathione system (Elokda & Nielsen, 2007; Miyazak, Oh-ishi, Ookawara, Toshinai, & Ha, 2001). One study simulated cardiac rehabilitation exercise (40 min/day three days/week for six weeks) consisting of aerobic training, circuit weight training, or a combination of both (Elokda & Nielsen, 2007). The authors found that training increased
resting levels of GSH and decreased resting levels of GSSG and the effects were greater in the combination of aerobic and circuit weight training compared to the exercises alone. Similarly, 12 weeks of running for 60 min at 80% VO₂ max five days per week increased GPx activity by 12% (Miyazak et al., 2001). Assessing individuals of varying fitness levels, Douris et al. (2009) found individuals who practiced martial arts for one hour per day twice a week for at least four years had increased resting GSH and decreased resting GSSG while being better able to respond to an acute bout of oxidative stress compared to their sedentary counterparts. Finally, Ortenblad et al. (1997) found increased GPx activity in the resting muscle of jump trained athletes compared to untrained subjects. These results seem to suggest that exercise training of varying intensities and modes can increase the efficiency and function of the glutathione system, likely leading to a decrease in exercise-induced oxidative stress and potential for disease development.

Exercise-Induced Oxidative Stress

Many studies have reported that physical exercise can promote oxidative stress. Aerobic exercise is identified as the fundamental cause of the abnormal elevated levels of ROS due to the increased demands of oxygen consumption (VO₂). Under normal conditions, excess ROS produced by the mitochondrial electron transport system are scavenged by the endogenous antioxidants (Rock, Jacob, & Bowen, 1996). However, if radical formation overwhelms the capacity of antioxidant defenses, the free radicals evades from the mitochondria and oxidizes in the lipids, proteins, and other cell
components resulting in oxidative stress. Consequently, these events can prevent normal cellular functions and promote degradation of cellular biochemical processes.

It has been investigated that acute aerobic exercise has the potential to result in increased ROS production (Ashton et al., 1998; Davies, Quintanilha, Brooks, & Packer, 1982). Bloomer et al. (2005) compared oxidative modification of blood proteins, lipids, DNA, and glutathione during the 24 hour period following both aerobic and anaerobic exercise bout in cross-trained men. The results suggest that thirty minutes of aerobic and anaerobic exercise in cross-trained men can increase and differentially affect certain oxidative biomarkers, and can result in a different magnitude of oxidation based on the macromolecule. Specifically, the researchers found significant increases in PC post-anaerobic exercise compared to pre-exercise, an increasing trend but insignificant MDA levels for both conditions, and significant increases in GSH immediately post-aerobic. Different exercise protocols may result in varying levels of ROS production dependent upon intensity and duration. Typically, as intensity and/or duration of exercise increases, the development of oxidative stress is more favorable. Factors that may influence the antioxidant defense mechanism include age, training status, and nutritional intake.

Exercise in Hyperthermic Environments

A hyperthermic environment can influence oxidative stress levels both at the resting state and exercising state. It seems that heat stress not only produces oxidants but impairs the enzyme system that is necessary for detoxification of \(\text{H}_2\text{O}_2 \) and organic hydroperoxides (Ohtsuka, Yabunaka, Fujisawa, Watanabe, & Agishi, 1994). The
imposition of increased metabolic rate may be accounted from the compromised antioxidant defense mechanism owing to the overproduction of ROS. It is well established that heat stress reduces stroke volume (SV) and subsequently increases heart rate (HR) in effort to maintain cardiac output during moderately intense exercise (Gonzalez-Alonso, Mora-Rodriguez, & Coyle, 2000; Rowell, Bruce, Conn, & Kusumi, 1966). Even in normal environments prolonged exercise may produce mild hyperthermia along with increased heart rate (HR), and increased core and skin temperatures (Nassis & Geladas, 2002). These conditions are exacerbated in hyperthermic environments when thermoregulation is impaired (Ely, Cheuvront, Kenefick, & Sawka, 2010). A McAnulty et al. study in 2004 examined lipid oxidative markers (F2 isoprostanes and lipid hydroperoxides) and lactate after low intensity (50% of VO2max) running in a hyperthermic environment versus a neutral environment for 6 males subjects. They concluded that hyperthermia increases oxidative stress and selectively affects specific lipid markers, independent of oxygen consumption (results displayed in Figure 8 and 9).

Figure 7 F2-Isoprostanes F2-isoprostanes were significantly elevated in the HOT protocol versus CON, as well as elevated over time in both groups (McAnulty et al., 2004).
Lipid hydroperoxides were significantly elevated over time, but the pattern of change was not different between protocols (McAnulty et al., 2004).

Further, exercise in the heat has the inclination to increase the risk for state of dehydration which is indicative of elevated oxidative stress (Paik et al., 2009). It is well established that increased HR during hyperthermic exercise results from increased sweat rates and blood volume redistribution which in turn decreases plasma and blood volume (Montain & Coyle, 1992). The independent and combined effects of environmental heat stress and dehydration can challenge the limits of human temperature regulation and aerobic performance (Chevront, Kenefick, Montain, & Sawka, 2010).

Yoga and Oxidative Stress

Yoga is an ancient discipline designed to bring balance and health to the physical, mental, emotional, and spiritual dimensions of the individual. Yoga performs asanas (postures), pranayama (breathing techniques), and meditation to integrate the mind,
body, and spirit. Not until the 20th century did the ancient practice become increasingly prevalent in Western society if effort to pursue a healthy lifestyle.

An increasing number of scientific research supports the belief that certain yoga practices can improve physiological and psychological functions. Yoga has been found to have beneficial effects on blood glucose levels in diabetics and individuals with chronic health conditions (Bijlani et al., 2005) (Gokal & Shillito, 2007). Additionally, yoga has been shown to be effective in relieving symptoms of mental illness including depression and anxiety (Shapiro & Cline, 2004; Woolery, Myers, Sternlieb, & Zeltzer, 2004). In a Ross & Thomas (2010) review, their findings concluded that studies comparing the effects of yoga and exercise portrays the indication that in both healthy and ill populations, yoga may be as effective or better than exercise at improving a variety of health-related outcome measures including blood glucose, blood lipids, and oxidative stress (Hagins, Moore, & Rundle, 2007; Sinha, Singh, Monga, & Ray, 2007; Yurtkuran, Alp, & Dilek, 2007). Only few studies found yoga practice as less beneficial from measures of energy expenditure, metabolic equivalents, VO2max, and mood (Hagins et al., 2007).

Few studies explored the effect of yoga on oxidative stress. The Sinha et al. (2007) study of 51 healthy males, the researchers found yoga to be more effective than running with flexibility training in improving measures of antioxidant status. Reduced glutathione (GSH) increased in the yoga group and decreased in the exercise group. Similarly, glutathione reductase (GR) increased significantly only in the exercise group, while total antioxidant status increased significantly in the yoga group and decreased
significantly in the exercise group. Figure 10 displays the results of the Sinha et al. (2007) study. A study of 77 type 2 diabetic patients found that yoga resulted in similar measurements as exercise regarding levels of MDA, superoxide dismutase (SOD) and catalase activity (Gordon et al., 2008). Though these studies indicate yoga may be beneficial in reducing oxidative stress, additional research is warranted to provide stronger evidence.

Figure 9 Antioxidant Variables
(Sinha et al., 2007)

Importantly, with the emerging popularity of Bikram yoga, a form of yoga practiced in high heat, there is a need for clinical trials to substantiate conclusions regarding the indication of oxidative stress in the hyperthermic environment. Scientific
literature suggests that exercise and hyperthermia both independently and adversely affect the balance of the oxidant and antioxidant systems. However, the practice of yoga has been investigated and has demonstrated favorable oxidative effects. This thesis pursues the investigation of the hyperthermic effect in Bikram yoga on oxidative stress biomarkers.
CHAPTER 3

METHODOLOGY

Limitations and Delimitations

Limitations

Because the sample consisted of Bikram yoga trained, healthy adults that represented only a small percentage of the general population, it can pose a threat to external validity. Some poses demonstrated in Bikram yoga are of high difficulty, and it is necessary for the participants to be able to complete the class properly and with no assistance. The main reasons for selecting these individuals were because of their acclimated condition to the hot temperature and the insurance of full class participation and completion. To protect internal validity, “Bikram’s Beginning Yoga CD”, a recording of the creator’s script instructing the class, was chosen for the study’s class instruction. This eliminated the variety in teaching influences of certified Bikram Yoga instructors. In addition, validity may be influenced due to the large variation of acute effects of exercise amongst individuals. Selecting participants of similar physical condition including body composition and training level limited these variations across the individuals.

The pre-test and post-test blood draws was determined for before and after effects. Post-30 time frame was selected to monitor change in levels over a short period.
of time for comparison of the two conditions. A longer period of time may present implications of subject discomfort following 90 minutes of exercise and an overnight fast and further complications associated with research design.

Oxidative variables selected were designated by the categories of lipid peroxidation and anti-oxidant status. Selection was influenced by availability of lab materials and cost. The oral body temperature determination, using not the most accurate measurement tool, was limited by availability of equipment and limited funds. The length of the class was pre-determined by the Bikram class requirements and thusly, enables the flexibility of changing the exercise time regardless of oral body temperature levels.

Delimitations

Though interaction and the surroundings for the Bikram Yoga class were controlled, the personal motivation or effort of the participant could not. The participants were advised to maintain a normal diet and stay well-hydrated the day prior and during testing. For future studies, it may be worthy to note for the participants to keep a food/drink log to ensure they consume the same amount of food and liquids for each particular condition in order to reduce variability in baseline measures between conditions. Also, it may be advantageous to better control participant’s water consumption during and after performing the Bikram class as hydration status may be a compounding factor for results.
Subject Characteristics

A sample of 15 healthy, trained individuals was recruited to voluntarily participate in this study. Subject characteristics are presented in Table 1. The participants included in the study are adults aged 18-45 years, free of medical conditions that limit physical activity, and have participated in Bikram yoga on average at least three times a week in the last three months. The Physical Activity Readiness Questionnaire (PAR-Q) was used to screen recruits at high-risk for a cardiovascular complication. Individuals who answered no to all the questions were able to participate in the study. Individuals taking antioxidant supplements within 3 months prior to testing were excluded from participation. These antioxidant supplements including vitamin A, vitamin C, vitamin E, or selenium owe potential effects on oxidative stress markers. In addition, individuals that are considered well below average for body composition according to the American College of Sports Medicine Guidelines were not able to participate. Moreover, obese individuals based on their Body Mass Index were excluded from the study.

Participants were asked to maintain their usual diet and be well hydrated for the duration of the study. Strenuous physical activity within 24 hours of testing and caffeine consumption on the days of testing was prohibited. To minimize diurnal rhythm effects, participants were instructed to complete an overnight fast of 8-12 hours on the mornings of testing. Participants were instructed to follow the BIA guidelines prior to testing (Table 1).
Table 1 Subject Characteristics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>35.86 ± 9.09</td>
</tr>
<tr>
<td>Height (centimeters)</td>
<td>171.51 ± 9.37</td>
</tr>
<tr>
<td>Weight (kilograms)</td>
<td>76.23 ± 15.03</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>25.90 ± 4.83</td>
</tr>
<tr>
<td>Body Fat (%)</td>
<td>20.96 ± 5.17</td>
</tr>
<tr>
<td>Bikram Experience (years)</td>
<td>2.13 ± 1.82</td>
</tr>
</tbody>
</table>

Table 2 BIA Guidelines

1. No eating or drinking within 4 hours of test.
2. No moderate or vigorous exercise within 12 hours of the test.
3. Void (urinate) completely within 30 minutes of the test.
4. Abstain from alcohol consumption within 48 hours of the test.
5. Do not ingest diuretics, including caffeine, the day of assessment.

Instrumentation

Height was obtained using an anthropometer, Body mass was measured using a weighing scale at pre-test and post-test to determine the net loss of body water during the Bikram yoga sessions. Body Mass Index (BMI) was determined by the equation mass/height² (kg/m²). An ELG III Tetrapolar Bioelectrical Impedance Analysis (BIA) System was used to determine the participant’s body composition. A Taylor Sybron Corporation Sling Psychrometer measured ambient temperature and humidity for both conditions. A Polar Heart Rate Monitor and belt were used to monitor heart rate for the duration of testing. A digital oral thermometer was administered for obtaining of oral
temperature readings of the participant. Baseline measurements of heart rate and oral body temperature were taken followed by measurements every 15 minutes until test termination.

The experimental condition was performed in an environmental chamber. See Appendix VII for specifications. The environmental chamber was constructed in a 10 ft. x 10 ft. x 11 ft. room in MPE 312 at UNLV. A single layer of visqueen clear plastic sheet lined the walls and ceiling which provided further insulation inside the room. A door on one side of the chamber provided entry to the chamber. A sheet of visqueen plastic was placed at the doorway and was cut to allow the sheet of plastic to open upwards. During class participation, the plastic “door” was at the closed position but not sealed. The chamber was designed to hold the maximum capacity of 3 participants.

Heaters and humidifier/dehumidifier units provided for temperature and humidity regulation inside the chamber. Temperature and humidity readings were monitored every 15 minutes in preparation and for the duration of testing. If the temperature was too low, the heater was turned on at a higher setting. If the temperature was above the desired temperature, the heater was reduced or turned off. If the humidity was too high, the dehumidifier setting was increased. If the humidity was too low, the humidifier was turned on. Based on the room temperature and humidity, the settings were adjusted to maintain the proper levels.

Five hundred milliliters of water was provided to participants to drink ad libitum during each of the conditions and remaining fluid was measured with a graduated cylinder at the end of the trials for determination of water consumption.
Blood samples were drawn via finger prick by use of Capiject Lancets (Fisher Scientific) and Multivettes (Fisher Scientific) for capillary blood collection. After blood collections were complete, the samples were centrifuged, prepared and stored in multiple aliquots in 1.4 mL Posi-Click Tubes (Denville Scientific) at -80°C until analysis. GSH and TBARS were analyzed using an enzyme linked immunosorbent assay (ELISA) following the procedures as outlined by the manufacturer (MBL and Cayman Chemical). The centrifugation of blood samples and additional measurements using a metric ruler were performed for hematocrit analysis.

Research Design

In this randomized control study, participants who satisfied the study criteria participated in two different conditions: the experimental and control. At each visit, the participant performed the specific yoga protocol in one of the two conditions. A random integer generator (accessed at random.org) was used to determine the order of placement in each condition.

The subject assigned in the experimental condition (HOT) participated in a session of Bikram Yoga in a controlled environment with a temperature of 40.6°Celcius (105°Fahrenheit) and 40% humidity. In contrast, the control condition (CON) required the subject to participate in a bout Bikram Yoga exercises in a neutral temperature with a room temperature of about 22.2°Celcius (72°Fahrenheit) and 50% humidity. Participants performed each condition separated by least three days. All testing was conducted in a controlled environmental chamber where room temperature and humidity was manually
regulated. The test location was located at the Human Performance Lab (MPE 312) at the University of Nevada, Las Vegas. Testing on both days was conducted at the same location and at the same time of day in the morning. A pre-recorded audio recording, "Bikram's Beginning Yoga Class" instructed by Bikram Choudhury, was used for both HOT and CON conditions. All subjects listened and participated along with the recording of the Bikram yoga class for each day of testing. To consider participation of the study to be complete, participants were recommended to participate for the entire 90 minutes of instruction while inside the environmental chamber. However, as stated in the informed consent, the participant may have chosen to withdraw from testing at any time they felt uncomfortable and/or wished to discontinue testing.

At least one CPR and AED Certified Member of the research team closely monitored the participant(s) of any signs/symptoms of heat stress at all times while testing. The research team member was located directly outside of the chamber for most of the duration of the class. Because the visqueen plastic lining the chamber is clear, the research team member was able to visually monitor the subject at all times. At every 15 minutes during the class session, a member of the research team entered the chamber in order to monitor and record the subjects’ body temperature and heart rate, check ambient temperature and humidity inside the chamber (about 2-3 minutes at a time), and to visually and verbally check on the subject. The research team member observed for any visual symptoms of heat stress from outside and inside of the chamber. Signs/symptoms of heat stress include light-headedness, dizziness, nausea, faintness, fatigue, headache, weakness, and profuse sweating. If symptoms did occur, the research team member
would proceed into the chamber and verbally ask the subject how they are feeling and if they are able to continue testing. If the subject was not feeling well and unable to continue, the participant was to be removed from the hot environment immediately, cooled off, and provided water for consumption. The member(s) of the research team may assist in cooling off the participant by wetting the participant’s skin with water and fanning them with air. In addition, if the subject’s heart rate exceeded their predicted maximum heart rate (220-age) or body temperature exceeded 40°C (or 104°F) at any time during testing, they were forced to withdraw from the study for their safety.

Five hundred milliliters of water was provided to participants to drink ad libitum during each of the conditions and remaining fluid was measured at the end of the class participation for consumption. Body mass was also measured at pre-test and post class participation for each of the conditions to determine the net loss of body water. At post-test participants were provided with water in the amount of net body water lost during the Bikram yoga class [Net body water lost = pretest body weight – posttest body weight – amount of water consumed]. The water was required to be consumed by participant before the last blood draw at post-30 minutes. Snacks and refreshments were provided to the participants each day at the termination of testing.

The PI and Co-PI withdrew all blood samples for duration of the study. Blood samples were drawn via finger prick by means of capillary blood collection. Samples were drawn at the index finger, middle finger, or ring finger all at the distal phalanx. Samples of six hundred microliters of blood were drawn from automated single-use lancets into multivettes containing anticoagulant and immediately placed on ice until
participation was complete. The blood samples was used to determine hematocrit, GSH, and plasma TBARS. The samples were centrifuged at 1,000g for 20 minutes at 4°C. The plasma was stored in multiple aliquots at -80°C until analysis.

Blood samples were prepared in BHS 122 and stored in BHS 119 until all blood collections were complete. Time allowed for storage from blood collection to analysis was no more than three months. Once all blood samples were collected, the blood samples were analyzed at BHS 122 for the specified oxidative stress markers outlined in the protocol. The blood samples collected for this was not used for any other further research or study. Excess samples were destroyed and disposed of after the study was complete.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Pre-Test</th>
<th>Participation</th>
<th>Post-Test</th>
<th>Post-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Trial (72°F/22.2°C, 50%H) [CON]</td>
<td>Blood Draw</td>
<td>Bikram yoga session</td>
<td>Blood Draw</td>
<td>Blood Draw</td>
</tr>
<tr>
<td>Experimental Trial (105°F/40.6°C, 40%H) [HOT]</td>
<td>Blood Draw</td>
<td>Bikram yoga session</td>
<td>Blood Draw</td>
<td>Blood Draw</td>
</tr>
<tr>
<td>Both Trials</td>
<td>Heart Rate and Oral Body Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Collection of the Data

Subject Characteristics

Prior to class participation, body weight, height, and body composition of participants were measured and recorded at the testing site on D1.

Temperature and Humidity

Ambient temperature and humidity were evaluated by the members of the research team prior and during each day of testing to ensure proper measurements at 40.6° Celsius (105° Fahrenheit) and 40% humidity.

Hydration

Hematocrit measurements for hydration status at each blood draw was determined from blood analysis. Measurements of water consumption during testing and body mass differences at pre- and post-test were also examined. Net body water loss determined the amount of water the participant to consume from post to post-30.

Oral Body Temperature and Heart Rate

Oral body temperature and heart rate was recorded every 15 minutes starting at the beginning of the Bikram Yoga Class till termination of testing.

Blood Sample Collection

Six hundred microliter blood samples was collected from the participant’s index, middle, and ring fingertips at pre-test, post-test, and 30 minutes post-test. At pre-test and post-test, blood samples was drawn before, within five minutes following exercise and 30 minutes post-exercise. Before any blood collection, the fingertip was sterilized with 70%
isopropyl alcohol. Using gloves for protection, the PI or Co-PI punctured the site using a single-use automated lancet. The first drop of blood was wiped away using gauze and then collected the blood into multivettes treated with anticoagulant to prevent clotting. Gauze was applied on the site from which the lancet is withdrawn, and an adhesive bandage was applied to protect the puncture site after collection. The single-use lancet was disposed in the proper biohazard waste container. After each blood collection, the blood sample multivettes were immediately placed on ice in a cooler until all collections are complete.

The samples of blood will be used for analysis of hematocrit, glutathione (GSH), and thiobarbituric acid reactive substances (TBARS). After blood collection was complete, the samples were centrifuged at 1,000 x gravity for 20 minutes at 4°C and separated to plasma. Hematocrit was measured immediately after centrifugation. The sample was observed, and a metric ruler was used to measure the height of the components of whole blood for each individual sample. The value of hematocrit was found by dividing the height of red blood cells by the total height and then multiplying the value by 100. After hematocrit analysis, the plasma of the samples were prepared and stored in multiple aliquots at -80°C until analysis of the oxidative stress variables. Blood samples was prepared in BHS 122 and stored at BHS 119. GSH and plasma TBARS was measured and analyzed in BHS 122 using commercially available assay kits following procedures outlined by the manufacturer (MBL and Cayman Chemical).

All materials used for blood collection and analysis, including gloves, disposable lancets, multivettes, gauze, bandages, and pipettes, was disposed in the proper biohazard
waste or sharps biohazard waste containers. The areas of blood collection were completely sanitized with a 1:10 dilution of bleach solution after each blood collection. If a spill occurs, the spill was cleaned immediately by placing paper towel over the spill, flood with a 1:10 dilution of bleach, let it sit for 15-20 minutes, and then finished by cleaning the area. Further, once the study was fully completed the entire testing area was thoroughly decontaminated using the same protocol for a spill using the bleach dilution.

Hydration status was determined via hematocrit determination. GSH and plasma TBARS were measured and analyzed using commercially available assay kits following procedures outlined by the manufacturer (MBL and Cayman Chemical).

Data Analysis Methods

The hematocrit and selected oxidative stress markers were analyzed using a two condition (experimental and control) by three (Pre-test, Post-test, and Post-30minutes) analysis using a repeated measure analysis of variance (ANOVA) for a crossover design to assess condition and time. In addition, a repeated measures factorial ANOVA between the two conditions by nine times (0, 15, 30, 45, 60, 75, 90, 105, and 120 minutes) was used to compare for differences in oral body temperature and heart rate. Dependent t tests were used to analyze differences in water consumption during class participation, water consumption between Post-test and Post-30, and total body weight lost in the two conditions. All descriptive data was presented as means ± standard error of the means (SEM). The level of significance was set at 0.05. Statistical Package for Social Sciences Software (SPSS 20) was used for all statistical analyses.
CHAPTER 4

RESULTS

TBARS

No significant main effects or interactions were observed for plasma TBARS (time: $F_{2,52} = 0.121$, $p=0.886$, condition: $F_{1,26} = 0.514$, $p = 0.480$, interaction $F_{2,52} = 0.688$, $p=0.507$). The means ± SEM for MDA levels are presented in Figure 10.

Figure 10 TBARS Presented are means ± SEM TBARS response to 90 minutes of Bikram yoga performed in a thermal environment (HOT) and thermoneutral environment (CON) by healthy, trained adults ($n=14$) before the test (Pre-test), immediately after (Post-test) and 30 minutes following the bout (Post-30). ($p>0.05$)
GSH

No significant main effects or interactions were observed for GSH (time: $F_{2, 52} = 1.890, p=0.161$, condition: $F_{1,26} = 0.414, p = 0.525$, interaction:$F_{2, 52} = 0.531, p=0.591$). The means + SEM for GSH are presented in Figure 11.

![GSH Diagram](image)

Figure 11 GSH Presented is means ± SEM GSH response to 90 minutes of Bikram yoga performed in a thermal environment (HOT) and thermoneutral environment (CON) by healthy, trained adults ($n=14$) before the test (Pre-test), immediately after (Post-test) and 30 minutes following the bout (Post-30). (p>0.05)

Hematocrit and Water Consumption

No significant main effects or interactions were observed for hematocrit (time: $F_{1.450, 37.706} = 0.445, p=0.581$, condition: $F_{1,26} = 0.148, p = 0.704$, interaction: $F_{1.450, 37.706} = 2.552, p=0.106$). The means + SEM for hematocrit are presented in Figure 12. Water consumption during participation of the class (ad libitum) and water given post-class are displayed in Figure 15a, and body weight lost is presented in Figure 15b (means+ SEM).
Figure 12 Hematocrit
Presented are means ± SEM
Hematocrit measurements in response to 90 minutes of Bikram yoga performed in a thermal environment (HOT) and thermoneutral environment (CON) by healthy, trained adults (n=14) before the test (Pre-test), immediately after (Post-test) and 30 minutes following the bout (Post-30). (p>0.05)

Figure 13a Water Consumption
Presented are means ± SEM (n = 14)
Water consumption ad libitum during the 90 water Bikram session minutes (Ad Lib) and consumption from immediately after minutes following conditions till 30 the class. *Denotes significance
(Ad Lib: p=0.009, Post-Class: p=0.069)

Figure 13b Body Weight Lost
Presented are means ± SEM (n = 14)
Body weight lost during the 90 minute Bikram session are presented at thermal (HOT) and thermoneutral(CON) conditions. *Denotes significance (p=0.026)
Heart Rate

Though the main effect for condition \((F_{1, 26}=3.851, p = .061)\) failed to reach significance, the main effect for time \((F_{8, 208} = 49.949, p < .001)\) and interaction between the protocols \((F_{8, 208} = 2.288, p=0.026)\) were significant. This result indicates that there is a difference in heart rates among both conditions over time. Independent t-tests were used to examine condition differences at each of the 15 minute time intervals. The HOT condition presented elevated HR at all time intervals and were significantly different at 60, 75, and 105 minutes \((p= 0.005, 0.034, \text{ and } 0.033, \text{ respectively})\) during class participation in comparison to the control condition. Pairwise comparisons revealed heart rates to be variable dependent on the specific Bikram yoga pose (60 and 75 min) and activity during post-test (105 min). The bow pose and rabbit pose (refer to Appendix II) were the particular Bikram postures that significantly elevated heart rates. The means ± SEM for HR are presented in Figure 14.

![Heart Rate Graph](image)

Figure 14 Heart Rate Presented are means ± SEM HR response to 90 minutes of Bikram yoga performed in a thermal environment (HOT) and thermoneutral environment (CON) by healthy, trained adults \((n=14)\) before the test (Pre-test), immediately after (Post-test) and 30 minutes following the bout (Post-30). *Denotes significance at 60, 75, and 105 minutes \((p= 0.005, 0.034, \text{ and } 0.033, \text{ respectively})\)
Oral Body Temperature

The main effects for time ($F_{6,113} = 11.64, p < .001$) and condition ($F_{1, 26} = 22.69, p < .001$) were both significant. Additionally, the interaction between protocols also reached significance ($F_{8, 208} = 3.34, p = .001$). Simple main effects analysis was conducted to determine the nature of the interaction. Independent t-tests were used to examine condition differences at each of the 15 minute time intervals. The HOT condition presented elevated oral body temperatures at all time intervals and were significantly different at 15, 30, 45, 60, 75, and 90 minutes ($p<0.001, 0.005, <.001, <.001, <.001, \text{ and } <.001$, respectively) during class participation in comparison to the control condition. Oral body temperature measurements taken at room temperature at the post session time intervals (105 and 120 minutes) were consistent with the baseline measurement ($p=1.00$). Figure 14 presents the means ± SEM for oral body temperature.

![Oral Body Temperature Graph]

Figure 15 Oral Body Temperature Presented are means ± SEM
Oral body temperature response to 90 minutes of Bikram yoga performed in a thermal environment (HOT) and thermoneutral environment (CON) by healthy, trained adults ($n=14$) before the test (Pre-test), immediately after (Post-test) and 30 minutes following the bout (Post-30). *Denotes significance from 15 - 90 minutes ($p<0.001$).
CHAPTER 5

DISCUSSION AND CONCLUSIONS

Discussion

The present study investigated the oxidative modification of plasma TBARS and glutathione for one session of Bikram yoga in its standard hot environment versus a thermoneutral environment performed by healthy, trained adults. To our knowledge, this is the first investigation to evaluate oxidative stress associated with the practice of Bikram yoga. In addition, we are the first to report heart rate, oral body temperature, and hematocrit measures during a session of Bikram yoga. The major findings of this study suggest that the oxidative stress in participation of one session of Bikram yoga performed in its standard hot environment is not significantly different when performed in a thermoneutral environment based upon products of lipid peroxidation and glutathione oxidation. Changes in hematocrit were not significant. The practice of Bikram yoga in the hot condition revealed elevated heart rates and oral body temperatures throughout testing.

Results from the present study indicate that there were no significant main effects or interaction for the lipid peroxidation variable, TBARS. Though these findings were not statistically significant, oxidative stress levels based on lipid peroxidative plasma
TBARS returned back to baseline in a comparable time between both conditions. It is well established that acute aerobic exercise has the potential to result in increased free radical production (Ashton et al., 1998; Davies et al., 1982). Dufaux et al. (1997) did not observe increased levels of plasma TBARS in distance running for moderately trained participants. However, Bloomer et al. (2005) examined oxidative stress via TBARS and found no significant change in oxidative stress in aerobic (70% VO$_2$ max cycling) and anaerobic exercise (squatting) for 30 minutes in moderately trained participants.

Hyperthermic influence on the lipid peroxidation variables, F$_2$-isoprostanes (FIP) and lipid hydroperoxides (LPO) were investigated in low intensity exercise (running on a treadmill at 50% VO$_2$max for 49.8±4.6 minutes) (means±SD). (McAnulty et al., 2005). Contrary to our findings, McAnulty et al. (2005) found that a hyperthermic environment can further increase lipid peroxidation significantly. Both intensity and duration are components that can contribute to the production of free radical production resulting in oxidative stress (Bloomer, Davis, Consitt, & Wideman, 2007). Our findings that are conflicted to the literature is most likely due to a few factors including lower stress levels incurred due to mode of exercise (Bikram yoga versus running, cycling, and squatting), longer exposure to the heat, and the lipid peroxidation variables analyzed. Additionally, the present study evaluated 14 Bikram trained individuals, while the other studies evaluated 6 moderately trained males. The higher training status of our participants versus the moderately trained of the other study could have promoted better tolerance of exercise-induced oxidative stress and acclimatization to the heat. The majority of research investigating oxidative stress in acute exercise includes aerobic submaximal and
maximal efforts on the treadmill or cycle ergometer with no influence to environmental factors (Fisher-Wellman & Bloomer, 2009). The present study is the first to evaluate oxidative stress in an acute bout of Bikram yoga performed under hyperthermic exposure. We speculated no significant change in lipid peroxidation levels between CON and HOT for a session of Bikram yoga.

Likewise, the current study’s findings reveal that GSH levels failed to reach significance between conditions, over time, or by means of interaction. A yoga training study (Sinha et al., 2007) found that GSH levels to increase after practicing for 6 months, therefore, increasing the participants ability to combat oxidative stressors. The Sinha et al. (2007) study included 60 members of the Indian navy that were divided into two groups, a yoga group and a control group that participated in the routine physical training exercises (30 minutes of jogging, 10 minutes of stretching, 5 minutes of pull-ups, and 15 minutes of games). Their findings reflect significant differences in GSH levels from pre-training and post-training. The novice yoga status of the participants may influence the levels of improvement. Because the participants in the current study are Bikram trained, they may already have an up regulated antioxidant capacity to counterbalance oxidative stress. These optimal GSH levels may explain why the current findings are not significant. While future research is necessary, we can speculate that the antioxidant defenses appear to be a sufficient balance between free radical production for the Bikram trained participants during the sessions of Bikram yoga. Though not significant, findings suggest that performing Bikram yoga in the heat could produce a better capacity to combat oxidative stress based upon GSH levels.
Hematocrit measurements were not significantly different over time or between conditions. The current protocol allowed participants to drink water ad libitum during both sessions of Bikram and were given water according to the amount of net body water lost post-session as recommended by ACSM (Sawka et al., 2007). This may convey why significant dehydration did not occur in the current study. Our findings were consistent with a study performed by Laitano et al. (2010) who investigated the effect of oxidative stress and other variables on rest and low-intensity exercise in a thermoneutral condition compared to a hyperthermic condition. They found that hematocrit measurements were not significantly due to the euhydrated participants. Based on hematocrit measurements and water consumption, our data suggests that the participants in the present study were euhydrated.

Additionally, Bikram yoga practice in the hot condition revealed elevated oral body temperatures throughout testing in comparison to the control condition. Oral body temperatures were significantly different between conditions over time at all measurements taken during class participation (0, 15, 30, 45, 60, 75, and 90 minutes). Oral body temperatures are responsive to changes in core body temperature, and were administered at the sublingual site for easy accessibility (Lim, Byrne, & Lee, 2008; Moran & Mendal, 2002).

Exercise produced mild hyperthermia in a thermoneutral environment regardless of mode of exercise, in regards to the Nassis & Gelanda study (2002) at 60% VO$_2$max either cycling or running for 90 minutes. Further, Ely et al. (2010) findings observed that
exercise in a modest hyperthermic environment can degrade aerobic performance due to the added heat stress.

Furthermore, any type of exercise, including yoga, typically leads to increased heart rate. Our findings revealed elevated heart rates throughout testing compared with thermoneutral when Bikram yoga was performed in the hot condition. Significance was affirmed at 45, 60, and 105 minutes dependent upon the specific yoga posture and activity after the class ended. (Miles et al., 2013) examined the acute effects of one session of hatha yoga practice on blood pressure and other cardiovascular responses. Similarly, their findings revealed significant increases in heart rate and cardiac output during yoga practice for both novice and advanced participants, but without the added hyperthermic exposure. This confirms that hyperthermic demands require an additional increase in physiological adjustments when performing Bikram yoga. Moreover, (Miles et al., 2013) examined cardiovascular responses at each yoga posture. They found that the most significant differences in standing postures. Contrary to their findings, our significant changes in heart rate were evident for two postures that were performed on the floor (bow pose and rabbit pose, refer to Appendix II). These data suggest that heart rates can be variable specific to certain yoga postures. This may be due to the shift in blood flow from the core to the periphery of the body due to the compound effects of exercise and the hyperthermic environment. McAnulty et al. (2004) findings indicate that core temperatures and heart rates were significantly elevated in a hyperthermic environment versus a thermoneutral environment for low intensity exercise. Moreover, they also suggest that hyperthermia does increase oxidative stress and selectively affect lipid
oxidative markers. Further investigation is needed to make necessary conclusions regarding cardiovascular benefits associated with Bikram yoga. In addition, Bikram yoga is a very low impact exercise that may be considered an aerobic alternative to possibly acquire cardiorespiratory improvements for individuals that are unable to participate in higher impact activities.

Conclusions

It is well established that hyperthermic exposure is capable of causing increased free radical production (Flanagan, Moseley, & Buettner, 1998). However, in the present study, the lack of patterns of change observed in TBARS, GSH, and hematocrit indicates that the trained participants did not undergo significant oxidative stress regardless of increased oral body temperature or heart rates from the practice of Bikram yoga in the heat. Explanation of no significant increases in oxidative stress and no threats of dehydration and safety occurring during this study perhaps may be due to the experience and acclimatization to the practice. Performing Bikram yoga increases the likelihood of heat stress, therefore, more precaution may be necessary for untrained individuals. Future research is necessary for better clinical understanding and appreciation for the benefits Bikram yoga.
INFORMED Consent Form

TITLE OF STUDY: Oxidative stress for an acute bout of Bikram Yoga in healthy, trained adults

INVESTIGATOR(S): Dr. Tony Santo, Dr. James Navutta, Kimberly Trocio, Paul Hasen, Michael Jarrett, Krystina Moschella

CONTACT INFORMATION: If you have any questions or concerns about the study, please contact Dr. Santo at (702) 895-5329 or Kimberly Trocio at (702) 895-2669.

For questions regarding the rights of research subjects, any complaints or comments regarding the manner in which the study is being conducted, you may contact the UNLV Office of Research Integrity - Human Subjects Research at (702) 895-2794 or toll free at 877-895-2794 or via email at IRB@unlv.edu.

Purpose of the Study
The purpose of this study is to examine the effect of one Bikram Yoga session on oxidative stress in standard conditions (105°F or 40.6°C, 40% humidity) in comparison with a thermally neutral environment (72°F or 22.2°C, 50% humidity) in healthy, trained adults.

Participants
You are being asked to participate in the study because you fit these criteria: you are a healthy adult, age 18-45 years and free of medical conditions that limit physical activity. You must be practicing Bikram Yoga at least 3 times per week and have been doing so for the past 3 months. The Physical Activity Readiness Questionnaire will be used to screen potential study participants who are considered at risk for medical complications. If you are considered well below average for percent body fat, according to the American College of Sports Medicine Guidelines, you will be excluded from the study. If you take antioxidant supplements, including Vitamins A, C, E, or selenium or have been taking these supplements within the last 3 months you are prohibited from participation. Supplementation of these antioxidants will affect the measurements of oxidative stress. Women who are pregnant or those that think they may be pregnant may not participate. Participation is contingent upon the research team's review of your criteria to participate.

Procedures
If you volunteer to participate in this study, you will be asked to do the following: you will report to the UNLV Human Performance Laboratory, building MPE room # 312 on two separate days, allowing a minimum of three days between visits. Please allow 2.5 hours for each day of testing. For each day of testing, you will be asked to: (1) fast 8-12 hours prior to testing, (2) not exercise within 12 hours of the test, (3) not consume alcohol within 48 hours of the test, and (4) not ingest beverages containing

Participant Initials ___

Approved by the UNLV IRB. Protocol 1203-4087
Received: 10-09-12 Approved: 05-22-12 Expiration: 05-21-13
TITLE OF STUDY: Oxidative stress for an acute bout of Bikram Yoga in healthy, trained adults

INVESTIGATOR(S): Dr. Tony Santo, Dr. James Navalu, Kimberly Trocio, Paul Hafen, Michael Jarrett, Krystina Moschella

Caffeine on the day of assessment. It is recommended that you bring your own yoga mat and towel for testing.

All testing will be conducted in a controlled environmental chamber where room temperature and humidity are regulated. Heating and humidifier/dehumidifier units will provide for regulation inside the chamber. The chamber capacity is three participants.

During your two separate visits you will participate in one of two different conditions, the experimental and control, in which you will be randomly placed. For the experimental condition, you will participate in a one bout Bikram Yoga Class in the environmental chamber at the standard Bikram Yoga temperature of 40.6°Celsius (105°Fahrenheit) and 40% humidity. In contrast, the control condition will require you to participate in a one bout Bikram Yoga Class in the environmental chamber at a neutral, room temperature of 22.2°Celsius (72°Fahrenheit) and 50% humidity.

On the first day, the test will begin with height and weight measurements followed by an assessment of body fatness using bioelectrical impedance analysis.

Bioelectrical Impedance Analysis Procedure: You will lie on your back on a padded training table with the right hand and right foot exposed. Two electrodes will be attached to your hand and foot and a very low grade electrical current (from a 9 volt dry cell battery) will pass between the electrodes. This current cannot be felt nor is it harmful unless you have a pacemaker. The current is resisted by body water and is reported as ohms of resistance. This is introduced into an equation to give percent body fat. The procedure takes approximately 5 minutes.

On both days, you will wear a Polar Heart Rate Monitor for duration of the Bikram Yoga Class. Starting at Pre-test and at every 15 minute interval for the class duration, your heart rate and core body temperature will be recorded. To obtain core body temperature measurements, we will administer an oral thermometer. The oral thermometer will be placed in your mouth under your tongue. After closing your mouth, it will take approximately 30-60 seconds to obtain a measurement. While waiting for the measurement, you will continue your class participation. A bottle of water will be distributed to you before the class begins to drink ad libitum (at your pleasure) during class participation.

“Bikram’s Beginning Yoga Class” CD will be provided for class instruction for both conditions for each day of testing. You will listen and participate along with the recording of the Bikram Yoga Class for each day of testing. To complete the study, you are recommended to participate for the entire 90

Participant Initials

Oxidative stress for an acute bout of Bikram Yoga in healthy, trained adults
Department of Kinesiology and Nutrition Sciences
University of Nevada, Las Vegas
Dr. Santo (702) 895-5229

Approved by the UNLV IRB, Protocol 1203-4087
Received: 10-09-12 Approved: 05-22-12 Expiration: 05-21-13
TITLE OF STUDY: Oxidative stress for an acute bout of Bikram Yoga in healthy, trained adults

INVESTIGATOR(S): Dr. Tony Santo, Dr. James Navalta, Kimberly Trocio, Paul Hafen, Michael Jarrett, Krystina Moschella

minutes of instruction while inside the environmental chamber. However, you may choose to withdraw from testing at any time you feel uncomfortable.

Blood samples of 600μL (about 1/2 teaspoon per blood draw) will be drawn from your fingertips. Three blood draws will be taken before the class begins, immediately after the class ends, and 30 minutes after the class ends during both visits. A member of the research team will draw all blood samples. The member(s) of the research team will monitor you for the duration of testing. After the class ends and the second blood draw complete, you may rest (sitting or lying down) in room temperature outside of the environmental chamber. From that time until the final blood draw, you will be required to consume a specified amount of water (equivalent to your total body water lost). Total body water lost is determined by measuring your body weight again after the class ends and measuring the amount of water you consume during the class.

You will be provided with snacks and refreshments after each visitation. After 3 days, you may participate in the other condition following the same protocol. Please wear the same clothing as you did on the first day.

Your blood samples will be stored until all blood collection for this research study is complete or for no longer than 3 months. Your blood sample will only be used for analysis that is described in this protocol and for no other study. Any remaining samples will be destroyed and disposed.

Benefits of Participation
There may be little direct benefits to you as a participant in this study. However, you will come away knowing your height, weight, and percent body fat. You will have the opportunity to participate in 2 Bikram Yoga classes and will be able to compare the differences in conditions. Blood analysis will provide you with your red blood cell count, which can indicate how well hydrated you are.

There has been very limited research regarding the safety and efficacy of Bikram Yoga. Because Bikram Yoga and other hot exercise classes are a growing fitness trend, it is necessary to provide valuable scientific knowledge to the participants. This study will provide the opportunity to explore Bikram Yoga at a molecular level by examining oxidative stress biomarkers. Without supportive scientific evidence, we may never know the benefit, if any, practiced in Bikram Yoga. This study may provide a path to future studies regarding Bikram Yoga.

Participant Initials

Approved by the UNLV IRB. Protocol 1203-4087
Received: 10-09-12 Approved: 05-22-12 Expiration: 05-21-13
TITLE OF STUDY: Oxidative stress for an acute bout of Bikram Yoga in healthy, trained adults

INVESTIGATOR(S): Dr. Tony Santo, Dr. James Navalta, Kimberly Trocio, Paul Hafen, Michael Jarrett, Krysina Moschella

Risks of Participation
Because you are Bikram trained, this study involves minimal risk to you. Activity in a hot environment for a long period of time may elicit symptoms of heat stress including light-headedness, dizziness, nausea, faintness, fatigue, headache, cool, dry skin, and inability to sweat. The CPR and AED Certified Members of the research team will closely monitor you of any symptoms of heat stress at all times while testing. If symptoms do occur, you will be removed from the hot environment immediately, provided water, cooled off by applying cool, wet cloths on your head, back, and neck, and an electric fan will be placed directly facing you. During blood draws, you may feel pain or discomfort from the puncture of the needle and from collection. Though not common, bruising and soreness of the fingertips at the location of needle insertion may be experienced hours to days after blood collection. Bruises are usually harmless and will disappear with time. If symptoms persist or swelling occurs, it is highly suggested to seek advice from a medical professional.

Prior to testing, you should have been notified to stay well hydrated and maintain a normal diet the days leading up to the test. Testing is scheduled in the mornings to ensure minimal amount of time fasted. Water will be provided during testing, and snacks and refreshments will be provided after each visit to ensure proper recovery. In addition, you are advised to drink plenty of fluids, maintain a normal diet, and to avoid physical strenuous activity for the 24 hours after participation at each visit.

Cost / Compensation
There will not be any financial cost to you to participate in this study. The study will take 5 hours of your time (2.5 hours for 2 days), however there is no compensation for your time. The University of Nevada, Las Vegas may not provide compensation or free medical care for an unanticipated injury sustained as a result of participating in this research study.

Contact Information
If you have any questions or concerns about the study, you may contact Dr. Tony Santo at antonio.santo@unlv.edu. For questions regarding the rights of research subjects, any complaints or concerns regarding the manner in which the study is being conducted you may contact the UNLV Office of Research Integrity – Human Subjects at 702-895-2794 or toll free at 877-895-2794 or via email at IRB@unlv.edu.

Participant Initials

Approved by the UNLV IRB. Protocol 1263-4087
Received: 10-09-12 Approved: 05-22-12 Expiration: 05-21-13

52
TITLE OF STUDY: Oxidative stress for an acute bout of Bikram Yoga in healthy, trained adults

INVESTIGATOR(S): Dr. Tony Santo, Dr. James Navalta, Kimberly Trocio, Paul Hafen, Michael Jarrett, Krystina Moschella

Voluntary Participation
Your participation in this study is completely voluntary. You may refuse to participate in this study or in any part of this study and you may withdraw at any time without prejudice to your relations with the University. You are encouraged to ask questions about this study prior to the beginning or at any time during the study. You will be given a copy of this form.

Confidentiality
All information gathered in this study will be kept completely confidential. Only those persons who are directly related to this study (i.e.: researchers, data analysts) will have access to your data. No reference will be made in written or oral materials, which could link you to this study. All records will be stored in the laboratory for a period of 3 years. After 3 years, any documentation with identifiable information (e.g., name) will be destroyed. Unidentifiable data will be stored in locked storage indefinitely.

Freedom of Consent:
I have read the above information carefully and I am aware of the tests/procedures to be performed. Knowing these risks and having the opportunity to ask questions, I agree (consent) to participate in this study. I understand that I have a right to withdraw from this study at any time without prejudice. I am at least 18 years old and a copy of the informed consent has been given to me.

Signature of Participant Date

Participant Name (Please Print)

Signature of Witness Date

Participant Initials

Approved by the UNLV IRB. Protocol 1208-4087
Received: 10-09-12 Approved: 03-22-12 Expiration: 05-21-13
Appendix II BIKRAM YOGA POSES: “ASANAS”

Appendix III PAR-Q

Physical Activity Readiness Questionnaire - PAR-Q
(revised 2002)

PAR-Q & YOU
(A Questionnaire for People Aged 15 to 69)

Regular physical activity is fun and healthy, and increasingly more people are starting to become more active every day. Being more active is very safe for most people. However, some people should check with their doctor before they start becoming much more physically active.

If you are planning to become much more physically active than you are now, start by answering the seven questions in the box below. If you are between the ages of 15 and 69, the PAR-Q will tell you if you should check with your doctor before you start. If you are over 69 years of age, and you are not used to being very active, check with your doctor.

Common sense is your best guide when you answer these questions. Please read the questions carefully and answer each one honestly: check YES or NO.

YES NO
☐ ☐ 1. Has your doctor ever said that you have a heart condition and that you should only do physical activity recommended by a doctor?
☐ ☐ 2. Do you feel pain in your chest when you do physical activity?
☐ ☐ 3. In the past month, have you had chest pain when you were not doing physical activity?
☐ ☐ 4. Do you lose your balance because of dizziness or do you ever lose consciousness?
☐ ☐ 5. Do you have a bone or joint problem (for example, back, knee or hip) that could be made worse by a change in your physical activity?
☐ ☐ 6. Is your doctor currently prescribing drugs (for example, water pills) for your blood pressure or heart condition?
☐ ☐ 7. Do you know of any other reason why you should not do physical activity?

If you answered YES to one or more questions
Talk with your doctor by phone or in person BEFORE you start becoming much more physically active or BEFORE you have a fitness appraisal. Tell your doctor about the PAR-Q and which questions you answered YES.
• You may be able to do any activity you want — as long as you start slowly and build up gradually. Or, you may need to restrict your activities to those which are safe for you. Talk with your doctor about the kinds of activities you wish to participate in and follow his/her advice.
• Find out which community programs are safe and helpful for you.

NO to all questions
If you answered NO honestly to all PAR-Q questions, you can be reasonably sure that you can:
• start becoming much more physically active — begin slowly and build up gradually. This is the safest and easiest way to go.
• take part in a fitness appraisal — this is an excellent way to determine your basic fitness so that you can plan the best way for you to live actively. It is also highly recommended that you have your blood pressure evaluated. If your reading is over 144/94, talk with your doctor before you start becoming much more physically active.

DELAY BECOMING MUCH MORE ACTIVE:
• If you are not feeling well because of a temporary illness such as a cold or a fever — wait until you feel better; or
• If you are or may be pregnant — talk to your doctor before you start becoming more active.

PLEASE NOTE: If your health changes so that you then answer YES to any of the above questions, tell your fitness or health professional. Ask whether you should change your physical activity plan.

Informed Use of the PAR-Q: The Canadian Society for Exercise Physiology, Health Canada, and their agents assume no liability for persons who undertake physical activity and if in doubt after completing this questionnaire, consult your doctor prior to physical activity.

No changes permitted. You are encouraged to photocopy the PAR-Q but only if you use the entire form.

NOTE: If the PAR-Q is being given to a person before he or she participates in a physical activity program or a fitness appraisal, this section may be used for legal or administrative purposes.

"I have read, understood and completed this questionnaire. Any questions I had were answered to my full satisfaction."

NAME __________________________

SIGNATURE _______________________

DATE ____________________________

WITNESS _________________________

SIGNATURE OF PARENT
or GUARDIAN (for participants under the age of majority)

Note: This physical activity clearance is valid for a maximum of 12 months from the date it is completed and becomes invalid if your condition changes so that you would answer YES to any of the seven questions.

© Canadian Society for Exercise Physiology

Supported by Health Canada Santé Canada

continued on other side...
PAR-Q & YOU

Physical Activity Readiness Questionnaire - PAR-Q (revised 2002)

Choose a variety of activities from these three groups:

Endurance
- Jog a week
- Continuous activities for your heart, lungs and circulatory system

Flexibility
- 3-4 days a week
- Some stretching, bending and stretching activities to keep your muscles flexible and pain-free

Strength
- 2-3 days a week
- Activities against resistance to strengthen muscles and bones and improve posture

Starting slowly is very safe for most people. Not sure? Consult your health professional.

For a copy of the Guide to physical activity, contact: 1-800-334-9199 or www.parqa.com

Eating well is also important. Follow Canada’s Food Guide for healthy eating to make wise food choices.

FITNESS AND HEALTH PROFESSIONALS MAY BE INTERESTED IN THE INFORMATION BELOW:

The following companion forms are available for doctors’ use by contacting the Canadian Society for Exercise Physiology (address below):

- **The Physical Activity Readiness Medical Examination (PARmed-X)** – to be used by doctors with people who answer YES to one or more questions on the PAR-Q.
- **The Physical Activity Readiness Medical Examination for Pregnancy (PARmed-X for Pregnancy)** – to be used by doctors with pregnant patients who wish to become more active.

References:

For more information, please contact:

Canadian Society for Exercise Physiology
202-185 Somerset Street West
Ottawa, ON K1P 0Z2
Tel. 1-877-651-3755 • Fax (613) 234-3565
Online: www.csep.ca

The original PAR-Q was developed by the British Columbia Ministry of Health. It has been revised by an Expert Advisory Committee of the Canadian Society for Exercise Physiology chaired by N. C. Goddard (2002).

Disponible en français sous le titre «Questionnaire sur l’aptitude à l’activité physique - Q-AMP (revu 2002)».
Appendix IV BODY COMPOSITION

ACSM Body Composition (% Body Fat) For Males and Females

Male

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Fitness Category</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Well Above Average</td>
<td>20-29 7.1-11.7</td>
</tr>
<tr>
<td>70</td>
<td>Above Average</td>
<td>11.8-15.8</td>
</tr>
<tr>
<td>50</td>
<td>Average</td>
<td>15.9-19.4</td>
</tr>
<tr>
<td>30</td>
<td>Below Average</td>
<td>19.5-25.8</td>
</tr>
<tr>
<td>10</td>
<td>Well Below Average</td>
<td>25.9</td>
</tr>
</tbody>
</table>

Female

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Fitness Category</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Well Above Average</td>
<td>20-29 14.5-18.9</td>
</tr>
<tr>
<td>70</td>
<td>Above Average</td>
<td>19-22</td>
</tr>
<tr>
<td>50</td>
<td>Average</td>
<td>22.1-25.3</td>
</tr>
<tr>
<td>30</td>
<td>Below Average</td>
<td>25.4-32</td>
</tr>
<tr>
<td>10</td>
<td>Well Below Average</td>
<td>32.1</td>
</tr>
</tbody>
</table>

Data provided by the Institute for Aerobics Research, Dallas, TX (1994). Study population for the data set was predominately White and college educated.

Taken from ACSM’S Health-Related Physical Fitness Assessment Manual, 2ndEd. 2008, pg. 59.
Pre-Assay Preparation

Reagent Preparation
1. Thiobarbituric Acid (TBA)
The vial contains 2 g of TBA. It is ready to use to prepare the Color Reagent
2. TBA Acetic Acid
Each vial contains 20 ml of concentrated acetic acid. Slowly add both vials (40ml) of TBA Acetic Acid to 160 ml of HPLC-grade water. This diluted Acetic Acid Solution is used in preparing the Color Reagent. The diluted Acetic Acid Solution is stable for at least three months at room temperature.
3. TBA Sodium Hydroxide (10X)
The vial contains a solution of sodium hydroxide (NaOH). Dilute 20 ml of TBA NaOH with 180 ml of HPLC-grade water. This diluted NaOH Solution is used in preparing the Color Reagent. The diluted NaOH Solution is stable for at least three months at room temperature. Store the diluted NaOH Solution in a plastic container suitable for corrosive materials.
4. TBA Malondialdehyde Standard
The vial contains 500 µM Malondialdehyde (MDA) in water. It is ready to use to prepare the standard curve.
5. TBA SDS Solution
The vial contains a solution of sodium dodecyl sulfate (SDS). The solution is ready to use as supplied.
6. To prepare the Color Reagent:
The following amount of Color Reagent is sufficient to evaluate 24 samples. Adjust the volumes accordingly if more or less samples are going to be assayed. Weigh 530 mg of TBA and add to ≥ 150 ml of diluted TBA Acetic Acid Solution. Add 50 ml of diluted TBA Sodium Hydroxide and mix until the TBA is completely dissolved. The solution is stable for 24 hours.

Sample Preparation
Plasma
1. Collect blood using an anticoagulant such as heparin, EDTA, or citrate.
2. Centrifuge the blood at 700-1,000 x g for 10 minutes at 4°C. Pipette off the top yellow plasma layer without disturbing the white buffy layer. Store plasma on ice. If not assaying the same day, freeze at -80°C. The plasma sample will be stable for one month while stored at -80°C.
3. Plasma does not need to be diluted before assaying.
Performing the Assay

1. Label vial caps with standard number or sample identification number.
2. Add 100 µl of sample or standard to appropriately labeled 5 ml vial.
3. Add 100 µl of SDS Solution to vial and swirl to mix.
4. Add 4 ml of the Color Reagent forcefully down side of each vial.
5. Cap vials and place vials in foam or some other holder to keep the tubes upright during boiling.
6. Add vials to vigorously boiling water. Boil vials for one hour.
7. After one hour, immediately remove the vials and place in ice bath to stop reaction. Incubate on ice for 10 minutes.
8. After 10 minutes, centrifuge the vials for 10 minutes at 1,600 x g at 4°C. Vials may appear clear or cloudy. Cloudiness will clear upon warming to room temperature.
9. Vials are stable at room temperature for 30 minutes.
10. Load 150 µl (in duplicate) from each vial to either the clear plate (calorimetric version) or to the black plate (fluorometric version).
11. Read the absorbance at 530-540nm or read fluorescence at an excitation wavelength of 530nm and an emission wavelength of 550nm.
Pre-Assay Preparation

Reagent Preparation and Storage

1. OPA Probe, Reducing Agent Mix, GSH Quencher
 Dissolve in 1.05 ml of dH2O. Pipette up and down to completely dissolve. Store at -20°C. Use within two months.

2. GSH Standard
 Accurately dissolve in 45µl H2O, then add 5µl of PCA to stabilize the standard GSH stock solution (20 µg/µl). Store at -20°C. Use within two months.

Sample Collection and Storage

Sample Collection and Storage

Serum or Other Liquid Samples

Add 20µl 6N PCA to 60 µl samples, vortex to mix, keep on ice for 5 minutes, and then spin for 5 minutes at top speed at 4°C. Collect supernatant. The sample can then be stored at -80°C, stable for a month.

Performing Assay

1. Standard Curve: Add 10µl of the 20 µg/µl standard GSH stock into 990 µl of Assay Buffer to generate 0.2 µg/µl of working standard solution. Add 0, 2, 4, 6, 8, 10 µ into a 96-well plate to generate 0, 0.4, 0.8, 1.2, 1.6, 2.0 µg/µl standard GSH. Bring the volume to 90 µl with Assay Buffer.

2. Preparation of Samples for Assays: Add 20 µl of the 3N KOH to 40 µl of PCA preserved samples to neutralize the samples. Keep on ice for 5 minutes and then spin for 5 minutes at top speed at 4°C. Transfer the supernatant into new tubes. Add 10 µl of the neutralized samples into 96-well plate. Bring the sample volume to 90 µl with Assay Buffer.

3. Assay: Add 10 µl of OPA Probe into the standard and sample wells, mix well, incubate at room temperature for 40 minutes. Read the samples and standards on a fluorescence plate reader equipped with Ex/Em = 340/450 nm.

4. Calculations: Subtract background reading from all standard and sample readings. Plot RFU vs. standard GSH amount. Apply the sample readings to the standard curve to get glutathione amount in each sample.
a. Glutathione Concentration = Ga/Sv, where Ga is the glutathione amount from standard curve and Sv is the sample volume added to the sample wells.
- Dimensions: 10ft x 10ft x 11ft room located at MPE 318 at UNLV
- Visqueen plastic sheeting completely lined the walls and ceiling of the chamber. Carpet was installed for the flooring of the chamber and a mirror was installed on one wall (requirements for Bikram Yoga).
TBARS

<table>
<thead>
<tr>
<th>Condition</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>Post-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td>20.93±0.46</td>
<td>20.39±0.36</td>
<td>20.65±0.39</td>
</tr>
<tr>
<td>HOT</td>
<td>20.83±0.39</td>
<td>21.08±0.36</td>
<td>20.83±0.27</td>
</tr>
</tbody>
</table>

Values are means ± SEM (n=14)

GLUTATHIONE

<table>
<thead>
<tr>
<th>Condition</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>Post-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td>360.38±18.21</td>
<td>349.33±24.35</td>
<td>374.89±26.77</td>
</tr>
<tr>
<td>HOT</td>
<td>359.58±28.34</td>
<td>325.44±15.89</td>
<td>347.50±14.74</td>
</tr>
</tbody>
</table>

Values are means ± SEM (n=14)

HEMATOCRIT

<table>
<thead>
<tr>
<th>Condition</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>Post-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td>42.58±0.83</td>
<td>41.33±0.75</td>
<td>41.18±0.82</td>
</tr>
<tr>
<td>HOT</td>
<td>40.71±1.52</td>
<td>40.93±0.98</td>
<td>41.97±1.04</td>
</tr>
</tbody>
</table>

Values are means ± SEM (n=14)
HEART RATE Values are means ± SEM (n=14)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Time</th>
<th>0</th>
<th>15</th>
<th>30</th>
<th>45</th>
<th>60*</th>
<th>75*</th>
<th>90</th>
<th>105*</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td></td>
<td>72±2.2</td>
<td>88±3.5</td>
<td>97±4.7</td>
<td>93±3.9</td>
<td>84±4.2</td>
<td>78±3.1</td>
<td>67±3.3</td>
<td>70±2.2</td>
<td>69±5.4</td>
</tr>
<tr>
<td>HOT</td>
<td></td>
<td>69±2.5</td>
<td>95±3.4</td>
<td>101±3.0</td>
<td>101±4.7</td>
<td>100±3.2</td>
<td>89±4.1</td>
<td>74±3.7</td>
<td>77±2.4</td>
<td>72±4.7</td>
</tr>
</tbody>
</table>

ORAL BODY TEMPERATURE Values are means ± SEM (n=14)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Time</th>
<th>0</th>
<th>15</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>75</th>
<th>90</th>
<th>105</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td></td>
<td>36.2±0.12</td>
<td>36.4±0.06</td>
<td>36.2±0.14</td>
<td>36.5±0.06</td>
<td>36.5±0.06</td>
<td>36.3±0.15</td>
<td>36.4±0.05</td>
<td>36.2±0.10</td>
<td>36.2±0.07</td>
</tr>
<tr>
<td>HOT</td>
<td></td>
<td>36.3±0.06</td>
<td>36.7±0.05</td>
<td>36.7±0.06</td>
<td>36.8±0.07</td>
<td>36.9±0.06</td>
<td>37±0.06</td>
<td>36.8±0.05</td>
<td>36.4±0.10</td>
<td>36.3±0.07</td>
</tr>
</tbody>
</table>

WATER CONSUMPTION AND LOSS Values are means ± SEM (n=14)

<table>
<thead>
<tr>
<th>Condition</th>
<th>H20 consumed (ml)</th>
<th>Weight loss (kg)</th>
<th>H20 given (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td>76.36±32.77</td>
<td>0.46±0.14</td>
<td>181.071±54.76</td>
</tr>
<tr>
<td>HOT</td>
<td>212.07±47.89</td>
<td>0.92±0.27</td>
<td>346.21±95.26</td>
</tr>
</tbody>
</table>

APPENDIX IX STATISTICAL ANALYSES

Condition: TBARS
Analysis: 2 (cond) by 3 (time) mixed model ANOVA

Tests of Within-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
<th>Effect size</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>.387</td>
<td>2</td>
<td>.194</td>
<td>.121</td>
<td>.886</td>
<td>.005</td>
<td>.068</td>
</tr>
<tr>
<td>Time * Condition</td>
<td>2.205</td>
<td>2</td>
<td>1.103</td>
<td>.688</td>
<td>.507</td>
<td>.026</td>
<td>.160</td>
</tr>
<tr>
<td>Error(Time)</td>
<td>83.273</td>
<td>52</td>
<td>1.601</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Computed using alpha = .05

Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
<th>Effect size</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>1.407</td>
<td>1</td>
<td>1.407</td>
<td>.514</td>
<td>.480</td>
<td>.019</td>
<td>.106</td>
</tr>
<tr>
<td>Error</td>
<td>71.133</td>
<td>26</td>
<td>2.736</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Computed using alpha = .05

No significant main effects or interactions
Condition: GSH
Analysis: 2 (cond) by 3 (time) mixed model ANOVA

Tests of Within-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
<th>Effect size</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time *</td>
<td>.010</td>
<td>2</td>
<td>.005</td>
<td>1.890</td>
<td>.161</td>
<td>.068</td>
<td>.375</td>
</tr>
<tr>
<td>Condition</td>
<td>.003</td>
<td>2</td>
<td>.001</td>
<td>.531</td>
<td>.591</td>
<td>.020</td>
<td>.133</td>
</tr>
<tr>
<td>Error(Time)</td>
<td>.140</td>
<td>52</td>
<td>.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Computed using alpha = .05

Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>Df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
<th>Effect size</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>.006</td>
<td>1</td>
<td>.006</td>
<td>.414</td>
<td>.525</td>
<td>.016</td>
<td>.095</td>
</tr>
<tr>
<td>Error</td>
<td>.390</td>
<td>26</td>
<td>.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Computed using alpha = .05

No significant main effects or interactions
HEMATOCRIT

Tests of Within-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
<th>Observed Power^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Huynh-Feldt</td>
<td>4.369</td>
<td>1.450</td>
<td>3.013</td>
<td>.445</td>
<td>.581</td>
<td>.017</td>
</tr>
<tr>
<td>Time * Condition</td>
<td>Huynh-Feldt</td>
<td>25.047</td>
<td>1.450</td>
<td>17.271</td>
<td>2.552</td>
<td>.106</td>
<td>.089</td>
</tr>
<tr>
<td>Error(Time)</td>
<td>Huynh-Feldt</td>
<td>255.209</td>
<td>37.706</td>
<td>6.768</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a. Computed using alpha = .05

Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
<th>Noncent. Parameter</th>
<th>Observed Power^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td></td>
<td>5.042</td>
<td>1</td>
<td>.148</td>
<td>.704</td>
<td>.006</td>
<td>.148</td>
<td>.066</td>
</tr>
</tbody>
</table>

^a. Computed using alpha = .05

Pairwise Comparisons

<table>
<thead>
<tr>
<th>(I) Time</th>
<th>(J) Time</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.^a</th>
<th>95% Confidence Interval for Difference^a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>.515</td>
<td>.673</td>
<td>.835</td>
<td>-1.203</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>.070</td>
<td>.701</td>
<td>1.000</td>
<td>-1.717</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-.515</td>
<td>.673</td>
<td>.835</td>
<td>-2.233</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-.445</td>
<td>.328</td>
<td>.463</td>
<td>-.393</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-.070</td>
<td>.701</td>
<td>1.000</td>
<td>-1.857</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>.445</td>
<td>.328</td>
<td>.463</td>
<td></td>
</tr>
</tbody>
</table>

No significant main effects or interactions
HEART RATE

Mauchly's Test of Sphericity

<table>
<thead>
<tr>
<th>Within Subjects Effect</th>
<th>Mauchly's W</th>
<th>Approx. Chi-Square</th>
<th>df</th>
<th>Sig.</th>
<th>Epsilon<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Greenhouse-Geisser</td>
</tr>
<tr>
<td>Time</td>
<td>.148</td>
<td>44.259</td>
<td>35</td>
<td>.143</td>
<td>.702</td>
</tr>
</tbody>
</table>

Mauchley’s Test result = not significant → sphericity is assumed.

Tests of Within-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
<th>Noncent. Parameter</th>
<th>Observed Power<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Sphericity Assumed</td>
<td>8</td>
<td>4086.489</td>
<td>49.494</td>
<td>.000</td>
<td>.656</td>
<td>395.949</td>
<td>.100</td>
</tr>
<tr>
<td>Time * Condition</td>
<td>Sphericity Assumed</td>
<td>8</td>
<td>188.936</td>
<td>2.288</td>
<td>.023</td>
<td>.081</td>
<td>18.306</td>
<td>.071</td>
</tr>
<tr>
<td>Error(Time)</td>
<td>Sphericity Assumed</td>
<td>208</td>
<td>82.566</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
<th>Noncent. Parameter</th>
<th>Observed Power<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>3038.194</td>
<td>1</td>
<td>3038.194</td>
<td>3.851</td>
<td>.061</td>
<td>.129</td>
<td>3.851</td>
<td>.472</td>
</tr>
<tr>
<td>Error</td>
<td>20513.500</td>
<td>26</td>
<td>788.981</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Computed using alpha = .05

The variable “Time” was significant ($F_{8,208} = 49.494$, $p < .001$).
The variable “Condition” was not significant ($F_{1,26} = 3.851$, $p = .023$).
The interaction was significant ($F_{8,208} = 2.288$, $p = .061$)
Independent Samples Test

<table>
<thead>
<tr>
<th></th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
</tr>
<tr>
<td>0</td>
<td>Equal variances assumed</td>
<td>.099</td>
</tr>
<tr>
<td>15</td>
<td>Equal variances assumed</td>
<td>.025</td>
</tr>
<tr>
<td>30</td>
<td>Equal variances assumed</td>
<td>5.485</td>
</tr>
<tr>
<td>45</td>
<td>Equal variances assumed</td>
<td>1.058</td>
</tr>
<tr>
<td>60</td>
<td>Equal variances assumed</td>
<td>1.621</td>
</tr>
<tr>
<td>90</td>
<td>Equal variances assumed</td>
<td>.110</td>
</tr>
<tr>
<td>105</td>
<td>Equal variances assumed</td>
<td>.023</td>
</tr>
</tbody>
</table>

ORAL BODY TEMPERATURE

Mauchly's Test of Sphericity

Measure: MEASURE_1

<table>
<thead>
<tr>
<th>Within Subjects Effect</th>
<th>Mauchly's W</th>
<th>Approx. Chi-Square</th>
<th>df</th>
<th>Sig.</th>
<th>Epsilon<sup>h</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Greenhouse-Geisser</td>
</tr>
<tr>
<td>Time</td>
<td>.062</td>
<td>64.184</td>
<td>35</td>
<td>.002</td>
<td>.590</td>
</tr>
</tbody>
</table>

^a Mauchly's Test of Sphericity

^b Epsilon: Greenhouse-Geisser, Huynh-Feldt, Lower-bound
Tests of Within-Subjects Effects

Measure: MEASURE_1

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
<th>Observed Power^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Huynh-Feldt</td>
<td>6.610</td>
<td>6.113</td>
<td>1.081</td>
<td>11.635</td>
<td>.000</td>
<td>.309</td>
</tr>
<tr>
<td>Time * Condition</td>
<td>Sphericity Assumed</td>
<td>1.897</td>
<td>8</td>
<td>.237</td>
<td>3.339</td>
<td>.001</td>
<td>.114</td>
</tr>
<tr>
<td></td>
<td>Sphericity Assumed</td>
<td>14.770</td>
<td>208</td>
<td>.071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error(Time)</td>
<td>Huynh-Feldt</td>
<td>14.770</td>
<td>158.940</td>
<td>.093</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a. Computed using alpha = .05

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
<th>Observed Power^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>6.736</td>
<td>1</td>
<td>6.736</td>
<td>22.690</td>
<td>.000</td>
<td>.466</td>
<td>.996</td>
</tr>
<tr>
<td>Error</td>
<td>7.718</td>
<td>26</td>
<td>.297</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a. Computed using alpha = .05

The variable “Time” was significant ($F_{6,158.94} = 11.64$, $p < .001$).
The variable “Condition” was significant ($F_{1,26} = 22.69$, $p < .001$).
The interaction was significant ($F_{8,208} = 3.34$, $p = .001$).
simple main effects analysis

<table>
<thead>
<tr>
<th></th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig.</td>
</tr>
<tr>
<td>0</td>
<td>2.557</td>
<td>.122</td>
</tr>
<tr>
<td>15</td>
<td>.238</td>
<td>.630</td>
</tr>
<tr>
<td>30</td>
<td>1.090</td>
<td>.306</td>
</tr>
<tr>
<td>45</td>
<td>.501</td>
<td>.485</td>
</tr>
<tr>
<td>60</td>
<td>.653</td>
<td>.426</td>
</tr>
<tr>
<td>75</td>
<td>.600</td>
<td>.446</td>
</tr>
<tr>
<td>90</td>
<td>.018</td>
<td>.894</td>
</tr>
<tr>
<td>105</td>
<td>.207</td>
<td>.653</td>
</tr>
<tr>
<td>120</td>
<td>.163</td>
<td>.690</td>
</tr>
</tbody>
</table>
REFERENCES

About Bikram Yoga. (2010). from

http://www.bikramyoga.com/BikramYoga/about_bikram_yoga.php

Wall, J. E. M. (2009). Reactive Oxygen Species. from

http://en.wikipedia.org/wiki/Lipid_peroxidation

VITA

The Graduate College
University of Nevada, Las Vegas

Kimberly Anne Trocio

Home Address: 5250 S. Rainbow Blvd.
 Unit 2135
 Las Vegas, NV 89118

Degrees:

Bachelor of Science in Kinesiology, Exercise Science
 Minors: Spanish, Psychology
 Indiana University, Bloomington
 August 2005

Masters of Science in Exercise Physiology
 University of Nevada, Las Vegas
 May 2013

Special Honors and Awards:
Phi Kappa Phi Honor Society, UNLV Chapter 100
Golden Key International Honour Society
Graduate and Professional Student Association Research Grant Award
 Fall 2012
Graduate and Professional Student Association Travel Award
 Summer 2012

Certifications and Skills:
American College of Sports Medicine (ACSM) Personal Trainer
American Heart Association
 Certified in Heart Saver CPR and AED
Fitness Assessments
 Body Composition (hydrostatic weighing, Bod Pod, skin calipers)
 VO2max, GXT’s
Microsoft Office 2010 and internet/e-mail
Thesis Title: Oxidative Stress for an acute bout of Bikram yoga in healthy, trained adults

Thesis Examination Committee:
Chair, Dr. Antonio Santo, Ph. D.
Co-Chair, Dr. James Navalta, Ph. D.
Committee Member, Dr. Richard Tandy, Ph. D.
Committee Member, Dr. Lawrence Golding, Ph. D.
Graduate College Representative, Dr. Daniel Young, Ph. D.