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ABSTRACT 

MAX operation in Statistical Static Timing Analysis on the non-Gaussian Variation 

Sources for VLSI Circuits 

by 

Abu M Baker 

Dr. Yingtao Jiang, Examination Committee Chair 
Professor of Electrical and Computer Engineering 

University of Nevada, Las Vegas 
 

As CMOS technology continues to scale down, process variation introduces 

significant uncertainty in power and performance to VLSI circuits and significantly 

affects their reliability. If this uncertainty is not properly handled, it may become the 

bottleneck of CMOS technology improvement. As a result, deterministic analysis is no 

longer conservative and may result in either overestimation or underestimation of the 

circuit delay. As we know that Static-Timing Analysis (STA) is a deterministic way of 

computing the delay imposed by the circuits design and layout. It is based on a 

predetermined set of possible events of process variations, also called corners of the 

circuit. Although it is an excellent tool, current trends in process scaling have imposed 

significant difficulties to STA. Therefore, there is a need for another tool, which can 

resolve the aforementioned problems, and Statistical Static Timing Analysis (SSTA) has 

become the frontier research topic in recent years in combating such variation effects. 

There are two types of SSTA methods, path-based SSTA and block-based SSTA. 

The goal of SSTA is to parameterize timing characteristics of the timing graph as a 

function of the underlying sources of process parameters that are modeled as random 

variables. By performing SSTA, designers can obtain the timing distribution (yield) and 
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its sensitivity to various process parameters. Such information is of tremendous value for 

both timing sign-off and design optimization for robustness and high profit margins. The 

block-based SSTA is the most efficient SSTA method in recent years. In block-based 

SSTA, there are two major atomic operations max and add. The add operation is simple; 

however, the max operation is much more complex.  

There are two main challenges in SSTA. The Topological Correlation that 

emerges from reconvergent paths, these are the ones that originate from a common node 

and then converge again at another node (reconvergent node). Such correlation 

complicates the maximum operation. The second challenge is the Spatial Correlation. It 

arises due to device proximity on the die and gives rise to the problems of modeling delay 

and arrival time. 

This dissertation presents statistical Nonlinear and Nonnormals canonical form of 

timing delay model considering process variation. This dissertation is focusing on four 

aspects: (1) Statistical timing modeling and analysis; (2) High level circuit synthesis with 

system level statistical static timing analysis; (3) Architectural implementations of the 

atomic operations (max and add); and (4) Design methodology. 

To perform statistical timing modeling and analysis, we first present an efficient 

and accurate statistical static timing analysis (SSTA) flow for non-linear cell delay model 

with non-Gaussian variation sources. 

To achieve system level SSTA we apply statistical timing analysis to high-level 

synthesis flow, and develop yield driven synthesis framework so that the impact of 

process variations is taken into account during high-level synthesis. 
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To accomplish architectural implementation, we present the vector thread 

architecture for max operator to minimize delay and variation. Finally, we present 

comparison analysis with ISCAS benchmark circuits suites.  

In the last part of this dissertation, a SSTA design methodology is presented. 
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CHAPTER 1  

INTRODUCTION 

As integrated circuits have continued to scale down further, the manufacturing 

process has become less predictable. After manufacturing, the process parameters and the 

dimensions of the fabricated devices and wires can be very different from their designed 

values. For example, an oxide thickness that is nominally 25 Å may turn out to be, after 

manufacturing, thicker than the designed value at 27 Å, or thinner at 24 Å. Such 

variations in the process parameters can induce substantial fluctuations in the 

performance of VLSI circuits. Performance parameters such as timing and power may be 

affected either positively or negatively, and the net result of this may be a low 

manufacturing yield, as a majority of the manufactured dies fail to meet the performance 

specifications. Therefore, manufacturing process induced variation, or process variation, 

is an important consideration in VLSI circuit design and yield analysis. 

1.1 The Impact of Rising Process Variations 

Most semiconductor product improvements over the past decades are direct or 

indirect consequences of the perpetual shrinking of devices and circuits, allowing 

performance enhancements at lower fabrication cost. A paralleling trend is that process 

variations and intra-die variability increase with each technology node. Since most high-

performance analog circuits depend on matched devices and differential signal paths, this 

trend has begun to diminish yields and reliabilities of chip designs. Fundamentally, the 

problem is that parameters of devices on the same die show increasing intra-die 

variations, thereby exhibiting different characteristics. For example, Table 1 displays the 

evolution of the typical transistor threshold voltage standard deviation 𝜎{𝑉𝑇ℎ} normalized 
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by the threshold voltage (𝑉𝑇ℎ) for several technologies, as reported in [1]. Also notice 

that 𝑉𝑇ℎ exhibits further dependence on gate length variations through the drain-induced-

barrier-lowering (DIBL) effect under large drain-source voltage bias conditions, as 

demonstrated by the characterization in [2] using a 65nm technology. Since DIBL 

worsens as the channel is scaled down, this additional impact on threshold voltage 

variations can be assumed to be even stronger beyond the 65 nm technology node. 

 
 

TABLE 1: INTRA-DIE VARIABILITY VS CMOS TECHNOLOGY 
Technology 

node 
250 nm 
(%) 

180 nm 
(%) 

130 nm 
(%) 

90 nm 
(%) 

65 nm 
(%) 

45 nm 
(%) 

𝜎{𝑉𝑇ℎ}/𝑉𝑇ℎ 4.7 5.8 8.2 9.3 10.7 16 

 
 
 

 

 Figure 1: Specification variation impact on the fraction of discarded chips. 
 

 
A direct consequence of device parameter variations is a decrease in production 

yields because block-level and system-level parameters will show a corresponding 

increase in variations. This relationship between variations and yield can be inferred from 
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the visualization in Figure 1, where the Gaussian distribution of a specification with a 

standard deviation σ around the mean value μ is shown together with the specification 

limits (±3σ in this example). For standalone analog circuits, parameters such as gain may 

have an upper and/or lower specification limit, and the samples that exceed the limit(s) 

during production testing must be discarded. Guardbands are often defined to account for 

measurement uncertainties by following procedures such as repeating the same test or 

performing other more comprehensive tests to determine whether the part can be sold to 

customers, which incurs additional test cost in a manufacturing environment. 

An important observation from Figure 1 is that an increase of variation (σ) widens 

the Gaussian distribution, which leads to a higher percentage of parts that fall within the 

highlighted ranges that require them to be scrapped or retested. Clearly, there is a direct 

relationship between the amount of process variations and production cost due to low 

yields. In the case of wireless mixed-signal integrated systems, the trend towards 

increasing integration and complexity has also been paralleled by technical challenges 

and rising cost of testing, which can amount up to 40–50% of the total manufacturing 

cost [3, 4].  

1.2 Paradigm Shift from Deterministic STA to Statistical STA 

Static-timing analysis (STA) has been one of the most ubiquitous and popular 

analysis engines in the design of digital circuits for the last 20 years. However, in recent 

years, the increased loss of predictability in semiconductor devices has raised concern 

over the ability of STA to effectively model statistical variations. This has resulted in all-

encompassing research in the so-called SSTA, which marks a significant departure from 

the traditional STA framework. 
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Traditional STA tools are deterministic and compute the circuit delay for a 

specific process condition. Hence, all parameters that impact the delay of a circuit, such 

as device gate length and oxide thickness, as well as operating voltage and temperature, 

are assumed to be fixed and are uniformly applied to all the devices in the design. In STA, 

process variation is modeled by running the analysis multiple times, each at a different 

process condition. For each process condition a so-called corner file is created that 

specifies the delay of the gates at that process condition. By analyzing a sufficient 

number of process conditions the delay of the circuit under process variation can be 

bounded. 

The fundamental paleness of STA is that while global shifts in the process 

(referred to as die-to-die variations) can be approximated by creating multiple corner files, 

there is no statistically rigorous method for modeling variations across a die (referred to 

as within-die variations). However, with process scaling progressing well into the 

nanometer regime, process variations have become significantly more pronounced and 

within-die variations have become a non-negligible component of the total variation. It is 

shown that the incapability of STA to model within-die variation can result in either an 

over or underestimate of the circuit delay, depending on the circuit topology. Hence, 

STA’s desirable property of being conservative may no longer hold for certain circuit 

topologies Rather, at the same time, STA may be overly pessimistic for other circuit 

topologies. The accuracy of STA in advanced processes is therefore a serious concern. 

Therefore, the need for an effective modeling of process variations in timing analysis has 

led to extensive research in statistical STA.  
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1.3 Circuit Performance Analysis under Process Variations 

Since process variations can significantly affect circuit performance parameters 

such as timing and power, it is important to analyze the relation between these in order to 

predict their impact on circuit performance, for parametric yield prediction as well as 

variation-aware circuit design and optimization. We will now overview several classes of 

analysis techniques. 

1.3.1 Multi-Corner-Based Methodology 

In general, the value of a process parameter after manufacturing falls into a 

bounded range from a minimum to a maximum value. A process corner corresponds to a 

set of values of process variables in the parameter space where each parameter in the 

space takes either the minimum or maximum value. A worst-case corner is defined as the 

corner where the process parameters take their extreme values that can result in the worst 

behavior for a typical circuit. Traditional circuit analysis deals with process variations by 

predicting the worst-case circuit behavior evaluated at worst- case corners. Unfortunately, 

with the number and magnitude of process variables increasing, checking a small set of 

worst-case corner could be risky if it may not cover the region sufficiently, or excessively 

conservative, if the corners are chosen to embody a pessimistic worst-case [5, 6]. 

Therefore, a multi-corner-based method, which predicts the circuit behavior by analyzing 

the circuit at all enumerative corners, has to be used to evaluate worst-case behavior. 

However, the multi-process corner based methodology also suffers from the following 

disadvantages. 

  First, the method is too computationally intensive: on the one hand, as the number 

of varying process parameters increases, the number of process corners to enumerate, 
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which grows exponential with the number of process variables, grows too high; on the 

other hand, under intra-die variation, the process parameter values of devices [wires] in 

the same chip can vary differently, and therefore, the number of process corners required 

must also consider region-based analysis (alluded to in Section 1.1), which worsens the 

exponential behavior.  

Second, the approach is too conservative and pessimistic in that the process 

corner corresponding to the worst-case performance may have a very low probability of 

occurrence, which results in an over-pessimistic results. As an example, suppose there are 

two independent sources of variations 𝑝1 and 𝑝2 with Gaussian distribution 𝑁(𝜇1,𝜎1) and 

𝑁(𝜇2,𝜎2), respectively. Then, using the corner-based method, the worst-case could be 

found by inspecting the corners are at (𝑝1,𝑝2) = (𝜇1 ± 3𝜎1, 𝜇2 ± 3𝜎2). However, the 

probability of each of the (𝑝1,𝑝2) corners is as low as 1.96 × 10−5, significantly less 

than at the 3𝜎 point. This pessimism is liable to become especially severe as the number 

of varying process parameters grows higher. Amending this procedure so that the corners 

correspond to 3𝜎 points does not help either: fundamentally, the problem here is that the 

level sets of the Gaussian are ellipsoids, and worst-casing over the corners of a 

multidimensional box is doomed to failure. 

1.3.2 Monte Carlo Simulation Approach 

The effects of process variations on circuit performance can also be predicted by 

Monte Carlo simulation method [7, 8, 9]. The approach is an iterative process where each 

iteration consists of two basic steps, sampling and simulation. In each sampling step, a set 

of sampled values of process parameters are generated according to the distribution of 

process parameter variations, or samples as delay/power for all circuit nodes generated 
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according to their distributions. The simulation step then simply runs a 

circuit/timing/power simulation, using the generated sample values. The Monte Carlo 

method is very accurate in predicting the distribution of circuit performance. However, 

for an integrated circuit, the number of iterations required for convergence is generally 

greater than 10,000. Although smart techniques can be used to reduce the sampling size, 

it is still a large number so as to achieve desirable accuracy of simulation result. 

Therefore the approach is highly computationally expensive, and is not practical even for 

medium size circuits. 

1.4 Statistical Analysis Method 

Statistical performance analysis methods provide a good possibility for analyzing 

circuit performance with good accuracy and efficient run-time. These approaches directly 

exploit the statistical information of the process parameters and utilize efficient stochastic 

techniques [8] to determine the probability distribution of the circuit performance. In 

these methods, instead of using fixed values of process parameters (as is done in each 

multi-corner analysis), random variables are used to model the uncertainty of process 

parameters. In timing analysis, the delays of gates and interconnects and arrival times at 

intermediate nodes are all random variables. Therefore, unlike conventional deterministic 

STA which computes timing based on deterministic values, the SSTA method 

stochastically computes delays and arrival times on a set of random variables. Therefore, 

probabilistic characteristics, such as the probability density function (PDF) of circuit 

timing, can be obtained and yield of timing can also be predicted from the computation. 

Similarly, for statistical leakage power analysis, the leakage power of each gate is 

modeled as a random variable and the result of computation is probability distribution 
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and yield of full-chip leakage. 

It is worth mentioning that under process variations, circuit optimization 

techniques should be also adapted to be capable of considering the effects the process 

variations. Therefore, the importance of analyzing circuit performance under process 

variation is not limited to yield prediction, but also for variation-aware circuit design and 

optimization. Multiple-process corner based methods are too pessimistic, and may result 

in over-constrained circuit optimization. Therefore, although more computational effort 

goes into reoptimizing the circuit to meet the worst-case performance requirement over 

all the corners, this does not significantly contribute to improving the yield of circuit 

performance. The alternative of using accurate Monte Carlo methods suffers from a 

different drawback: the expensive run-time prohibits these methods from being used 

within a circuit optimization algorithm. In contrast to these, statistical methods for circuit 

performance analysis are computationally efficient and can achieve good accuracies, and 

therefore, have the potential to be practically be integrated into various steps of the 

design flows, such as technology mapping, synthesis, and physical design. 

1.5 Our Contributions 

In modern chip design, circuit performance is greatly constrained by timing. In 

nanometer-scale technologies, leakage power which can be derived from timing has 

become a major component of total chip power dissipation, and it is highly sensitive to 

manufacturing variations due to its exponential dependency on some process parameters. 

Therefore, in this thesis, we will focus on the analysis of timing, and propose efficient 

statistical performance analysis methods for timing under the effect of inter-die and intra-

die variations. As intra-die variations exhibit spatial correlation, i.e., devices [wires] 
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spatially located close to each other tend to experience more similar variations than those 

placed far away, the effect of spatial correlations are also considered in the analysis using 

a model proposed in Chapter 2. The major contributions of the thesis are: 

Statistical timing analysis with non-Gaussian distributed process parameters and 

nonlinear delay functions 

Statistical timing analysis methods that assume process variations to take the form 

of linear functions of Gaussians can be very run-time efficient. However, as delay shows 

nonlinear sensitivities to some process parameters, and some process variations, which 

show non-Gaussian distributions and cannot be well approximated with Gaussians, it is 

essential to develop an SSTA technique that can handle non-Gaussian process parameters 

and nonlinear delay functions to achieve desirable accuracy. For this purpose, we first 

present a novel block based SSTA modeling in this thesis that is designed to consider 

both global correlations and path correlations. We develop a model encompassed with 

numerical computations and tightness probabilities to conditionally approximate the 

MAX/MIN operator by a linear mixing operator. We extend the commonly used 

canonical timing model to be able to represent all possible correlations, including the path 

correlations, between timing variables in the circuit. We show that developing SSTA 

technique that is capable of incorporating non-Gaussian sources of process variations 

and/or nonlinear delay functions is important to correctly predict the circuit timing. This 

work was published in [10]. 

High Level Circuit Synthesis with System Level Statistical Static Timing Analysis 

under Process Variation 

Process variations are of great concern in deep sub-micron technology. Early 
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prediction of their effects on the circuit performance and parametric yield is extremely 

useful. Due to the increase of the design complexity in today’s SoC chips, a demand for 

high level design has increased. Therefore, we propose the timing analysis model so that 

the impact of process variations is taken into account during high level synthesis. High-

level synthesis (HLS) is a synthesis technique that allows designers to move up the 

design chain to a higher level of abstraction. This means that instead of designing at the 

register transfer level (RTL), where a designer must specify all the timing of the circuit, 

the designer can work at a behavioral level, where only the data flow of the required 

circuit has to be specified. This frees the designer from the burden of many low-level 

details of circuit design, allowing for productivity increases of up to 10 times and code 

reductions of up to 100 times [11]. As manufacturing technologies continue to shrink, 

HLS is becoming a powerful technique to decrease the amount of time required to design 

a chip. In this dissertation, we apply statistical timing analysis to high-level synthesis, and 

develop yield driven synthesis framework so that the impact of process variations is taken 

into account during high-level synthesis.  

Architectural Level Statistical Static Timing Analysis under Process Variation 

SSTA is a very complex solution and computationally intense.  It is also proved 

that the run time complexity of the SSTA algorithm is 𝑂(𝑝.𝑛. (𝑁𝑔 + 𝑁𝐼)), which is 𝑝. 𝑛 

times that of deterministic STA, where 𝑛 is total number of grids into which the chip is 

divided and 𝑝 is the number of spatially correlated parameters considered,  𝑁𝑔 is the total 

number of gates and 𝑁𝐼 the number of net connections in the circuit. Also, the run-time of 

the SSTA algorithm can be divided into four folds. They are as following: a. The times 

required to find the delay distribution of the gate and   interconnect, b. The time required 
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to evaluate the max function, c. The time required to compute output transition time at 

each gate output, and d. The time required to evaluate the sum function.  

There is a new architecture called vector-thread (VT) which is an architectural 

paradigm describes a class of architectures that unify the vector and multithreaded 

execution models. VT architectures compactly encode large amounts of structured 

parallelism in a form that lets simple microarchitectures attain high performance at low 

power by avoiding complex control and datapath structures and by reducing activity on 

long wires. We present a run time complexity analysis here to show which factors most 

greatly affect the CPU time of the algorithm. 

Design Methodology 

We present SSTA flow by using the fast statistical timing analysis flow [58] for 

transistor level macros that can compute the delay distributions due to process variations 

of all paths in the macros. It first groups the macro transistors into logic gates called 

xcells by applying special grouping technique [65]. The method used by block-based 

SSTA engine. It is based on simultaneous application of the usual static as well as 

statistical static timing analysis. At the first stage usual STA is applied and at the second 

stage - SSTA. The offered method of the analysis allows reaching acceptable analysis 

results from the practical point of view of accuracy at rather small expenses of machine 

runtime. SSTA engine determines delay distributions for all paths in the macro using the 

variation libraries. The timing yield step estimates the required arrival time based on the 

most critical path due to variation. 
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CHAPTER 2  

LITERATURE OVERVIEW 

In this chapter, we first study the key sources of variation in timing prediction, 

which make timing analysis a challenging task for nanoscale digital circuits.  

2.1 Static Timing Analysis 

Static Timing Analysis is to verify the timing behavior of a circuit in the 

deterministic case (without variations). An alternative approach for timing verification is 

using simulation. It requires applying a large set of data patterns to the input pins. 

Therefore, timing simulation is more time-consuming compared to STA. STA is a tool, 

which is widely used to determine the delay of integrated digital circuits. In order to have 

a properly operating circuit, not only the design needs to be well done, but also its 

operating points must be determined. For an arbitrary digital circuit, its worst-case delay 

determines the maximum speed (frequency) at which the circuit will operate as expected. 

Therefore, Static-Timing Analysis provides a key measurement for the circuit 

performance.  But the limitations of traditional static timing analysis techniques lie in 

their deterministic nature. An alternative approach that overcomes these problems is 

SSTA, which treats delays not as fixed numbers, but as probability density functions, 

taking the statistical distribution of parametric variations into consideration while 

analyzing the circuit. 

2.2 Sources of Timing Variation 

We first discuss different types of uncertainties that arise as a design moves from 

specification to implementation and final operation in the field. We then focus on process 

variations in more detail and discuss the distinction between die-to-die and within-die 
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variations and the source of so-called spatial correlations. Finally, we will discuss the 

impact of different types of process variations on the timing of a circuit. 

2.3 Process, Environmental, and Model Uncertainties 

The uncertainty in the timing estimate of a design can be classified into three 

main categories: 

a. Modeling and analysis errors: inaccuracy in device models, in extraction and 

reduction of interconnect parasitics, and in timing-analysis algorithms, 

b. Manufacturing variations: uncertainty in the parameters of fabricated devices and 

interconnects from die to die and within a particular die, 

c. Operating context variations: uncertainty in the operating environment of a 

particular device during its lifetime, such as temperature, supply voltage, mode of 

operation, and lifetime wear-out. 

To illustrate each of these uncertainties, consider the stages of design, from initial 

specification to final operation, as shown in Figure 2. The design process starts with a 

broad specification of the design and then goes through several implementation steps, 

such as logic synthesis, buffer insertion, and place and route. At each step, timing 

analysis is used to guide the design process. However, timing analysis is subject to a host 

of inaccuracies, such as undetected false paths, cell-delay error, error in interconnect 

parasitics, SPICE models, etc. These modeling and analysis errors result in a deviation 

between the expected performance of the design and its actual performance 

characteristics. For instance, the STA tool might utilize a conservative delay-noise 

algorithm resulting in certain paths operating faster than expected. 
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    Model Variations   Process Variations        Operating Context Variation 

Figure 2: Steps of the design process and their resulting timing uncertainties. 
 
 

In the next stage, the design is fabricated and each individual die incurs additional 

manufacturing-related variations due to equipment imprecisions and process limitations. 

Finally, a manufactured die is used in an application such as a cell phone or a laptop. 

Each particular die then sees different environmental conditions, depending on its usage 

and location. Since environmental factors such as temperature, supply voltage, and 

workload affect the performance of a die, they give rise to the third class of uncertainty. 

To achieve the required timing specification for all used die throughout their entire 

lifetime, the designer must consider all three sources of uncertainty. However, a key 

difference between the three classes of uncertainty is that each has a sample space that 

lies along a different dimension. Hence, each class of uncertainty calls for a different 

analysis approach. 

First, we recall that the sample space of an experiment or a random trial is the set 

of all possible outcomes. The timing uncertainty caused by modeling and analysis errors 

has as its sample space the set of design implementations resulting from multiple design 

attempts. Each design attempt results in an implementation that triggers particular 
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inaccuracies in the models and tools, resulting in a timing distribution across this sample 

space. However, a design is typically implemented only once and their needs to be a high 

level of confidence that the constraints will be met in the first attempt. Hence, the 

designer is interested in the worst-case timing across this sample space. Thus, margins 

are typically added to the models to create sufficient confidence that they are 

conservative and will result in a successful implementation. Although a statistical 

analysis is a model and analysis uncertainty is uncommon, it could aid in a more accurate 

computation of the delay with a specified confidence level. 

In the case of process variations, the sample space is the set of manufactured die. 

In this case, a small portion of the sample space is allowed to fail the timing requirements 

since those die can be discarded after manufacturing. This considerably relaxes the 

timing constraints on the design and allows designers to significantly improve other 

performance metrics, such as power dissipation. In microprocessor design, it is common 

to perform so-called binning where die are targeted to different applications based on 

their performance level. This lessens the requirement that all or a very high percentage of 

the sample space meets the fastest timing constraint. Instead, each performance level in 

the sample space represents a different profit margin, and the total profit must be 

maximized.  

The sample space of environmental uncertainty is across the operational life of a 

part and includes variations in temperature, modes of operation, executed instructions, 

supply voltage, lifetime wear-out, etc. Similar to model and analysis uncertainty, the chip 

is expected to function properly throughout its operational lifetime in all specified 

operating environments. Even if a design fails only under a highly unusual environmental 
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condition, the percentage of parts that will fail at some point during their operational life 

can still be very high. Therefore, a pessimistic analysis is required to ensure a high 

confidence of correct operation throughout the entire lifetime of the part. 

Naturally, this approach results in a design that operates faster than necessary for 

much of its operational life, leading to a loss in efficiency. For instance, when a part is 

operating at a typical ambient temperature the device sizing or supply voltage could be 

relaxed, reducing power consumption. One approach to address this inefficiency is to use 

runtime adaptivity of the design [12], [13]. 

Since each of the three discussed variabilities represents orthogonal sample spaces, 

it is difficult to perform a combined analysis in a meaningful manner. Environmental 

uncertainty and uncertainty due to modeling and analysis errors are typically modeled 

using worst-case margins, whereas uncertainty in process is generally treated statistically. 

Hence, most SSTA research works, as well as this dissertation, focus only on modeling 

process variations. However, the accuracy gained by moving from DSTA to SSTA 

methods must be considered in light of the errors that continue to exist due to the other 

sources of timing error, such as analysis and modeling error, uncertainty in operating 

conditions, and lifetime wear-out phenomena. We will discuss in the next section the 

sources of process variation in more detail. 

2.4 Sources of Process Variation 

Physical Parameters, Electrical Parameters, and Delay Variation  

The semiconductor manufacturing process has become more complex; at the same 

time process control precision is struggling to maintain relative accuracy with continued 

process scaling. As a result, a number of steps throughout the manufacturing process are 
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prone to fluctuations. These include effects due to chemical mechanical polishing (CMP), 

which is used to planarize insulating oxides and metal lines, optical proximity effects, 

which are a consequence of patterning features smaller than the wavelength of light [14-

16], and lens imperfections in the optical system. These, as well as other numerous 

effects, cause variation of device and interconnect physical parameters such as gate 

length (or critical dimension-CD), gate-oxide thickness, channel doping concentration, 

interconnect thickness and height, etc., as shown in Figure 3. 

 
 

 

 

 

 

 

 

 

Figure 3: Variation Propagation. 
 
 

Among these, CD variation and channel doping fluctuations have typically been 

considered as dominant factors. However, many SSTA methods model a much wider 

range of physical parameters. Variations in these physical parameters, in turn, result in 

variations in electrical device characteristics, such as the threshold voltage, the drive 

strength of transistors, and the resistance and capacitance of interconnects. Finally, the 

Physical 
Parameters 
Variation 

 

Electrical 
Parameters 
Variation 

 

Delay 
Variation 

 

Critical Dimension 
Oxide Thickness 
Channel Doping 
Wire Width 
Wire Thickness 
 

Saturation Current 
Gate Capacitance 
Threshold Voltage 
Wire Resistance 
Wire Capacitance 

Gate Delay 
Slew Rate 

Wire Delay 
 



18 
 

variations in electrical characteristics of circuit components result in delay variations of 

the circuit. 

It is important to note that more than one electrical parameter may have a 

dependence on a particular physical parameter. For example, both resistance and 

capacitance of an interconnect are affected by variation in wire width. An increase in 

interconnect width reduces the separation between wires, resulting in an increased 

coupling capacitance while decreasing the resistance of the wire. Similarly, perturbations 

in the gate-oxide thickness influence the drive current, the threshold voltage, and the gate 

capacitance of the transistors. Dependence of two or more electrical parameters on a 

common physical parameter gives rise to correlation of these electrical parameters and 

ignoring this correlation can result in inaccurate results. For instance, if we ignore the 

negative correlation between capacitance and resistance, there is a nonzero probability 

that both resistance and capacitance are at their worst-case values. However, this is 

physically impossible and leads to unrealistic RC delay estimates. In [17], the authors 

present a method to determine the process-parameter values that result in a more realistic 

worst case delay estimate. 

It would be ideal to model each process step in the manufacturing process to 

determine the variations and correlations in the physical parameters. However, such an 

analysis is complex and impractical due to the number of equipment-related parameters 

in each fabrication step and the total number of steps. Hence, most SSTA approaches 

have taken the physical parameters themselves (such as CD, doping concentration, and 

oxide thickness) to be the basic random variables (RVs). These variables are either 

assumed to be independent or to have well-understood correlations. 
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2.5 Classification of Physical-Parameter Variation 

Physical-parameter variations can be classified based on whether they are 

deterministic or statistical and based on the spatial scale over which they operate, as 

shown in Figure 4. 

Systematic variations are components of physical parameter variation that follow 

a well-understood behavior and can be predicted upfront by analyzing the designed 

layout. Systematic variations arise in large part from optimal proximity effects, CMP, and 

its associated metal fill. These layout-dependent variations can be modeled 

premanufacturing by performing a detailed analysis of the layout. Therefore, the impact 

of such variations can be accounted for using deterministic analysis at later stages of the 

design process [18], [19] and particularly at timing sign-off. However, since we do not 

have layout information early in the design process, it is common to treat these variations 

statistically. In addition, the models required for analysis of these systematic variations 

are often not available to a designer, which makes it advantageous to treat them 

statistically, particularly when it is unlikely that all effects will assume their worst case 

values. 

Nonsystematic or random variations represent the truly uncertain component of 

physical parameter variations. They result from processes that are orthogonal to the 

design implementation. For these parameters, only the statistical characteristics are 

known at design time, and hence, they must be modeled using RVs throughout the design 

process. Line-edge roughness (LER) and random dopant fluctuations (RDF) are examples 

of nonsystematic random sources of variation.  
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It is common that earlier in the design flow, both systematic and nonsystematic 

variations are modeled statistically. As we move through the design process and more 

detailed information is obtained, the systematic components can be modeled 

deterministically, if sufficient analysis capabilities are in place, thereby reducing the 

overall variability of the design. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Types of Variation. 
 
 

Nonsystematic variations can be further analyzed by observing that different 

sources of variations act on different spatial scales. Some parameters shift when the 
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equipment is loaded with a new wafer or between processing one lot of wafers to the next 

which this can be due to small unavoidable changes in the alignment of the wafers in the 

equipment, changes in the calibration of the equipment between wafer lot processing, etc. 

On the other hand, some shift can occur between the exposures of different reticles on a 

wafer, resulting in reticle-to-reticle variations. A reticle is the area of a wafer that is 

simultaneously exposed to the mask pattern by a scanner. The reticle is approximately 20 

mm × 30 mm and will typically contain multiple copies of the same chip layout or 

multiple different chip layouts. At each exposure, the scanner is aligned to the previously 

completed process steps, giving rise to a variation in the physical parameters from one 

reticle to the next. Finally, some shift can occur during the reticle exposure itself. For 

instance, a shift in a parameter, such as laser intensity, may occur while a particular 

reticle is scanned leading to within reticle variations. Another example is non-uniform 

etch concentration across the reticle, leading to the variation in the CD. 

These different spatial scales of variation give rise to a classification of 

nonsystematic variations into two categories. 

Die-to-die variations (also referred to as global or inter die variations) affect all 

the devices on the same die in the same way. For instance, they cause the CD of all 

devices on the same chip to be larger or smaller than nominal. We can see that die-to-die 

variations are the result of shifts in the process that occur from lot to lot, wafer to wafer, 

reticle to reticle, and across a reticle if the reticle contains more than one copy of a chip 

layout. 

Within-die variations (also referred to as local or intra die variations) affect each 

device on the same die differently. In other words, some devices on a die have a smaller 
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CD, whereas other devices on the same die have a larger CD than nominal. Within-die 

variations are only caused by across-reticle variations within the confines of a single chip 

layout as illustrated in Figure 5. Finally, within-die variations can be categorized into 

spatially correlated and independent variations as discussed as follows.  

 
  

 Lot-to-lot 
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     Wafer-to-wafer 

 

Figure 5: Classification of physical variations. 
 
 
Spatially correlated variations 

 Many of the underlying processes that give rise to within-die variation change 

gradually from one location to the next. Hence, these processes tend to affect closely 

spaced devices in a similar manner, making them more likely to have similar 
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characteristics than those placed far apart. The component of variation that exhibits such 

spatial dependence is known as spatially correlated variation. 

Independent variations 

 The residual variability of a device that is statistically independent from all other 

devices and does not exhibit spatially dependent correlations is referred to as independent 

variation. These variations include effects such as RDF and LER. It has been observed 

that with continued process scaling, the contribution of independent within-die variation 

is increasing.  

2.6 Impact of Correlation on Circuit Delay 

Once the parameter variations and their respective distributions are known the 

challenge of computing the delay of the circuit emerges. For any circuit there are 

basically two types of delay that need to be computed. One is the total delay of a path 

consisting of devices connected in series (Single Path Delay). The second one is the 

maximum delay between two or more parallel paths (Maximum Delay of Multiple Paths). 

 
 

 

 

Figure 6: Devices connected in series. 
 
 

The most straightforward case is Single Path Delay with devices having 

independent delays. Figure 6 depicts this case, where Pi refers to the delay probability of 

device i. Furthermore, let us assume that these probability densities are equal and normal 

distributed with mean μ and variance 𝜎2. Now the computation of the total delay of such 

a path becomes easy. The delay must be equal to the sum of all delays on the path. 

P1 P2 P3 P4 Pn 
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However, the sum of independent normal distributions results in a normal distribution 

with mean equal to the sum of the individual means and variance equal to the sum of the 

individual variances. 

∑ 𝑁(𝜇,𝜎2) = 𝑁(∑ 𝜇𝑛
𝑖=1

𝑛
𝑖=1 ,∑ 𝜎2𝑛

𝑖=1 ) = 𝑁(𝑛𝜇,𝑛𝜎2)                                      (2.1) 

As a result the total coefficient of variation given by the ratio of deviation to mean 

becomes smaller than the coefficient of variation of a single device on the path. 
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                                     (2.2) 

Assuming independency definitely eases the computational effort, but in many 

cases this assumption is simply wrong. Therefore, this time the example path from Figure 

6 will have devices with again equal normal distributions (mean µ, variance 𝜎2), but this 

time the delay probabilities will be correlated with correlation coefficient 𝜌. Now the task 

of computing the total delay becomes a little bit more complicated. The mean of the total 

delay equals the sum of the means of the individual delays on the path. The variance, 

however, changes drastically. In addition to the sum of the individual variances on the 

path, a term describing the correlation between each two individual distributions is added. 

𝜇𝑝𝑎𝑡ℎ = 𝑛𝜇                                                                                                                     (2.3) 

𝜎𝑝𝑎𝑡ℎ2 = ∑ 𝜎2𝑛
𝑖=1 + 2𝜌∑ ∑ 𝜎𝑖𝜎𝑗 = 𝑛𝜎2𝑛

𝑗>𝑖
𝑛
𝑖=1 (1 + 𝜌(𝑛 − 1))                                      (2.4) 

The above results give rise to the following expression describing the coefficient 

of variation. It now depends on the correlation coefficient. 
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                                                           (2.5) 

By close observation of Equ. 2.5 it can be seen that a simple substitution of ρ = 0 

(uncorrelatedness which implies independency) results in equation 2.2. Furthermore, if 
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ρ = 1(fully correlated delays) then the total coefficient of variation equals the coefficient 

of variation for a single device which is larger than the total one in the independent case. 

However, the mean is independent of the coefficient ρ and is the same in all cases. This 

means that the denominator in the fraction describing the total coefficient of variation is 

constant. Hence, it is the numerator (the standard deviation) that varies with the 

correlation. Therefore, for both independent and fully correlated cases the resulting 

density function is around the same mean, only its spread changes. Given that the spread 

in the correlated case is larger, it can be concluded that this assumption results in 

overestimation of the total delay. 

Another situation where the worst-case delay needs to be determined is the case 

where multiple paths converge. Here, probability densities function of the maximum 

needs to be computed. In the following two paths with equal and normal total delay 

probability densities are considered. 

Figure 7 shows the resulting density function of the maximum delay, given that 

the two paths are independent. It can be seen that the mean of the maximum is larger than 

any of the original means and the shape closely, but not perfectly resembles a Gaussian 

density. The increase in the mean is caused by the fact that in three out of four cases the 

maximum delay is on the right side of the mean of the single path and only in one case on 

the left. 
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Figure 7: Independent (𝝆 = 𝟎). 
 
 

As the correlation between the two paths increases, the resulting maximum 

density shifts to the left and its mean converges more to the mean of the two paths. Figure 

8 shows that for (ρ = 0.5). 

For perfectly correlated delay of the individual paths the result becomes trivial. 

Having two random variables with equal distributions, which are perfectly correlated, 

basically means observing one and the same random variable twice at a single instant of 

time.  
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Figure 8: Independent (𝛒 = 𝟎.𝟓). 
 
 

 

Figure 9: Independent (𝝆 = 𝟏). 
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Thus, the distribution of the maximum will be equal to either one of the two 

single path delay distributions (Figure 9). Because of the above results it can be 

concluded that the independent assumption will overestimate the delay after a maximum 

operation and the correlated assumption will yield smaller result. The converse is true 

about the delay for a single path. Therefore, assumptions may be based on circuit 

topology. For a shallow circuit the maximum operation will dominate the worst-case 

delay, hence the independent assumption might be used. For a significantly deeper circuit 

the delay of a single path will be dominant and, thus, the correlated assumption is 

expected to work. 
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CHAPTER 3  

STATISTICAL STATIC TIMING ANALYSIS 

In this chapter, we present an efficient statistical timing analysis algorithm that 

predicts the probability distribution of the circuit delay, considering both inter-die and 

intra-die variations, while  accounting for the  effects of spatial correlations in intra-

die parameter variations. The procedure uses a first-order Taylor series expansion to 

approximate the gate and interconnect delays. Next, principal component analysis 

techniques are employed to transform the set of correlated parameters into an 

uncorrelated set. The statistical timing computation is then easily performed with a 

PERT-like circuit graph traversal using statistical sum and max functions.  

3.1 Introduction 

As introduced in Chapter 1, conventional static timing analysis techniques 

handle the problem of variability by analyzing a circuit at multiple process corners. 

However, it is generally accepted that such an approach is inadequate, since the 

complexity of the variations in the performance space implies that if a small number 

of process corners is to be chosen, these corners must be very conservative/pessimistic 

as well as risky. For true accuracy, this can be overcome by using a larger number of 

process corners, but then the number of corners that must be considered for an 

accurate modeling will be too large for computational efficiency, and the method is 

also over-pessimistic as explained in Chapter 2.  

The limitations of traditional static timing analysis techniques lie in their 

deterministic nature. An alternative approach that overcomes these problems is 

SSTA, which treats delays not as fixed numbers, but as probability density functions, 
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taking the statistical distribution of parametric variations into consideration while 

analyzing the circuit. 

In the literature, the statistical timing analysis approaches can be classified 

into continuous and discrete methods. Continuous methods [21, 23, 40, 43] use 

analytical approaches to find closed-form expressions for the PDF of the circuit delay. 

For simplicity, these methods often assume a normal distribution for the gate delay, 

but even so, finding the closed-from expression of the circuit distribution is still not 

an easy task. Discrete methods [22, 35, 38] are not limited to normal distributions, 

and can discretize any arbitrary delay distribution as a set of tuples, each 

corresponding to a discrete delay and its probability. The discrete probabilities are 

propagated through the circuit to find a discrete PDF for the circuit delay.  However, 

th i s  method is liable to suffer from the problem of having to propagate an 

exponential number of discrete point probabilities. In [29], an efficient method was 

proposed by modeling arrival times as cumulative density functions and delays as 

probability density functions and by defining operations of sum and max on these 

functions. Alternatively, instead of finding the distribution of circuit delay directly, 

several attempts have been made to find upper and lower bounds for the circuit delay 

distribution [22, 24, 40]. 

Statistical timing analyzers can also be categorized into path-based and 

block- based techniques. A path-based SSTA method, such as the works in [21, 30, 

36, 40], enumerates all signal propagation paths or selective critical paths, finds the 

probability distribution of each individual path delay and then computes PDF of 

circuit delay by integration over all t h e  paths in space. Although the computation 
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of probability distribution for a single path is not difficult for arbitrarily distributed 

process parameter or arbitrary delay functions, the integration over all paths requires 

the joint probability density function of all paths and thus the correlation information 

among all paths must be computed which is of extremely high complexity. In 

addition, path-based methods suffer from the requirement that they may require the 

enumeration of paths: the number of paths can be exponential with respect to the 

circuit size. Therefore, such methods are not realistic for practical usage. A block- 

based SSTA method, such as [20, 23, 24, 29, 33, 35, 38, 43, 44], models delays of 

gates (wires) as random variables, and propagates/computes signal arrival times using 

sum and max operations similarly to propagating arrival times by a deterministic 

STA. Since block-based methods have linear run-times with respect to the circuit 

size and are good for incremental modes of operation, they are of the most interest. 

Although many prior works have dealt with inter-die and  intra-die  variations, 

most of them have ignored intra-die spatial correlations by simply assuming zero 

correlations among devices on the chip [22, 23, 24, 25, 28, 29, 7, 34-36, 38]. The 

difficulty in considering spatial correlations between parameters is that it always results 

in complicated path correlation structures that are hard to deal with.  Prior to our work 

of this chapter, very few studies have taken spatial correlations into consideration. The 

authors of [43] consider correlation between delays among the transistors inside a 

single gate (but not correlations between gates). The work in [36] uses a Monte 

Carlo sampling-based framework to analyze circuit timing on a set of selected 

sensitizable true paths. Another method in [40] computes path correlations on the 

basis of pair-wise gate delay covariances and used an analytic method to derive lower 
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and upper bounds of circuit delay. The statistical timing analyzer in [26] takes into 

account capacitive coupling and intra-die process variation to estimate the worst case 

delay of critical path. Two parameter space techniques, namely, the parallelepiped 

method and the ellipsoid method, and a performance-space procedure, the binding 

probability method, were proposed in [32] to find either bounds or the exact distribution 

of the minimum slack of a selected set of paths. The approach in [21] proposes a 

model for spatial correlation and a method of statistical timing analysis to compute 

the delay distribution of a specific critical path. However, the probability distribution 

for a single critical path may not be a good predictor of the distribution of the circuit 

delay (which is the maximum of all path delays), as will be explained in Section 

3.2. Moreover, the method may be computationally expensive when the number of 

critical paths is too large. In [20], the authors further extend their work in [21, 22] to 

compute an upper bound on the distribution of exact circuit delay. 

In this chapter, we will propose a block-based SSTA method that computes 

the distribution of circuit delay while considering correlations due to path 

reconvergence as well as spatial correlations. We will model the circuit delay as a 

correlated multivariate normal distribution, considering both gate and wire delay 

variations. 

In order to manipulate the complicated correlation structure, the principal 

component analysis technique is employed to transform the sets of correlated 

parameters into sets of uncorrelated ones. The statistical timing computation is then 

performed with a PERT-like circuit graph traversal.  The complexity of the 

algorithm is O(p × n × (Ng + NI )), which is linear in the number of gates Ng and 
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interconnects NI , and also linear in p, the number of spatially correlated random 

variables, and the number of grid squares, n, that are used to model variational 

regions. In other words, the cost is, at worst, p × n times the cost of a deterministic 

static timing analysis. We believe that this is the first method that can fully handle 

spatially correlated distributions under reasonably general assumptions, with a 

complexity that is comparable to traditional deterministic static timing analysis.   

The remainder of this chapter is organized as follows. Section 3.2 formally 

formulates the problem to be solved in this work. The algorithm is presented in 

Section 3.3.  

3.2 Problem Formulation  

Under process variations, parameter values, such as the gate length, the gate 

width, the metal line width and the metal line height, are random variables. Some of these 

variations, such as across-chip linewidth variations (ACLV) which are mainly caused by 

proximity and local effects [5], are deterministic, while others are random: this work will 

focus on the effect of random variations, and will model these parameters as random 

variables. The gate and interconnect delays, as functions of these parameters, also 

become random variables. Given appropriate modeling of process parameters or gate and 

interconnect delays, the task of SSTA is to find the PDF of the circuit delay. 

 The static timing works with the usual translation from a combinational circuit to 

a timing graph [42]. The node in this graph corresponds to the circuit primary 

inputs/outputs and gate input/output pins. The edges are of two types: one set corresponds 

to the pin-to-pin delay arcs within a gate, and the other set to interconnections from the 

drivers to receivers. The edges are weighted by the pin-to-pin gate delay, and 
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interconnect delay, respectively. The primary inputs of the combinational circuit are 

connected to a virtual source node, and the primary outputs to a virtual sink node with 

directed virtual edges. In the case that primary inputs arrive at different times, the virtual 

edges from the virtual source to the primary inputs are assigned weights of the arrival 

times. Likewise, if the required times at the primary outputs are different, the weights of 

the edges from the outputs to the virtual sink are appropriately chosen. 

For a combinational logic circuit, the problem of static timing analysis is to 

compute the longest path delay in the circuit from any primary input to any primary 

output, which corresponds to length of the longest path in the timing graph. In static 

timing analysis, the technique that is commonly referred to in the literature as PERT is 

commonly used1. This procedure starts from the source node to traverse the graph in a 

topological order and uses a sum operation or max operation (at a multi-fanin node) to 

find the longest path at the sink node.  

Since we will employ a PERT-like traversal to analyze the distribution of circuit 

delay, we define a statistical timing graph of a circuit, as in the case of deterministic 

STA. 

Definition 1: 

Let 𝐺𝑠 = (𝑉,𝐸) be a timing graph for a circuit with a single source node and a single 

sink node, where V is a set of nodes and E a set of directed edges. The graph 𝐺𝑠 is called 

a statistical timing graph if each edge i is assigned a weight 𝑑𝑖, where 𝑑𝑖, is a random 

variable, where the random variables may be uncorrelated or correlated. The weight 

associated with an edge corresponds to gate delay or interconnect delay. For a virtual 

                                                           
1 In reality, this is actually the critical path method (CPM) in operations research. However, we will persist 
with the term “PERT,” which is widely used in the static timing analysis literature. 
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edge, the weight is random variables with mean of its deterministic value and standard 

deviation of zero and it is independent from any other edges. 

Definition 2: 

Let a path 𝑝𝑖, be a set of ordered edges from the source node to the sink node in 𝐺𝑠 and 

𝐷𝑖 be the path length distribution of  𝑝𝑖, computed as the sum of the weights 𝑑𝑘 for all 

edges k on the path. Finding the distribution of 𝐷𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝐷1, … . . ,𝐷𝑖 , … … .𝐷𝑛𝑝𝑎𝑡ℎ𝑠)  

among all paths (indexed from 1 to n paths) in the graph 𝐺𝑠 is referred to as the problem 

of SSTA of a circuit. 

Note that for the same nominal design, the identity of the longest path may 

change, depending on the random values taken by the process parameters. Therefore, 

finding the delay distribution of one critical path at a time is not enough, and correlations 

between paths must be considered in finding the maximum of the PDFs of all paths. Such 

an analysis is essential for finding the probability of failure of a circuit, which is available 

from the cumulative density function (CDF) of the circuit delay. 

For an edge-triggered sequential circuit, the statistical timing graph can be 

constructed similarly by breaking the circuit into a set of combinational blocks between 

latches, and the analysis includes statistical checks on setup and hold time violations. The 

former requires the computation of the distribution of the maximum arrival time at the 

latches, which requires the solution of the SSTA problem as defined above. For intra-die 

variation, we only consider the impact of global and random components. However, the 

local component can also be accounted for in the proposed method, given, for instance, 

the chip layout and precharacterized spatial maps of parameters as in [41]. For transistors, 

we consider the following process parameters [39] as random variables: transistor length 
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𝐿𝑒𝑓𝑓  and width 𝑊𝑔 , gate oxide thickness 𝑇𝑜𝑥 , doping concentration density 𝑁𝑎 ; for 

interconnect, at each metal layer, we consider the following parameters: metal width 

𝑊𝑖𝑛𝑡𝑙 , metal thickness 𝑇𝑖𝑛𝑡𝑙  and interlayer dielectric (ILD) thickness 𝐻𝐼𝐿𝐷  , where the 

subscript l represents that the random variable is of layer l, where 𝑙 = 1 … . .𝑛𝑙𝑎𝑦𝑒𝑟𝑠 . 

However, the SSTA method presented in this chapter is general enough that it can be 

applied to handle variations in other parameters as well. 

For spatial correlation, we use the grid-based model. It is assumed that nonzero 

correlations may exist only among the same type of process parameters in different grids, 

and there is no correlation between different types of process parameters. (Note here that 

we consider interconnect parameters in different layers to be “different types of 

parameters,” e.g., 𝑊𝑖𝑛𝑡1 and 𝑊𝑖𝑛𝑡2 are uncorrelated2.) 

The process parameter values are assumed to be normally distributed random 

variables. The gate and interconnect delays, being functions of the fundamental process 

parameters, are approximated using a first-order Taylor series expansion. We will show 

that as a result of this, all edges in graph 𝐺𝑠 are normally distributed random variables. 

Since we consider spatial correlations of the process parameters, it turns out that some of 

the delays are correlated random variables. Furthermore, the circuit delay 𝐷𝑚𝑎𝑥  is 

modeled as a multivariate normal distribution. Although the closed form of circuit delay 

distribution is not normal, we show that the loss of accuracy is not significant under this 

approximation. 

 

 

                                                           
2 This assumption is not critical to the correctness of our procedure, but is used in our experiment results. 
Out method is general enough to handle corrections between parameters of different types. 
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3.3 SSTA Algorithm 

The core SSTA method is described in this section, and its description is 

organized as follows. At first, in Section 3.3.1, we will describe how we model the 

distributions of gate and interconnect delays as normal distributions, given the PDFs that 

describe the variations of various parameters. In general, these PDFs will be correlated 

with each other. In Section 3.3.2, we will show how we can simplify the complicated 

correlated structure of parameters by orthogonal transformations. Section 3.3.3 will 

describe the PERT-like traversal algorithm on the statistical timing graph by 

demonstrating the procedure for the computation of max and sum functions.  

3.3.1 Modeling Gate/Interconnect Delay PDFs 

In this section, we will show how the variations in the process parameters are 

translated into PDFs that describe the variations in the gate and interconnect delays that 

correspond to the weights on edges of the statistical timing graph. 

Before we introduce how the distributions of gate and interconnect delays will be 

modeled, let us first consider an arbitrary function 𝑑 = 𝑓(𝑃�⃗ ) that is assumed to be a 

function on a set of process parameters 𝑃�⃗  , where each 𝑝𝑖 ∈  𝑃�⃗  is a random variable with 

a normal distribution given by 𝑝𝑖~𝑁(𝜇𝑝𝑖 ,𝜎𝑝𝑖). 

We can approximate the function d linearly using a first order Taylor expansion: 

𝑑 = 𝑑0 + ∑ �𝜕𝑓
𝜕𝑝𝑖
� ∆𝑝𝑖∀ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑝𝑖                    (3.1) 

where 𝑑0  is the nominal value of d, calculated at the nominal values of process 

parameters in the set 𝑃�⃗ , 𝜕𝑓
𝜕𝑝𝑖

 is computed at the nominal values 𝑝𝑖,∆𝑝𝑖 = 𝑝𝑖 − 𝜇𝑝𝑖 is a 

normally distributed random variable and ∆𝑝𝑖~𝑁(0,𝜎𝑝𝑖). 
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In this approximation, d is modeled as a normal distribution, since it is a linear 

combination of normally distributed random variables. Its mean 𝜇𝑑, and variance 𝜎𝑑2 are: 

𝜇𝑑 =  𝑑0              (3.2) 

𝜎𝑑2 = ∑ �𝜕𝑓
𝜕𝑝𝑖
�
0

2
∀𝑖 𝜎𝑝𝑖

2 + 2∑ �𝜕𝑓
𝜕𝑝𝑖
�
0
� 𝜕𝑓
𝜕𝑝𝑖
�
0
𝑐𝑜𝑣(𝑝𝑖,𝑝𝑗)∀𝑖≠𝑗            (3.3) 

Where 𝑐𝑜𝑣(𝑝𝑖,𝑝𝑗) is the covariance of 𝑝𝑖 and 𝑝𝑗. 

It is reasonable to ask whether the approximation of d as a normal distribution is 

valid, since the distribution of d may, strictly speaking, not be Gaussian. We can say that 

when ∆𝑝𝑖has relatively small variations, the first order Taylor expansion is adequate and 

the approximation is acceptable with little loss of accuracy. This is generally true of intra-

die variations, where the process parameter variations are relatively small in comparison 

with the nominal values. For this reason, as functions of process parameters, the gate and 

interconnect delays can be approximated as a sum of normal distributions (which is also 

normal) applying the Equation (3.1). 

Computing the PDF of interconnect delay 

In this work, we use the Elmore delay model [42] for simplicity to calculate the 

interconnect delays3. Under the Elmore model, the interconnect delay is a function of the 

resistances 𝑅�⃗ 𝑤  and capacitances 𝐶𝑤  of all wire segments in the interconnect tree and 

input load capacitances 𝐶𝑔 of the fanout gates, or receivers. 

𝑑𝑖𝑛𝑡 = 𝑑(𝑅�⃗ 𝑤,𝐶𝑤,𝐶𝑔)                   (3.4) 

Since the resistances and capacitances above are furthermore decided by the 

process parameters 𝑃�⃗  of the interconnect and the receivers, such as 𝑊𝑖𝑛𝑡1 , 𝑇𝑖𝑛𝑡1 , 𝐻𝐼𝐿𝐷 , 
                                                           
3 However, it should be emphasized that any delay model may be used, and all that is required is the 
sensitivity of the delay to the process parameters. For example, through a full circuit simulation, the 
sensitivity may be computed by performing ad joint sensitivity analysis. 
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𝑊𝑔, 𝐿𝑒𝑓𝑓 and 𝑇𝑜𝑥, the sensitivities of the interconnect delay to a process parameter 𝑝𝑖 can 

be found by using the chain rule: 

𝜕𝑑𝑖𝑛𝑡
𝜕𝑝𝑖

= ∑ 𝜕𝑑
𝜕𝑅𝑤𝑘

∀𝑅𝑤𝑘∈𝑅�⃗ 𝑤
𝜕𝑅𝑤𝑘
𝜕𝑝𝑖

+  ∑ 𝜕𝑑
𝜕𝐶𝑤𝑘

∀𝐶𝑤𝑘∈𝐶𝑤
𝜕𝐶𝑤𝑘
𝜕𝑝𝑖

+ ∑ 𝜕𝑑
𝜕𝐶𝑔𝑘

∀𝐶𝑔𝑘∈𝐶𝑔
𝜕𝐶𝑔𝑘
𝜕𝑝𝑖

          (3.5) 

The distribution of interconnect delay can then be approximated on the computed 

sensitivities. 

We will now specifically consider the factors that affect the interconnect delay 

associated with edges in the statistical timing graph. Recall that under our model, we 

divide the chip area into grids so that the process parameter variations within a grid are 

identical, but those in different grids exhibit spatial correlations. Now consider an 

interconnect tree with several different segments that reside in different grids. The delay 

variations in the tree are affected by the process parameter variations of wires in all grids 

that the tree traverses. 

 
 

 

Figure 10: Grid model for spatial correlations. 
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For example, in Figure 10, consider the two segments uv and pq in the 

interconnect tree driven by gate a. Segment uv passes through the grid (1, 1) and pq 

through the grid (1, 2). Then the resistance and capacitance of segment uv should be 

calculated based on the process parameters of grid (1, 1), while the resistance and 

capacitance of segment pq should be based on those of grid (1, 2). Hence, the distribution 

of the interconnect tree delay is actually a function of random variables of interconnect 

parameters in both grid (1, 1) and grid (1, 2), and should incorporate any correlations 

between these random variables. Similarly, if the gates that the interconnect tree drives 

reside in different grid locations, the interconnect delay to any sink is also a function of 

random variables of gate process parameters of all grids in which the receivers are 

located. 

In summary, the distribution of interconnect delay function can be approximated 

𝑑𝑖𝑛𝑡 = 𝑑𝑖𝑛𝑡0 + ∑ � 𝜕𝑑
𝜕𝐿𝑒𝑓𝑓

𝑖 �
0

𝑖ϲ𝛤𝑔 ∆𝐿𝑒𝑓𝑓𝑖 +  ∑ � 𝜕𝑑
𝜕𝑊𝑔

𝑖�
0

𝑖ϲ𝛤𝑔 ∆𝑊𝑔𝑖 + ∑ � 𝜕𝑑
𝜕𝑇𝑜𝑥𝑖

�
0

𝑖ϲ𝛤𝑔 ∆𝑇𝑜𝑥𝑖 +

∑ �∑ � 𝜕𝑑
𝜕𝑊𝑖𝑛𝑡1

𝑖 �
0

𝑖ϲ𝛤𝑖𝑛𝑡 ∆𝑊𝑖𝑛𝑡𝑙
𝑖 + ∑ � 𝜕𝑑

𝜕𝑇𝑖𝑛𝑡𝑙
𝑖 �

0
𝑖ϲ𝛤𝑖𝑛𝑡 ∆𝑇𝑖𝑛𝑡𝑙

𝑖 +𝑛𝑙𝑎𝑦𝑒𝑟
𝑙=1

∑ � 𝜕𝑑
𝜕𝐻𝐼𝐿𝐷𝑙

𝑖 �
0

𝑖ϲ𝛤𝑖𝑛𝑡 ∆𝐻𝑖𝑛𝑡𝑙
𝑖 �                  (3.6) 

where 𝑑𝑖𝑛𝑡0  is the interconnect delay calculated with nominal values of process 

parameters, 𝛤𝑔is the set of indices of grids that all the receivers reside in, 𝛤𝑖𝑛𝑡 is the set of 

indices of grids that the interconnect tree traverses, and ∆𝐿𝑒𝑓𝑓𝑖 = 𝐿𝑒𝑓𝑓𝑖 − 𝜇𝐿𝑒𝑓𝑓𝑖  where 𝐿𝑒𝑓𝑓𝑖  

is the random variable representing transistor length in the 𝑖𝑡ℎgrid. The parameters ∆𝑤𝑔𝑖 , 

∆𝑇𝑜𝑥𝑖 , ∆𝑤𝑖𝑛𝑡𝑙
𝑖 , ∆𝑇𝑖𝑛𝑡𝑙

𝑖  and ∆𝐻𝐼𝐿𝐷𝑙
𝑖   are similarly defined . As before, the subscript “o” next 

to each sensitivity represents the fact that it is evaluated at the nominal point. 



41 
 

Computing the PDF of gate delay and output signal transition time 

The distribution of gate delay and output signal transition time at the gate output 

can be approximated in a similar manner as described above, given the sensitivities of the 

gate delay to the process parameters. 

Consider a multiple-input gate, let 𝑑𝑔𝑎𝑡𝑒
𝑝𝑖𝑛𝑖

 be the gate delay from the 𝑖𝑡ℎ  to the 

output and 𝑆𝑜𝑢𝑡
𝑝𝑖𝑛𝑖 be the corresponding output signal transition time. In general, both 𝑑𝑔𝑎𝑡𝑒

𝑝𝑖𝑛𝑖  

and 𝑆𝑜𝑢𝑡
𝑝𝑖𝑛𝑖 can be written as a function of the process parameters 𝑃�⃗  of the gate, the loading 

capacitance of the driving interconnect tree 𝐶𝑤�����⃗   and the succeeding gates that it drives 

𝐶𝑔����⃗  , and the input signal transition time 𝑆𝑖𝑛
𝑝𝑖𝑛𝑖 at this input pin of the gate 

𝑑𝑔𝑎𝑡𝑒
𝑝𝑖𝑛𝑖 =𝐷𝑔𝑎𝑡𝑒(𝑃�⃗ ,𝐶𝑤,𝐶𝑔, 𝑆𝑖𝑛

𝑝𝑖𝑛𝑖)                    (3.7) 

𝑆𝑜𝑢𝑡
𝑝𝑖𝑛𝑖=𝑆𝑔𝑎𝑡𝑒(𝑃�⃗ ,𝐶𝑤,𝐶𝑔, 𝑆𝑖𝑛

𝑝𝑖𝑛𝑖)                (3.8) 

The distributions of 𝑑𝑔𝑎𝑡𝑒
𝑝𝑖𝑛𝑖  and 𝑆𝑖𝑛

𝑝𝑖𝑛𝑖  can be approximated as Gaussians using linear 

expressions of parameters, where the mean values of  𝑑𝑔𝑎𝑡𝑒
𝑝𝑖𝑛𝑖  and 𝑆𝑖𝑛

𝑝𝑖𝑛𝑖 can be found by 

using the mean values of 𝑃�⃗ , 𝐶𝑤,  𝐶���⃗ 𝑔  and  𝑆𝑖𝑛
𝑝𝑖𝑛𝑖 functions 𝐷𝑔𝑎𝑡𝑒  or 𝑆𝑔𝑎𝑡𝑒 , and the 

sensitivities of either 𝑑𝑔𝑎𝑡𝑒
𝑝𝑖𝑛𝑖  or 𝑆𝑖𝑛

𝑝𝑖𝑛𝑖 to process parameters can be computed applying the 

chain rule. The derivatives of 𝐶𝑤  and 𝐶𝑔  to the process parameters can be easily 

computed, as 𝐶𝑤 and 𝐶𝑔 are functions of process parameters. The input signal transition 

time, 𝑆𝑖𝑛, is a function of the output transition time of the preceding gate and the delay of 

the interconnect connecting the preceding gates and this gate, where both interconnect 

delay (as discussed earlier) and output transition time of the preceding gate (as will be 

shown in the next paragraph) are Gaussian random variables that can be expressed as a 
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linear function of parameter variations. Therefore, at a gate input, the input signal 

transition time 𝑆𝑖𝑛 is always given as a normally distributed random variable with mean 

and first-order sensitivities to the parameter variations. 

To consider the effect of the transition time of an input signal on the gate delay, 

the output signal transition time 𝑆𝑜𝑢𝑡 at each gate output must be computed in addition to 

pin-to-pin delay of the gate. In conventional static timing analysis, 𝑆𝑜𝑢𝑡 is set to 𝑆𝑜𝑢𝑡
𝑝𝑖𝑛𝑖 if 

the path ending at the output of the gate traversing the 𝑖𝑡ℎ input pin has the longest path 

delay 𝑑𝑝𝑎𝑡ℎ𝑖. In SSTA, each of the paths through different gate input pins has a certain 

probability to be the longest path.  Therefore, 𝑆𝑜𝑢𝑡 should be computed as a weighted 

sum of the distributions of  𝑆𝑜𝑢𝑡
𝑝𝑖𝑛𝑖, where the weight equals the probability that the path 

through the 𝑖𝑡ℎ pin is the longest among all others: 

𝑆𝑜𝑢𝑡 = ∑ �𝑃𝑟𝑜𝑏�𝑑𝑝𝑎𝑡ℎ𝑖 > 𝑚𝑎𝑥∀𝑖≠𝑗(𝑑𝑝𝑎𝑡ℎ𝑖)�× 𝑆𝑜𝑢𝑡
𝑝𝑖𝑛𝑖�∀ 𝑖𝑛𝑝𝑢𝑡 𝑝𝑖𝑛 𝑖            (3.9) 

where 𝑑𝑝𝑎𝑡ℎ𝑖 is the random path delay variable at the gate output through the 𝑖𝑡ℎ input 

pin. The result of 𝑚𝑎𝑥∀𝑖≠𝑗(𝑑𝑝𝑎𝑡ℎ𝑖) is a random variable representing for the distribution 

of maximum of multiple paths. As will be discussed later in Section 3.3.3, 𝑑𝑝𝑎𝑡ℎ𝑖  and 

𝑚𝑎𝑥∀𝑖≠𝑗(𝑑𝑝𝑎𝑡ℎ𝑖) can be approximated as Gaussian using sum and max operators, and 

their correlation can easily be computed. Therefore, finding the value of  𝑃𝑟𝑜𝑏�𝑑𝑝𝑎𝑡ℎ𝑖 >

𝑚𝑎𝑥∀𝑖≠𝑗(𝑑𝑝𝑎𝑡ℎ𝑖)� , i.e., 𝑃𝑟𝑜𝑏�𝑑𝑝𝑎𝑡ℎ𝑖 > 𝑚𝑎𝑥∀𝑖≠𝑗(𝑑𝑝𝑎𝑡ℎ𝑖 > 0)�  becomes computing the 

probability of a Gaussian random variable greater than zero, which can easily be found 

from a look-up table. As each  𝑆𝑜𝑢𝑡
𝑝𝑖𝑛𝑖  is a Gaussian random variable in linear combination 

of the process parameter variations, 𝑆𝑜𝑢𝑡 is therefore also a Gaussian-distributed random 
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variable and its sensitivities to all process parameters 𝜕𝑆𝑜𝑢𝑡
𝜕𝑝𝑖

 can easily be found from its 

linear expression. 

3.3.2 Orthogonal Transformation of Correlated Variables 

In statistical timing analysis without spatial correlations, correlations due to 

reconvergent paths have long been an obstacle. When the spatial correlation of process 

parameters is also taken into consideration, the correlation structure becomes even more 

complicated. To make the problem tractable, we use the Principal Component Analysis 

(PCA) technique [7] to transform the set of correlated parameters into an uncorrelated set. 

PCA is a method that can be employed to examine the relationship among a set of 

correlated variables. Given a set of correlated random variables 𝑋⃗  with a covariance 

matrix R, PCA can transform the set 𝑋⃗   into a set of mutually orthogonal random 

variables,𝑋′,����⃗  such that each member of 𝑋′ ����⃗ has zero mean and unit variance.  

The elements of the set 𝑋′ ����⃗ _ are called principal components in PCA, and the size 

of 𝑋′���⃗  is no larger than the size of 𝑋′ ����⃗ . Any variable 𝑥𝑖 ∈ 𝑋′ ����⃗  can then be expressed in 

terms of the principal components 𝑋′ ����⃗ as follows: 

𝑥𝑖 = �∑ �𝜆𝑗𝑗 . 𝑣𝑖𝑗 . 𝑥′𝑗�𝜎𝑖 + 𝜇𝑖                  (3.10) 

where 𝑥′𝑗  is a principal component in set 𝑋′ ����⃗ , 𝜆𝑗  is the 𝑗𝑡ℎ  eigenvalue of the covariance 

matrix R, 𝑣𝑖𝑗  is the 𝑖𝑡ℎ element of the 𝑗𝑡ℎ eigenvector of R, and 𝜎𝑖 and 𝜇𝑖  are respectively, 

the mean and standard deviation of 𝑥𝑖. 

Since we assume that different types of parameters are uncorrelated, we can group 

the random variables of parameters by types and perform principal component analysis in 

each group separately, i.e., we compute the principal components for 



44 
 

𝐿�⃗ 𝑒𝑓𝑓 ,  𝑊���⃗𝑔 ,  𝑇�⃗𝑜𝑥 ,𝑁��⃗ 𝑎 ,  𝑊���⃗ 𝑖𝑛𝑡𝑙  and 𝑇�⃗ 𝑖𝑛𝑡𝑙  individually. Clearly, not only are the principal 

components of the same type of parameters independent, but so are the principal 

components of different type of parameters. 

For instance, let 𝐿�⃗ 𝑒𝑓𝑓  be a random vector representing transistor gate length 

variations in all grids and it is of multivariate normal distribution with covariance matrix 

𝑅𝐿𝑒𝑓𝑓. Let 𝐿′���⃗ 𝑒𝑓𝑓 be the set of principal components computed by PCA. Then any 𝐿𝑒𝑓𝑓𝑖 ∈

𝐿′���⃗ 𝑒𝑓𝑓  representing the variation of transistor gate length of the 𝑖𝑡ℎ grid can then be 

expressed as a linear function of the principal components 

𝐿𝑒𝑓𝑓𝑖 = 𝜇𝐿𝑒𝑓𝑓𝑖 + 𝑎𝑖1 × 𝐿′𝑒𝑓𝑓1 + ⋯+ 𝑎𝑖𝑡 × 𝐿′𝑒𝑓𝑓𝑡                (3.11) 

where 𝜇𝐿𝑒𝑓𝑓𝑖  is the mean of 𝐿𝑒𝑓𝑓𝑖 , 𝐿′𝑒𝑓𝑓1  is a principal component in 𝐿′���⃗ 𝑒𝑓𝑓 all 𝐿′𝑒𝑓𝑓1  are 

independent with zero means and unit variances, and t is the total number of principal 

components in 𝐿′���⃗ 𝑒𝑓𝑓. 

In this way, any random variable in 𝑊���⃗𝑔 ,𝑇�⃗𝑜𝑥 ,𝑁��⃗ 𝑎 ,𝑊���⃗ 𝑖𝑛𝑡𝑙 ,  𝑇�⃗ 𝑖𝑛𝑡𝑙  and 𝐻��⃗ 𝐼𝐿𝐷𝑙  can be 

expressed as a linear function of the corresponding principal components in 

𝑊′�����⃗
𝑔,𝑇′���⃗ 𝑜𝑥,𝑁′����⃗ 𝑎 ,𝑊′�����⃗

𝑖𝑛𝑡𝑙, 𝑇′���⃗ 𝑖𝑛𝑡𝑙 and 𝐻′����⃗ 𝐼𝐿𝐷𝑙.Superposing the set of rotated random variables of 

parameters on the original random variables in gate or interconnect delay in Equation 

(3.6), the expression of gate or interconnect delay is then changed to the linear 

combination of principal components of all parameters 

𝑑 = 𝑑0 + 𝑘1 × 𝑝′1 + ⋯+ 𝑘𝑚 × 𝑝′𝑚                                 (3.12) 
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Where 𝑝′𝑖 ∈ 𝑃′���⃗ 𝑖  and 𝑃′���⃗ = 𝐿′���⃗ 𝑒𝑓𝑓 ∪𝑊′�����⃗
𝑔 ∪ 𝑇′���⃗ 𝑜𝑥 ∪ 𝑁′����⃗ 𝑎 ∪ 𝑊′�����⃗

𝑖𝑛𝑡𝑙 ∪ 𝑇′���⃗ 𝑖𝑛𝑡𝑙 ∪ 𝐻′����⃗ 𝐼𝐿𝐷𝑙  and 𝑚  is 

the size of  𝑃′���⃗ . Note that all of the principal components 𝑝′𝑖 that appear in Equation (3.12) 

are independent. Equation (3.12) has the following properties: 

Property 1 Since all 𝑝′𝑖 are orthogonal, the variance of d can be simply computed as 

𝜎𝑑2 = ∑ 𝑘𝑖2𝑚
𝑖=1                 (3.13) 

Property 2 The covariance between d and any principal component 𝑝′𝑖 is given by 

𝑐𝑜𝑣�𝑑,𝑝′𝑖� = 𝑘𝑖𝜎𝑝′𝑖
2 = 𝑘𝑖          (3.14) 

In other words, the coefficient of 𝑝′𝑖 is exactly the covariance between d and 𝑝′𝑖 

Property 3 Let 𝑑𝑖and 𝑑𝑗be two random variables: 

𝑑𝑖 = 𝑑𝑖0 + 𝑘𝑖1 × 𝑝′𝑖 + ⋯ . +𝑘𝑖𝑚𝑝′𝑚                     (3.15) 

𝑑𝑗 = 𝑑𝑗0 + 𝑘𝑗1 × 𝑝′𝑗 + ⋯ . +𝑘𝑗𝑚𝑝′𝑚             (3.16) 

The covariance of 𝑑𝑖 and 𝑑𝑗,𝑐𝑜𝑛 (𝑑𝑖,𝑑𝑗) can be computed by  

𝑐𝑜𝑣(𝑑𝑖,𝑑𝑗) = ∑ 𝑘𝑖𝑟 ,𝑘𝑗𝑟𝑚
𝑟=1             (3.17) 

3.3.3 PERT-like Traversal of SSTA 

           Using the techniques discussed up to this point, all edges of the statistical timing 

graph may be modeled as normally distributed random variables. In this section, we will 

describe a procedure for finding the distribution of the statistical longest path in the 

graph. 

In conventional deterministic STA, the PERT algorithm can be used to find the longest 

path in a graph by traversing it in topological order using two types of functions: 

• The sum function, and  

• The max function. 
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In our statistical timing analysis, a PERT-like traversal is employed to find the 

distribution of circuit delay. However, unlike deterministic STA, the sum and max 

operations here are functions of a set of correlated multivariate Gaussian random 

variables instead of fixed values:  

1) 𝑑𝑠𝑢𝑚 = ∑ 𝑑𝑖𝑙
𝑖=1 , and 

2) 𝑑𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝑑1,𝑑2). 

where 𝑑𝑖 is a Gaussian random variable representing either gate delay or wire delay 

expressed as linear functions of principal components in the form of Equation (3.15), and 

l is the number of random variables that sum or max function is operating on. 

Computing the distribution of the sum function 

The computation of the distribution of sum function is simple. Since the 𝑑𝑠𝑢𝑚 =

∑ 𝑑𝑖𝑙
𝑖=1  is a linear combination of normally distributed random variables, 𝑑𝑠𝑢𝑚  is a 

normal distribution. The mean 𝜇𝑑𝑠𝑢𝑚  and variance 𝜎𝑑𝑠𝑢𝑚2  of the sum are given by 

𝜇𝑑𝑠𝑢𝑚 = ∑ 𝑑𝑖0𝑙
𝑖=1            (3.18) 

𝜎𝑑𝑠𝑢𝑚2 = ∑ �∑ 𝑘𝑖𝑗𝑙
𝑖=1 �

2𝑚
𝑗=1           (3.19) 

Computing the distribution of the max function 

The max function of 𝑙 normally distributed random variables 𝑑𝑚𝑎𝑥 =

𝑚𝑎𝑥(𝑑1, … ,𝑑𝑙)) is, strictly speaking, not Gaussian. However, we have found that, in 

practice, it can be approximated closely by a Gaussian. This idea is similar in spirit to 

Berkelaar’s approach in [23, 31], although it is more general since Berkelaar’s work 

restricted its attention to delay random variables that were uncorrelated4. In this work, we 

use the Gaussian distribution to approximate the result of a max function, so that 
                                                           
4 Many researchers in the community were well aware of Berkelaar’s results as early as 1997, though his 
work did not appear as an archival publication. 
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𝑑𝑚𝑎𝑥~𝑁�𝜇𝑑𝑚𝑎𝑥,𝜎𝑑𝑚𝑎𝑥� . We also approximate 𝑑𝑚𝑎𝑥  as a linear function of all the 

principal components, 𝑝′1 … 𝑝′𝑚.  

𝑑𝑚𝑎𝑥 = 𝜇𝑑𝑚𝑎𝑥 + 𝑎1𝑝′1 + ⋯+ 𝑎𝑚𝑝′𝑚        (3.20) 

Therefore, determining this approximation for 𝑑𝑚𝑎𝑥  is equivalent to finding the values of 

𝜇𝑑𝑚𝑎𝑥  and all 𝑎𝑖’s. 

From Property 2 of Section 3.3.2, we know that the coefficient 𝑎𝑟 equals 𝑐𝑜𝑣(𝑑𝑚𝑎𝑥,𝑝′𝑟). 

Then the variance of the expression on the right hand side of Equation (3.20) is computed 

as 𝑠02 = ∑ 𝑐𝑜𝑣2(𝑑𝑚𝑎𝑥,𝑚
𝑟=1 𝑝′𝑟). Since this is merely an approximation, there may be a 

difference the value 𝑠02  and the actual variance 𝜎𝑑𝑚𝑎𝑥
2  of 𝑑𝑚𝑎𝑥 . To diminish the 

difference, we can normanizes the value of  𝑎𝑟 by setting it as  

𝑎𝑟 = 𝑐𝑜𝑣�𝑑𝑚𝑎𝑥 ,𝑝′𝑟�. 𝜎𝑑𝑚𝑎𝑥
𝑠0

          (3.21) 

We can see now that to find the linear approximation for 𝑑𝑚𝑎𝑥 ., The values of  

𝜇𝑑𝑚𝑎𝑥,𝜎𝑑𝑚𝑎𝑥  and 𝑐𝑜𝑣(𝑑𝑚𝑎𝑥,𝑝𝑖) are required. In the work of [43], similar inputs were 

required in their algorithm and the results from [27] were applied and seen to provide 

good results. In this work, we have borrowed the same analytical formula from [27] for 

the computation of the max function. 

 According to [27], if 𝜉  and η are two random variables, 

𝜉~𝑁(𝜇1,𝜎1), 𝜂~𝑁(𝜇2,𝜎2), with a correlation coefficient of 𝑟(𝜉, 𝜂) = 𝜌, then the mean 𝜇𝑡 

and the variance 𝜎𝑡2 of 𝑡 = 𝑚𝑎𝑥 (𝜉, 𝜂) can be approximated by 

𝜇𝑡 = 𝜇1.𝜙(𝛽) + 2.𝜙(−𝛽) + 𝛼.𝜑(𝛽)              (3.22) 

𝜎𝑡2 = (𝜇12 + 𝜎12).𝜙(𝛽) + (𝜇22 + 𝜎22).𝜙(−𝛽) + (𝜇1 + 𝜇2).𝛼.𝜑(𝛽) − 𝜇𝑡2       (3.23) 

Where 𝛼 = �𝜎12 + 𝜎22 − 2𝜎1𝜎2𝜌                 (3.24) 
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𝛽 = (𝜇1−𝜇2)
𝛼

            (3.25) 

𝜑(𝑥) = 1
√2𝜋

𝑒𝑥𝑝 �− 𝑥2

2
�          (3.26) 

𝜙(𝑥) = 1
√2𝜋

∫ 𝑒𝑥𝑝𝑥
−∞ �− 𝑦2

2
� 𝑑𝑦         (3.27) 

The formula will not apply if 𝜎1 = 𝜎2 and 𝜌 = 1. However, in this case, the max function 

is simply identical to the random variable with largest mean value. 

 Moreover, from [27], if 𝛾  is another normally distributed random variable and the 

correlation coeeficients 𝑟(𝜉, 𝛾) = 𝜌1, 𝑟(𝜂, 𝛾) = 𝜌2  then the correlation between 𝛾  and 

𝑡 = 𝑚𝑎𝑥 (𝜉, 𝜂) can be obtained by 

 𝑟(𝜉, 𝛾) = 𝜎1.𝜌1.𝜙(𝛽)+𝜎2.𝜌2.𝜙(−𝛽)
𝜎𝑡

                (3.28) 

Using the formula above, we can find all the values required. As an example, let 

us see how this can be done by first starting with a two-variable max function, 𝑑𝑚𝑎𝑥 =

max (𝑑𝑖,𝑑𝑗). Let 𝑑𝑚𝑎𝑥 be of the form of Equation (3.20). We can find the approximation 

of 𝑑𝑚𝑎𝑥 as follows: 

1. Given the expression of 𝑑𝑖 and 𝑑𝑗 , each is linear combinations of the principal 

components, compute their mean and standard deviation values 𝜇𝑑𝑖 ,𝜎𝑑𝑖  and 

𝜇𝑑𝑗 ,𝜎𝑑𝑗, respectively, as described in Property 1 of section 3.3.2. 

2. Find the correlation coefficient between 𝑑𝑖and 𝑑𝑗 . The covariance of 𝑑𝑖  and 𝑑𝑗 

𝑐𝑜𝑣(𝑑𝑖,𝑑𝑗) , can be computed using Property 3 in Section 3.3.2. Now if 

𝑟�𝑑𝑖,𝑑𝑗� = 1 and 𝜎𝑑𝑖 = 𝜎𝑑𝑗 , set 𝑑𝑚𝑎𝑥  to be identical to 𝑑𝑖  or 𝑑𝑗 , whichever has 

larger mean value and we can stop here; otherwise, we will continue to the next 

step. 
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3. Calculate the mean 𝜇𝑑𝑚𝑎𝑥  and variance 𝜎𝑑𝑚𝑎𝑥
2  of  𝑑𝑚𝑎𝑥  using Equations (3.22) 

and (3.23). 

4. Find all coefficients 𝑎𝑟  of  𝑝′𝑟. According to Property 2, 𝑎𝑟 = 𝑐𝑜𝑣(𝑑𝑚𝑎𝑥,𝑝′𝑟), 

also 𝑐𝑜𝑣�𝑑𝑖,𝑝′𝑟� = 𝑘𝑖𝑟  and 𝑐𝑜𝑣�𝑑𝑗 , 𝑝′𝑟� = 𝑘𝑗𝑟 . Applying Equation (3.28), the 

values of 𝑐𝑜𝑣(𝑑𝑚𝑎𝑥,𝑝′𝑟) and thus 𝑎𝑟 can be calculated. 

5. After all of the 𝑎𝑟’s have been calculated, determine 𝑠0 = �∑ 𝑎𝑟2𝑚
𝑟=1 . Normalize 

the coefficient by resetting each 𝑎𝑟 = 𝑎𝑟
𝜎𝑑𝑚𝑎𝑥
𝑠0

. 

The calculation of the two-variable max function can easily be extended to a 

multi-variable max function by repeating the steps of the two-variable case recursively. 

As mentioned at the beginning of this section, max of two Gaussian random 

variables is not strictly Gaussian. This approximation can sometimes introduce serious 

error, e.g., when the two Gaussian random variables have the same mean and standard 

deviation and correlation value of -1, and the distribution of the maximum is a half 

Gaussian. During the computation of multi-variable max function, some inaccuracy could 

be introduced since we approximate the max function as normal even though it is not 

really normal, and proceed with further recursive calculations. 

To the best of our knowledge, there is no theoretical analysis available in the 

literature that quantifies the inaccuracies when a normal distribution is used to 

approximate the maximum of a set of Gaussian random variables. However, a 

numerically based analysis was provided in [27], which suggests that in some situations 

the errors can be great, but for many applications this approximate is quite satisfactory. 

Moreover, recall that we have a “normalization” step to diminish the difference between 
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the variance computed from the linear form of max approximation and the real variance 

of the max function. As in the case of approximating the max as normal distribution, there 

is no theoretical proof about how this “normalization” step can affect the accuracy of the 

approximation. Another option to diminish the difference is to move it into an 

independent random Gaussian component, and it is difficult to state definitively which of 

these options is better. In our work, we choose the former option and find that it provides 

excellent accuracy, where the statistics of the “normalization” ratio for several test 

circuits are provided. 

At this point, not only the edges, but also the results of sum and max functions are 

expressed as linear functions of the principal components. Therefore, using a PERT 

traversal by incorporating the computation of sum and max functions described above, 

the distribution of arrival time at any node in the timing graph becomes a linear function 

of principal components, and so the distribution of circuit delay can be computed at the 

virtual sink node.  

The overall flow of our algorithm is shown in Figure 11. It is noticed that this 

work is in some sense parallel to the work of [32]: in [32], delays are represented as 

linear combinations of global random variables, while in our work, they are linear 

functions of principal components; in [32], the max of delays are reexpressed as linear 

functions using binding probabilities, while in our work, the linear functions are found by 

an analytical method from [27]. 

To further speed up the process, the following technique may be used: During the 

max operation of SSTA, if the value of 𝜇 + 3.𝜎 of one path has a lower delay than the 
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value of 𝜇 − 3.𝜎 of another path, we can simply calculate the max function ignoring the 

former path. 

 

 
Figure 11: Overall flow of our statistical timing analysis. 
 

 

 

 

 

 

 

 

Input: Process parameter variations 

Output: Distribution of circuit delay 

1. According to the size of the chip, partition the chip region into n = nrow× ncol 
grids. 

2. For each type of parameter, determine the n jointly normally distributed random 
variables and the corresponding covariance matrix. 

3. Perform an orthogonal transformation to represent each random variable with a 
set of principal components. 

4. For each gate and net connection, model their delays as linear combinations of 
the principal components generated in step 3. 

5. Map the circuit into a statistical timing graph by adding one virtual-source node, 
one virtual-sink node and corresponding edges. 

6. Using sum and max functions on Gaussian random variables, perform a PERT-
like traversal on the graph to find the distribution of the statistical longest path. 
This distribution achieved is the circuit delay distribution 
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CHAPTER 4  

INCORPORATING NON-GAUSSIAN DISTRIBUTED PROCESS PARAMETERS 

AND NONLINEAR DELAY FUNCTIONS 

In this chapter, we present a general framework and an efficient method of block-

based SSTA that can deal with process variations with non-Gaussian distributions, and/or 

delay functions with nonlinear dependencies on process parameter variations. We extend 

techniques for evaluating the sum and max functions in SSTA from the linear, Gaussian 

case of Chapter 3, to the nonlinear, non-Gaussian case. The proposed approach is shown 

to be accurate and efficient in predicting timing characteristics and yield of circuit. 

4.1 Introduction 

In Chapter 3, we proposed an efficient method for timing analysis under process 

variations, under the assumption that where all process variations have or can be 

approximated by Gaussian distributions and all delays have linear sensitivities to the 

process parameters. But there are two limitations to this approach. First, although some 

types of distributions can be approximated by a Gaussian, others may display asymmetric 

types of distributions (e.g., lognormal distributions), or symmetric types of non-Gaussian 

distributions (e.g., uniform distributions) that cannot be well-approximated by a 

Gaussian. For example, via resistance is known to have an asymmetric probability 

distribution. A second issue is related to the use of a first-order Taylor expansion to 

approximate a delay function as a linear function of the variations of process parameters. 

The linear approximation can only be justified under the assumption that variations are 

small. With technology scaling, as the percentage change in process variations becomes 

larger, delays may show nonlinear dependencies on some sources of variations. 
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Therefore, it is desirable to develop SSTA techniques that can deal with non-Gaussian-

distributed process parameters and/or nonlinear effects on gate [wire] delays5, in order to 

obtain sufficiently accurate results for analyzing the timing yield.  

4.2 Framework for Handling Non-Gaussian and/or Non-linear Function Parameters 

As we know that SSTA approach is parameterized block-based method. Any gate 

or wire delay is presented as a linear function of process variations, and this 

representation is referred to as a first-order canonical form in [44]: 

𝐴 = 𝑎0 + ∑ 𝑎𝑖.∆𝑋𝑖 + 𝑎𝑛+1.∆𝑅𝑎𝑛
𝑖=1                    (4.1) 

Here, 𝑎0  is the mean or nominal delay, and ∆𝑋𝑖 = 𝑋𝑖 − 𝑋𝚤�  is variation of process 

parameter 𝑋𝑖 , centralized by subtracting its mean value 𝑋𝚤� . Each ∆𝑋𝑖  represents for a 

global source of variation that has a global effect on all delays, and is modeled as a 

Gaussian random variable 𝑁(0,𝜎𝑋𝑖); all ∆𝑋𝑖  variables are mutually independent. The 

coefficient 𝑎𝑖 is the sensitivity of delay to 𝑋𝑖, and ∆𝑅𝑎 is the variation of local uncertainty 

that only affects the delay locally, and is modeled as a normalized Gaussian random 

variable that is independent of all other sources of variations. The sensitivity of the delay 

to 𝑅𝑎 is given by 𝑎𝑛+1. 

4.2.1 A Generalized Canonical Form for the Delay 

A generalized canonical form of gate or wire delay is defined by extending the 

form of (4.1) as follows: 

𝐴 = 𝑎0 + ∑ 𝑎𝐿𝐺,𝑖.∆𝑋𝐿𝐺,𝑖 + 𝑓𝐴(∆𝑋𝑁) + 𝑎𝑛+1.∆𝑅𝑎
𝑛𝐿𝐺
𝑖=1             (4.2) 

                                                           
5 For conciseness, in the remainder of the thesis, we will use the term “non-Gaussian parameter” to refer to 
a non-Gaussian-distributed process parameter, and “nonlinear function parameter” to a process parameter 
whose variation has nonlinear effects on delays. 
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Here 𝑎0 is the mean value of the delay, ∆𝑋𝐿𝐺 = �𝑋𝐿𝐺,1,𝑋𝐿𝐺,2, … 𝑋𝐿𝐺,𝑛𝑁𝐿𝐺� is the 

set of random variables for the global sources of variation that are both Gaussian- 

distributed and have linear effects on delay, and 𝑛𝐿𝐺  is number of such types of 

variations. The sensitivity of the delay to ∆𝑋𝐿𝐺,𝑖 is given by 𝑎𝐿𝐺,𝑖. We also define a set of 

random variables, of cardinality 𝑛𝑁𝐿𝐺 ,∆𝑋𝑁 = �∆𝑋𝑁,1,∆𝑋𝑁,2, … ∆𝑋𝑁,𝑛𝑁𝐿𝐺�. The elements 

of this set correspond to the global sources of variations that are non-Gaussian-distributed 

or have nonlinear effects on the delay, and 𝑓𝐴 is a function describing the dependence of 

the delay on non-Gaussian and nonlinear function parameters, with a mean value that is 

normalized to zero. Finally, ∆𝑅𝑎 is a normalized Gaussian parameter that represents local 

sources of variations, and 𝑎𝑛+1 is its sensitivity to the delay. 

The generalized canonical form differs from the original first-order canonical 

form of delay only in the term 𝑓𝐴(∆𝑋𝑁)  that describes dependencies of A on non-

Gaussian and nonlinear function parameters. For convenience, this term is referred to as a 

non-Gaussian nonlinear term in this chapter. Note that 𝑓𝐴  can be either a nonlinear 

function of non-Gaussian-distributed process parameters, or a linear function of non-

Gaussian process parameters, or a nonlinear function of Gaussian process parameters. 

The function 𝑓𝐴 can be a function of arbitrary type, and the non-Gaussian parameters can 

have any arbitrary probability density function. For numerical computations, nonlinear 

functions and non-Gaussian distributions can be specified by tables. 

4.2.2 The Computation of the sum Function 

As in the case for first-order canonical forms, it is straightforward to compute the 

sum function for two random variables, each specified in generalized canonical form.  
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If C = A + B, where A and B are both in generalized canonical form, then C can 

also be expressed in a generalized canonical form, with its coefficients specified by: 

𝑐0 = 𝑎0 + 𝑏0              (4.3) 

𝑐𝐿𝐺,𝑖 = 𝑎𝐿𝐺,𝑖 + 𝑏𝐿𝐺,𝑖  (1 < 𝑖 < 𝑛𝐿𝐺)           (4.4) 

𝑓𝑐(∆𝑋𝑁) = 𝑓𝐴(∆𝑋𝑁) + 𝑓𝐵(∆𝑋𝑁)           (4.5) 

The computation of 𝑐0 and each 𝑐𝐿𝐺,𝑖 is simple. The term 𝑓𝑐(∆𝑋𝑁) is obtained by 

computing the sum of the non-Gaussian nonlinear terms of A and B. In practice, this can 

be computed by numerically summing the tables describing 𝑓𝐴(∆𝑋𝑁) and 𝑓𝐵(∆𝑋𝑁). 

4.2.3 The Computation of the max Function 

It is necessary to use an approximation in computing the max of two random 

variables, each specified in generalized canonical form. In order to preserve the 

correlations of delays, a random variable 𝐶𝑎𝑝𝑝 in generalized canonical form is used to 

approximate 𝐶 = 𝑚𝑎𝑥 (𝐴,𝐵). The framework for computing 𝐶𝑎𝑝𝑝 can be applied here, by 

using the concept of tightness probability: 

𝑐0 = 𝐸[𝑚𝑎𝑥(𝐴,𝐵)]             (4.6) 

𝑐𝐿𝐺,𝑖 = 𝑇𝐴𝑎𝐿𝐺,𝑖 + (1 − 𝑇𝐴)𝑏𝐿𝐺,𝑖 ,    for  (1 < 𝑖 < 𝑛𝐿𝐺)      (4.7) 

𝑓𝑐(∆𝑋𝑁) = 𝑇𝐴𝑓𝐴(∆𝑋𝑁) + (1 − 𝑇𝐴)𝑓𝐵(∆𝑋𝑁)          (4.8) 

As in the case for first-order canonical form, this approximation for the maximum 

of two generalized canonical forms is a linear approximation: 𝑐0  is matched with the 

exact mean value of 𝐶 = 𝑚𝑎𝑥 (𝐴,𝐵) ; 𝐶𝑎𝑝𝑝  is a linear combination of A and B using the 

tightness probabilities, where the coefficient 𝑐𝐿𝐺,𝑖 is computed as a linear combination of 

coefficients 𝑎𝐿𝐺,𝑖  and 𝑏𝐿𝐺,𝑖  and the non-Gaussian nonlinear term 𝑓𝐶  as a linear 
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combination of functions 𝑓𝐴 and 𝑓𝐵, weighted by the corresponding tightness probabilities 

𝑇𝐴 and 𝑇𝐵, respectively. The sensitivity coefficient 𝑐𝑛+1 for the local independent source 

of variations is computed so as to make the variance of 𝐶𝑎𝑝𝑝  equal to the variance of the 

exact maximum 𝐶 = 𝑚𝑎𝑥 (𝐴,𝐵), where the exact variance 𝜎𝐶2 is expressed through the 

mean and the second moment as: 

𝜎𝐶2 = 𝐸[𝑚𝑎𝑥(𝐴,𝐵)2] − (𝐸[𝑚𝑎𝑥(𝐴,𝐵)2])2          (4.9) 

Figure 12 graphically shows the interpretation of a linear approximation for the 

maximum of generalized canonical forms that depend only on one nonlinear function 

parameter. The canonical forms for A and B are shown using thick dashed curves in the 

figure, and the exact maximum  𝐶 = 𝑚𝑎𝑥 (𝐴,𝐵)  is shown using a bold solid curve. The 

approximation of the maximum, 𝐶𝑎𝑝𝑝 , is represented by a solid thin curve: here, the 

curve of 𝐶𝑎𝑝𝑝  is closer to curve A, because, as can be observed in Figure 12, 𝑚𝑎𝑥 (𝐴,𝐵) 

is more often equal to A than to B; in other words, A has a higher probability of being the 

maximum. 

 

 

Figure 12: Approximation of the maximum of two generalized canonical forms A and B. 
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Finding the approximation for the maximum of two generalized canonical forms 

requires the computation of the tightness probability 𝑇𝐴, the mean 𝐸[𝑚𝑎𝑥(𝐴,𝐵)2] and the 

second moment (𝐸[𝑚𝑎𝑥(𝐴,𝐵)2])2 of max (𝐴,𝐵) that are defined as follows: 

𝑇𝐴 = 𝑃𝑟𝑜𝑏(𝐴 > 𝐵) 

=∫ 𝑝(∆𝑋𝑁 ,𝐴>𝐵 ∆𝑋𝐿𝐺 ,∆𝑋𝑎,∆𝑋𝑏)𝑑∆𝑋𝑁𝑑∆𝑋𝐿𝐺𝑑∆𝑋𝑎𝑑∆𝑋𝑏      (4.10) 

𝐸[𝑚𝑎𝑥(𝐴,𝐵)] = � … � 𝑚𝑎𝑥 (𝐴,𝐵)
∞

−∞
𝑝(∆𝑋𝑁 ,

∞

−∞
∆𝑋𝐿𝐺 ,∆𝑋𝑎,∆𝑋𝑏)𝑑∆𝑋𝑁𝑑∆𝑋𝐿𝐺𝑑∆𝑋𝑎𝑑∆𝑋𝑏 

             (4.11) 

𝐸[𝑚𝑎𝑥(𝐴,𝐵))2]

= � … � (𝑚𝑎𝑥 (𝐴,𝐵))2
∞

−∞
𝑝(∆𝑋𝑁,

∞

−∞
∆𝑋𝐿𝐺 ,∆𝑋𝑎,∆𝑋𝑏)𝑑∆𝑋𝑁𝑑∆𝑋𝐿𝐺𝑑∆𝑋𝑎𝑑∆𝑋𝑏 

             (4.12) 

where  𝑝(∆𝑋𝑁 ,∆𝑋𝐿𝐺 ,∆𝑋𝑎,∆𝑋𝑏) is the joint probability density function of all process 

parameter variations. 

If the vector of ∆𝑋𝑁 is empty, then the computations regress to the maximum of 

two first-order canonical forms, which can be computed analytically in a very efficient 

way. However, when there are non-Gaussian probability distributed or nonlinear function 

parameters, simple analytical formulas may not exist for the maximum of two 

generalized canonical forms. In the remainder of this section, we will focus mainly on the 

computation of tightness probability, the mean and the second moment for the max 

function. 
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Computations of Tightness Probability, Mean and Second Moment 

The computations of tightness probability, mean and second moment for the max 

function involve the evaluations of the integrals in (4.10), (4.11) and (4.12) which can be 

very hard to compute analytically for arbitrary non-Gaussian process parameter PDFs and 

arbitrary nonlinear functions, 𝑓𝐴. The obvious way to solve this problem is to apply a 

numerical technique, but this results in losing the desired computational efficiency. In 

this section, we present a combined approach that processes Gaussian and linear function 

parameters analytically, and uses a numerical technique only for non-Gaussian or 

nonlinear function parameters. The method is efficient for realistic cases where most 

sources of variations can be captured accurately enough by Gaussian distributions and 

linear delay functions, and only a few of them demonstrate significant nonlinear behavior 

or non-Gaussian distribution. Therefore, as will be illustrated in the experimental results 

section, the proposed technique does not reduce the efficiency of dealing with Gaussian 

and linear function parameters, and can handle additionally up to 7 to 8 non-Gaussian 

and/or nonlinear function process parameters with reasonable run-times. 

There are two equivalent ways of presenting the technique for computing the 

tightness probability, mean and the second moment. One is based on conditional 

probability and conditional moments, while the other uses transformation of the integrals 

defining the tightness probability, mean and the second moment. We begin with a 

presentation of the first approach. 

The generalized canonical form in expression (4.2) can be reorganized by 

combining the non-Gaussian nonlinear term and the mean value 𝑎0: 
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𝐴 = �𝑎0 + 𝑓𝐴(𝑋𝑁)� + ∑ 𝑎𝐿𝐺,𝑖.∆𝑋𝐿𝐺,𝑖 + 𝑎𝑛+1.𝑛𝐿𝐺
𝑖=1 ∆𝑅𝑎     (4.13) 

Then, for the fixed values of the non-Gaussian and nonlinear function parameters 

∆𝑋𝑁, A can be regarded a first-order canonical form, 𝐴𝐶𝑜𝑛𝑑 , with only Gaussian and 

linear function parameters and its mean value is 𝑎0 + 𝑓𝐴(𝑋𝑁) . Now, consider two 

generalized canonical forms A and B represented in the form of Equation (4.13).When all 

∆𝑋𝑁 are at fixed values, the conditional tightness probability 𝑇𝐴,𝑐𝑜𝑛𝑑, conditional mean 

𝑐0,𝑐𝑜𝑛𝑑 and conditional second moments 𝑚2,𝑐𝑜𝑛𝑑 of max (𝐴,𝐵) become functions of non-

Gaussian and nonlinear function parameters ∆𝑋𝑁: 

𝑇𝐴,𝑐𝑜𝑛𝑑(∆𝑋𝑁) = 𝑃(𝐴 > 𝐵|∆𝑋𝑁)  

𝑐0,𝑐𝑜𝑛𝑑(∆𝑋𝑁) = 𝐸[𝑚𝑎𝑥 (𝐴,𝐵)|∆𝑋𝑁]  

𝑚2,𝑐𝑜𝑛𝑑(∆𝑋𝑁) = 𝐸[(𝑚𝑎𝑥(𝐴,𝐵))2|∆𝑋𝑁]        (4.14) 

Here, we assume that non-Gaussian and nonlinear function parameters ∆𝑋𝑁 are 

independent of all of the Gaussian and linear function parameters ∆𝑋𝐿𝐺. In fact, this is a 

rather valid assumption: correlated random variables tend to have similar distributions, 

and if a linear parameter is correlated with a nonlinear one, independence can be 

achieved by orthogonal transformation techniques, such as principal component analysis 

or independent component analysis. Therefore, the joint conditional probability density 

function of ∆𝑋𝐿𝐺 , under the condition of frozen values of ∆𝑋𝑁 , is simply the joint 

probability density function of the ∆𝑋𝐿𝐺: 

p(∆XLG|∆XN) = p(∆XLG)          (4.15) 
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Thus, we can use analytical Clark’s formulas in [27] for computing the 

conditional tightness probability, mean and second moments for the maximum of two 

generalized canonical forms, under the condition that the values of all non-Gaussian and 

nonlinear function parameters are frozen; however, 𝑎0 and 𝑏0 should be substituted by 

𝑎0 + 𝑓𝐴(𝑋𝑁)  and 𝑏0 + 𝑓𝐵(𝑋𝑁) . Since this method uses only analytical formulas, the 

required values can be computed efficiently. The actual values of tightness probability, 

mean, and second moment of 𝑚𝑎𝑥 (𝐴,𝐵) can be computed by integrating the conditional 

tightness probability, mean and second moment over the space of non-Gaussian and 

nonlinear function parameters with their joint probability density function: 

𝑇𝐴 = ∫ 𝑇𝐴,𝑐𝑜𝑛𝑑(∆𝑋𝑁)𝑝(∆𝑋𝑁)𝑑∆𝑋𝑁
∞
−∞         (4.16) 

𝐸[𝑚𝑎𝑥(𝐴,𝐵)] = ∫ 𝑐0,𝑐𝑜𝑛𝑑(∆𝑋𝑁)𝑝(∆𝑋𝑁)𝑑∆𝑋𝑁
∞
−∞        (4.17) 

𝐸[(𝑚𝑎𝑥(𝐴,𝐵))2] = ∫ 𝑚2,𝑐𝑜𝑛𝑑(∆𝑋𝑁)𝑝(∆𝑋𝑁)𝑑∆𝑋𝑁
∞
−∞       (4.18) 

The integrations in Equations (4.16), (4.17) and (4.18) can be evaluated numerically. In 

the simplest case, it is performed by integrating numerically in m orthogonal discretized 

regions of non-Gaussian and nonlinear function parameters. We compute the conditional 

tightness probability, conditional mean and conditional second moment by formulas 

(4.14). Then the integrals of Equation (4.16), (4.17) and (4.18) can be computed 

approximately as sums of corresponding values over all the discretization grids. For 

example, the numerical formula for tightness probability is as follows: 

𝑇𝐴 = ∑ 𝑇𝐴,𝑐𝑜𝑛𝑑,𝑘(∆𝑋𝑁).𝑝𝑘(∆𝑋𝑁).𝑉𝑘𝑚
𝑘=1         (4.19) 
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where 𝑇𝐴,𝑐𝑜𝑛𝑑,𝑘(∆𝑋𝑁)  is the conditional tightness probability that A>B under the 

condition that non-Gaussian and nonlinear function parameters have fixed values inside 

the 𝑘𝑡ℎ grid of integration; 𝑝𝑘(∆𝑋𝑁) is the value of the joint probability density function 

of the non-Gaussian and nonlinear function parameters in 𝑘𝑡ℎ grid; 𝑉𝑘 is volume of the  

𝑘𝑡ℎ  grid. The computational complexity of numerical integration, performed by 

discretizing the integration region, is exponential with respect to the number of nonlinear 

and non-Gaussian parameters. Our experiments show that for reasonable accuracy it is 

enough to have as little as 5 to 7 discrete points for each variable. This approach is 

applicable for cases with up to 7 to 8 nonlinear and non-Gaussian variables. For higher 

dimensions the integrals can be computed by a Monte Carlo integration technique. 

To better understand the technique for computing the required values of tightness 

probability, mean and standard deviations of 𝑚𝑎𝑥(𝐴,𝐵), we now provide an alternative 

explanation for an equivalent derivation by a transformation of the integrals. Let us start 

with the evaluation of tightness probability in Equation (4.10). 

Given the condition that the ∆𝑋𝑁 variables are independent of the ∆𝑋𝐿𝐺 variables, 

the joint probability density function of all sources of variations can be decomposed into: 

𝑝(∆𝑋𝑁,∆𝑋𝐿𝐺 ,∆𝑋𝑎,∆𝑋𝑏) = 𝑝(∆𝑋𝑁).𝑝(∆𝑋𝐿𝐺 ,∆𝑋𝑎,∆𝑋𝑏)      (4.20) 

𝑇𝐴 = ∫ 𝑝(∆𝑋𝐿𝐺).𝑝(∆𝑋𝐿𝐺 ,∆𝑋𝑎,∆𝑋𝑏)𝑑∆𝑋𝐿𝐺𝑑∆𝑋𝑎𝑑∆𝑋𝑏𝑑∆𝑋𝑁𝐴>𝐵      (4.21) 

For fixed values of ∆𝑋𝑁 , the region A>B, where A and B are in generalized 

canonical forms, can be regarded as comparing two Gaussian random variables 𝐴𝐺(∆𝑋𝑁) 

and 𝐵𝐺(∆𝑋𝑁),  
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where  

𝐴𝐺 = �𝑎0 + 𝑓𝐴(∆𝑋𝑁)� + ∑ 𝑎𝐿𝐺,𝑖∆𝑋𝐿𝐺,𝑖 + 𝑎𝑛+1∆𝑅𝑎
𝑛𝐿𝐺
𝑖=1       (4.22) 

𝐵𝐺 = �𝑏0 + 𝑓𝐵(∆𝑋𝑁)� + ∑ 𝑏𝐿𝐺,𝑖∆𝑋𝐿𝐺,𝑖 + 𝑏𝑛+1∆𝑅𝑏
𝑛𝐿𝐺
𝑖=1       (4.23) 

If we set  

𝑄0(∆𝑋𝑁) = ∫ 𝑝(∆𝑋𝐿𝐺 ,∆𝑋𝑎,∆𝑋𝑏)𝑑∆𝑋𝐿𝐺𝑑∆𝑋𝑎𝑑∆𝑋𝑏𝐴𝐺(∆𝑋𝑁)>𝐵𝐺(∆𝑋𝑁)      (4.24) 

Then the tightness probability can be computed as: 

𝑇𝐴 = � 𝑝(𝑋𝑁).𝑝(∆𝑋𝐿𝐺 ,∆𝑋𝑎,∆𝑋𝑏)𝑑∆𝑋𝐿𝐺𝑑∆𝑋𝑎𝑑∆𝑋𝑏𝑑𝑋𝑁
𝐴>𝐵

 

=∫ 𝑝(𝑋𝑁)𝑄0(𝑋𝑁)𝑑𝑋𝑁
∞
−∞           (4.25) 

Note that 𝑄0(𝑋𝑁) for fixed values of ∆𝑋𝑁 is in fact the tightness probability of 

𝐴𝐺(𝑋𝑁) in 𝑚𝑎𝑥 (AG(XN), BG(XN)), where 𝐴𝐺(𝑋𝑁)  and 𝐵𝐺(𝑋𝑁) are both Gaussians for 

fixed ∆𝑋𝑁 . Since there is an analytical formula [27] for the tightness probability for 

Gaussian random variables, for fixed values of (𝑋𝑁) , 𝑄0(𝑋𝑁)  can be computed 

efficiently. The tightness probability 𝑇𝐴  in (4.25) can then be obtained by numerical 

integration over the space of non-Gaussian and/or nonlinear process parameters 𝑋𝑁. 

Similarly, using the independence between ∆𝑋𝑁 and ∆𝑋𝐿𝐺, the mean and second 

moment of 𝑚𝑎𝑥 (𝐴,𝐵) can be computed as: 

𝐸[𝑚𝑎𝑥(𝐴,𝐵)] =

∫ … ∫ 𝑚𝑎𝑥(𝐴,𝐵) .𝑝(∆𝑋𝑁)∞
−∞

∞
−∞ . 𝑝(∆𝑋𝐿𝐺 ,∆𝑋𝑎,∆𝑋𝑏)𝑑∆𝑋𝐿𝐺𝑑∆𝑋𝑎𝑑∆𝑋𝑏𝑑𝑋𝑁 
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= ∫ … ∫ 𝑝(∆𝑋𝑁)∞
−∞

∞
−∞ 𝑄1(∆𝑋𝑁)𝑑∆𝑋𝑁        (4.26) 

𝐸[𝑚𝑎𝑥(𝐴,𝐵)2] =

∫ … ∫ 𝑚𝑎𝑥(𝐴,𝐵)2 .𝑝(∆𝑋𝑁)∞
−∞

∞
−∞ . 𝑝(∆𝑋𝐿𝐺 ,∆𝑋𝑎,∆𝑋𝑏)𝑑∆𝑋𝐿𝐺𝑑∆𝑋𝑎𝑑∆𝑋𝑏𝑑𝑋𝑁 

= ∫ … ∫ 𝑝(∆𝑋𝑁)∞
−∞

∞
−∞ 𝑄1(∆𝑋𝑁)𝑑∆𝑋𝑁        (4.27) 

𝑄1(∆𝑋𝑁)

= � … � 𝑚𝑎𝑥�𝐴𝐺(∆𝑋𝑁),𝐵𝐺(∆𝑋𝑁)� .
∞

−∞

∞

−∞
 𝑝(∆𝑋𝐿𝐺 ,∆𝑋𝑎,∆𝑋𝑏)𝑑∆𝑋𝐿𝐺𝑑∆𝑋𝑎𝑑∆𝑋𝑏 

             (4.28) 

𝑄2(∆𝑋𝑁)

= � … � (𝑚𝑎𝑥�𝐴𝐺(∆𝑋𝑁),𝐵𝐺(∆𝑋𝑁)�)2.
∞

−∞

∞

−∞
 𝑝(∆𝑋𝐿𝐺 ,∆𝑋𝑎,∆𝑋𝑏)𝑑∆𝑋𝐿𝐺𝑑∆𝑋𝑎𝑑∆𝑋𝑏 

             (4.29) 

For fixed values of ∆𝑋𝑁 , 𝑄1(∆𝑋𝑁)  and 𝑄1(∆𝑋𝑁)  are the mean and second 

moment, respectively, for the maximum of two Gaussian random variables and these can 

be found using analytical formulas. The mean and second moment of 𝑚𝑎𝑥 (𝐴,𝐵) can 

then be computed by numerical integration over the space of non-Gaussian and/or 

nonlinear process parameter 𝑋𝑁. 

4.3 Implementation and Results 

The proposed approach was implemented on top of EinsStat [44], an industrial 

statistical timing analysis tool. In the implementation, a process variation can have a non-

Gaussian distribution and the delay dependence on a process parameter can be a 
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nonlinear function. These are both specified by tables using an appropriately chosen 

discretization. The integrals for the mean, second moment and tightness probability are 

computed by numerical integration. 

We first tested our implementation on computing 𝑚𝑎𝑥 (𝐴,𝐵) of two first-order 

canonical forms A and B with non-Gaussian parameters: 

𝐴 = 10 + 0.5.∆𝑋1 + ∆𝑋2 + 0.5.∆𝑅𝑎         (4.30) 

𝐵 = 10 + ∆𝑋1 + 0.5.∆𝑋2 + 0.5.∆𝑅𝑏        (4.31) 

where ∆𝑋1 and ∆𝑋2 are random variables with lognormal probability distributions, and 

∆𝑅𝑎  and ∆𝑅𝑏  are Gaussian random variables for the locally independent randomness. 

Figure 13(a) shows the probability density function of 𝑚𝑎𝑥 (𝐴,𝐵)  computed by the 

proposed technique, by the original parameterized SSTA technique for linear Gaussian 

process parameters (where non-Gaussian distributions are approximated with Gaussians 

having the same mean and standard deviation), and by Monte Carlo simulation. The PDF 

computed by the proposed technique matches the Monte Carlo results much closer than 

the PDF computed by the original technique. The proposed technique and Monte Carlo 

simulation both predict asymmetric PDFs with similar trends especially at the tails of 

PDFs. The PDF computed by the original technique has a symmetric shape and 

substantially underestimates the worst-case value. 

Next, we tested our technique on 𝑚𝑎𝑥 (𝐴,𝐵) with nonlinear (cubic) functions of 

Gaussian parameters: 

𝐴 = 10 + (∆𝑋1)3

18
+ (∆𝑋2)3

9
+ 0.5.∆𝑅𝑎         (4.32) 
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𝐵 = 10 + (∆𝑋1)3

9
+ (∆𝑋2)3

18
+ 0.5.∆𝑅𝑏         (4.33) 

Figure 13(b) compares the PDFs computed by the original technique, by the 

proposed technique and by Monte Carlo simulation. The original technique uses linear 

approximation of nonlinear functions that passes through the same -3σ and +3σ points. 

The proposed technique predicts virtually the same result as Monte Carlo, while the 

original technique significantly over-estimates the standard deviation. 

To choose the number of discretization points that provides a good tradeoff 

between accuracy and run-time, we ran tests on a small industrial design A (3,042 gates 

and 17,579 timing arcs). Table 2 shows the CPU-time of our technique for different 

numbers of non-Gaussian parameters, for 5 and 10 discretization points. 

 
 

 

(a) Test for non-Gaussian,   (b) Test for non-Linear 
 
Figure 13: Comparison of PDFs for maximum of two generalized canonical forms 
A and B. (a) shows the results on a non-Gaussian distribution (b) shows results on a 
nonlinear delay function. 
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The run time was measured on a single processor IBM RISC System 6000 model 

43P-681. It is observed that processing three non-Gaussian parameters with 10 

discretized points takes about 40 times longer than handling all three parameters as 

Gaussians, but for 5 discretization points, the run-time is only about 3 times longer. The 

PDF plots for design A are provided in Figure 14 for when 5, 10 and 20 discretized points 

are used. We observe that as the difference between PDF curves for 10 and 20 points is 

almost undistinguishable, the curve with 5 points also gives a result that is accurate 

enough. For nonlinear functions, we saw a similar dependence of run-time on the number 

of discretization points. Therefore, for our other experiments, we have used only 5 

discretized points.    

 
 

TABLE 2: COMPARISON OF THE RUN-TIME AS THE NUMBER OF NON-
GAUSSIAN DISTRIBUTED SOURCES, AND THE NUMBER DISCRETIZATION 

POINTS, ARE VARIED 
Number of Non-Gaussians 3 2 1 0 

CPU-times 

(s) 

10 points 69.17 7.53 2.14 1.38 

5 points 3.82 1.54 1.40 1.38 

 

 
 

 

Figure 14: Comparison of accuracy versus run-time for Design A. 
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We performed statistical timing analysis of the same design A with linear delay 

functions of three lognormally distributed global sources of variations and a Gaussian 

uncorrelated local variation. The average values of delay sensitivities to each global and 

local variation were set to 2% and 6% of the corresponding nominal delay values, 

respectively. Figure 15 shows the probability density functions of the latest arrival time 

computed by three different techniques. The proposed technique gives a close match to 

the Monte Carlo result. In contrast, the PDF computed by the original SSTA technique 

for linear, Gaussian case deviates substantially from the Monte Carlo result. The PDF 

computed by Monte Carlo simulation is not Gaussian, but closer to lognormal because all 

three global sources of variation have lognormal distributions. 

 
 

 

Figure 15: Comparison of PDFs of arrival time at a timing point for design A when 
different approaches are applied. 
 
 

Unlike the proposed method, the original SSTA technique for the linear, Gaussian 

case approximates all delays with a Gaussian distribution, and therefore, it is hard for it to 

estimate the PDF well. The Monte Carlo predicts the 0.1% and 99.9% confidence points 

of path delays as 19.4 ns and 32 .0 ns, respectively. The proposed algorithm estimates 
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similar values of 19.6 ns and 31 .5 ns, respectively, while the original technique computes 

these values as 17.8 ns and 27.0 ns, respectively. 

In the second set of experiments, the three global sources of variation had 

Gaussian distributions but the delays of circuit gates and wires were cubic functions of 

these variations. The values of delay sensitivities to each global source of variation and 

uncorrelated local variation were set to 2% and 6% of the corresponding nominal delay 

values, respectively. Figure 16 shows PDFs and CDFs of the circuit delay computed by 

three different techniques. The proposed technique computes the same mean value as 

Monte Carlo, while the original technique overestimates it. 

 
 

 

(a) PDF Curves   (b) CDF Curves 
 
Figure 16: Comparison of PDFs of arrival time at a timing point for design A when 
different approaches are applied. The delay functions at all circuit nodes are nonlinear 
(cubic) function of the variational sources in the experiments.  
 
 

The original technique computes the 99.9% confidence point as 22.7 ns, as against 

22.9 ns from Monte Carlo, while the original technique over-estimates it as 23.7 ns. Thus, 

we can conclude that when parameter variations have non-Gaussian distributions, or gate 
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and wire delay depends on parameters nonlinearly, the proposed technique is essential to 

correctly predict circuit delay distribution and manufacturing yield. 

Table 3 shows the run time of statistical timing analysis for five industrial designs 

when different numbers of non-Gaussian parameters are used in the analysis. In the set of 

tests, there are three global variational process parameters. In the case when the number 

of non-Gaussians is zero, the three global sources are set as Gaussian random variables, 

and in general, when the number of non-Gaussians is set to 𝑘(0 ≤ 𝑘 ≤ 3), the remaining 

3 − 𝑘 sources remain Gaussians. We see that, as the number of non-Gaussian parameters 

increases to 3, the run-time is only about 3 to 5 times longer compared to the case without 

any non-Gaussian parameters. 

TABLE 3: COMPARISON OF RUN-TIME VERSUS THE NUMBERS OF 
NON-GAUSSIAN PROCESS PARAMETERS FOR VARIOUS SIZES OF 

INDUSTRIAL DESIGNS 
Ckt Name Nuber of 

Gates 

Timing 

Arcs 

Number of Non-Gaussians 

3 2 1 0 

A 3,042 17,579 3.8 s 1.5 s 1.4 s 1.4 s 

B 11,937 57,151 12.3 s 5.53 s 4.3 s 3.07 s 

C 53,317 292,097 79.1 s 8 s35. 27.3 s 18.7 s 

D 70,216 363,537 93.3 s 41.3 s 30.5 s 19.7 s 

E 1,085,034 5,799,545 2,083.1 s 982.0 s 788.5 s 703.6 s 

 
 
The size of the designs for tests varies from 3,042 up to 1,085,034 gates. For the 

largest design E, the run-time is only about 35 minutes. In contrast, for the smallest 

design A, the run-time of Monte Carlo simulation is about 5 hours. However, due to the 

large size of designs, Monte Carlo simulations cannot be completed in a realistic amount 
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of time, and thus the run-times are not provided in the table. Statistical timing analysis 

with nonlinear parameters has approximately the same run time. 

4.4 Summary 

In this chapter, we have presented a novel and efficient technique for handling 

arbitrary non-Gaussian and nonlinear function parameters in parameterized block-based 

SSTA. Our approach is based on an extension of the first-order canonical form for 

representing delay and arrival time variations. Therefore this technique is fully 

compatible with the parameterized SSTA approach for Gaussian and linear function 

parameters presented in Chapter 3, and preserves its computational efficiency in 

processing such types of process parameter variations. The experimental results showed 

that the probability distributions of circuit delays computed by the new technique are 

closer to the results of Monte Carlo simulations than the original parameterized SSTA 

which approximates non-Gaussian distributions with Gaussians and nonlinear functions 

with linear functions, especially at the 99.9% confidence level. It should be also noted 

that in many cases non-Gaussian distributions of parameter variations can be 

approximated with Gaussians with reasonable accuracy, and only significantly 

asymmetric distributions requires handling as non-Gaussians. This conclusion is very 

important in practice because it justifies approximating most parameter distributions by 

Gaussians. 

The limitation of the algorithm is that its run-time is exponential to the number of 

non-Gaussian and/or nonlinear function parameters. To further improve the efficiency, it 

is possible to develop techniques that can compute the max function analytically. In 

practice, as the number of non-Gaussian and/or nonlinear function parameters is not 
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large, the algorithm is very efficient and provides a general framework for SSTA 

handling non-Gaussian parameters and nonlinear functions of delays. The method can be 

used to validate the approximation of process parameters as Gaussians and usage of 

linear delay functions, and then selectively apply crucial process parameters as non-

Gaussian distributed or with nonlinear functions. The method is also important for sign-

off timing analysis. 
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CHAPTER 5  

GATE-LEVEL STATISTICAL STATIC TIMING ANALYSIS 

5.1 Introduction 

The minimum feature size of CMOS technology continues to scale down, which 

enables higher density and lower chip cost. Additionally, the move to deep submicron 

process technologies has caused process variation to become a major issue that must be 

dealt with during the design of circuits. In older process technologies, the issue of process 

variation was mitigated through the use of a guardband. Designers would design their 

circuits under a tighter timing constraint and a smaller power budget than they were 

actually trying to meet. In the course of timing and power analysis, corner analysis would 

be used to determine the worst-case power and timing that the circuit would encounter 

with the target manufacturing process. Therefore, when the circuit was actually 

manufactured, it would still function according to the original specifications. The problem 

with this approach is that in deep submicron processes, the size of the guardband is 

prohibitively large if the circuit is constructed so that every chip meets the timing and 

power requirements. In place of guardbanding, and guaranteeing that every manufactured 

die functions, designers have moved toward meeting a performance yield requirement, 

where performance yield is defined as the percentage of manufactured die that will 

function within the timing constraints.  

      Process variation is the deviation of a parameter from its intended value. 

Parameters that are normally considered to be affected in deep submicron processes 

include gate length, device width, oxide thickness, and doping density. These parameters 

each have an effect on the resulting device characteristics. Now, the goal of Statistical 
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Static Timing Analysis (SSTA) is to perform a timing analysis of a circuit for the purpose 

of deciding whether or not the circuit meets the design requirements. The result from 

SSTA is a probability density function (pdf) of the circuit delay. This pdf can then be 

used to find the performance yield of a circuit, where the performance yield is defined to 

be the percentage of manufactured die that will function at a specific clock period. 

      High-level synthesis (HLS), also known as behavioral synthesis, is a synthesis 

technique that allows designers to move up the design chain to a higher level of 

abstraction. This means that instead of designing at the register transfer level (RTL), 

where a designer must specify all the timing of the circuit, the designer can work at a 

behavioral level, where only the data flow of the required circuit has to be specified. This 

frees the designer from the burden of many low-level details of circuit design, allowing for 

productivity increases of up to 10 times and code reductions of up to 100 times [45]. As 

manufacturing technologies continue to shrink, HLS is becoming a powerful technique to 

decrease the amount of time required to design a chip. In this chapter, we apply statistical 

timing analysis to high-level synthesis, and develop yield driven synthesis framework so 

that the impact of process variations is taken into account during high-level synthesis. The 

rest of chapter is organized as follows. Section 5.2 describes the background and previous 

work. Section 5.3 shows the proposed timing analysis model. Section 5.4 presents the 

experimental results. Finally, section 5.5 concludes this paper. 

5.2 Background and Previous Work 

5.2.1 Timing in High Level Synthesis 

High-level synthesis (HLS) is the process of translating a behavioral description 

into a hardware implementation at register-transfer level. The design specification is 
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usually written as a behavioral description, in languages such as System C. The 

behavioral description is first compiled into an internal representation (such as control 

and/or data flow graphs (CDFGs)), which are then mapped to the functional units that are 

selected from the resource library to meet design goals. The synthesis process usually 

consists of scheduling, module selection, and resource sharing [46].  

High-level synthesis usually consists of several steps: scheduling, module 

selection, and resource sharing. Scheduling assigns each operation (such as add and 

multiply) in a CDFG to one or more clock cycles (or control steps). Scheduling 

techniques in HLS are usually classified as time-constrained scheduling or resource-

constrained scheduling. Module selection decides the type of functional units to perform 

the operation in CDFG. Resource sharing uses the same resource (functional units or 

registers) to perform multiple operations or store more than one variable. These steps can 

interact with each other and affect the final synthesis results. In this paper, we focus on 

data-flow intensive applications (represented by a DFG), in which most of the 

computations performed in the design are arithmetic operations (such as addition and 

multiplication).   

5.2.2 Statistical Delay Model 

      The delay of each device by a linear combination of independent random 

variables leads to the creation of the canonical form. 

𝑑𝑎 = 𝜇𝑎 + ∑ 𝑎𝑖𝑧𝑖 + 𝑎𝑛+1𝑛
𝑖 𝑅                                                     (5.1)                                                                    

 where 𝜇𝑎  is the mean delay, 𝑧𝑖 represents the n independent RVs used to express the 

spatially correlated device-parameter variations, R represents the residual independent 

variation, and coefficients 𝑎𝑖’s represent the sensitivity of delay to each of the RVs. 



75 
 

      Because the canonical delay model of a functional module can be obtained from 

the result of the gate-level SSTA, the delay model of the high-level design can be also 

defined as (5.1). Thus, this model is possible to statistically operate among delay models 

in the same manner as an analysis at gate-level design. 

      It will be convenient to express both the sum and the maximum of such canonical 

forms in a canonical form. This will preserve the same approach throughout the 

computation of the delay for the whole circuit. Expressing the sum (C) of two canonical 

delays (A and B) is almost a straightforward task. The only unintuitive part is the 

coefficient of residual independent variation 𝑐𝑛+1. As the two coefficients, of which it is 

composed, correspond to independent (orthogonal) RVs, the new coefficient must be 

equal to the combined magnitude of the two. 

𝐶 = 𝐴 + 𝐵                                                                                 (5.2)                                                                                                         

𝜇𝑐 = 𝜇𝑎 + 𝜇𝑏                                                                             (5.3)                                                                                              

𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖 for 1 ≤ 𝑖 ≤ 𝑛                                                        (5.4)                                                                                     

𝑐𝑛+1 = �𝑎𝑛+12 + 𝑏𝑛+12                                                                (5.5)                                                                                       

       Computation of the maximum is a significantly more complex. As the maximum 

operation is nonlinear, but the canonical form is only an approximation of the maximum 

can be computed. The following is an algorithm proposed for solving this problem [27].  

1) Compute variances and covariance of A and B 

       First of all the variance and covariance of the canonical forms A and B need to be 

calculated. 

𝜎𝑎2 = ∑ 𝑎𝑖2𝑛
𝑖                      𝜎𝑏2 = ∑ 𝑏𝑖2𝑛

𝑖                         𝑟 = ∑ 𝑎𝑖𝑏𝑖𝑛
𝑖       

                                                                                                 (5.6) 
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2) Compute tightness probability TA = P (A > B) (the probability that arrival time A is 

larger than B) as presented in [47] 

𝑇𝐴 = 𝜙 �𝜇𝑎−𝜇𝑏
𝜃

�                                                                           (5.7)                                                                                                  

𝜙(𝑥́)  = ∫ 𝜙(𝑥)𝑑𝑥𝑥́
−∞                                                                   (5.8)                                                                                

𝜙(𝑥) = 1
√2𝜋

𝑒𝑥𝑝−
𝑥2

2                                                                      (5.9)                                                                                           

𝜃 = �𝜎𝑎2 + 𝜎𝑏2 − 2𝑟                                                                (5.10)                                                                                        

3) Compute mean and variance of C = maximum (A,B)  

       The new mean and variance of the new canonical form C = max (A, B) have to be 

expressed. 

                       𝜇𝑐 = 𝜇𝑎𝑇𝐴 + 𝜇𝑏(1 − 𝑇𝐴)+𝜃𝜙(𝜇𝑎−𝜇𝑏
𝜃

)                  (5.11)                                              

𝜎𝑐2 = (𝜇𝑎 + 𝜎𝑎2)𝑇𝐴 + (𝜇𝑎 + 𝜎𝑎2)(1 − 𝑇𝐴) + (𝜇𝑎 + 𝜇𝑏)𝜃𝜙(𝜇𝑎−𝜇𝑏
𝜃

)-𝜇𝑐2               (5.12)                                                     

4) Compute sensitivity coefficient 𝑐𝑖 using the tightness probability 

Then the weighting coefficients for the maximum. 

𝑐𝑖 = 𝑎𝑖𝑇𝐴 + 𝑏𝑖(1 − 𝑇𝐴) for 1 ≤ 𝑖 ≤ 𝑛                                    (5.13)                                                             

5) Compute sensitivity coefficient 𝑐𝑛+1 of canonical form 𝑐𝑎𝑝𝑝𝑟𝑜𝑥 to make the variance of 

𝑐𝑎𝑝𝑝𝑟𝑜𝑥  equal to the variance of C = maximum (A,B).  

      It was shown in [48] that a valid coefficient 𝑐𝑛+1  always exists as the residue 

(𝜎𝑐2 − ∑ 𝑐𝑖2)𝑛
𝑖  is always greater than or equal to zero. Unfortunately, this approach only 

computes an estimate, which by no means guarantees conservative results. Another way 

of coping with the problem is the use of the following relation. 

𝑚𝑎𝑥(∑ 𝑎𝑖,∑ 𝑏𝑖𝑛
𝑖

𝑛
𝑖 ) ≤ ∑ 𝑚𝑎𝑥 (𝑎𝑖,𝑏𝑖)𝑛

𝑖                                    (5.14)                                                                    
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Consider the very simple canonical form for two delays 𝑑𝑎 = 𝜇𝑎 + 𝑎∆𝑋  and 

𝑑𝑏 = 𝜇𝑏 + 𝑏∆𝑋,  where 𝜇𝑎 and 𝜇𝑏  are the mean delays of 𝑑𝑎 and 𝑑𝑏 respectively, and a 

and b are their sensitivities to the common RV ∆X. The maximum of 𝑑𝑎 and 𝑑𝑏 is the 

upper envelope of these two intersecting lines, which is a nonlinear function and cannot 

be expressed exactly by the canonical form. Hence, to represent this maximum, a linear 

function of ∆X must be constructed that approximates this nonlinear function [20]. This 

result guarantees that if the higher of the coefficients corresponding to a particular 

independent RV is selected, then the result will be conservative. Therefore, a bounding 

canonical 𝐶𝑏𝑜𝑢𝑛𝑑 form of the delay can be constructed by selecting the higher mean and 

the largest coefficients. 

𝜇𝑐 = 𝑚𝑎𝑥(𝜇𝑎, 𝜇𝑏)                                                           (5.15)                                                                                            

𝐶𝑏𝑜𝑢𝑛𝑑𝑖= 𝑚𝑎𝑥(𝑎𝑖, 𝑏𝑖)                                                       (5.16)                                                                                       

5.3 Proposed Timing Model 

5.3.1 Nonlinear and Nonnormal Approaches  

         Statistical STA is a very complex solution. A parameter has the same probability 

distribution for all the delays, but different delays may depend on the same parameter 

differently, which means different nonlinear functions. In order to extend parameterized 

statistical STA to non-Gaussian and nonlinear parameters, we generalize the first-order 

Canonical form (Equation 5.1) to non-Gaussian and nonlinear parameters. Then we 

construct a statistical approximation for the maximum of two generalized canonical 

forms by applying the same ideas as in the linear Gaussian case. Because of the existence 

of non-normal distributions and nonlinear dependencies, special canonical forms have 

been developed to cope with these challenges [27]. All of these are handled by numerical 
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computations and tightness probabilities. In order to include the effect of nonlinear 

dependencies additional term is included in the form. 

𝑑𝑎 = 𝜇𝑎 + ∑ 𝑎𝑖𝑧𝑖 + ∑ ∑ 𝑏𝑖𝑗𝑧𝑖𝑧𝑗 + 𝑎𝑛+1𝑅𝑛
𝑗=1

𝑛
𝑖=1

𝑛
𝑖                    (5.17)                                              

      Where 𝑧1 to 𝑧𝑛 represent sources of normal variations, and 𝑧𝑛+1 to 𝑧𝑛+𝑚 are RVs 

with non-normal variations. 

      For the non-normal distributions the same approach is used. The delay terms for 

both the normally distributed contributions and the non-normal ones. 

𝑑𝑎 = 𝜇𝑎 + ∑ 𝑎𝑖𝑧𝑖 + ∑ 𝑎𝑛+𝑗𝑧𝑛+𝑗 + 𝑎𝑛+𝑚+1𝑅𝑚
𝑗

𝑛
𝑖                       (5.18)                                              

      Equations 5.17 and 5.18 can be aggregated in the following common form. 

𝑑𝑎 = 𝜇𝑎 + ∑ 𝑎𝑖𝑧𝑖 + 𝑓(𝑧𝑛+1, … … . . , 𝑧𝑛+𝑚𝑛
𝑖 ) + 𝑎𝑛+1       (5.19) 

where f  represents the nonlinear function and is described as a table for computational 

purposes, and RVs 𝑧𝑛+1 to 𝑧𝑛+𝑚 represent sources of normal variations with nonlinear 

dependences or non-normal variations.     

5.3.2 Timing Graph Mapping 

In high-level design, accurate timing operation means that each functional module 

should satisfy its governing timing constraints. To meet these timing requirements, 

accurate timing analysis and prediction are necessary. Thus, we propose a new method 

for timing analysis, in which the above-defined delay models of the functional modules 

are mapped to the timing graph. The data flow graph (DFG), which represents high-level 

design, is converted into a timing graph, as shown in the example (Figure 17). For the 

convenience of timing analysis, the inputs and outputs of modules are connected to 

virtual source and virtual sink nodes, respectively. That is, a virtual source node is a 

departure point of all circuit signals, and a virtual sink node is its final destination. Here, 
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timing quantities expressed as equation 5.19 are propagated from the virtual source node 

to the virtual sink node. Additionally, the proposed method can map to the timing graph 

for various high-level operations as described in Figure 17. 

5.3.3 Module of two (or more) operation cycles 

      The module of more than two operation cycles is often used. In the mapping 

procedure, a delay of the module is normalized to one clock period. (i.e., the delay of 

more than two cycle operation is normalized to the one cycle operation delay.) For 

example, Adder (Ripple Carry Adder/Carry Look ahead Adder) and Multiplier modules 

use two operation cycles (Figure 17a). In the conversion procedure into a timing graph, 

they are used as the delay normalized to a clock period; 1/2 prefix means that half-value 

of delay time is applied to a timing analysis (Figure 17b). 

5.3.4 Resource Chaining 

      If a delay sum of modules satisfies the timing constraints, the circuit can use the 

chained resource. The resource chaining means to operate more than two functions in one 

cycle, e.g., Module 5 (Figure 17). In this case, the proposed method does timing analysis 

by using the statistical add operation.  
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(a) 

 

(b) 

Figure 17: Conversion of a data-flow graph (DFG) (a) into a timing graph (b) for an 
example circuit. 
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5.3.5  Resource Sharing 

       Two (or more) operations may be bound to the same resource if they do not 

concurrently operate and they can be implemented by resources of the same type. 

Generally, the primary goal of resource sharing is to reduce the area of a circuit. In the 

proposed timing graph, the resource sharing can be considered. For example, module 1 

and module 8 can be shared because they are same functions and are independent of 

timing (Figure 17). If a circuit is implemented by sharing these operations, resources for 

module 1 and module 8 are combined in the timing graph, and then the seven operations 

of the timing graph, module 1 to module 7, are just used for a timing analysis. On the 

other hand, if the circuit is implemented without the resource sharing, the timing graph 

has the eight resources as module 1 to module 8, and then the timing analysis is 

performed including module 8. If a module of the largest timing quantity satisfies one 

cycle operation, the whole circuit may operate on timing. Therefore, the latest arrival 

time among all fan-in edges of virtual sink should be calculated by the statistical 

operations. 

5.3.6 Statistical Operations 

        For an accurate statistical timing analysis, two major statistical operations 

between delay models are necessary. First one is the statistical add operation. Two or 

more modules can be chained in one clock-cycle, as module 5 (Figure 17). These chained 

modules are sequentially represented in the timing graph and total sum of delays of 

chained modules should be less than timing constraint, i.e., clock period. The add 

operation evaluates the distribution of sum of two distributions and each distribution can 

be expressed as equation 5.19. Then, the second operation is the statistical max operation. 
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The max operation is used for finding the latest arrival time among all fan-in edges of the 

virtual sink, which directly influence on the timing yield of a circuit. The max operation 

is defined as equation 5.16. 

5.4 Experimental Results 

We perform high-level statistical static timing analysis (SSTA) for arithmetic 

operations (Figure 17). The parameters which vary during SSTA are the gate length, the 

gate-oxide, and the doping concentration dependent threshold voltage variation. Table 4 

shows the specifics of our process variation modeling. In this experiment, the predictive 

technology model (PTM) 45 nm technology was used to extract the necessary gate delay 

data [49]. We have assumed that the process parameters are non-normal distributed and 

that the ratio of die-to-die (D2D) and within-die (WID) variations of each process 

parameter is 1:1 [50]. Under these experimental environments, the value of mean (µ) and 

standard deviation (σ) for the delay distribution are obtained by block-based SSTA result 

for each module. 

 
 

                          TABLE 4: PROCESS VARIATION PARAMETERS 
 

 

 

 

 

 
 

The accuracy of the analysis has been assessed by comparing the performances of 

the proposed method and the Monte-Carlo (MC) simulation which is known to be the 

most accurate method. We also quantified the effectiveness of resource sharing, which 

Parameter μ 3σ % 
Deviation 

from Mean 

Correlation 
Distance 

(μm) 
 Lg 45 nm 15% 1.0 
Wg 9 5nm 12% 1.0 
Na 2 × 1020 6% 0.0 
tox 1.75 nm 6% 0.0005 
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has been observed to affect the timing yield. However, the effect of resource sharing for 

the timing yield decreased as TYC increased (Table 6). 

 
 

 TABLE 5: HIGH-LEVEL SSTA RESULTS OF EACH FUNCTIONAL MODULE 
AND TIMING YIELDS OF THE TOTAL SYSTEM 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Operation Timing Yield Constraints (TYC) 

[%] 

85 95 99 

Adder (CLA) 96.23 99.20 99.89 

Subtractor 98.61 99.73 99.97 

Comparator 99.96 100 100 

Arithmetic Shifter 100 100 100 

Adder2 (RCA)/2 85 95 99 

Multiplier/2 99.73 99.97 100 

Adder1 + Arithmetic Shifter 85.565 95.62 99.13 

Adder1 (CLA) 96.23 99.20 99.89 

Total system w/RS (1-8) 84.02 94.53 98.87 

Total system w/o RS (1-8) 84.02 94.53 98.87 
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TABLE 6: COMPARISONS RESULTS BETWEEN THE PROPOSED METHOD AND 
MC SIMULATION, VALUES IN PARENTHESIS ARE DIFFERENCES COMPARED 

TO MC SIMULATION 
  

 

 

 

 

 

 

 

 
 
5.5 Summary 

We formulated the timing yield constraint high level synthesis problem for 

arithmetic operation modules. To solve this problem, we proposed a promising timing 

analysis method which considers process variations in high-level synthesis. In 

preliminary experiments, the proposed timing analysis method was comparably accurate 

when compared with the Monte-Carlo simulation. Specifically, our method showed very 

slight differences of 1.67% at 85% TYC and of 0.26% at 99% (3σ) TYC.  

Timing Yield 

Constraints 

(TYC) [%] 

Timing yield 

with resource 

sharing [%] 

Timing yield 

without resource 

sharing [%] 

Proposed MC  Proposed MC  

85 84.02 

(1.67) 

85.425 84.02(1.6) 85.37 

95 94.53 

(0.84) 

95.33 94.53 

(0.87) 

95.36 

99 98.87 

(0.26) 

99.13 98.87(0.26) 99.13 
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CHAPTER 6  

ARCHITECTURAL-LEVEL STATISTICAL STATIC TIMING ANALYSIS 

6.1 Introduction 

STA has been one of the most ubiquitous and popular analysis engines in the 

design of digital circuits for the last 30 years. However, in recent years, the increased loss 

of predictability in semiconductor devices has raised concern over the ability of STA to 

effectively model statistical variations. This has resulted in all-encompassing research 

[51], [7] in the so-called SSTA, which marks a significant departure from the traditional 

STA framework. The fundamental paleness of STA is that while global shifts in the 

process (referred to as die-to-die variations) can be approximated by creating multiple 

corner files, there is no statistically rigorous method for modeling variations across a die 

(referred to as within-die variations). However, with process scaling progressing well into 

the nanometer regime, process variations have become significantly more pronounced 

and within-die variations have become a non-negligible component of the total variation. 

It is shown that the incapability of STA to model within-die variation can result in either 

an over- or underestimate of the circuit delay, depending on the circuit topology [25]. 

Hence, STA’s desirable property of being conservative may no longer hold for certain 

circuit topologies while, at the same time, STA may be overly pessimistic for other 

circuit topologies. This accuracy problem of STA can be even more pronounced in 

advanced processes. Consequently, the need for an effective modeling of process 

variations in timing analysis has led to extensive research in statistical STA.  

SSTA algorithms can be broadly categorized into path-based and block-based.  

The path based SSTA seeks to estimate timing statistically on selected critical paths. 



86 
 

However, the task of selecting a subset of paths whose time constraints are statistically 

critical has a worst-case computation complexity that grows exponentially with respect to 

the circuit size. Hence the path based SSTA is not easily scalable to handle realistic 

circuits. On the other hand, the block based SSTA champions the notion of progressive 

computation. Specifically, by treating every gate/wire as a timing block, the SSTA is 

performed block by block in the forward direction in the circuit timing graph without 

looking back to the path history. As such, the computation complexity of block based 

SSTA would grow linearly with respect to the circuit size. However, to realize the full 

benefit of block based SSTA, we have to address a challenging issue that timing variables 

in a circuit could be correlated due to either global variations(20, 52, 53) or path 

reconvergence (54, 55). Global correlation refers to the statistical correlation among 

timing variables in the circuit due to global variations such as inter or intra-die spatial 

correlations, same gate type correlations, temperature or supply voltage fluctuations, etc. 

Path correlation, on the other hand, is caused by the phenomenon of path reconvergence, 

that is, timing variables in the circuit can share a common subset of gate/wire blocks 

along their path histories. Several solutions have been proposed to deal with either of 

these two types of correlations. In [20], [52], [53], the dependence on global variations is 

explicitly represented using a canonical timing model. However, these approaches did not 

take into account the path correlations. In [55], a method based on common block 

detection is introduced to deal with the path correlations. However, this method does not 

address the issue of dependence on global variations. To the best of our knowledge, there 

is no existing method that has dealt with both types of correlations simultaneously. We 
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present a novel block based SSTA modeling in this chapter that is designed to consider 

both global correlations and path correlations: 

• We develop a model encompassed with numerical computations and tightness 

probabilities to conditionally approximate the MAX/MIN operator by a linear 

mixing operator. 

• We extend the commonly used canonical timing model to be able to represent all 

possible correlations, including the path correlations, between timing variables in 

the circuit.  

The remainder of this chapter is organized as follows. SSTA problem formulation 

has been described in Section 6.2. Section 6.3 details the solution approaches.  Section 

6.4 details our architectural simulation and also present results from experiments which 

were conducted in order to benchmark our approach. We conclude in Section 6.5. 

6.2 SSTA Problem Formulation 

In this section, we will formally define the problem to be solved. 
 
 

 
Figure 18: Combinatorial circuit and its corresponding DAG [56]. 
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Definition:    

 A combinational circuit can be described using a  Directed Acyclic Graph (DAG) 

G given as 𝐺 = �𝑁,𝐸,𝑛𝑠 ,𝑛𝑓� , where N is the set of nodes corresponding to the 

input/output pins of the devices in the circuit, E is the set of edges connecting these nodes, 

each with weight 𝑑𝑖, and 𝑛𝑠, 𝑛𝑓 are respectively source and sink of the graph. Figure 18(a) 

shows a digital circuit and its corresponding DAG is shown in Figure 18(b).  

Problem Formulation: 

Let 𝑝𝑖be a path of ordered edges from a source to a sink in G. Let 𝐷𝑖 = ∑𝑑𝑖𝑗 be 

the path length of 𝑝𝑖. Then Dmax = max(D1, . . . ,Di, . . . ,Dn) is referred as the SSTA 

problem of the circuit. 

    There are two main challenges in SSTA. The Topological Correlation which 

emerges from reconvergent paths, these are the ones which originate from a common 

node and then converge again at another node (reconvergent node). Such correlation 

complicates the maximum operation as it now has to be computed over correlated RVs. 

In a circuit example shown in Figure 19, one can see that the two red paths reconverge at 

the rightmost gate (g3). 
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Figure 19: Topological Correlation [56]. 
 
 

The second challenge is the Spatial Correlation. It arises due to device proximity 

on the die and gives raise to the problems of modeling delay and arrival time so that 

correlations are included, as well as preserving and propagating these correlations. Figure 

20 shows such two paths correlated by two closely placed gates (g1 and g2). 

6.3 Solution Approaches 

The most general and brute force method of solving the above mentioned problem 

is to use numerical integration [54]. Although exact and applicable, this method is highly 

computationally expensive and thus, undesired. This leads to another approach, namely, 

the use of Monte Carlo methods [55]. The exact structure of these methods varies with 

the problem at hand. However, in general they all follow a common pattern: perform a 

statistical sampling of the sample space, perform deterministic computation for each 

sample, and aggregate the results into one final. In order to decrease the error, a lot of 

samples need to be taken, which, on the other hand, increases the computation effort. 

Therefore, probabilistic analysis methods are highly desired. Two such exist, one is the 

Path-based approach and the other is the Block-based approach.  
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The Path-based approach constructs a set of nodes that are likely to form the 

critical paths. The delay for each of these paths is then computed and a statistical 

maximum is performed over these results to yield the worst case delay.  

 
 

 

Figure 20: Spatial Correlation [56]. 
 
 

However, there are several problems associated with this approach. Sometimes it 

is hard to construct a set of likely critical paths. Therefore, the worst case scenario can be 

unintentionally omitted. This significantly increases the number of computations needed. 

Therefore, it is desired to use the Block-based approach. There instead of constructing 

critical paths the whole graph is traversed node by node. For all fan-in edges to a node the 

associated delay is added to the arrival time at the source node (the node upstream of the 

current one). The final arrival time at the node is computed using a maximum operation 

over the previous results. This approach has the advantage of propagating only two times, 

the rise and the fall time. 

6.3.1 Distribution Propagation Approaches  

Analytical handling of distributions would be a good and computationally 

inexpensive approach. However, due to the nonlinearities and nonnormalities that are to 
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occur in the dependencies and distributions used, it becomes a task close to impossible. 

There exist ways of handling this problem analytically, but assumptions are inevitable 

part of them. Therefore, another way is to discretize the distributions and normalize them 

so that the discreet values sum up to 1. In this way new set of probability mass functions 

is constructed, which closely approximates the real densities. 

Now summation is an easy task to do. The result of such an operation is just a sum of 

shifted and scaled values of the delay. The shifts and the magnitude of the scaling is 

determined by the distribution of the arrival time. 

𝑧 = 𝑥 + 𝑦                                                                                                                       (6.1) 

𝑓𝑧 (𝑡) = 𝑓𝑥(1)𝑓𝑦(𝑡 − 1) + 𝑓𝑥(2)𝑓𝑦(𝑡 − 2) +  −−− + 𝑓𝑧(𝑛)𝑓𝑦(𝑡 − 𝑛)                       (6.2) 

𝑓𝑧(𝑡) = ∑ 𝑓𝑥(𝑖)𝑓𝑦(𝑡 − 𝑖) = 𝑓𝑥(𝑡) ∗ 𝑓𝑦(𝑡)∞
𝑖=−∞                                                                (6.3) 

Where x, y are the delays of two devices which are connected in series. z is the resulting 

delay. 𝑓𝑥,𝑓𝑦,𝑓𝑧  are the delay functions of the device x, y and convolution of x &y 

function respectively. 

Performing discrete time convolution is enough to compute the resulting delay 

from two devices in series. In order to compute the maximum delay between two paths (x 

and y) two cases have to be considered. Either one of the path y has a particular delay and 

path x has a delay less than or equal to the one of x or vice versa (equation 6.5). In order 

to obtain a density function this must be computed for all possible values of the delay t. 

𝑧 = 𝑚𝑎𝑥 (𝑥,𝑦)                                                                                                               (6.4) 

𝑓𝑧(𝑡) = 𝐹𝑥(𝜏 < 𝑡)𝑓𝑦(𝑡) + 𝐹𝑦(𝜏 < 𝑡)𝑓𝑥(𝑡)                                                                     (6.5) 
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6.3.2 Propagation of Delay Dependences  

Expressing the delay of each device by a linear combination of independent 

random variables leads to the creation of the canonical form. 

𝑑𝑎 = 𝜇𝑎 + ∑ 𝑎𝑖𝑧𝑖 + 𝑎𝑛+1𝑛
𝑖 𝑅                                                                                         (6.6) 

where 𝜇𝑎  is the mean delay, 𝑧𝑖 represents the n independent RVs used to express the 

spatially correlated device-parameter variations, R represents the residual independent 

variation, and coefficients 𝑎𝑖’s represent the sensitivity of delay to each of the RVs. 

It will be convenient to express both the sum and the maximum of such canonical 

forms in a canonical form. This will preserve the same approach throughout the 

computation of the delay for the whole circuit. Expressing the sum (C) of two canonical 

delays (A and B) is almost a straightforward task. The only unintuitive part is the 

coefficient of residual independent variation 𝑐𝑛+1. As the two coefficients, of which it is 

composed, correspond to independent (orthogonal) RVs, the new coefficient must be 

equal to the combined magnitude of the two. 

𝐶 = 𝐴 + 𝐵                                                                                                                      (6.7) 

𝜇𝑐 = 𝜇𝑎 + 𝜇𝑏                                                                                                                  (6.8) 

𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖 for 1 ≤ 𝑖 ≤ 𝑛                                                                                             (6.9) 

𝑐𝑛+1 = �𝑎𝑛+12 + 𝑏𝑛+12                                                                                                   (6.10) 

Computation of the maximum is a significantly more involved. As the maximum 

operation is nonlinear, but the canonical form is, only an approximation of the maximum 

can be computed. The following is an algorithm proposed for solving this problem [53].  
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1) Compute variances and covariance of A and B 

First of all the variance and covariance of the canonical forms A and B need to be 

calculated. 

𝜎𝑎2 = ∑ 𝑎𝑖2𝑛
𝑖                      𝜎𝑏2 = ∑ 𝑏𝑖2𝑛

𝑖                         𝑟 = ∑ 𝑎𝑖𝑏𝑖𝑛
𝑖                                     (6.11) 

2) Compute tightness probability TA = P(A > B) (the probability that arrival time A is 

larger than B) as presented in [27] 

𝑇𝐴 = 𝜙 �𝜇𝑎−𝜇𝑏
𝜃

�                                                                                                            (6.12) 

𝜙(𝑥́)  = ∫ 𝜙(𝑥)𝑑𝑥𝑥́
−∞                                                                                                     (6.13) 

𝜙(𝑥) = 1
√2𝜋

𝑒𝑥𝑝−
𝑥2

2                                                                                                        (6.14) 

𝜃 = �𝜎𝑎2 + 𝜎𝑏2 − 2𝑟                                                                                                     (6.15) 

3) Compute mean and variance of C = maximum(A,B)  

The new mean and variance of the new canonical form C = max(A,B) have to be 

expressed. 

                       𝜇𝑐 = 𝜇𝑎𝑇𝐴 + 𝜇𝑏(1 − 𝑇𝐴)+𝜃𝜙(𝜇𝑎−𝜇𝑏
𝜃

)                                                      (6.16) 

𝜎𝑐2 = (𝜇𝑎 + 𝜎𝑎2)𝑇𝐴 + (𝜇𝑎 + 𝜎𝑎2)(1 − 𝑇𝐴) + (𝜇𝑎 + 𝜇𝑏)𝜃𝜙(𝜇𝑎−𝜇𝑏
𝜃

) -𝜇𝑐2                        (6.17) 

4) Compute sensitivity coefficient 𝑐𝑖 using the tightness probability 

Then the weighting coefficients for the maximum. 

𝑐𝑖 = 𝑎𝑖𝑇𝐴 + 𝑏𝑖(1 − 𝑇𝐴) for 1 ≤ 𝑖 ≤ 𝑛                                                                         (6.18) 

5) Compute sensitivity coefficient 𝑐𝑛+1 of canonical form 𝑐𝑎𝑝𝑝𝑟𝑜𝑥 to make the variance of 

𝑐𝑎𝑝𝑝𝑟𝑜𝑥  equal to the variance of C = maximum(A,B).  

It was shown in [47] that a valid coefficient 𝑐𝑛+1  always exists as the residue 

(𝜎𝑐2 − ∑ 𝑐𝑖2)𝑛
𝑖  is always greater than or equal to zero. 
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Unfortunately, this approach only computes an estimate, which by no means 

guarantees conservative results. Therefore, it is not suitable as it might underestimate the 

delay on some occasions. Another way of coping with the problem is the use of the 

following relation. 

𝑚𝑎𝑥(∑ 𝑎𝑖,∑ 𝑏𝑖𝑛
𝑖

𝑛
𝑖 ) ≤ ∑ 𝑚𝑎𝑥 (𝑎𝑖,𝑏𝑖)𝑛

𝑖                                                                          (6.19) 

Consider the very simple canonical form for two delays 𝑑𝑎 = 𝜇𝑎 + 𝑎∆  and 

𝑑𝑏 = 𝜇𝑏 + 𝑏∆𝑋,  where 𝜇𝑎 and 𝜇𝑏  are the mean delays of 𝑑𝑎 and 𝑑𝑏 respectively, and a 

and b are their sensitivities to the common RV ΔX. In [48] an example of  𝑑𝑎 and 𝑑𝑏  is 

shown as a function of ΔX. The maximum of 𝑑𝑎 and 𝑑𝑏 is the upper envelope of these 

two intersecting lines, which is a nonlinear function and cannot be expressed exactly by 

the canonical form. Hence, to represent this maximum, a linear function of ΔX must be 

constructed that approximates this nonlinear function. 

Note that 𝑐𝑎𝑝𝑝𝑟𝑜𝑥 will at times underestimate and at times overestimate the actual 

result. On the other hand, the method proposed in [20] constructs a bound  𝑑𝑐𝑏𝑜𝑢𝑛𝑑 =

𝜇𝑐𝑏𝑜𝑢𝑛𝑑 + 𝑐𝑏𝑜𝑢𝑛𝑑∆𝑋, where  𝜇𝑐𝑏𝑜𝑢𝑛𝑑 = 𝑚𝑎𝑥(𝜇𝑎 + 𝜇𝑏) and 𝑐𝑏𝑜𝑢𝑛𝑑 = 𝑚𝑎𝑥 (𝑎, 𝑏). As can 

be seen, the error of 𝑐𝑎𝑝𝑝𝑟𝑜𝑥will be smaller than that of 𝑐𝑏𝑜𝑢𝑛𝑑, where as  𝑐𝑏𝑜𝑢𝑛𝑑,  will be 

guaranteed conservative. 

This result guarantees that if the higher of the coefficients corresponding to a 

particular independent RV is selected, then the result will be conservative. Therefore, a 

bounding canonical 𝐶𝑏𝑜𝑢𝑛𝑑 form of the delay can be constructed by selecting the higher 

mean and the largest coefficients. 

𝜇𝑐 = 𝑚𝑎𝑥(𝜇𝑎, 𝜇𝑏)                                                                                                        (6.20) 

𝐶𝑏𝑜𝑢𝑛𝑑𝑖= 𝑚𝑎𝑥(𝑎𝑖, 𝑏𝑖)                                                                                                    (6.21) 
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6.3.3 Nonlinear and Nonnormal Approaches  

Because of the existence of nonnormal distributions and nonlinear dependencies, 

special canonical forms have been developed to cope with these challenges [27]. All of 

these are handled by numerical computations and tightness probabilities. In order to 

include the effect of nonlinear dependencies additional term is included in the form. 

𝑑𝑎 = 𝜇𝑎 + ∑ 𝑎𝑖𝑧𝑖 + ∑ ∑ 𝑏𝑖𝑗𝑧𝑖𝑧𝑗 + 𝑎𝑛+1𝑅𝑛
𝑗=1

𝑛
𝑖=1

𝑛
𝑖                                                        (6.22) 

Where 𝑧1 to 𝑧𝑛 represent sources of normal variations, and 𝑧𝑛+1 to 𝑧𝑛+𝑚 are RVs with 

nonnormal variations. 

For the nonnormal distributions the same approach is used. The delay terms for 

both the normally distributed contributions and the nonnormal ones. 

𝑑𝑎 = 𝜇𝑎 + ∑ 𝑎𝑖𝑧𝑖 + ∑ 𝑎𝑛+𝑗𝑧𝑛+𝑗 + 𝑎𝑛+𝑚+1𝑅𝑚
𝑗

𝑛
𝑖                                                          (6.23) 

Equations 6.22 and 6.23 can be aggregated in the following common form. 

𝑑𝑎 = 𝜇𝑎 + ∑ 𝑎𝑖𝑧𝑖 + 𝑓(𝑧𝑛+1, … … . . , 𝑧𝑛+𝑚𝑛
𝑖 ) + 𝑎𝑛+1𝑅                                                (6.24) 

Where f represents the nonlinear function and is described as a table for 

computational purposes, and RVs 𝑧𝑛+1 to 𝑧𝑛+𝑚  represent sources of normal variations 

with nonlinear dependences or nonnormal variations.    

6.4 Architectural Simulations 

  The vector-thread (VT) architectural paradigm describes a class of architectures 

that unify the vector and multithreaded execution models. In other words, VT 

architectures compactly encode large amounts of structured parallelism in a form that lets 

simple microarchitectures attain high-performance at low power by avoiding complex 

control and datapath structures, and by reducing activity on large wires. Moreover, VT 

exploits fine-grained parallelism locality more effectively that traditional superscalar, 
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VLIW, or multithreaded architectures. In this thesis, we feed our statistical model to the 

specified Scaled Vector Thread Architecture as well as Graphic Processing Unit (GPU) 

GeForce 8800 GTX architecture with some parameters shown in Table 7 which includes 

a MIPS-RISC control processor or Single instruction, multiple data (SIMD) processor, 32 

Kbytes of cache, and a four-lane vector-thread unit or multiprocessor that can execute 16 

operations per cycle and support up to 128 simultaneously active virtual processor 

threads. 

 
 

TABLE 7: PROCESSOR PARAMETERS 

 
 

Our SSTA delay model has been implemented in C/C++ and tested by benchmark 

circuits. It is noted that before testing all benchmark circuits are re-mapped into a library 

which has gates of not, nand2,nand3, nor2, nor3 and xor/xnor. Table 8 summarizes the 

performance comparison and runtime estimations. We ran 60 large IWLS, ITC and 

ISCAS benchmark designs to compute the per-circuit speed of our tightness probability 

based SSTA engine implemented on vector thread architecture. This tightness probability 

based analysis was performed with 4 vector thread units. Columns 1 list the name of the 

circuit. Columns 2, 3 and 4 list the number of primary inputs, primary outputs and gates 

in the circuit. Columns 5 and 7 list the GPU and CPU runtime, respectively. The time 

taken to transfer data between the CPU and GPU was accounted for in the GPU runtimes 

listed. In particular, the data transferred from the CPU to the GPU is the arrival times at 

each primary input, and the μ and σ information for all pin-to-output delays of all gates. 

Clock Rate Vector Thread 
Units/ # of  

Multiprocessors 

# of Clusters/# of 
Processors 

# of  Registers (per 
cluster)/# of Registers 

(per processor) 
400 MHz 4 16 8192 
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Column 8 reports the speedup obtained by using a single GPU card. Our results indicate 

that our approach can obtain an average speed up of about 282 times as compared to a 

serial CPU implementation and is faster than GeForce 8800 GTX. 

 
 

TABLE 8: SSTA RESULTS USING TIGHTNESS PROBABILITY 
Circuit # 

Inputs 
#Outputs #Gates Single 

GPU 
runtimes 

(s) 

Scaled 
VT 

Processor 
runtimes 

(s) 

CPU 
runtimes 

Speedup 
For 

Single 
GPU 

Speedup 
For 

Scaled VT 

b14 276 299 9496 4.734 4.201 1303.63 275.394x 310.314x 
b15_1 483 518 13781 6.952 6.521 1891.884 272.116 290.121x 
b17 1450 1511 41174 20.736 19.311 5652.45 272.589x 292.706x 
b18 3305 3293 6599 6.326 5.977 905.924 143.197 151.568x 
b21 521 512 20977 10.311 10.101 2879.765 279.298x 285.097x 

b22_1 734 725 25253 12.519 12.210 3466.783 276.913x 283.929x 
s832 23 24 587 0.298 0.248 80.585 270.376x 324.939x 

s8381 66 33 562 0.295 0.278 77.153 261.341x 277.528x 
s1238 32 32 857 0.432 0.419 117.651 272.248x 280.789x 
s1196 32 32 762 0.388 0.359 104.609 269.796x 291.389x 
s1423 91 79 949 0.521 0.497 130.281 249.858x 262.134x 
s1494 14 25 1033 0.508 0.489 141.812 279.414x 290.004x 
s1488 14 25 1016 0.5 0.481 139.479 279.187x 289.977x 
s5378 199 213 2033 1.16 0.979 279.094 240.58x 285.080x 

s92341 247 250 3642 1.949 1.766 499.981 256.57x 283.114x 
s13207 700 790 5849 3.512 3.271 802.963 228.633x 245.479x 
s15850 611 684 6421 3.675 3.347 881.488 239.855x 263.366x 
s35932 1763 2048 19898 11.318 11.008 2731.638 241.349x 248.150x 
s38584 1464 1730 21051 11.544 11.104 2889.924 250.335x 260.259x 
s38417 1664 1742 18451 10.341 9.97 2532.991 244.958x 254.061x 
C1355 41 32 715 0.366 0.309 98.157 268.363x 317.660x 
C1908 33 25 902 0.446 0.393 123.828 277.46x 315.083x 
C2670 233 140 1411 0.797 0.689 193.705 242.906x 281.139x 
C3540 50 22 1755 0.842 0.803 240.93 286.1x 300.037x 
C432 36 7 317 0.155 0.139 43.518 280.605x 313.079x 
C499 41 32 675 0.347 0.317 92.665 267x 292.318x 
C5315 178 123 2867 1.461 1.379 393.588 269.323x 285.415x 
C6288 32 32 2494 1.197 1.139 342.381 285.927x 300.597x 
C7552 207 108 3835 1.899 1.810 526.477 277.214x 290.871x 
C880 60 26 486 0.253 0.224 66.719 263.923x 297.852x 
Avg       258.994x 282.1352x 
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6.5 Summary 

  We have presented the implementation of tightness probability based SSTA on 

Vector Thread Architecture as well as a GPU GeForce 8800 GTX architecture. Tightness 

probability based SSTA is computationally expensive, but crucial in design timing 

closure since it enables an accurate analysis of the delay variations. Our implementation 

computes multiple timing analysis evaluations for a single gate in parallel. Threads which 

execute in parallel do not have data or control dependencies on each other. All threads 

execute identical instructions, but on different data. Our results indicate that our approach 

can provide 282 times speedup when compared to a conventional CPU implementation.   

  

 



99 
 

CHAPTER 7  

DESIGN METHODOLOGY 

7.1 Introduction 

Technology scaling has brought the rapid increase in process variability [1]. Its 

effects on device performance have compelled the industry to transition to statistical 

techniques for timing sign-off. Traditional corner case analysis (CCA) [1, 56] constrains 

the design and often sets stringent, unrealistic timing specifications. Moreover, for 

technology nodes smaller than 65 nm, these overestimated timing bounds compensate the 

performance improvement due to device scaling. SSTA [56] is used in practice to analyze 

the impact of process variations on timing. It handles the random parts of the process 

variations as probability distributions to calculate the delay statistically. SSTA has gained 

widespread acceptance for standard cell based designs, as it removes a significant portion 

of pessimism introduced by conventional approaches like CCA while accounting for 

global (inter-chip) and local (intra-chip) process variations [57]. The application of both 

path based and block based SSTA have been shown to be advantageous [56] for cell 

based ASICs for which reusable timing models could be easily characterized. The 

method of SSTA for microprocessors is proposed in [57, 58] which is applicable only for 

standard cell based blocks. But, for example, cache blocks in microprocessors are not 

made of standard cells. More than 50% of a multi-core processor and more than 30% of 

each core are occupied by cache arrays and custom, transistor level blocks both of which 

are not standard-cell based. For custom macros, there are significantly more transistor 

level options to improve performance with less overhead than in case of gate level 
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circuits. Moreover, such macros occur in portions of the processor which are extremely 

timing critical where variations could adversely affect the final performance. 

The methodology proposed in [58] for generating statistical models for the large 

IP macros can be used in SSTA flows allowing fast analysis. While this method is shown 

to be accurate, it works only for macros with gates as basic units and cannot be easily 

adapted for transistor level macros. A method of variation aware transistor level timing 

analysis for macros is described in [59]. Statistical models are built for macros at a chip 

level of hierarchy. These approaches introduce some inaccuracy in predicting chip level 

performance degradation due to variations. To overcome these problems and to perform 

accurate variation analysis of transistor level macros, rigorous, but time consuming MC 

SPICE simulations of selected paths are currently used. The simulation run time is of the 

order of hours/path. It is impractical to perform such MC simulations on all paths in the 

macros and is therefore required to have a prior knowledge of the top paths that could 

potentially become critical. Hence it becomes necessary to have a fast statistical timing 

analysis flow for transistor level macros that can compute the delay distributions due to 

process variations of all paths in the macros with accuracy close to MC simulations. The 

proposed methodology finds a solution to this problem. It first groups the macro 

transistors into logic gates called xcells by applying special grouping technique which 

does not approximate any transistor or wire information. It is vital in preventing any 

accuracy loss. For all extracted xcells timing library considering both inter-chip and intra-

chip process variations using a SPICE circuit simulator is built. The library is later used 

by an industrial-standard timing engine to perform block based SSTA of the macro. 
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7.2 Global and Local Process Variations 

Threshold-voltage (𝑉𝑡ℎ), effective channel length (𝐿𝑒𝑓𝑓), oxide thickness (𝑇𝑜𝑥), 

mobility (µ), and dopant concentration (C) are the main variation parameters that 

significantly affect performance. Their variations result in designs with a wide spread of 

critical path delay distributions that may degrade the timing yield, i.e. decrease the 

fraction of manufactured chips that meet the timing constraints. For analysis purposes, 

parameter variations are usually classified into two categories: the inter-chip or global 

and the intra-chip or local variations. In case of globally varying parameters, their values 

are the same for all devices on the chip. 

Variation parameters may depend on each other. For instance, an increase in 𝑇𝑜𝑥 

also increases 𝑉𝑡ℎ . Principal component analysis is used to convert the dependent 

variation parameters into independent principal components (PCs). In general, the delay 

of a path 𝐷 due to variation is given by [60]: 

𝐷 = 𝐷0 + ∑ 𝜎𝑝𝑖 .𝑍(𝑌𝑖) + ∑ ∑ 𝜎𝑚𝑖𝑘
𝑗
𝑘=1

𝑛
𝑖=1

𝑛
𝑖=1 .𝑍(𝐿𝑖𝑘)                   (7.1) 

Where 𝐷 is the path delay; 𝐷0 is the nominal delay (without variation); 𝜎𝑝𝑖 is the standard 

deviation of the delay distribution due to the global random variable 𝑍(𝑌𝑖); 𝑖 varies from 

1 to n number of principal components; 𝜎𝑚𝑖𝑘  is the standard deviation of the delay 

distribution due to the local random variable 𝑍(𝐿𝑖𝑘); 𝑘  varies from 1 to j number of 

transistors. 

In equation (7.1) the local delay component is dependent on the number of 

transistors. The fact that for global variations all transistors within a macro are 

completely correlated and for local variations they are completely uncorrelated 

(statistically independent) helps re-write equation (7.1) as follows [60]: 
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𝐷 = 𝐷0 + ∑ 𝜎𝑝𝑖 .𝑍(𝑌𝑖) + ∑ 𝜎𝑚𝑖
𝑛
𝑖=1

𝑛
𝑖=1 .𝑍(𝐿𝑖)           (7.2) 

In equation (7.2) the number of local random variables 𝑍(𝐿) is reduced from nj to 

just n showing that 𝑍(𝐿) does not depend on the number of transistors in the macro. This 

is a useful result because in a macro, the number of transistors j could be in millions. 

7.3 Our Approach  

The proposed SSTA flow developed for transistor macros is shown in Figure 7.1. 

It consists of two major steps.  

1. Transistor level macro is converted to gate level blocks called xcells using the Xblock 

procedure [65].  

2. Variation aware library is characterized for these xcells using the variation aware 

SPICE models.  

SSTA engine determines delay distributions for all paths in the macro using the 

variation libraries. The validation step compares the SSTA results with MCS results. The 

timing yield step estimates the required arrival time based on the most critical path due to 

variation and reverse PCA step provides information on the variation sensitivities of each 

path that can be used for design optimization. 

 

 

 

 

 

 

 



103 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Proposed SSTA flow. 

 
 

The method used by block-based SSTA engine in Figure 21 is described in [58]. 

It is based on simultaneous application of the usual static as well as statistical static 

timing analysis. At the first stage usual static timing analysis (STA) is applied and at the 

second stage - SSTA. The offered method of the analysis allows reaching acceptable 
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analysis results from the practical point of view of accuracy at rather small expenses of 

machine runtime. SSTA engine determines delay distributions for all paths in the macro 

using the variation libraries considering equation 7.2. The validation step compares the 

SSTA results with MC results. The timing yield step estimates the required arrival time 

based on the most critical path due to variation. 

7.4 Convert a Macro to the xcells  

The conversion of the macro’s transistor level netlist into a netlist of xcells is 

performed by an internal tool Xblock [65]. Xblock was developed to facilitate 

hierarchical, transistor level static timing analysis using industrial block-based timing 

analyzers. It takes as input a transistor level GDSII layout of a macro and obtains a logic 

(verilog format) and parasitic netlists (spef format) as outputs that can be used by a static 

timing engine. The logic netlist consists of xcells each of which contains transistors that 

are source/drain connected to its output node. 

The xcells are inferred by a rule-based recognition process that can recognize 

static CMOS, transmission gates, cross-coupled domino gates, latches, and flops. Using 

the inherent hierarchy in memory blocks like cache, specialized xcells are formed by 

grouping a number of SRAM bit cells (~5000 bit-cells per xcell) that are referred as bit-

columns. The parasitic netlist contains the interconnect and device internal parasitics. The 

latter include the transistor parasitics that are pushed to the output node of each xcell. In 

order to reduce the number of inferred xcells that must be characterized, the xcells that 

have the same topology and whose internal parasitics are within a small range are folded 

to form a single xcell. Xblock also automatically generates control files for all the 

inferred xcells to drive the characterization engine for both setup and hold analysis. For 
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certain special xcells (like bit-column) the control file is manually generated to handle 

complex constraints (like bitline pre-charge in a memory cell). An average xcell other 

than the bit-column typically consists of 10-15 transistors.  

Xblock currently facilitates fast and accurate timing analysis for large industrial 

macros including memories through a block-based STA engine, providing visibility 

within the macro while performing chip level STA. Our proposed flow extends the usage 

of Xblock to generate xcells from transistor level macros that are suitable for SSTA 

library characterization. 

7.5 Variation Aware Device Models  

In order to characterize variation libraries we first need SPICE device models that 

are variation aware. Transistor models corresponding to the typical (TT) corner case and 

the 3σ variation ranges of different parameters are provided by the foundry. The variation 

parameters (like 𝑉𝑡ℎ, 𝐿𝑒𝑓𝑓, 𝑇𝑜𝑥, 𝜇) are dependent on each other. We perform Principal 

Component Analysis [9] [11] and convert these parameters into uncorrelated Principal 

Component (PCs). The foundry provides a correlation matrix 𝐶𝑥  that specifies the 

correlations between various interdependent input variables 𝑋𝑚 . Here, 𝑋1 = 𝑉𝑡ℎ , 

𝑋2 = 𝑇𝑜𝑥 , 𝑋3 = 𝜇, …….. 𝑋𝑚 = 𝐿𝑒𝑓𝑓 . A linear Eigen value decomposition produces a 

diagonal Eigen value matrix λ and Eigen vector matrix 𝑃 that satisfy the equation:   

𝑃     𝐶𝑥    𝑃𝑇= λ             (7.3) 

𝐶𝑥 is an 𝑚 × 𝑚, symmetric correlation matrix given by 

𝐶𝑥 = �
1 ⋯ 𝐶𝑥1,𝑥𝑚
⋮ ⋱ ⋮

𝐶𝑥𝑚,𝑥1 ⋯ 1
�                                      (7.4) 
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The Eigen value matrix λ is an 𝑛 × 𝑛 symmetric matrix with all other than the diagonal 

elements equal to 0. 

𝜆 = �
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛

�              (7.5) 

Each column in the 𝑚 × 𝑛 Eigen vector matrix 𝑃 is a principal component vector 

𝑃𝐶𝑗 = �𝑃1𝑗 ,𝑃2𝑗 ,𝑃3𝑗 , … .𝑃𝑚𝑗�
𝑇
. Apart from the principal components being uncorrelated, 

PCA reduces [64] the number of dependent input variables 𝑋𝑖 (𝑖 = 1 to 𝑚) to a much 

smaller number of principal components 𝑃𝐶𝑗, (𝑗 = 1 to 𝑛). This significantly reduces the 

number of times each xcell has to be simulated while creating the variation library. The 

linear relation between the correlated input variables 𝑋𝑖  and the uncorrelated principal 

components 𝑃𝐶𝑗 is given by 

𝑋𝒊 = ∑ 𝑃𝑖𝑗𝑛
𝑗=1  𝑅(𝜆𝑗)                      (7.6) 

where, 𝑅�𝜆𝑗� = 𝑁(µ = 0,𝜎2 = 1) ∗ 𝜆𝑗 

𝑁(µ = 0,𝜎2 = 1) represents a normal probability distribution with zero mean and 

variance = 1. The local variation parameters of the transistors within a macro can be 

spatially correlated. Our method can be modified to handle such a case by using a 

correlation matrix 𝐶𝑥𝑥 instead of the 𝐶𝑥 and applying PCA on it. 𝐶𝑥𝑥 characterizes the 

parameter correlations of transistors placed in one grid to the parameters of transistors in 

other grids of a macro [63, 58]. If there are G grids and m dependent input variables, 

𝐶𝑥𝑥 will be of a size 𝐺𝑚 × 𝐺𝑚 instead of  𝑚 × 𝑚.  

Each variation parameter used in our device model file is a function of 5 PCs 

obtained by solving equation (7.3) for a correlation matrix of size 15 x 15. From our 

experiments, we find that using 5 PCs yields good results with reasonable runtime 
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overhead. In our model we have a total of 10 PCs, 5 PCs for global and 5 PCs for local 

variations. 

 
 

 

Figure 22: 2N values of PCs for which each xcell in the variation library is characterized. 

 
 
7.6 Variation Library Characterization  

After converting a macro to gate level xcell netlist using Xblock, a timing library 

is generated. It contains delay/output slew look-up tables for each pin in the xcell and for 

all PCs. This is accomplished using an automated characterization engine that performs 

SPICE simulations to obtain delays for a wide range of input and output conditions 

(slew/load).  
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Each xcell in the library is characterized at 2�+1 different values of the PCs 

stored as 2�+1 look-up tables; � is the number of PCs. Figure 22 illustrates this 

process. In our case with 10 PCs, each xcell has 21 tables in the library. One table 

corresponds to the nominal case, with all 10 PCs set to their mean (nominal) values. The 

other 20 tables are generated for xcells characterized at the +3σ and -3σ values for the 10 

PCs. Using the delay values from the nominal, +3σ, and -3σ look-up tables for each PC 

in the library, the delay sensitivity of each path to different PC variation is computed by 

the statistical timer [66].  

7.7 Results  

We used an industrial 45nm design macro for experiments. It contains 100 unique 

xcells and bit-columns. The total number of transistors in the macro is of the order of a 

few millions. The delay values shown in the figures and throughout the rest of the chapter 

are normalized to 1GHz for proprietary reasons, but that scaling in no way affects our 

message.  

7.8 Monte-Carlo Vs. SSTA  

The macro studied in this chapter has the critical path (read access line through 

the SRAM bit-column) that requires at least 2 hours to complete MCS. This makes it 

impractical to perform MCS using variation device models for all top paths in the design. 

SSTA allows us to see these distributions and hence analyze the effects of variation on all 

paths of the design which is the most important goal achieved in this work. Figure 23 

shows Cumulative Density Functions (CDF) of the top critical path slacks in the design. 
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Figure 23: CDF of the slack values of some of the top critical paths. 
 
 

In order to run MCS to validate SSTA, 100 paths of different lengths in terms of 

xcell number are pruned out from the macro netlist. A few representative paths are listed 

in Table 9. The extracted layout parasitics are also included during MCS simulations. 

Table 9 compares the mean and the standard deviation (1σ) of the endpoint delays (arrival 

time) between SSTA distributions and distributions obtained after 1000 runs of MCS 

simulations. Figure 24 compares the delay distributions of the most critical path in the 

macro obtained by MCS simulations and our SSTA flow. 

 
 

TABLE 9: COMPARISON OF MCS AND SSTA PATH DELAYS 

Xcells/
path 

Monte-Carlo SPICE (MCS) Simulation SSTA 

Error (%) Runtime 

Mean (µ1)  
Delay  
(ps) 

Local (L)  
Delay 
(ps) 

Global (G)  
Delay  
(ps) 

Total (T) 
Delay  
(ps) 

Mean (µ1)  
Delay  
(ps) 

Local (L)  
Delay  
(ps) 

Global (G)  
Delay  
(ps) 

Total (T) 
Delay  
(ps) 

10 2 hrs 212 5.3 7.7 9.4 208 6.6 7.6 8.1 3.30% 

1 15 min 70.7 1.5 2.2 2.6 77 0.2 0.1 0.3 5.10% 

2 30 min 16 0.65 0.56 1 17 0.6 0.4 1.5 6% 

11 2.5 hrs 298 5 11 12 302 4.5 9 10 0.60% 

1 20 min 46 4.2 1.7 4.4 44.5 3 1.1 3.5 4% 
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The maximum error percentage of the total variation (L+G = Local + Global) of 

SSTA reported delay is ~6%. The table also shows the runtime for MCS simulations. The 

runtime for the entire SSTA, which computes the distributions for all paths in the macro, 

is almost negligible, less than 3 minutes for a macro of ~600,000 transistors. 

 
 

 

Figure 24: Comparison of the critical paths delay distributions obtained by MCS 
simulations and SSTA flow. 
 
 

TABLE 10: DELAY SENSITIVIES WITH RESPECT TO THE DEPENDENT 
VARIABLES (ACTUAL VARIATION PARAMETERS) OBTAINED USING DELAY 

SENSITIVITES TO PCS 
  

Matrix 
 

 

Xcell_1 4.0 ps 1 ps 0.5 ps 0.5 ps 

Xcell_1 4.5 ps 1.2 ps 2.0 ps 0.5 ps 

Xcell_1 5.5 ps 1.8 ps 2.3 ps 0.6 ps 

Xcell_1 6.0 ps 1.4 ps 2.1 ps 0.7 ps 

 

𝑉𝑡ℎ 𝐿𝑒𝑓𝑓 𝑇𝑜𝑥 𝜇 
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In Table 9, we show the global and local components of the delays. For long paths 

(10 xcells), the global component dominates the local component due to the cancellation 

of device mismatches along the path. For short paths, the local variation is close to global 

variation and in some cases, the local component is dominant. Table 10 shows the 

sensitivities of the xcells in each path to the original variation parameters like 𝑉𝑡ℎ, 𝐿𝑒𝑓𝑓, 

𝑇𝑜𝑥 and μ. Thus, our flow gives the designer a tool to identify variation sensitive areas in 

the design, even if they lie within a macro, and fix or optimize them if possible.  

7.9 Statistical Vs Conventional Corner Case  

Figure 25 compares the delay results for the critical path in the macro obtained 

both statistically and using conventional (non-statistical) corner case analysis (CCA).  

 
 

 

Figure 25: Comparison of statistical and non-statistical analysis: All the normal curves 
are delay distributions obtained after 1000 runs of MCS simulations. The circles on the 
median line are deterministic delays obtained using CCA. 
 
 

The great normal curve above the line (marked Global) is the delay distribution 

obtained for 1000 MCS simulation runs only considering global variations and setting the 
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local PCs to zero. The three small normal curves below the line (marked Local) are delay 

distributions obtained for 1000 MCS simulation runs by setting the global components to 

be equal to +3σ, mean, and -3σ and randomly varying only the local PCs. For each MCS 

run, each PC takes different values for each device in the path. Note that +3σ, mean and -

3σ are the variation points for which the corner case SPICE models are usually designed 

(commonly referred to FF (Fast), TT (Typical) and SS (Slow). The three circles on the 

line are endpoint delay values of the same path obtained by using non-statistical, CCA 

SPICE models. 
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Figure 26: The median line - 45 degree (x = y). x and y-axis represent time delays. Points 
in the graph above the median line represent greater delays and points below the line 
represent smaller delays compared to the SSTA values. 
 
 

It can be seen from Figure 25 that the corner case models are over margined. For 

instance, the SS corner delay is 1246ps while the 3σ (worst-case) point of the global 

distribution is only 1120ps. Corner models are typically constructed by reusing the 

parameters generated from one circuit to another [39]. In order to make sure that the 
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models are valid for a wide range of circuits and also to account for the error % in 

calculating the truly worst case corner in the presence of several varying parameters, 

some margin is intentionally forced which makes the SS too pessimistic. 

Hence, the worst case analysis performed using the slow model (SS), would give 

pessimistic results. Also note that the variance (3σ – mean) for local variation is much 

less compared to global (~60ps compared to ~120ps). It is expected to be much more 

significant for short paths where the cancellation effect of mismatched devices is less 

prominent.  

With block-based SSTA, we could get the endpoint delays of all paths in the 

design with almost no overhead in run-time. For all three plots in Figure 26, the SSTA 

results correspond to -3σ, mean and +3σ delay values obtained from the delay 

distributions of each path in the macro. Each point on the x = y line represents the delay 

of a path obtained by running conventional STA individually for the corresponding 

deterministic corner cases. A point above the line indicates that the particular path has a 

statistical delay that is slower than that obtained by its equivalent corner model. The 

majority of path delays obtained by deterministic models are either too slow (compared 

to -3σ SSTA) or too fast (compared to +3σ SSTA). This again confirms that FF is too fast 

and SS is too slow not just for the critical path shown in Figure 25, but for almost all top 

paths in the design (Figure 26). 

7.10 Difference in path sensitivity due to variation  

Using SSTA for this macro reveals paths that are not too critical at typical 

operating condition (mean) but become very critical at the extremes of variation (3σ). 

Without SSTA, designers would use the deterministic corner model to obtain delay/slack 
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values which is close to the mean of the delay/slack distributions obtained using SSTA. 

This could sometimes be misleading as the designer is not aware of the real situation 

where new paths that are not the most critical could become critical when variations are 

considered. Figure 27 shows slack distributions obtained for the two top critical paths of 

the macro using our SSTA. Consider the two paths marked by pointers. It can be seen 

that the path1 has a smaller mean slack than path2 and is hence less critical from a 

designer’s perspective who will only see these values using a deterministic approach. 

However the criticality of the two paths change with respect to -3σ (worst case) 

suggesting that path1 is more sensitive to variation than path2. 

 
 

 

Figure 27: Slack values for paths in the macro that change criticality due to difference in 
variation sensitivities. 
 
 
7.11 Timing Yield  

Without SSTA, designers would fix the critical paths to meet a frequency that is 

much greater than the target frequency needed for a particular yield. Figure 28 shows the 

CDF of the most critical path whose period defines the frequency of the entire macro. 50% 
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yield point corresponds to the nominal time period of 1000ps at which the SSTA was 

performed for this macro. For instance, if we need to achieve a 70% yield at 1000ps, 

SSTA results suggest a minimum required arrival time (RAT) of 1005ps to be set on the 

critical path based on the slack difference. This design has a large positive slack of 53ps 

even for a 99.8 % yield, suggesting that the design has been over-optimized. Figure 29 

compares the slack values obtained for all paths by setting the minimum RAT from 

SSTA at 70% and 99% yield points and a conservative RAT used by designers to fix the 

design before using our SSTA flow. Figure 29 shows a clearly large margin that is 

pessimistic even to achieve a 99% yield. 

 
 

 

Figure 28: Timing yield plot – CDF of the most critical path of the design obtained using 
SSTA with RAT = 1000ps. 
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Figure 29: Slack values of all paths of the design obtained by performing SSTA with 
RAT chosen from 90%, 99% yield points and conventional corner case TT. 
 
 
7.12 Characterization runtime  

Characterizing a variation library at 2N + 1 points as described in section 7.6 for 

each xcell even though is a one-time effort, is still time consuming. However, libraries 

generated this way for different PC corners are more accurate since the sensitivities are 

determined from look-up table delay values obtained by actual circuit simulation rather 

than analytical formulations. The library generation time linearly increases with the 

number of points at which each xcell in the library is characterized. For each point of 

characterization, a look-up table is generated for every xcell in the library. For a 5% 

compromise in accuracy, the library characterization time can be significantly reduced 

(Table 11). 

 

 



118 
 

TABLE 11: CHARACTERIZATION RUNTIME REDUCTION 
Number of 
tables/xcell Accuracy Runtime 

Char 1:21 tables 100% 
(normalized) ~8hrs 

Char 2:11 tables 97% ~4hrs 
Char 3:5 tables 95% ~2hrs 

 
 
Char 1: We consider all 10 PCs.  

Char 2: We only consider 5 global PCs and set a correlation of 1 between transistors to 

represent global variations. We use the same PCs and set a correlation of 0 between 

transistors to represent local variations.  

Char 3: Assuming the delay variance obtained for each PC variation is symmetrical about 

the mean delay value, we characterize only N+1 tables instead of 2N+1 for the 5 global 

PCs. The xcells are characterized only at the mean and -3σ points of the PCs instead of 

the mean, -3σ and +3σ points shown in Figure 22. 

7.13 Summary  

Macros are custom designed circuit blocks that are usually present in very critical 

sections of the microprocessor to maximize performance, power and/or yield. Transistor 

level macros have a very large optimization space that is difficult for designers to 

manually explore. As a result, custom, transistor macros derive maximum benefit from 

SSTA. In order to make correct design decisions especially at smaller technology nodes 

where the effect of variation on performance is large, macro designers currently rely on 

either non-statistical approaches like CCA which are pessimistic or on extensive circuit 

level simulations and several runs of MCS analysis, which is extremely time consuming. 

In this work, we show experimentally that CCA results are indeed pessimistic. While it’s 

almost impossible to do MCS simulations on all paths in a macro or even on a few top 
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critical paths, our SSTA flow provides distributions for all paths in the macro (including 

SRAM arrays) that are close to SPICE results (~95% accuracy). The flow also helps pin-

point the paths and their components that are more sensitive to a particular source of 

process variation (𝑉𝑡ℎ,𝑇𝑜𝑥, 𝜇, 𝐿𝑒𝑓𝑓) which can be used for design optimization.  

While this flow is developed mainly for transistor macros, it can easily be 

modified to be used for any cell based macro (without applying Xblock). The flow hence 

allows fast statistical timing analysis of an entire chip without abstracting transistor 

macros. 
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CHAPTER 8  

CONCLUSION 

8.1 Summary 

In current and future technologies, the increasing number and magnitude of 

process variations make the prediction of circuit performance an important but very 

challenging task. As the conventional corner-based technique becomes too pessimistic 

and slow, statistical circuit performance analysis techniques provide a good alter- 

native. 

In this thesis, we have focused on the problem of statistical static timing.  The 

effects of spatial correlations in intra-die variations, which were ignored in most of the 

previous works, are also considered in our works. We show that spatial correlation is 

essential in order to correctly predict the probability distributions of circuit timing and 

leakage power. The statistical timing methods presented in the thesis are shown to be 

computationally efficient and accurate, and this is demonstrated through comparisons 

against Monte Carlo simulations. The timing estimation techniques are important, both 

for yield prediction in the post-layout stage, as well as for supporting circuit design 

and optimization in all stages of the design flow for shortening  the design cycle  and 

saving  design costs. 

Although in recent years, quite some work has been done in statistical 

circuit  performance analysis for timing, but this area still requires further research. 

First, statistical performance analysis technique requires proper modeling of process 

variations including the decomposition and modeling of process variations including 

spatial correlations. Without an appropriate model, the prediction by statistical 
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analysis could be a “garbage in and garbage out,” the result would not make much 

sense and cannot guide the circuit optimization in the correct direction. Second, the 

statistical timing analysis technique depends on correct characterization of 

gate/interconnect delay with respect to process parameter variations. A library that is 

characterized with worst-case and best-case corners must be recharacterized, such as 

characterizing with nominal value and sensitivities to process variations, in order to 

have accurate statistical timing analyzer. Third, although statistical performance 

analysis methods are more computationally efficient than corner-based methods and 

Monte Carlo approaches, they also show a tradeoff between accuracy and run-time. 

This may not be a problem if this is solely for the purpose of performance analysis. 

However, in order for the method to be integrated into a framework for circuit 

performance optimization, a good balance is required between the run-time and the 

accuracy. Finally, variation-aware circuit optimization techniques [68, 69, 72, 31, 74, 

75, 77] that can take into account process variations are active fields for research and 

development. The technique should be applied across the overall flow of circuit 

design, including steps such as technology mapping [76], synthesis, buffer insertion 

[70], clock tree [73], physical design [1, 71], to overcome the limitations of traditional 

deterministic optimization techniques. 

8.2 Future Work 

Statistical analysis is generally seen as the next EDA technology for timing and 

power sign-off. Research into this field has seen significant activity started about five 

years ago. This dissertation makes contributions to statistical modeling on non-Gaussian 

process parameter variations and nonlinear delay dependencies, High-level SSTA 
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analysis and Architectural-level SSTA analysis and Design Methodology for ASIC flow. 

However, there are still lots of research works need to be done in this field. 

For future development three major questions shall be stated here. Firstly, the 

interaction between timing and power especially leakage power is not properly addressed. 

This yields much optimization potential and should be used. Secondly, the variation 

aware implementation should be addressed. On one hand the process itself could be 

optimized but on the other hand the implementation could take the variations into account 

and thus reduce the overall impact of the variations on the circuit performance. Thirdly, 

the statistical analysis should be extended to higher levels of the design flow for FPGA, 

ASIC and NoC. A variation aware high-level synthesis can further optimize the statistical 

behavior of the final implementation. In a nutshell, the SSTA methods must be capable 

by proving the timing yield behavior for larger digital blocks as well as analog and 

mixed-signal circuits. The goal is the analysis of the whole integrated circuit and a 

sufficient estimation of the yield. With such tools the uprising impact of variation in 

future process generation can be addressed - but without them it will be impossible to 

develop complex systems in the future. 
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APPENDIX 

CASE STUDY OF ISCAS c5315 

Statistics: 178 inputs; 123 outputs; 2406 gates  

Function: 9-bit ALU 

This benchmark is an ALU that performs arithmetic and logic operations 

simultaneously on two 9-bit input data words, and also computes the parity of the results. 

Modules M6 and M7 each compute an arithmetic or logic operation specified by the 

control input bus CF[7:0]. Module M5 consists of multiplexers that route the results of 

M6 and M7 and four input buses to its four outputs. Output buses OF1 and OF2 can also 

be set to logic 0 by MuxSel [8]. Modules M3 and M4 compute the parity of the result of 

the operation given by CP=CF [7:4]. Module M5 contains four multiplexers which direct 

the parity results and an additional set of four inputs to its outputs. The adders in M6 and 

M7 as well as the parity logic for the arithmetic operations in M3 and M4 use a carry-

select scheme with 4-bit (low-order) and 5-bit (high-order) blocks. The circuit also 

includes logic for calculating various zero and parity flags of the input buses. 
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Input Line number 

X0[8:0] 293, 302, 308, 316, 324, logic 1, 341, 351, 361 

X1[8:0] 299, 307, 315, 323, 331, 338, 348, 358, 366 

MuxSelX 332 

A[8:0] logic 1, logic 1, 479, 490, 503, 514, 523, 534, logic 1 

Y0[8:0] 206, 210, 218, 226, 234, 257, 265, 273, 281 

Y1[8:0] 209, 217, 225, 233, 241, 264, 272, 280, 288 

MuxSelY 335 

B[8:0] 446, 457, 468, 422, 435, 389, 400, 411, 374 

CinFX, CinFY 54, 4 

CinPX,CinPY 2174, 1497 

WpX[1:0] 120, 94 

WpY[1:0] 118, 97 

QP1,QP2,QP3,QP4 176, 179, 14, 64 

Q1[8:0] 191, 194, 197, 203, 200, 149, 155, 188, 182 

Q2[8:0] 161, 164, 167, 173, 170, 146, 152, 158, 185 

Q3[8:0] 109, 46, 100, 91, 43, 76, 73, 67, 11 

Q4[8:0] 106, 49, 103, 40, 37, 20, 17, 70, 61 

WFX[8:0] 123, 121, 116, 112, 52, 130, 119, 129, 131 

WFY[8:0] 115, 114, 53, 113, 122, 128, 127, 126, 117 

MuxSel[10:0] 
4091, 4092, 137, 4090, 4089, 4087, 4088, 1694, 1691, 1690, 
1689 

CF[7:0] 248, 251, 242, 254, 3552, 3550, 3546, 3548 

CP[3:0]=CF[7:4] 248, 251, 242, 254 

ParYin= MuxSelY ? 
ParYin0 : ParYin1 

(ParYin0, ParYin1) 

  

289, 292 

ParXin= MuxSelX ? 
ParXin0 : ParXin1 

(ParXin0, ParXin1) 

  

369, 372 
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ContParChk[5:0]  562, 245, 552, 556, 559, 386 

MiscMuxIn[17:0] 
123 (=WFX[8]), 132, 23, 80, 25, 81, 79, 82, 24, 26, 86, 83, 
88, 88, 87, 83, 34, 34 

MiscContIn[7:0] 4115, 135, 3717, 3724, 141, 2358, 31, 27 

MiscIn[8:0] 545, 549, 3173, 136, 1, 373, 145, 2824, 140 

Output Line number 

OP1,OP2,OP3,OP4 658, 690, 767, 807 

OF1[8:0] 654, 642, 651, 648, 645, 670, 667, 664, 661 

OF2[8:0] 688, 676, 685, 682, 679, 702, 699, 696, 693 

OF3[8:0] 727, 747, 732, 737, 742, 752, 757, 762, 722 

OF4[8:0] 712, 787, 772, 777, 782, 792, 797, 802, 859 

NXF[8:0] 824, 826, 828, 830, 832, 834, 836, 838, 822 

NYF[8:0] 863, 865, 867, 869, 871, 873, 875, 877, 861 

CoX,CoY (629, 618) * , (591, 621) *  

PoX,PoY 843, 882 

ParityChk[4:0] 998, 1002, 1000, 1004, 854 

ZeroFlagOut[3:0] 585, 575, 598, 610 

MiscMuxOut[10:0] 623, 813, 818, 707, 715, 639, 673, 636, 820, 717, 704 

MiscOut[25:0] 
593, 594, 602, 809, 611, 599, 612, 600, 850, 848, 849, 851, 
887, 298, 926, 892, 973, 993, 144, 601, 847, 815, 634, 810, 
845, 656 

 

 

 

 

 

 

 

 

 

http://www.eecs.umich.edu/~jhayes/iscas.restore/c5315/c5315.html#pgfId=1013809
http://www.eecs.umich.edu/~jhayes/iscas.restore/c5315/c5315.html#pgfId=1013809
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/***********************************************************************
***** 

 *                                                                          * 

 *  VERILOG HIGH-LEVEL DESCRIPTION OF THE ISCAS-85 BENCHMARK 
CIRCUIT c5315  * 

 *                                                                          *   

 *                                                                           

************************************************************************
****/ 

 

module Circuit5315( 

        in293, in302, in308, in316, in324, in341, in351,  

        in361, in299, in307, in315, in323, in331, in338, in348,  

        in358, in366, in206, in210, in218, in226, in234, in257,  

        in265, in273, in281, in209, in217, in225, in233, in241,  

        in264, in272, in280, in288, in54, in4, in2174, in1497,  

        in332, in335, in479, in490, in503, in514, in523, in534,  

        in446, in457, in468, in422, in435, in389, in400, in411,  

        in374, in191, in200, in194, in197, in203, in149, in155,  

        in188, in182, in161, in170, in164, in167, in173, in146,  

        in152, in158, in185, in109, in43, in46, in100, in91,  

        in76, in73, in67, in11, in106, in37, in49, in103,  

        in40, in20, in17, in70, in61, in123, in52, in121,  

        in116, in112, in130, in119, in129, in131, in115, in122,  

        in114, in53, in113, in128, in127, in126, in117, in176,  

        in179, in14, in64, in248, in251, in242, in254, in3552,  
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        in3550, in3546, in3548, in120, in94, in118, in97, in4091,  

        in4092, in137, in4090, in4089, in4087, in4088, in1694, in1691,  

        in1690, in1689, in372, in369, in292, in289, in562, in245,  

        in552, in556, in559, in386, in132, in23, in80, in25,  

        in81, in79, in82, in24, in26, in86, in88, in87,  

        in83, in34, in4115, in135, in3717, in3724, in141, in2358,  

        in31, in27, in545, in549, in3173, in136, in1, in373,  

        in145, in2824, in140, 

        out658, out690, out767, out807, out654, out651, out648,  

        out645, out642, out670, out667, out664, out661, out688, out685,  

        out682, out679, out676, out702, out699, out696, out693, out727,  

        out732, out737, out742, out747, out752, out757, out762, out722,  

        out712, out772, out777, out782, out787, out792, out797, out802,  

        out859, out824, out826, out832, out828, out830, out834, out836,  

        out838, out822, out863, out871, out865, out867, out869, out873,  

        out875, out877, out861, out629, out591, out618, out615, out621,  

        out588, out626, out632, out843, out882, out585, out575, out598,  

        out610, out998, out1002, out1000, out1004, out854, out623, out813,  

        out818, out707, out715, out639, out673, out636, out820, out717,  

        out704, out593, out594, out602, out809, out611, out599, out612,  

        out600, out850, out848, out849, out851, out887, out298, out926,  

        out892, out973, out993, out144, out601, out847, out815, out634,  

        out810, out845, out656, out923, out939, out921, out978, out949,  

        out889, out603, out604, out606); 
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   input 

        in293, in302, in308, in316, in324, in341, in351,  

        in361, in299, in307, in315, in323, in331, in338, in348,  

        in358, in366, in206, in210, in218, in226, in234, in257,  

        in265, in273, in281, in209, in217, in225, in233, in241,  

        in264, in272, in280, in288, in54, in4, in2174, in1497,  

        in332, in335, in479, in490, in503, in514, in523, in534,  

        in446, in457, in468, in422, in435, in389, in400, in411,  

        in374, in191, in200, in194, in197, in203, in149, in155,  

        in188, in182, in161, in170, in164, in167, in173, in146,  

        in152, in158, in185, in109, in43, in46, in100, in91,  

        in76, in73, in67, in11, in106, in37, in49, in103,  

        in40, in20, in17, in70, in61, in123, in52, in121,  

        in116, in112, in130, in119, in129, in131, in115, in122,  

        in114, in53, in113, in128, in127, in126, in117, in176,  

        in179, in14, in64, in248, in251, in242, in254, in3552,  

        in3550, in3546, in3548, in120, in94, in118, in97, in4091,  

        in4092, in137, in4090, in4089, in4087, in4088, in1694, in1691,  

        in1690, in1689, in372, in369, in292, in289, in562, in245,  

        in552, in556, in559, in386, in132, in23, in80, in25,  

        in81, in79, in82, in24, in26, in86, in88, in87,  

        in83, in34, in4115, in135, in3717, in3724, in141, in2358,  

        in31, in27, in545, in549, in3173, in136, in1, in373,  

        in145, in2824, in140; 
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   output 

        out658, out690, out767, out807, out654, out651, out648,  

        out645, out642, out670, out667, out664, out661, out688, out685,  

        out682, out679, out676, out702, out699, out696, out693, out727,  

        out732, out737, out742, out747, out752, out757, out762, out722,  

        out712, out772, out777, out782, out787, out792, out797, out802,  

        out859, out824, out826, out832, out828, out830, out834, out836,  

        out838, out822, out863, out871, out865, out867, out869, out873,  

        out875, out877, out861, out629, out591, out618, out615, out621,  

        out588, out626, out632, out843, out882, out585, out575, out598,  

        out610, out998, out1002, out1000, out1004, out854, out623, out813,  

        out818, out707, out715, out639, out673, out636, out820, out717,  

        out704, out593, out594, out602, out809, out611, out599, out612,  

        out600, out850, out848, out849, out851, out887, out298, out926,  

        out892, out973, out993, out144, out601, out847, out815, out634,  

        out810, out845, out656, out923, out939, out921, out978, out949,  

        out889, out603, out604, out606; 

 

 

/************************/ 

   wire VDD; 

   assign VDD = 1'b1; 

 

   wire [8:0] X0bus, X1bus, Abus; 

   wire [8:0] Y0bus, Y1bus, Bbus; 
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   wire  CinFX, CinFY; 

   wire  CinParX, CinParY; 

   wire  MuxSelX, MuxSelY; 

   wire [10:0] MuxSelPF; 

   wire [8:0] QF1bus, QF2bus, QF3bus, QF4bus; 

   wire [8:0] WXbus, WYbus; 

   wire  QP1, QP2, QP3, QP4; 

   wire [7:0] ContLogic; 

   wire [1:0] ParXin, ParYin; 

   wire [5:0] ContParChk; 

   wire [16:0] MiscMuxIn; 

   wire [7:0] MiscContIn; 

   wire [8:0] MiscInbus; 

   wire [1:0] WparX, WparY; 

 

   wire [8:0] OF1bus, OF2bus, OF3bus, OF4bus; 

   wire  OP1, OP2, OP3, OP4; 

   wire  SumLogicParXout, SumLogicParYout; 

   wire  CoutFX_in0, CoutFY_in0; 

   wire  PropThruX, PropThruY; 

   wire [8:0] NotXFbus, NotYFbus; 

   wire [3:0] ZeroFlagOut; 

   wire [4:0] ParChkOut; 

   wire [10:0] MiscMuxOut; 

   wire [25:0] MiscOutbus; 
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/************************/ 

 

// inputs 

 

   assign 

      X0bus[8:0] = { in293, in302, in308, in316, in324, 

       VDD, in341, in351, in361 }, 

      X1bus[8:0] = { in299, in307, in315, in323, in331, 

       in338, in348, in358, in366 }; 

   assign 

      Y0bus[8:0] = { in206, in210, in218, in226, in234, 

       in257, in265, in273, in281 }, 

      Y1bus[8:0] = { in209, in217, in225, in233, in241, 

       in264, in272, in280, in288 }; 

   assign 

      CinFX = in54,     CinFY = in4, 

      CinParX = in2174, CinParY = in1497; 

 

   assign 

      MuxSelX = in332, MuxSelY = in335; 

    

   assign 

      Abus[8:0] = { VDD, VDD, in479, in490, in503, 

      in514, in523, in534, VDD }; 
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   assign 

      Bbus[8:0] = { in446, in457, in468, in422, in435, 

      in389, in400, in411, in374 }; 

   assign 

      QF1bus[8:0] = { in191, in194, in197, in203, in200, 

        in149, in155, in188, in182 }, 

      QF2bus[8:0] = { in161, in164, in167, in173, in170, 

        in146, in152, in158, in185 }, 

      QF3bus[8:0] = { in109, in46, in100, in91, in43, 

        in76, in73, in67, in11 }, 

      QF4bus[8:0] = { in106, in49, in103, in40, in37, 

        in20, in17, in70, in61 }; 

 

   assign 

      WXbus[8:0] = { in123, in121, in116, in112, in52, 

       in130, in119, in129, in131 }, 

      WYbus[8:0] = { in115, in114, in53, in113, in122, 

       in128, in127, in126, in117 }; 

 

   assign 

      QP1 = in176, QP2 = in179, QP3 = in14, QP4 = in64; 

    

   assign 

      ContLogic[7:0] = { in248, in251, in242, in254, 

    in3552, in3550, in3546, in3548 }; 
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   assign 

      WparX[1:0] = { in120, in94 }, 

      WparY[1:0] = { in118, in97 }; 

 

   assign 

      MuxSelPF[10:0] = { in4091, in4092, in137, in4090, in4089, in4087, 

    in4088, in1694, in1691, in1690, in1689 }; 

   assign 

      ParXin[1:0] = { in372, in369 }, 

      ParYin[1:0] = { in292, in289 }; 

 

   assign 

      ContParChk[5:0] = { in562, in245, in552, in556, in559, in386 }; 

 

   assign 

      MiscMuxIn[16:0] = { in132, in23, in80, in25, in81, 

     in79, in82, in24, in26, in86, in83, in88, in88, 

     in87, in83, in34, in34 }; 

   assign 

      MiscContIn[7:0] = { in4115, in135, in3717, in3724, 

     in141, in2358, in31, in27 }; 

   assign 

      MiscInbus[8:0] = { in545, in549, in3173, in136, in1, 

    in373, in145, in2824, in140 }; 
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// outputs    

 

   assign 

      out658 = OP1, out690 = OP2, out767 = OP3, out807 = OP4; 

 

   assign 

      { out654, out651, out648, out645, out642, 

 out670, out667, out664, out661 } = OF1bus[8:0], 

      { out688, out685, out682, out679, out676, 

 out702, out699, out696, out693 } = OF2bus[8:0], 

      { out727, out732, out737, out742, out747, 

 out752, out757, out762, out722 } = OF3bus[8:0], 

      { out712, out772, out777, out782, out787, 

 out792, out797, out802, out859 } = OF4bus[8:0]; 

 

   assign 

      { out824, out826, out828, out830, out832, 

 out834, out836, out838, out822 } = NotXFbus[8:0], 

      { out863, out865, out867, out869, out871, 

 out873, out875, out877, out861 } = NotYFbus[8:0]; 

 

   assign 

      out629 = CoutFX_in0, out591 = CoutFY_in0, 

      out618 = CoutFX_in0, out621 = CoutFY_in0; 
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   assign 

      out615 = PropThruX, out588 = PropThruY, 

      out626 = PropThruX, out632 = PropThruY; 

 

   assign 

      out843 = SumLogicParXout, out882 = SumLogicParYout;  

 

   assign 

      { out585, out575, out598, out610 } = ZeroFlagOut[3:0]; 

 

   assign 

      { out998, out1002, out1000, out1004, out854 } = ParChkOut[4:0]; 

 

   assign 

      { out623, out813, out818, out707, out715, out639, 

 out673, out636, out820, out717, out704 } = MiscMuxOut[10:0]; 

   assign 

      { out593, out594, out602, out809, out611, out599, 

 out612, out600, out850, out848, out849, out851, 

 out887, out298, out926, out892, out973, out993, 

 out144, out601, out847, out815, out634, out810, 

 out845, out656 } = MiscOutbus[25:0]; 

 

// identical misc. outputs 

   assign 
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      out923 = out144, out939 = out993, out921 = out993, 

      out978 = out993, out949 = out993, out889 = out887, 

      out603 = out594, out604 = out594, out606 = out602; 

 

 

/* instantiate top level circuit */ 

 

   TopLevel5315 Ckt5315( X0bus, X1bus, Abus, Y0bus, Y1bus, Bbus, CinFX, CinFY, 

    CinParX, CinParY, MuxSelX, MuxSelY, MuxSelPF, 

    QF1bus, QF2bus, QF3bus, QF4bus, QP1, QP2, QP3, QP4, 

    WXbus, WYbus, ContLogic, ParXin, ParYin, ContParChk, 

    MiscMuxIn, MiscContIn, MiscInbus, WparX, WparY, 

      

    OF1bus, OF2bus, OF3bus, OF4bus, OP1, OP2, OP3, OP4, 

    SumLogicParXout, SumLogicParYout, CoutFX_in0, 
CoutFY_in0, 

    PropThruX, PropThruY, NotXFbus, NotYFbus, ZeroFlagOut, 

    ParChkOut, MiscMuxOut, MiscOutbus ); 

 

 

endmodule // Circuit5315 

 

 

/***********************************************************************
****/ 
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/***********************************************************************
****/ 

 

module TopLevel5315( X0bus, X1bus, Abus, Y0bus, Y1bus, Bbus, CinFX, CinFY, 

       CinParX, CinParY, MuxSelX, MuxSelY, MuxSelPF, 

       QF1bus, QF2bus, QF3bus, QF4bus, QP1, QP2, QP3, QP4, 

       WXbus, WYbus, ContLogic, ParXin, ParYin, ContParChk, 

       MiscMuxIn, MiscContIn, MiscInbus, WparX, WparY, 

 

       OF1bus, OF2bus, OF3bus, OF4bus, OP1, OP2, OP3, OP4, 

       SumLogicParXout, SumLogicParYout, CoutFX_in0, CoutFY_in0, 

       PropThruX, PropThruY, NotFXbus, NotFYbus, ZeroFlagOut, 

       ParChkOut, MiscMuxOut, MiscOutbus ); 

 

   input [8:0]  X0bus, X1bus, Abus; 

   input [8:0]  Y0bus, Y1bus, Bbus; 

   input  CinFX, CinFY; 

   input  CinParX, CinParY; 

   input  MuxSelX, MuxSelY; 

   input [10:0]  MuxSelPF; 

   input [8:0]  QF1bus, QF2bus, QF3bus, QF4bus; 

   input  QP1, QP2, QP3, QP4; 

   input [8:0]  WXbus, WYbus; 

   input [1:0]  WparX, WparY; 

   input [7:0]  ContLogic; 



145 
 

   input [1:0]  ParXin, ParYin; 

   input [5:0]  ContParChk; 

   input [16:0]  MiscMuxIn; 

   input [7:0]  MiscContIn; 

   input [8:0]  MiscInbus; 

 

   output [8:0]  OF1bus, OF2bus, OF3bus, OF4bus; 

   output  OP1, OP2, OP3, OP4; 

   output  SumLogicParXout, SumLogicParYout; 

   output  CoutFX_in0, CoutFY_in0; 

   output  PropThruX, PropThruY; 

   output [8:0]  NotFXbus, NotFYbus; 

   output [3:0]  ZeroFlagOut; 

   output [4:0]  ParChkOut; 

   output [10:0] MiscMuxOut; 

   output [25:0] MiscOutbus; 

 

 

   wire [8:0]  Xbus, Ybus; 

   wire [8:0]  FXbus, FYbus; 

   wire [8:0]  SumXbus, LogicXbus, SumYbus, LogicYbus; 

   wire [3:0]  ContLogicPar, NotContLogic3_0; 

   wire [35:0]  ContLogicInX, ContLogicInY; 

   wire   Not_SumLogicParX, Not_SumLogicParY; 
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   wire GND; 

   assign GND = 1'b0; 

 

   Mux9bit_2_1 M1( X0bus, X1bus, MuxSelX, Xbus ); 

   Mux9bit_2_1 M2( Y0bus, Y1bus, MuxSelY, Ybus ); 

 

   assign ContLogicPar[3:0] = ContLogic[7:4]; 

    

// parity blocks 

 

   CalcParity  M3( X0bus, { GND, Abus[7:0] }, Xbus, Abus, WparX, 

     MuxSelPF[10:9], ContLogicPar, CinParX, 

     Not_SumLogicParX, SumLogicParXout ); 

   CalcParity  M4( Y0bus, Bbus, Ybus, Bbus, WparY, 

     MuxSelPF[10:9], ContLogicPar, CinParY, 

     Not_SumLogicParY, SumLogicParYout ); 

  

   MuxesPar_4  M5( Not_SumLogicParX, Not_SumLogicParY, QP1, QP2, QP3, QP4, 

     MuxSelPF[8:0], OP1, OP2, OP3, OP4 ); 

    

// sum-logic blocks 

 

   Invert4 M0( ContLogic[3:0], NotContLogic3_0 ); 

   assign 

      ContLogicInX[35:0] = { ContLogicPar, ContLogicPar, ContLogicPar, 
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        ContLogicPar, NotContLogic3_0, NotContLogic3_0, 

        NotContLogic3_0, NotContLogic3_0, ContLogicPar }, 

 

      ContLogicInY[35:0] = { ContLogicPar, NotContLogic3_0, NotContLogic3_0, 

        NotContLogic3_0, NotContLogic3_0, NotContLogic3_0, 

        NotContLogic3_0, NotContLogic3_0, NotContLogic3_0 }; 

 

   CalcSumLogic M6( X0bus, { GND, Abus[7:0] }, Xbus, Abus, CinFX, WXbus, 

      ContLogicInX, MuxSelPF[10:9], 

      LogicXbus, SumXbus, FXbus, CoutFX_in0, PropThruX ); 

 

   CalcSumLogic M7( Y0bus, Bbus, Ybus, Bbus, CinFY, WYbus, 

      ContLogicInY, MuxSelPF[10:9], 

      LogicYbus, SumYbus, FYbus, CoutFY_in0, PropThruY ); 

    

   MuxesF8bit_4 M8( FXbus, FYbus, QF1bus, QF2bus, QF3bus, QF4bus, 
MuxSelPF[8:0], 

      OF1bus, OF2bus, OF3bus, OF4bus ); 

 

// other logic 

 

   Invert9 M9( FXbus, NotFXbus ), 

           M10( FYbus, NotFYbus ); 

 

   ZeroFlags M11( SumXbus, LogicXbus, SumYbus, LogicYbus, ZeroFlagOut ); 
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   BusParityChk M12( X0bus, Xbus, Y0bus, Ybus, ParXin, ParYin, 

       MuxSelX, MuxSelY, ContParChk, ParChkOut ); 

 

// miscellaneous logic 

 

   MiscLogic M13( MiscMuxIn, MiscContIn, MiscInbus, ContParChk, 

    Xbus[8], LogicXbus[8], SumXbus[8], WXbus[8], 

    X1bus[3:0], X1bus[8], X0bus[8], MuxSelPF[8], 

    MiscMuxOut, MiscOutbus ); 

 

 

endmodule // TopLevel5315 

 

/***********************************************************************
**** 

 * Module: Mux9bit_2_1 

 *  

 * Function: 9-bit 2:1 Muxes 

************************************************************************
***/ 

 

module Mux9bit_2_1( In0, In1, ContIn, Out ); 

   input [8:0]  In0, In1; 

   input   ContIn; 

   output [8:0] Out; 
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   Mux4bit_2_1 Mux9_0( In0[3:0], In1[3:0], ContIn, Out[3:0] ), 

               Mux9_1( In0[7:4], In1[7:4], ContIn, Out[7:4] ); 

   Mux2_1      Mux9_2( In0[8], In1[8], ContIn, Out[8] ); 

 

endmodule // Mux9bit_2_1 

 

/********************************************/ 

 

module Mux4bit_2_1( In0, In1, ContIn, Out ); 

   input [3:0] In0, In1; 

   input ContIn; 

   output [3:0] Out; 

 

   Mux2_1 Mux4_0( In0[0], In1[0], ContIn, Out[0] ), 

   Mux4_1( In0[1], In1[1], ContIn, Out[1] ), 

   Mux4_2( In0[2], In1[2], ContIn, Out[2] ), 

   Mux4_3( In0[3], In1[3], ContIn, Out[3] ); 

 

endmodule // Mux4bit_2_1 

 

 

/***********************************************************************
**** 

 * Module: CalcParity 
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 *  

 * Function: calculates the parity of the result (XYsumbus+ABsumbus+CinPar), 

 *  and of (XYlogicbus OPR ABlogicbus), where OPR is a logical operator 

 *  specified by ContLogicPar. 

 *  

 *  - ContLogicPar is 4 bits wide, so the parity of 16 different logical 

 *    functions can be calculated. 

 *  

 
************************************************************************
***/ 

 

module CalcParity( XYlogicbus, ABlogicbus, XYsumbus, ABsumbus, Wpar, 

     MuxSel, ContLogicPar, CinPar, 

     NotSumLogicPar, SumLogicParOut ); 

 

   input [8:0] XYlogicbus, ABlogicbus; 

   input [8:0] XYsumbus, ABsumbus; 

   input [1:0] Wpar; 

   input [1:0] MuxSel; 

   input [3:0] ContLogicPar; 

   input       CinPar; 

   output      NotSumLogicPar, SumLogicParOut; 

 

   LogicParity CalP0( XYlogicbus, ABlogicbus, ContLogicPar, LogicPar ); 

   SumParity   CalP1( XYsumbus, ABsumbus, CinPar, SumPar ); 
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   Muxes2_Mux4 CalP2( LogicPar, SumPar, Wpar, MuxSel, 

        NotSumLogicPar, SumLogicParOut ); 

 

endmodule // CalcParity 

 

/********************************************/ 

 

module LogicParity( XYlogicbus, ABlogicbus, ContLogicPar, LogicPar ); 

 

   input [8:0] XYlogicbus, ABlogicbus; 

   input [3:0] ContLogicPar; 

   output      LogicPar; 

 

   wire [35:0] ContLogicIn; 

   wire [8:0]  LogicOut; 

    

   assign 

      ContLogicIn[35:0] = { ContLogicPar, ContLogicPar, ContLogicPar, 

       ContLogicPar, ContLogicPar, ContLogicPar, 

       ContLogicPar, ContLogicPar, ContLogicPar }; 

    

   ComputeLogic   LP0( XYlogicbus, ABlogicbus, ContLogicIn, LogicOut ); 

 

   ParityTree9bit LP1( LogicOut, LogicPar ); 
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endmodule // LogicParity 

 

/********************************************/ 

 

module ComputeLogic( In1bus, In2bus, ContLogicIn, Outbus ); 

 

   input [8:0] In1bus, In2bus; 

   input [35:0] ContLogicIn; 

   output [8:0] Outbus; 

 

   LogicBlock CL0( In1bus[0], In2bus[0], ContLogicIn[3:0],   Outbus[0] ), 

   CL1( In1bus[1], In2bus[1], ContLogicIn[7:4],   Outbus[1] ), 

   CL2( In1bus[2], In2bus[2], ContLogicIn[11:8],  Outbus[2] ), 

   CL3( In1bus[3], In2bus[3], ContLogicIn[15:12], Outbus[3] ), 

   CL4( In1bus[4], In2bus[4], ContLogicIn[19:16], Outbus[4] ), 

   CL5( In1bus[5], In2bus[5], ContLogicIn[23:20], Outbus[5] ), 

   CL6( In1bus[6], In2bus[6], ContLogicIn[27:24], Outbus[6] ), 

   CL7( In1bus[7], In2bus[7], ContLogicIn[31:28], Outbus[7] ), 

   CL8( In1bus[8], In2bus[8], ContLogicIn[35:32], Outbus[8] ); 

    

endmodule // ComputeLogic 

 

/******************************************** 

 * LogicBlock: implements all 16 functions of 
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 *  In1 and In2 as selected by the 4-bit 

 *  ContLogic input. 

 ********************************************/ 

 

module LogicBlock( In1, In2, ContLogic, Out ); 

 

   input       In1, In2; 

   input [3:0] ContLogic; 

   output      Out; 

 

   Mux2_1 LB0( ContLogic[0], ContLogic[1], In1, line0), 

   LB1( ContLogic[2], ContLogic[3], In1, line1); 

   or2    LB2( .A(In2), .B(line0), .Y(line2) ); 

   nand2    LB3( .A(In2), .B(line1), .Y(line3) ); 

   and2    LB4( .A(line2), .B(line3), .Y(Out) ); 

 

endmodule // LogicBlock 

 

/*********************************************************************** 

 * Submodule: SumParity 

 *  

 * Function: calculates the parity of the sum (In1bus + In2bus + Cin) 

 *  

 *  The parity is calculated separately for the lower 5-bit block 

 *  and the upper 4-bit block. In each case, two parities are calculated: 
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 *  one with an assumed carry of 0 to that block, and another with 1. 

 *  For the 5-bit block, the correct parity is determined by Cin. 

 *  For the 4-bit block, the carry input Cin as well as the carry from 

 *  the (lower) 5-bit block to the (higher) 4-bit block determine 

 *  the correct parity. 

 *  

 
************************************************************************
/ 

 

module SumParity( In1bus, In2bus, Cin, SumPar ); 

 

   input [8:0] In1bus, In2bus; 

   input       Cin; 

   output      SumPar; 

 

   wire [8:0]  Genbus, Propbus; 

   wire [8:0]  LocalC0, LocalC1; 

 

   GenProp9       SP0( In1bus, In2bus, Genbus, Propbus ); 

 

   // first caculate the local carries 

   //  (local carries in 8th position are not needed) 

 

   GenLocalCarry5 SP1( Genbus[4:0], Propbus[4:0], LocalC0[4:0], LocalC1[4:0] ); 

   GenLocalCarry3 SP2( Genbus[7:5], Propbus[7:5], LocalC0[7:5], LocalC1[7:5] );    
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   SerialParity9nc SP3( { Propbus[4:0], LocalC0[3:0] }, ParLo0 ); 

   SerialParity9c  SP4( { Propbus[4:0], LocalC1[3:0] }, ParLo1 ); 

   SerialParity7nc SP5( { Propbus[8:5], LocalC0[7:5] }, ParHi0 ); 

   SerialParity7c  SP6( { Propbus[8:5], LocalC1[7:5] }, ParHi1 ); 

 

   Mux2_1 SP7( ParLo0, ParLo1, Cin, ParLo), 

   SP8( ParHi0, ParHi1, LocalC0[4], ParHiCin0), 

   SP9( ParHi0, ParHi1, LocalC1[4], ParHiCin1), 

   SP10( ParHiCin0, ParHiCin1, Cin, ParHi); 

 

   XOR2a  SP11( .A(ParLo), .B(ParHi), .Y(SumPar) ); 

 

endmodule // SumParity 

 

/********************************************/ 

 

module GenProp9( In1bus, In2bus, Gbus, Pbus); 

 

   input [8:0] In1bus, In2bus; 

   output [8:0] Gbus, Pbus; 

 

   and2  GP9_0( .A(In1bus[0]), .B(In2bus[0]), .Y(Gbus[0]) ), 

   GP9_1( .A(In1bus[1]), .B(In2bus[1]), .Y(Gbus[1]) ), 

   GP9_2( .A(In1bus[2]), .B(In2bus[2]), .Y(Gbus[2]) ), 
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   GP9_3( .A(In1bus[3]), .B(In2bus[3]), .Y(Gbus[3]) ), 

   GP9_4( .A(In1bus[4]), .B(In2bus[4]), .Y(Gbus[4]) ), 

   GP9_5( .A(In1bus[5]), .B(In2bus[5]), .Y(Gbus[5]) ), 

   GP9_6( .A(In1bus[6]), .B(In2bus[6]), .Y(Gbus[6]) ), 

   GP9_7( .A(In1bus[7]), .B(In2bus[7]), .Y(Gbus[7]) ), 

   GP9_8( .A(In1bus[8]), .B(In2bus[8]), .Y(Gbus[8]) ); 

    

   XOR2a GP9_9( .A(In1bus[0]), .B(In2bus[0]), .Y(Pbus[0]) ), 

   GP9_10( .A(In1bus[1]), .B(In2bus[1]), .Y(Pbus[1]) ), 

   GP9_11( .A(In1bus[2]), .B(In2bus[2]), .Y(Pbus[2]) ), 

   GP9_12( .A(In1bus[3]), .B(In2bus[3]), .Y(Pbus[3]) ), 

   GP9_13( .A(In1bus[4]), .B(In2bus[4]), .Y(Pbus[4]) ), 

   GP9_14( .A(In1bus[5]), .B(In2bus[5]), .Y(Pbus[5]) ), 

   GP9_15( .A(In1bus[6]), .B(In2bus[6]), .Y(Pbus[6]) ), 

   GP9_16( .A(In1bus[7]), .B(In2bus[7]), .Y(Pbus[7]) ), 

   GP9_17( .A(In1bus[8]), .B(In2bus[8]), .Y(Pbus[8]) );    

 

endmodule // GenProp9 

 

/********************************************/ 

 

module GenLocalCarry5( Gbus, Pbus, LocalC0, LocalC1 ); 

 

   input [4:0] Gbus, Pbus; 

   output [4:0] LocalC0, LocalC1; 
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   GenLocalCarry4 GLC5_0( Gbus[3:0], Pbus[3:0], 

     LocalC0[3:0], LocalC1[3:0] ); 

 

   AND_OR5a GLC5_1( Gbus[4], Pbus[4], Gbus[3], Pbus[3], Gbus[2], 

      Pbus[2], Gbus[1], Pbus[1], Gbus[0], 

      LocalC0[4] ); 

   AND_OR6b GLC5_2( Gbus[4], Pbus[4], Gbus[3], Pbus[3], Gbus[2], 

      Pbus[2], Gbus[1], Pbus[1], Gbus[0], Pbus[0], 

      LocalC1[4] ); 

    

endmodule // GenLocalCarry5 

 

/******************************************************/ 

 

module GenLocalCarry4( Gbus, Pbus, LocalC0, LocalC1 ); 

 

   input [3:0] Gbus, Pbus; 

   output [3:0] LocalC0, LocalC1; 

    

   GenLocalCarry3 GLC4_0( Gbus[2:0], Pbus[2:0], 

     LocalC0[2:0], LocalC1[2:0] ); 

 

   AND_OR4a GLC4_1( Gbus[3], Pbus[3], Gbus[2], Pbus[2], Gbus[1], 

      Pbus[1], Gbus[0], LocalC0[3] ); 
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   AND_OR5b GLC4_2( Gbus[3], Pbus[3], Gbus[2], Pbus[2], Gbus[1], 

      Pbus[1], Gbus[0], Pbus[0], LocalC1[3] ); 

 

endmodule // GenLocalCarry4 

 

/******************************************************/ 

 

module GenLocalCarry3( Gbus, Pbus, LocalC0, LocalC1 ); 

 

   input [2:0] Gbus, Pbus; 

   output [2:0] LocalC0, LocalC1; 

    

   assign LocalC0[0] = Gbus[0]; 

   or2 GLC4_0( .A(Gbus[0]), .B(Pbus[0]), .Y(LocalC1[0]) ); 

 

   AND_OR2  GLC4_1( Gbus[1], Pbus[1], Gbus[0], LocalC0[1] ); 

   AND_OR3b GLC4_2( Gbus[1], Pbus[1], Gbus[0], Pbus[0], LocalC1[1] ); 

 

   AND_OR3a GLC4_3( Gbus[2], Pbus[2], Gbus[1], Pbus[1], Gbus[0], 

      LocalC0[2] ); 

   AND_OR4b GLC4_4( Gbus[2], Pbus[2], Gbus[1], Pbus[1], Gbus[0], 

      Pbus[0], LocalC1[2] ); 

 

endmodule // GenLocalCarry3 

 



159 
 

/******************************************************/ 

 

module SerialParity9nc( Inbus, Out); 

 

   input [8:0] Inbus; 

   output      Out; 

    

   SerialParity7nc SP9nc0( Inbus[6:0], line0 ); 

   XOR2a           SP9nc1( .A(Inbus[7]), .B(line0), .Y(line1) ), 

   SP9nc2( .A(Inbus[8]), .B(line1), .Y(Out) ); 

 

endmodule // SerialParity9nc 

 

/******************************************************/ 

 

module SerialParity9c( Inbus, Out); 

 

   input [8:0] Inbus; 

   output      Out; 

    

   // Inbus[6] is inverted in SerialParity7c 

   SerialParity7c SP9nc0( Inbus[6:0], line0 ); 

   XOR2a          SP9nc1( .A(Inbus[7]), .B(line0), .Y(line1) ), 

   SP9nc2( .A(Inbus[8]), .B(line1), .Y(Out) ); 
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endmodule // SerialParity9c 

 

/******************************************************/ 

 

module SerialParity7nc( Inbus, Out); 

 

   input [6:0] Inbus; 

   output      Out; 

    

   XOR2a SP7nc0( .A(Inbus[0]), .B(Inbus[1]), .Y(line0) ), 

   SP7nc1( .A(Inbus[2]), .B(line0), .Y(line1) ), 

   SP7nc2( .A(Inbus[3]), .B(line1), .Y(line2) ), 

   SP7nc3( .A(Inbus[4]), .B(line2), .Y(line3) ), 

   SP7nc4( .A(Inbus[5]), .B(line3), .Y(line4) ), 

   SP7nc5( .A(Inbus[6]), .B(line4), .Y(Out) ); 

 

endmodule // SerialParity7nc 

 

/******************************************************/ 

 

module SerialParity7c( Inbus, Out); 

 

   input [6:0] Inbus; 

   output      Out; 
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   wire [6:0]  NewInbus; 

 

   // invert one bit to complement the output 

   // -- Inbus[6] is chosen so the inverter is not on the longest path 

 

   inv  SP7c0( .A(Inbus[6]), .Y(NewInbus[6]) ); 

   assign NewInbus[5:0] = Inbus[5:0]; 

 

   SerialParity7nc SP7c2( NewInbus, Out ); 

 

endmodule // SerialParity7c 

 

/******************************************************/ 

 

module Muxes2_Mux4( LogicPar, SumPar, Wpar, MuxSel, 

      NotSumLogicPar, SumLogicParOut ); 

 

   input       LogicPar, SumPar; 

   input [1:0] Wpar, MuxSel; 

   output      NotSumLogicPar, SumLogicParOut; 

 

   inv    M2M4_0( .A(LogicPar), .Y(NotLogicPar) ), 

   M2M4_1( .A(SumPar), .Y(NotSumPar) ); 

   Mux2_1 M2M4_2( NotLogicPar, NotSumPar, MuxSel[1], line0 ), 

   M2M4_3( line0, Wpar[0], MuxSel[0], NotSumLogicPar ); 
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   Mux4_1 M2M4_4( LogicPar, Wpar[1], SumPar, 1'b1, 

    MuxSel[1], MuxSel[0], SumLogicParOut ); 

    

endmodule // Muxes2_Mux4 

 

 

/***********************************************************************
**** 

 * Module: MuxesPar_4 

 *  

 * Function: includes a set of 4 muxes. 

 *  The outputs of two of the muxes can be masked with an AND gate. 

 *  

 
************************************************************************
***/ 

 

module MuxesPar_4( ParX, ParY, QP1, QP2, QP3, QP4, MuxSelbus, 

     OP1, OP2, OP3, OP4 ); 

 

   input       ParX, ParY, QP1, QP2, QP3, QP4; 

   input [8:0] MuxSelbus; 

   output      OP1, OP2, OP3, OP4; 

 

   Muxes4  MP0( ParX, ParY, QP1, QP2, QP3, QP4, MuxSelbus, 
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  NotOP1, NotOP2, OP3, OP4 ); 

   inv     MP1( .A(NotOP1), .Y(OP1) ), 

   MP2( .A(NotOP2), .Y(OP2) ); 

 

endmodule // MuxesPar_4 

 

/********************************************/ 

 

module Muxes4( InM1, InM2, In1, In2, In3, In4, MuxSelbus, 

        Out1, Out2, Out3, Out4 ); 

 

   input       InM1, InM2, In1, In2, In3, In4; 

   input [8:0] MuxSelbus; 

   output      Out1, Out2, Out3, Out4; 

 

   Mux4_1 MXS0( InM1, InM2, In1, In2, MuxSelbus[1], MuxSelbus[0], tempOut1 ), 

   MXS1( InM1, InM2, In1, In2, MuxSelbus[3], MuxSelbus[2], tempOut2 ), 

   MXS2( InM1, InM2, In3, In4, MuxSelbus[5], MuxSelbus[4], Out3 ), 

   MXS3( InM1, InM2, In3, In4, MuxSelbus[7], MuxSelbus[6], Out4 ); 

 

   and2   MXS4( .A(tempOut1), .B(MuxSelbus[8]), .Y(Out1) ), 

   MXS5( .A(tempOut2), .B(MuxSelbus[8]), .Y(Out2) ); 

 

endmodule // Muxes4 
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/***********************************************************************
**** 

 * Module: CalcSumLogic 

 *  

 * Function: calculates the sum (XYsumbus + ABsumbus + Cin), and 

 * the logical operation (XYlogicbus OPR ABlogicbus), both of which 

 * are 9 bits wide. 

 *  

 * -Note that the OPR is not uniform for all bit positions; that's why 

 *  it's 36 bits wide, 4 bits for each bit. 

 *  

 * -Also computed by the Adder9 module are Cout_in0 and PropThru. 

 *   Cout_in0: the carry-out bit assuming Cin=0 

 *   PropThru: AND of all propagate bits, so it indicates whether 

 *   Cin can propagate all the way through 9 bits. 

 *  (The actual carry output can be calculated by Cout_in0+Cin.PropThru) 

 *  

 
************************************************************************
***/ 

 

module CalcSumLogic( XYlogicbus, ABlogicbus, XYsumbus, ABsumbus, Cin, 
WXYbus, 

       ContLogicIn, MuxSel, 

       Logicbus, Sumbus, FXYbus, Cout_in0, PropThru ); 
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   input [8:0] XYlogicbus, ABlogicbus; 

   input [8:0] XYsumbus, ABsumbus; 

   input Cin; 

   input [8:0] WXYbus; 

   input [35:0] ContLogicIn; 

   input [1:0] MuxSel; 

   output [8:0] Sumbus, Logicbus; 

   output [8:0] FXYbus; 

   output Cout_in0, PropThru; 

 

 

   ComputeLogic CSL0( XYlogicbus, ABlogicbus, ContLogicIn, Logicbus ); 

 

   Adder9       CSL1( XYsumbus, ABsumbus, Cin, Sumbus, Cout_in0, PropThru ); 

 

   Mux9bit_4_1  CSL2( Logicbus, WXYbus, Sumbus, { 9'b000000000 }, 

        MuxSel[1], MuxSel[0], FXYbus ); 

 

endmodule // CalcSumLogic 

 

/******************************************************************** 

 * Submodule: Adder9 

 *  

 * Function: calculates the sum (In1bus + In2bus + Cin). 

 *  
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 *  The structure of this adder is slightly different from the 

 *  one that computes the parity of the result. 

 *  A CLA is used to compute the sum outputs for the lower 

 *  6 bits. Two sets of sum signals are computed for the upper 

 *  3 bits: one assuming carry[4]=0, and another assuming carry[4]=1 

 *  The actual carry[4] signal selects the correct sum bits. 

 *  

 ********************************************************************/ 

 

module Adder9 ( In1bus, In2bus, Cin, Sumbus, Cout_in0, PropThru ); 

 

   input [8:0] In1bus, In2bus; 

   input Cin; 

   output [8:0] Sumbus; 

   output Cout_in0, PropThru; 

 

   wire [8:0] Genbus, Propbus; 

   wire [2:0] LocalHC0, LocalHC1;       // for bits # 7-5 

   wire [4:0] Carry; 

   wire [5:0] SumH01bus; 

 

 

   GenProp9 Add0( In1bus, In2bus, Genbus, Propbus ); 

 

   // generate actual carry lines #0-4 
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   // Cout_in0 is the carry for the entire operation with Cin=0 

 

   CLAblock Add1( Genbus, Propbus, Cin, Carry, Cout_in0, PropThru ); 

 

   // generate local carries for bits #7-5 

   GenLocalCarry3 Add2( Genbus[7:5], Propbus[7:5], LocalHC0, LocalHC1 );    

 

   // for bits # 0-5, generate sum directly : prop XOR carry 

   XOR2a6bit Add3( Propbus[5:0], { Carry[4:0], Cin }, Sumbus[5:0] ); 

 

   // for bits #6-8, generate two sums, one assuming Carry[4]=0, 

   //                                   the other assuming Carry[4]=1 

   XOR2a6bit Add4( { Propbus[8:6], Propbus[8:6] }, 

     { LocalHC1[2:0], LocalHC0[2:0] }, SumH01bus ); 

 

   // now choose the correct sums #6-8 

   Mux2_1 Add5( SumH01bus[0], SumH01bus[3], Carry[4], Sumbus[6] ), 

   Add6( SumH01bus[1], SumH01bus[4], Carry[4], Sumbus[7] ), 

   Add7( SumH01bus[2], SumH01bus[5], Carry[4], Sumbus[8] ); 

 

endmodule // Adder9 

 

/********************************************/ 

 

module CLAblock( Gbus, Pbus, Cin, Carry, Cout_in0, PropThru ); 
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   input [8:0] Gbus, Pbus; 

   input Cin; 

   output [4:0] Carry; 

   output Cout_in0, PropThru; 

    

   wire  LocalC0_4; 

 

   // actual carry lines #0-3 

   AND_OR2  CB0( Gbus[0], Pbus[0], Cin, Carry[0] ); 

   AND_OR3a CB1( Gbus[1], Pbus[1], Gbus[0], Pbus[0], Cin, Carry[1] ); 

   AND_OR4a CB2( Gbus[2], Pbus[2], Gbus[1], Pbus[1], Gbus[0], 

   Pbus[0], Cin, Carry[2] ); 

   AND_OR5a CB3( Gbus[3], Pbus[3], Gbus[2], Pbus[2], Gbus[1], Pbus[1], 

   Gbus[0], Pbus[0], Cin, Carry[3] ); 

 

   // LocalC0_4 is the carry out of bit #4 with Cin=0 

   AND_OR5a CB4( Gbus[4], Pbus[4], Gbus[3], Pbus[3], Gbus[2], Pbus[2], 

   Gbus[1], Pbus[1], Gbus[0], LocalC0_4 ); 

 

   and5      CB5( .A(Pbus[0]), .B(Pbus[1]), .C(Pbus[2]), 

    .D(Pbus[3]), .E(Pbus[4]), .Y(Prop4_0) ); 

   and2      CB6( .A(Cin), .B(Prop4_0), .Y(PropCin) ); 

   or2      CB7( .A(LocalC0_4), .B(PropCin), .Y(Carry[4]) ); 
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   // now Cout_in0 (the carryout line for the entire operation with Cin=0) 

   AND_OR5a CB8( Gbus[8], Pbus[8], Gbus[7], Pbus[7], Gbus[6], Pbus[6], 

   Gbus[5], Pbus[5], LocalC0_4, Cout_in0 ); 

 

   // Propthr: and of all propagate lines 

   and4 CB9( .A(Pbus[5]), .B(Pbus[6]), .C(Pbus[7]), .D(Pbus[8]), 

      .Y(Prop8_5) ); 

   and2 CB10( .A(Prop4_0), .B(Prop8_5), .Y(PropThru) ); 

 

endmodule // CLAblock 

 

 

/***********************************************************************
**** 

 * Module: MuxesF8bit_4 

 *  

 * Function: includes four sets of 9-bit Muxes whose inputs are  

 *  FXbus and FYbus, the outputs of the CalcSumLogic modules, and  

 *  input buses QF1, QF2, QF3, QF4. 

 *  

 
************************************************************************
***/ 

 

module MuxesF8bit_4( FXbus, FYbus, QF1bus, QF2bus, QF3bus, QF4bus, MuxSelbus, 

       OF1bus, OF2bus, OF3bus, OF4bus ); 



170 
 

 

   input [8:0] FXbus, FYbus, QF1bus, QF2bus, QF3bus, QF4bus; 

   input [8:0] MuxSelbus; 

   output [8:0] OF1bus, OF2bus, OF3bus, OF4bus; 

 

   MuxesF4bit_4 MF8_0( FXbus[3:0], FYbus[3:0], QF1bus[3:0], QF2bus[3:0], 

         QF3bus[3:0], QF4bus[3:0], MuxSelbus[8:0], 

         OF1bus[3:0], OF2bus[3:0], OF3bus[3:0], OF4bus[3:0] ), 

   MF8_1( FXbus[7:4], FYbus[7:4], QF1bus[7:4], QF2bus[7:4], 

   QF3bus[7:4], QF4bus[7:4], MuxSelbus[8:0], 

   OF1bus[7:4], OF2bus[7:4], OF3bus[7:4], OF4bus[7:4] ); 

   Muxes4       MF8_2( FXbus[8], FYbus[8], QF1bus[8], QF2bus[8], 

         QF3bus[8], QF4bus[8], MuxSelbus[8:0], 

         OF1bus[8], OF2bus[8], OF3bus[8], OF4bus[8] );  

 

endmodule // MuxesF8bit_4 

 

/********************************************/ 

 

module MuxesF4bit_4( FXbus, FYbus, QF1bus, QF2bus, QF3bus, QF4bus, MuxSelbus, 

       OF1bus, OF2bus, OF3bus, OF4bus ); 

 

   input [3:0] FXbus, FYbus, QF1bus, QF2bus, QF3bus, QF4bus; 

   input [8:0] MuxSelbus; 

   output [3:0] OF1bus, OF2bus, OF3bus, OF4bus; 
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   Muxes4 MF4_0( FXbus[0], FYbus[0], QF1bus[0], QF2bus[0], 

   QF3bus[0], QF4bus[0], MuxSelbus[8:0], 

   OF1bus[0], OF2bus[0], OF3bus[0], OF4bus[0] ), 

   MF4_1( FXbus[1], FYbus[1], QF1bus[1], QF2bus[1], 

   QF3bus[1], QF4bus[1], MuxSelbus[8:0], 

   OF1bus[1], OF2bus[1], OF3bus[1], OF4bus[1] ), 

   MF4_2( FXbus[2], FYbus[2], QF1bus[2], QF2bus[2], 

   QF3bus[2], QF4bus[2], MuxSelbus[8:0], 

   OF1bus[2], OF2bus[2], OF3bus[2], OF4bus[2] ), 

   MF8_3( FXbus[3], FYbus[3], QF1bus[3], QF2bus[3], 

   QF3bus[3], QF4bus[3], MuxSelbus[8:0], 

   OF1bus[3], OF2bus[3], OF3bus[3], OF4bus[3] ); 

 

endmodule // MuxesF4bit_4 

 

 

/***********************************************************************
**** 

 * Module: ZeroFlags 

 *  

 * Function: generates the zero signal for four 9-bit buses: 

 *   SumX, LogicX, SumY and LogicY. 

 *   In each case, the zero signal is equal to the NOR of all the inputs. 

 *  
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************************************************************************
***/ 

 

module ZeroFlags( SumX, LogicX, SumY, LogicY, ZeroFlagOut ); 

 

   input [8:0] SumX, LogicX, SumY, LogicY; 

   output [3:0] ZeroFlagOut; 

    

   NOR9 ZF0( SumX, ZeroFlagOut[3] ), 

   ZF1( SumY, ZeroFlagOut[2] ), 

   ZF2( LogicX, ZeroFlagOut[1] ), 

   ZF3( LogicY, ZeroFlagOut[0] ); 

 

endmodule // ZeroFlags 

 

/***********************************************************************
**** 

 * Module: BusParityChk 

 *  

 * Function: computes the parity of four 10-bit buses: 

 *  X0bus, Xbus, Y0bus and Ybus, each with an additional input. 

 *  ParChkOut[0] is the AND of all the bus parities and can be masked 

 *  by ContParChk inputs. 

 *  



173 
 

 
************************************************************************
***/ 

 

module BusParityChk( X0bus, Xbus, Y0bus, Ybus, ParXin, ParYin, 

       MuxSelX, MuxSelY, ContParChk, ParChkOut ); 

 

   input [8:0] X0bus, Xbus, Y0bus, Ybus; 

   input [1:0] ParXin, ParYin; 

   input MuxSelX, MuxSelY; 

   input [5:0] ContParChk; 

   output [4:0] ParChkOut; 

 

   wire  ParX, ParY; 

   wire [3:0] NotParChk; 

 

   Mux2_1 BPC0( ParXin[0], ParXin[1], MuxSelX, ParX ), 

   BPC1( ParYin[0], ParYin[1], MuxSelY, ParY ); 

 

   ParityTree10bit BPC2( { ParX, Xbus[8:0] }, ParChkOut[4] ), 

   BPC3( { ParXin[0], X0bus[8:0] }, ParChkOut[3] ), 

   BPC4( { ParY, Ybus[8:0] }, ParChkOut[2] ), 

   BPC5( { ParYin[0], Y0bus[8:0] }, ParChkOut[1] ); 

 

   Invert4  BPC6( ParChkOut[4:1], NotParChk ); 

   and5      BPC7( .A(NotParChk[3]), .B(NotParChk[2]), .C(NotParChk[1]), 
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     .D(NotParChk[0]), .E(ContParChk[5]), .Y(line7) ); 

   and4      BPC8( .A(ContParChk[0]), .B(ContParChk[1]), .C(ContParChk[2]), 

     .D(ContParChk[3]), .Y(line8) ); 

   and3      BPC9( .A(line8), .B(line7), .C(ContParChk[4]), 

     .Y(ParChkOut[0]) ); 

 

endmodule // BusParityChk 

 

/***********************************************************************
**** 

 * Module: MiscLogic 

 *  

 * Function: contains muxes and gates that are mostly unstructured  

 *  and unrelated to the rest of the circuit. 

 *  

 *  - The MiscMuxLogic block includes four 2:1 and 4:1 muxes with 

 *    independent inputs. 

 *  - The MiscRandomLogic block contains mostly inverters and buffers. 

 *  

 
************************************************************************
***/ 

 

module MiscLogic( MiscMuxIn, MiscContIn, MiscInbus, ContParChk, 

    Xbus_8, LogicXbus_8, SumXbus_8, WXbus_8, 

    X1bus3_0, X1bus_8, X0bus_8, MuxSelPF_8, 
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    MiscMuxOut, MiscOutbus ); 

    

   input [16:0]  MiscMuxIn; 

   input [7:0]  MiscContIn; 

   input [8:0]  MiscInbus; 

   input [5:0]  ContParChk; 

   input  Xbus_8, LogicXbus_8, SumXbus_8, WXbus_8; 

   input  X1bus_8, X0bus_8, MuxSelPF_8; 

   input [3:0]  X1bus3_0; 

   output [10:0] MiscMuxOut; 

   output [25:0] MiscOutbus; 

    

   wire   ContBeta; 

 

   MiscMuxLogic UM13_0( { Xbus_8, LogicXbus_8, SumXbus_8, WXbus_8, 
MiscMuxIn }, 

   MiscContIn, ContBeta, MiscMuxOut ); 

 

   MiscRandomLogic UM13_1( { X1bus3_0, X1bus_8, X0bus_8, MuxSelPF_8, 
MiscInbus }, 

      ContParChk, MiscContIn, ContBeta, MiscOutbus ); 

 

endmodule // MiscLogic 

 

/********************************************/ 
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module  MiscMuxLogic( NewMuxIn, MiscContIn, ContBeta, MiscMuxOut ); 

 

   input [20:0]  NewMuxIn; 

   input [7:0]  MiscContIn; 

   output  ContBeta; 

   output [10:0] MiscMuxOut; 

 

   wire [3:0]  tempOut1, tempOut2, tempOut3; 

 

   and2 MML0( .A(MiscContIn[0]), .B(MiscContIn[1]), .Y(ContBeta) ); 

   inv  MML1( .A(ContBeta), .Y(NotContBeta) ), 

   MML2( .A(MiscContIn[2]), .Y(NotContIn2) ); 

 

   Mux4bit_2_1 MML3( NewMuxIn[3:0], NewMuxIn[7:4], NotContIn2, 

       tempOut1 ); 

   Mux4bit_4_1 MML4( NewMuxIn[11:8], NewMuxIn[15:12], { 4'b1111 }, 

       { 4'b1111 }, NotContBeta, MiscContIn[2], 

       tempOut2 ); 

 

   // MiscMuxOut[3:0] and MiscMuxOut[7:4] 

   Mask_And4bit MML5( tempOut1, ContBeta, tempOut3 ); 

   Invert4      MML6( tempOut3, MiscMuxOut[3:0] );  

   Mask_And4bit MML7( tempOut2, MiscContIn[3], MiscMuxOut[7:4] ); 

    

   // MiscMuxOut[8] -- out818 
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   inv     MML8( .A(NewMuxIn[20]), .Y(NotMuxIn20) ); 

   XOR2b  MML9( .A(NotMuxIn20), .B(NewMuxIn[16]), .Y(tempMuxin) ); 

   Mux4_1 MML10( NewMuxIn[19], tempMuxin, NewMuxIn[17], NewMuxIn[18], 

   MiscContIn[5], MiscContIn[4], tempMuxout ); 

   nand2    MML11( .A(MiscContIn[6]), .B(MiscContIn[7]), .Y(tempMuxcont) ); 

   and2    MML12( .A(tempMuxcont), .B(tempMuxout), .Y(MiscMuxOut[8]) ); 

 

   // MiscMuxOut[9] -- out813 

   XOR2b  MML13( .A(tempMuxin), .B(NewMuxIn[18]), .Y(MiscMuxOut[9]) ); 

 

   // MiscMuxOut[10]=not(SumXbus[8]) -- out623 

   inv     MML14( .A(NewMuxIn[18]), .Y(MiscMuxOut[10]) ); 

 

endmodule // MiscMuxLogic 

 

/********************************************/ 

 

module MiscRandomLogic( NewMiscbus, ContParChk, MiscContIn, ContBeta, 
MiscOutbus ); 

 

   input [15:0]  NewMiscbus; 

   input [5:0]  ContParChk; 

   input [7:0]  MiscContIn; 

   input  ContBeta; 

   output [25:0] MiscOutbus; 
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   // NewMiscbus: { X1bus3_0, X1bus_8, X0bus_8, MuxSelPF_8, MiscInbus } 

   //                 15-12      11       10       9            8-0 

 

   nand2   MRL0( .A(ContBeta), .B(NewMiscbus[0]), .Y(MiscOutbus[0]) ); 

 

   inv    MRL1( .A(NewMiscbus[1]), .Y(NotMisc1) ); 

   and2   MRL2( .A(NotMisc1), .B(MiscContIn[0]), .Y(line2) ); 

   inv    MRL3( .A(line2), .Y(MiscOutbus[1]) ); 

 

   and2   MRL4( .A(MiscContIn[3]), .B(NewMiscbus[2]), .Y(MiscOutbus[2]) ); 

 

   nand2   MRL5( .A(NewMiscbus[3]), .B(NewMiscbus[4]), .Y(line6) ); 

   inv    MRL6( .A(line6), .Y(MiscOutbus[3]) ); 

 

   inv    MRL7( .A(NewMiscbus[6]), .Y(NotMisc6) ); 

   and2   MRL8( .A(NewMiscbus[5]), .B(NotMisc6), .Y(MiscOutbus[4]) ); 

 

   and2   MRL9( .A(ContParChk[0]), .B(ContParChk[2]), .Y(line12) ); 

   inv    MRL10( .A(line12), .Y(MiscOutbus[5]) ); 

 

   and2   MRL11( .A(ContParChk[3]), .B(ContParChk[5]), .Y(MiscOutbus[6]) ); 

 

   Buffer7 MRL12( { NewMiscbus[11:9], NewMiscbus[7:6], NewMiscbus[4], 

      MiscContIn[3] }, MiscOutbus[13:7] ); 
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   Invert4 MRL13( { ContParChk[5:3], ContParChk[1] }, MiscOutbus[17:14] ); 

 

   Invert4 MRL14( NewMiscbus[15:12], MiscOutbus[21:18] ); 

 

   Invert4 MRL15( { NewMiscbus[11], NewMiscbus[8:7], ContBeta }, 

    MiscOutbus[25:22] ); 

 

endmodule // MiscRandomLogic 

 

 

/***********************************************************************
**** 

 * Description of some basic gates/modules 

 
************************************************************************
***/ 

 

/********************************************/ 

 

module ParityTree10bit( Inbus, ParOut ); 

 

   input [9:0] Inbus; 

   output      ParOut; 

 

   XOR2a PT0( .A(Inbus[5]), .B(Inbus[6]), .Y(line0) ), 

   PT1( .A(Inbus[7]), .B(Inbus[8]), .Y(line1) ), 
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   PT2( .A(Inbus[0]), .B(Inbus[9]), .Y(line2) ), 

   PT3( .A(Inbus[1]), .B(Inbus[2]), .Y(line3) ), 

   PT4( .A(Inbus[3]), .B(Inbus[4]), .Y(line4) ); 

   XOR2a PT5( .A(line0), .B(line1), .Y(line5) ); 

   XOR3a PT6( .A(line2), .B(line3), .C(line4), .Y(line6) ); 

   XOR2a PT7( .A(line5), .B(line6), .Y(ParOut) ); 

    

endmodule // ParityTree10bit 

 

/********************************************/ 

 

module ParityTree9bit( Inbus, ParOut ); 

 

   input [8:0] Inbus; 

   output      ParOut; 

 

   XOR2a PT1( .A(Inbus[5]), .B(Inbus[6]), .Y(line1) ), 

   PT2( .A(Inbus[7]), .B(Inbus[8]), .Y(line2) ), 

   PT3( .A(Inbus[1]), .B(Inbus[2]), .Y(line3) ), 

   PT4( .A(Inbus[3]), .B(Inbus[4]), .Y(line4) ); 

   XOR2a PT5( .A(line1), .B(line2), .Y(line5) ); 

   XOR3a PT6( .A(line3), .B(Inbus[0]), .C(line4), .Y(line6) ); 

   XOR2a PT7( .A(line5), .B(line6), .Y(ParOut) ); 

    

endmodule // ParityTree9bit 
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/********************************************/ 

 

module Invert4( Inbus, Outbus ); 

 

   input [3:0] Inbus; 

   output [3:0] Outbus; 

 

   inv Inv4_0( .A(Inbus[0]), .Y(Outbus[0]) ), 

   Inv4_1( .A(Inbus[1]), .Y(Outbus[1]) ), 

   Inv4_2( .A(Inbus[2]), .Y(Outbus[2]) ), 

   Inv4_3( .A(Inbus[3]), .Y(Outbus[3]) ); 

    

endmodule // Invert4 

 

/********************************************/ 

 

module Invert9( Inbus, Outbus ); 

 

   input [8:0] Inbus; 

   output [8:0] Outbus; 

 

   Invert4 Inv9_0( Inbus[3:0], Outbus[3:0] ), 

   Inv9_1( Inbus[7:4], Outbus[7:4] ); 

   inv     Inv9_2( .A(Inbus[8]), .Y(Outbus[8]) ); 
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endmodule // Invert9 

 

/********************************************/ 

 

module Buffer7( Inbus, Outbus ); 

 

   input [6:0] Inbus; 

   output [6:0] Outbus; 

    

   buffer B7_0( .A(Inbus[0]), .Y(Outbus[0]) ), 

   B7_1( .A(Inbus[1]), .Y(Outbus[1]) ), 

   B7_2( .A(Inbus[2]), .Y(Outbus[2]) ), 

   B7_3( .A(Inbus[3]), .Y(Outbus[3]) ), 

   B7_4( .A(Inbus[4]), .Y(Outbus[4]) ), 

   B7_5( .A(Inbus[5]), .Y(Outbus[5]) ), 

   B7_6( .A(Inbus[6]), .Y(Outbus[6]) ); 

    

endmodule // Buffer7 

 

/********************************************/ 

 

module XOR2a6bit( In1bus, In2bus, Outbus ); 

    

   input [5:0] In1bus, In2bus; 
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   output [5:0] Outbus; 

    

   XOR2a X2a6_0( .A(In1bus[0]), .B(In2bus[0]), .Y(Outbus[0]) ), 

   X2a6_1( .A(In1bus[1]), .B(In2bus[1]), .Y(Outbus[1]) ), 

   X2a6_2( .A(In1bus[2]), .B(In2bus[2]), .Y(Outbus[2]) ), 

   X2a6_3( .A(In1bus[3]), .B(In2bus[3]), .Y(Outbus[3]) ), 

   X2a6_4( .A(In1bus[4]), .B(In2bus[4]), .Y(Outbus[4]) ), 

   X2a6_5( .A(In1bus[5]), .B(In2bus[5]), .Y(Outbus[5]) ); 

    

endmodule // XOR2a6bit 

 

/********************************************/ 

 

module Mux4_1( In0, In1, In2, In3, ContHi, ContLo, Out ); 

 

   input  In0, In1, In2, In3, ContHi, ContLo; 

   output Out; 

 

   inv  Mux4_0( .A(ContLo), .Y(Not_ContLo) ), 

   Mux4_1( .A(ContHi), .Y(Not_ContHi) ); 

   and3 Mux4_2( .A(In0), .B(Not_ContHi), .C(Not_ContLo), .Y(line2) ), 

   Mux4_3( .A(In1), .B(Not_ContHi), .C(ContLo), .Y(line3) ), 

   Mux4_4( .A(In2), .B(ContHi), .C(Not_ContLo), .Y(line4) ), 

   Mux4_5( .A(In3), .B(ContHi), .C(ContLo), .Y(line5) ); 

   or4 Mux4_6( .A(line2), .B(line3), .C(line4), .D(line5), .Y(Out) ); 
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endmodule // Mux4_1 

 

/********************************************/ 

 

module Mux2_1( In0, In1, ContIn, Out ); 

 

   input  In0, In1, ContIn; 

   output Out; 

 

   inv  Mux2_0( .A(ContIn), .Y(Not_ContIn) ); 

   and2 Mux2_1( .A(In0), .B(Not_ContIn), .Y(line1) ), 

   Mux2_2( .A(In1), .B(ContIn), .Y(line2) ); 

   or2 Mux2_3( .A(line1), .B(line2), .Y(Out) ); 

    

endmodule // Mux2_1 

 

/********************************************/ 

 

module Mux9bit_4_1( In1bus, In2bus, In3bus, In4bus, 

      ContHi, ContLo, Outbus ); 

    

   input [8:0] In1bus, In2bus, In3bus, In4bus; 

   input ContHi, ContLo; 

   output [8:0] Outbus; 
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   Mux4bit_4_1 Mx9_0( In1bus[3:0], In2bus[3:0], In3bus[3:0], In4bus[3:0], 

        ContHi, ContLo, Outbus[3:0] ), 

   Mx9_1( In1bus[7:4], In2bus[7:4], In3bus[7:4], In4bus[7:4], 

   ContHi, ContLo, Outbus[7:4] ); 

   Mux4_1      Mx9_2( In1bus[8], In2bus[8], In3bus[8], In4bus[8], 

        ContHi, ContLo, Outbus[8] ); 

 

endmodule // Mux9bit_4_1 

 

/********************************************/ 

 

module Mux4bit_4_1( In1bus, In2bus, In3bus, In4bus, 

      ContHi, ContLo, Outbus ); 

    

   input [3:0] In1bus, In2bus, In3bus, In4bus; 

   input ContHi, ContLo; 

   output [3:0] Outbus; 

    

   Mux4_1 Mx4_0( In1bus[0], In2bus[0], In3bus[0], In4bus[0], 

   ContHi, ContLo, Outbus[0] ), 

   Mx4_1( In1bus[1], In2bus[1], In3bus[1], In4bus[1], 

   ContHi, ContLo, Outbus[1] ), 

   Mx4_2( In1bus[2], In2bus[2], In3bus[2], In4bus[2], 

   ContHi, ContLo, Outbus[2] ), 



186 
 

   Mx4_3( In1bus[3], In2bus[3], In3bus[3], In4bus[3], 

   ContHi, ContLo, Outbus[3] ); 

 

endmodule // Mux4bit_4_1 

 

/******************************************************/ 

 

module Mask_And4bit( Inbus, Mask, Outbus ); 

 

   input [3:0] Inbus; 

   input Mask; 

   output [3:0] Outbus; 

 

   and2 Ma0( .A(Inbus[0]), .B(Mask), .Y(Outbus[0]) ), 

   Ma1( .A(Inbus[1]), .B(Mask), .Y(Outbus[1]) ), 

   Ma2( .A(Inbus[2]), .B(Mask), .Y(Outbus[2]) ), 

   Ma3( .A(Inbus[3]), .B(Mask), .Y(Outbus[3]) ); 

    

endmodule // AND4bit 

 

/******************************************************/ 

 

module AND_OR2( O, P, Q, YY); 

 

   input  O, P, Q; 
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   output YY; 

    

   and2 Ao2_0( .A(P), .B(Q), .Y(line0) ); 

   or2  Ao2_1( .A(O), .B(line0), .Y(YY) ); 

 

endmodule // AND_OR2 

 

/******************************************************/ 

 

module AND_OR3a( O, P, Q, R, S, YY); 

 

   input  O, P, Q, R, S; 

   output YY; 

    

   and2 Ao3a_0( .A(P), .B(Q), .Y(line0) ); 

   and3 Ao3a_1( .A(P), .B(R), .C(S), .Y(line1) ); 

   or3  Ao3a_2( .A(O), .B(line0), .C(line1), .Y(YY) ); 

 

endmodule // AND_OR3a 

 

/******************************************************/ 

 

module AND_OR3b( O, P, Q, R, YY); 

 

   input  O, P, Q, R; 
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   output YY; 

    

   and2 Ao3a_0( .A(P), .B(Q), .Y(line0) ); 

   and2 Ao3a_1( .A(P), .B(R), .Y(line1) ); 

   or3  Ao3a_2( .A(O), .B(line0), .C(line1), .Y(YY) ); 

 

endmodule // AND_OR3b 

 

/******************************************************/ 

 

module AND_OR4a( O, P, Q, R, S, T, U, YY); 

 

   input  O, P, Q, R, S, T, U; 

   output YY; 

    

   and2 Ao4a_0( .A(P), .B(Q), .Y(line0) ); 

   and3 Ao4a_1( .A(P), .B(R), .C(S), .Y(line1) ); 

   and4 Ao4a_2( .A(P), .B(R), .C(T), .D(U), .Y(line2) ); 

   or4  Ao4a_3( .A(O), .B(line0), .C(line1), .D(line2), .Y(YY) ); 

 

endmodule // AND_OR4a 

 

/******************************************************/ 

 

module AND_OR4b( O, P, Q, R, S, T, YY); 
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   input  O, P, Q, R, S, T; 

   output YY; 

    

   and2 Ao4a_0( .A(P), .B(Q), .Y(line0) ); 

   and3 Ao4a_1( .A(P), .B(R), .C(S), .Y(line1) ); 

   and3 Ao4a_2( .A(P), .B(R), .C(T), .Y(line2) ); 

   or4  Ao4a_3( .A(O), .B(line0), .C(line1), .D(line2), .Y(YY) ); 

 

endmodule // AND_OR4a 

 

/******************************************************/ 

 

module AND_OR5a( O, P, Q, R, S, T, U, V, W, YY); 

 

   input  O, P, Q, R, S, T, U, V, W; 

   output YY; 

    

   and2 Ao5a_0( .A(P), .B(Q), .Y(line0) ); 

   and3 Ao5a_1( .A(P), .B(R), .C(S), .Y(line1) ); 

   and4 Ao5a_2( .A(P), .B(R), .C(T), .D(U), .Y(line2) ); 

   and5 Ao5a_3( .A(P), .B(R), .C(T), .D(V), .E(W), .Y(line3) ); 

   or5  Ao5a_4( .A(O), .B(line0), .C(line1), .D(line2), .E(line3), .Y(YY) ); 

 

endmodule // AND_OR5a 
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/******************************************************/ 

 

module AND_OR5b( O, P, Q, R, S, T, U, V, YY); 

 

   input  O, P, Q, R, S, T, U, V; 

   output YY; 

    

   and2 Ao5a_0( .A(P), .B(Q), .Y(line0) ); 

   and3 Ao5a_1( .A(P), .B(R), .C(S), .Y(line1) ); 

   and4 Ao5a_2( .A(P), .B(R), .C(T), .D(U), .Y(line2) ); 

   and4 Ao5a_3( .A(P), .B(R), .C(T), .D(V), .Y(line3) ); 

   or5  Ao5a_4( .A(O), .B(line0), .C(line1), .D(line2), .E(line3), .Y(YY) ); 

 

endmodule // AND_OR5b 

 

/******************************************************/ 

 

module AND_OR6a( O, P, Q, R, S, T, U, V, W, X, Y, YY); 

 

   input  O, P, Q, R, S, T, U, V, W, X, Y; 

   output YY; 

    

   and2 Ao6a_0( .A(P), .B(Q), .Y(line0) ); 

   and3 Ao6a_1( .A(P), .B(R), .C(S), .Y(line1) ); 
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   and4 Ao6a_2( .A(P), .B(R), .C(T), .D(U), .Y(line2) ); 

   and5 Ao6a_3( .A(P), .B(R), .C(T), .D(V), .E(W), .Y(line3) ); 

   and6 Ao6a_4( .A(P), .B(R), .C(T), .D(V), .E(X), .F(Y), .Y(line4) ); 

   or6  Ao6a_5( .A(O), .B(line0), .C(line1), .D(line2), .E(line3), 

  .F(line4), .Y(YY) ); 

 

endmodule // AND_OR6a 

 

/******************************************************/ 

 

module AND_OR6b( O, P, Q, R, S, T, U, V, W, X, YY); 

 

   input  O, P, Q, R, S, T, U, V, W, X; 

   output YY; 

    

   and2 Ao6a_0( .A(P), .B(Q), .Y(line0) ); 

   and3 Ao6a_1( .A(P), .B(R), .C(S), .Y(line1) ); 

   and4 Ao6a_2( .A(P), .B(R), .C(T), .D(U), .Y(line2) ); 

   and5 Ao6a_3( .A(P), .B(R), .C(T), .D(V), .E(W), .Y(line3) ); 

   and5 Ao6a_4( .A(P), .B(R), .C(T), .D(V), .E(X), .Y(line4) ); 

   or6  Ao6a_5( .A(O), .B(line0), .C(line1), .D(line2), .E(line3), 

  .F(line4), .Y(YY) ); 

 

endmodule // AND_OR6b 
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/******************************************************/ 

 

module XOR2a ( A, B, Y ); 

 

   input  A, B; 

   output Y; 

 

   inv   Xo0( .A(A), .Y(NotA) ), 

   Xo1( .A(B), .Y(NotB) ); 

    

   nand2 Xo2( .A(NotA), .B(B), .Y(line2) ), 

   Xo3( .A(NotB), .B(A), .Y(line3) ), 

   Xo4( .A(line2), .B(line3), .Y(Y) ); 

    

endmodule // XOR2a 

 

/******************************************************/ 

 

module XOR2b ( A, B, Y ); 

 

   input  A, B; 

   output Y; 

 

   nand2 Xo0( .A(A), .B(B), .Y(NotAB) ); 

   and2  Xo1( .A(A), .B(NotAB), .Y(line1) ), 
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   Xo2( .A(NotAB), .B(B), .Y(line2) ); 

   or2   Xo3( .A(line1), .B(line2), .Y(Y) ); 

    

endmodule // XOR2b 

 

/********************************************/ 

 

module XOR3a( A, B, C, Y); 

 

   input  A, B, C; 

   output Y; 

    

   inv   Xo3_0( .A(A), .Y(NotA) ), 

   Xo3_1( .A(B), .Y(NotB) ), 

   Xo3_2( .A(C), .Y(NotC) ); 

   and3  Xo3_3( .A(NotA), .B(NotB), .C(C), .Y(line3) ), 

   Xo3_4( .A(NotA), .B(B), .C(NotC), .Y(line4) ), 

   Xo3_5( .A(A), .B(NotB), .C(NotC), .Y(line5) ), 

   Xo3_6( .A(A), .B(B), .C(C), .Y(line6) ); 

   nor2  Xo3_7( .A(line3), .B(line4), .Y(line7) ), 

   Xo3_8( .A(line5), .B(line6), .Y(line8) ); 

   nand2 Xo3_9( .A(line7), .B(line8), .Y(Y) ); 

 

endmodule // XOR3a 
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/********************************************/ 

 

module NOR9(In, Out); 

 

   input [8:0] In; 

   output      Out; 

 

   nor9 n9(.A(In[0]), .B(In[1]), .C(In[2]), .D(In[3]), .E(In[4]), .F(In[5]), 

    .G(In[6]), .H(In[7]), .I(In[8]), .Y(Out) ); 

 

endmodule // NOR9 
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RTL Development 

We use a hybrid C++/Verilog simulation approach for the Scale RTL. After 

implementing the RTL for a block of the design, we use Tenison VTOC to translate the 

Verilog into a C++ module with input and output ports and a clock-tick evaluation method. 

We then wrap this module with the necessary glue logic to connect it to the C++ 

microarchitectural simulator. Using this methodology we are able to avoid constructing 

custom Verilog test harnesses to drive each block as we develop the RTL. Instead, we 

leverage our existing set of test programs as well as our software infrastructure for easily 

compiling and running directed test programs. This design approach allowed us to 

progressively expand the RTL code base from the starting point of a single cluster, to a 

single lane, to four lanes; and then to add the AIB fill unit, the vector memory unit, the 

control processor, and the memory system.  

Datapath Pre-Placement 

We used a C++-based procedural datapath tiler which manipulates standard cells 

and creates design databases using the Open Access libraries. After constructing a 

datapath, we export a Verilog netlist together with a DEF file with relative placement 

information. 

 We incorporate datapath pre-placement into our CAD tool flow by separating out 

the datapath modules in the source RTL; for example, the cluster datapaths for Scale 

include the ALU, shifter, and many 32-bit muxes and latches. We then write tiler code to 

construct these datapaths and generate cell netlists. During synthesis we provide these 

netlists in place of the source RTL for the datapath modules, and we flag the pre-placed 

cells as dont touch. In this way, Design Compiler can correctly optimize logic which 
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interfaces with the datapath blocks. During the floorplanning step before place-and-

route, we use scripts to flexibly position each datapath wherever we want on the chip. 

These scripts process the relative placement information in the datapath DEF files, 

combining these into a unified DEF file with absolute placement locations. We again use 

dont touch to prevent Encounter from modifying the datapaths cells during placement and 

optimization. We use Encounter to do the datapath routing automatically; this avoids the 

additional effort of routing by hand, and we have found that the tool does a reasonable job 

after the datapath arrays have been pre-placed. 

 As a simple example of the ease with which we can create pre-placed datapath 

arrays, Figure 30(a) shows a small snippet of Verilog RTL from Scale which connects a 

32-bit mux with a 32-bit latch. Figure 30(b) shows the corresponding C++ code which 

creates the pre-placed datapath diagrammed in Figure 30(c). The placement code is 

simple and very similar to the RTL, the only extra information is the output drive strength 

of each component. The supporting component builder libraries (dpMux2 and dpLatch h en) 

each add a column of cells to the virtual grid in the tiler (tl). By default, the components 

are placed from left to right. In this example, the dpMux2 builder creates each two-input 

multiplexer using three NAND gates. The component builders also add the necessary 

clock gating and driver cells on top of the datapath, and the code automatically sets the 

size of these based on the bit-width of the datapath. We used our datapath pre-placement 

infrastructure to create parameterizable builders for com- ponents like muxes, latches, 

queues, adders, and shifters. It is relatively straightforward to assemble these components 

into datapaths, and easy to modify the datapaths as necessary. In the end, we pre-placed 

230 thousand cells, 58% of all standard cells in the Scale chip. 
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  (a) Verilog RTL (b) C++ pre-placement code (c) Datapath cells 

Figure 30:  Datapath pre-placement code example. 
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