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Abstract

Travel time is a matter that a↵ects most of us, especially those that live in highly congested cities.

Ideally, we want to reduce travel time as much as possible, thereby freeing up more of our time

and enabling a higher quality of life. Data collection of transportation metrics helps us get a

clearer picture of the transportation system, and helps us make smarter choices when it comes

to improving the existing system. The rapid emergence of interconnected mobile devices carried

along by travelers opens up many possibilities for gathering data as they travel, and also to serve

them relevant data so that they can make smarter choices when it comes to their traveling. It is

estimated that the market share of smartphones would continue to grow for the foreseeable future,

making it a rich source for data collection at large scale. Therefore, with the goal of minimizing

travel time in mind, we explore various means of making use of these mobile devices to collect

data and ultimately improve transportation systems. In particular, we report on the evolution of

data collection in the area of transportation research, report on novel case studies in this area, and

report in depth on one implementation of a smart data collection application.
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Chapter 1

Introduction

The prevalence of smart mobile devices among motorists opens up possibilities for improving trans-

portation systems. These mobile devices are equipped with many instruments for data gathering,

some of which include the GPS chip, proximity sensor, ambient light sensor, accelerometer, mag-

netometer, and gyroscope [1]. Some areas for improvement we consider in this paper include using

the phone directly as a data input device instead of using paper forms, using real time data from

the phone’s GPS to monitor tra�c instead of expensive sensors installed on roadways, and usage

of smartphone sensors to get a more realistic and accurate picture of the transportation system.

The approach taken in this study was to research and report on case studies involving the usage of

smartphone sensor data to improve transportation systems, and then describe one implementation

of a smart data collection application.

This area of research is interesting because smartphone usage is increasing, the cost of data

connection is decreasing, the speed of data connection is increasing, and roadway congestion con-

tinues to be a major problem in highly populated areas. Even a small improvement in travel time

can have a huge impact on the overall transportation system, and can bring big savings in resources

for the entire population. It is relatively expensive to install physical devices on roadways, while

smartphone data can reduce the costs and also give more accurate predictions. Furthermore, the

usage of smartphone data to replace already existing roadside sensors can reduce maintenance

costs for the governing authorities in the long run. Additionally the increase in the amount of

sensor data available increases the demand for smarter ways of collecting the data and processing

it for useful purposes. There are still too many cases where pen and paper are used as the means

of data gathering, when it is much more e�cient to make use of mobile devices.

In chapter two we give a summary of previous work in the literature, and explore the sub-

ject of smart data collection as it pertains to transportation research. We briefly explore various

means of smart data collection methods that have been used in the past, including the usage
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of radio frequency identification transponders, automatic license plate recognition systems, GPS

and/or Automatic Vehicle Location technology built into existing fleets of vehicles, GPS enabled

smartphone, and wireless sensor nodes. Manual data collection strategies that were used for many

decades in the past are also discussed to compare and contrast with the newer methods that

are being implemented. Tra�c monitoring using existing cell tower information is also consid-

ered because of its potential to be used for tra�c monitoring even without smartphones with

data connections. Finally, we report on various projects that were already implemented by state

transportation departments to make use of smartphones to improve transportation systems.

In chapter three we report a bit more in depth on five very impressive case studies in the use of

smartphones to improve transportation systems. ParkSense is an application that uses a novel Wi-

Fi signature matching technique to automatically detect when a user has vacated a parking spot.

Nericell is an application that makes use of many sensors in the phone to detect road conditions.

For instance, the accelerometer was used to detect braking, potholes, and bumps on the road,

while the microphone was used to detect honking. Mobile Millennium was a large scale joint e↵ort

by organizations from the public sector, private sector, and academia to create a system that

could use GPS traces from smartphones to give real time tra�c predictions. Much like the Mobile

Millennium project, Google tra�c estimates also make use of GPS data sent from users of their

mobile mapping applications to output real time tra�c estimates. Finally, we consider a novel

approach to predicting bus arrival times using data collected by on-board passenger smartphones.

In chapter four we discuss the implementation of a smart data collection application. The

purpose of this application was to facilitate the collection of data at tra�c incident situations by

making use of smartphones. It was expected that the implemented smart data collection application

would reduce the time taken for data collection, and increase the accuracy of the data collected.

Several experiments were conducted to help test this hypothesis. We report on the test results

from the experiments and the analysis of the results. Also discussed in this chapter is the technical

design and implementation details of the application. Finally, we report on the limitations and

problems with this solution, and consider means of overcoming the limitations and improving the

prototype so that it is reliable enough for real world use.
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Chapter 2

Background

In this chapter, the topic of smart data collection with respect to transportation systems is defined

and explored. Manual data collection strategies are also discussed to compare and contrast with

the newer means of data collection. Previous studies and projects in this field are referenced

throughout for further research.

2.1 Smart Data Collection

In this paper, we consider that smart data collection with respect to transportation systems is to

use automated systems to collect, process, and report data. Furthermore, this paper is focused on

the usage of smartphones as the means for the data collection. This is in contrast to data collection

by means of human involvement and manual calculations.

One of the smart data collection methods in transportation systems involve using radio-

frequency identification (RFID) transponders to track travel time. Examples of such systems

include Fastrak in California and the EZ-Pass on the East Coast [2]. The system works by using

readers installed on the roadside, and when the vehicle containing the transponder crosses that

location the time is recorded. Therefore, the travel time and speed between two readers can be

measured. However, there are many disadvantages to this method, one being the high cost involved

in installing the reader, leading to poor coverage. In one study, it was estimated that the capital

cost for one detector site is between $18,000 to $38,000, and the capital cost for the operation

center between $37,000 and $86,000 [2]. Second disadvantage is that only travel time between two

locations can be obtained, even then the instantaneous velocity between the two locations cannot

be obtained. The advantage in this method is that it is a very reliable and straight-forward method

for calculating travel time and speed, and if a city already has detector sites installed for tolling

purposes, then this method is cost e�cient.

Another smart data collection method in transportation systems is the use of license plate
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recognition (LPR) systems, where cameras deployed along the roadway use image processing tech-

niques to match up vehicles as they cross over sensors. An example of such a system is the Oregon

Department of Transportation’s (ODOT) Frontier Project [3]. In that project, the ODOT de-

ployed the video processing system with license plate recognition software on a 25 mile section

of rural highway in Oregon. A total of six license plate recognition cameras were deployed, three

in each direction, resulting in long segments between the cameras. Consequently the travel time

predictions given by the system could be very inaccurate for vehicles just entering the segment.

They compared the travel times predicted by their system to actual probe vehicles equipped with

GPS devices and found that the results were not statistically di↵erent. However, they further rec-

ommended that the system be tested in more congested tra�c conditions [3]. The disadvantages

in this system are similar to that of RFID systems. It is costly to cover a wide range. And since

travel time can only be calculated as a vehicle crosses the end goal, the conditions in the middle

of the segment cannot be accurately predicted.

Usage of Global Positioning System (GPS) devices on vehicles can be used for smart data

collection purposes. Fleets of vehicles that are already equipped with GPS or Automatic Vehicle

Location (AVL) technology such as FedEx, UPS Trucks, taxis, buses, or patrol vehicles can be used

as probes to gather travel time data. This a smart data collection method because the primary

goal of such fleets of vehicles was not to gather tra�c data, and the process of collecting the data

is automatic. In one previous study, the researchers studied using Freeway Service Patrol (FSP)

vehicles in Los Angeles County as probe vehicles. The FSP vehicles were equipped with a Mobile

Data Terminal (MDT), which gets polled by the AVL system [4]. The goal was to determine how

the data from these vehicles can actually be used for estimating tra�c conditions, how to use the

data to augment existing loop detector data, and determine infrastructural requirements that are

necessary to make things possible. The study concluded that it was di�cult or impossible to use

FSP vehicles to infer ambient speed. There was a significant di↵erence between FSP vehicle speeds

and floating car speeds, and the di↵erences in speed did not appear to be systematic [4].

Usage of GPS enabled smartphones is now one of the most promising methods of sensing tra�c

conditions. We look at several case studies that use this method later on in the paper. In addition

to speed and travel time information, other quantities like instantaneous velocity, acceleration,

and direction of travel can also be inferred [5]. The prevalence of smartphones enables a wide

area of coverage of the transportation network, and this method is foreseeable to be used at a

global scale. The main drawbacks to this method are the increased energy consumption of the

handset, and the privacy concerns of the individual sending the data. These drawbacks can be

achieved with di↵erent sampling strategies, several of which were explored in the mobile century

field experiment [5].

Wireless sensor nodes installed on road sides are another means of smart data collection. In
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particular, the SFPark project uses wireless sensor nodes installed into asphalt at parking spots in

order to detect whether the parking spot is occupied or not [6]. Commercial vendors like Streetline

uses similar technology to show parking availability in more than 20 cities [7]. However, the

downside to these technologies is that its high cost makes it unlikely to be deployed at a large

scale. The SFPark program proposed to cover 25% of the parking spots in San Francisco at an

initial cost of $19.8 million [6]. The ParkNet project [8], proposed to install a GPS receiver and

a passenger-side-facing ultrasonic range finder on probe vehicles to detect vacant parking spots.

After conducting a trial run on 500 San Francisco taxicabs, they found that the system would

provide adequate coverage and cost savings by a factor of 10-15 compared to the SFPark project.

On the other hand, pay-by-phone parking applications, like ParkMobile [9] and PaybyPhone [10],

are gaining traction and widespread usage in many cities. These applications have some relevant

data on the usage of parking spots, but the data is not complete. There were studies that looked

to combine data from these pay-by-phone parking applications and sensor data from smartphones

to get a more accurate picture of parking availability.

Lastly, using data from automated spot speed collection devices to extrapolate tra�c speeds

and travel times could be considered another form of smart data collection. The most widely used

spot speed detection device is the inductance loop detector [11]. The inductance loop detector

system, figure 2.1 from [12], consists of wire loops wound in a shallow slot sawed in pavement, a

lead-in cable from the curbside pull box to the intersection controller cabinet, and an electronics

unit housed in a nearby controller cabinet [13]. It works by detecting a decrease in the inductance

of the loop as a vehicle passes over or stops within the detection area [13]. The most accurate

method for calculating the speed with loop detectors is to use two loop detectors in series, known

as a “speed trap.” The accuracy of this method depends on the length of the trap. According to a

study, done by the Texas Transportation Institute, the optimal length for the speed trap was 9m

(30ft) [14]. Furthermore, they found that the average error of the speed estimate was about 1.5mph

for an optimal speed trap . There are numerous other devices that are capable of collecting spot

speeds including piezoelectric sensors, infrared sensors, magnetic sensors, video tracking systems,

doppler microwave, passive acoustic sensors, and pulse ultrasonic detectors [15].

2.2 Manual Data Collection Strategies

The most basic approach used in the past was to use test vehicles in which a passenger on board

would manually record elapsed time at predefined checkpoints. The Highway Congestion Monitor-

ing Program (HICOMP), which was carried out by the California Department of Transportation

is an example of this technique [16]. The driver would vary his driving style to match either the

average car, the maximum car (traveling at speed limit unless impeded by tra�c), or floating car

5



Figure 2.1: Inductive Loop Detector.

(driver attempts to pass as many cars as cars that passed the test vehicle). The floating car method

is the most commonly used style, and the checkpoints at which data is gathered are usually spread

over 0.25 to 0.5 miles [11].

In the test vehicle method, it is important to calculate the sample size n of test vehicles needed

to get an acceptable estimate. Equation 2.1 is the standard sample size equation, where t is the

t-statistic for the specific confidence level, s is the standard deviation of travel time, and ✏ is

the maximum specified allowable error which is a percentage value in the range of 10-15 percent.

Equations 2.2 and 2.3 show the coe�cient of variation and relative allowable error respectively

where x̄ is the mean travel time. The relative allowable error is expressed as a percentage, usually

in the range of 5-10 percent [11]. Equation 2.4 can be used if the sample size is 30 or more, and

here the z value is from the normal distribution table. After the sample size is determined, it is

important to distribute the sample runs evenly throughout the time interval [11].

Sample Size, n =

✓
t ⇤ s
✏

◆2

(2.1)

Coe�cient of Variation, c.v. =
s

x̄

(2.2)

Relative Error, e =
✏

x̄

(2.3)

Sample Size, n =
⇣
z ⇤ c.v.

e

⌘2
(2.4)

Other statistics of interest include average travel time (equation 2.5), and average speed (equa-

tion 2.6). In these equations, n is the total number of travel times reported, and d is the vehicle
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distance traveled.

Average Travel T ime, t̄ =

P
n

i=1 ti

n

(2.5)

Space�Mean Speed, v̄

SMS

=
distance traveled

avg. travel time

=
n ⇤ dP

t

i

(2.6)

Furthermore, standard deviation (equation 2.7) of travel time is of interest because it provides

information about the variability of tra�c conditions.

standard deviation, s =

sP
n

i=1(ti � t̄)2

n� 1
(2.7)

The equipment used in this method of data collection typically include pen, paper, audio

recorder, portable computer, stopwatch, clipboard, data sheets, and data collection software. How-

ever, over the years there have been improvements. Distance measuring instruments (DMI) can be

used to determine travel distances. Original DMI units, in the area of transportation research, used

magnetic wheel sensors to measure revolutions. However, these instruments were not very reliable

because it had to be calibrated often, and sometimes the wheel sensors would fall o↵ or unbalance

the wheel. DMI technology was improved such that it would sense pulses from the transmission

and record the information directly using a portable laptop. The received pulse information could

be translated into distance and speed measurements. GPS devices have also been used to calculate

travel times. The GPS, which is connected to a portable computer, is used to collect latitude and

longitude data and then determine speed and distance [11].

The advantage in the manual method of data collection is that it requires no special equipment,

and it does not require a high skill level. However, there are a lot of disadvantages. There is the

labor requirement of the driver and the observer. It has a low level of detail because the data

collection is done by humans on few sample runs. Human involvement also means there is greater

room for error in collecting the data. There are also the costs involved in the test vehicle, data

entry personnel, and supervisory personnel.

Usage of aerial surveys is also a manual data collection method that has been used to measure

tra�c flow. Tra�c densities can be estimated from consecutive aerial photographs taken as a plane

flies along a corridor. Vehicles in the consecutive images can be counted, and since the distance

between the images is known, the corresponding tra�c density can be estimated. There is the

potential to automate some parts of this method. For instance, satellite imagery could be obtained,

and image processing techniques could be used to gather tra�c density information. Furthermore,

advanced image processing techniques could match or track a vehicle through consecutive images

and provide travel time estimates. In this regard, researchers at Georgia Institute of Technology
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have been testing and studying the usage of drones to monitor tra�c conditions, and to provide

live video and sound from scenes [17].

2.3 Tra�c Monitoring using Cell Tower Information

It is worth noting that, even before the prevalence of sensor enabled smartphones, there have been

several studies that were conducted to use cell tower information to identify the location of the

handset [18], and thereby using the location changes of the handset to estimate tra�c conditions.

The studies conducted show that cell tower based location tracking is possible with GSM, CDMA,

3G, and even Analog based mobile phones. The wider the bandwidth, the more conducive it is to

calculate the location. And since the trend in telephone standards from analog to GSM/CDMA

to 3G has been to widen the bandwidth, this method of calculating position remains promising

into the future [19].

The advantage of this method is that more of the population can participate in sharing tra�c

related data because this method does not require a smartphone. It makes use of the existing

infrastructure of the cellular telephone systems, and does not require extra infrastructural costs.

In urban areas with high tra�c there tends to be more cell towers, enabling a more accurate location

estimate. Furthermore, this method is also a lot more power e�cient than GPS based tracking

methods. The major disadvantage of this technique is that it is not very accurate at locating the

device, and hence makes it di�cult to estimate speed of the motorist. In particular, instantaneous

velocity at a specific point in time is very di�cult to capture. However, it may be possible to

estimate instantaneous velocity using Doppler measurements on CDMA based phones [5].

Cell tower based tra�c monitoring is largely made possible thanks to Federal Communications

Commission’s E-911 (Phase II) mandate, which requires that wireless service providers must pro-

vide the location of the incoming wireless call to the Public Safety Answering Points (PSAPs) [20].

The accuracy of the reported location needs to be within 50 to 300 meters. For network-based

location tracking it requires an accuracy of 100 meters for 67% of the calls, and 300 meters for

95% of the calls. For handset-based location tracking it requires 50 meters for 67% of calls, and

150 meters for 95% of calls. The E-911 mandate, which was established in 1996, required that

all wireless licensees, broadband Personal Communications Services (PCS) licensees, and certain

Specialized Mobile Radio (SMR) licensees meet this requirement by October 1, 2001 [19].

There are three main methods that can be used to derive position in a cellular system; they

are signal profiling, angle-of-arrival, and timing measurements. Signal profiling matches the profile

of the received signal to a database of measured signals to get an estimate of the location. The

angle-of-arrival method calculates the angle of the received signal from the mobile device to two

or more cell towers. The resulting intersection of these angles pinpoints the location of the device.
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The timing measurement uses the time-of-arrival of received signals to calculate the distance. The

arrival time is proportional to the travel distance of the signal. By taking timing measurements

from two or more base stations it is possible to pinpoint the location. It is possible to combine

the timing measurement technique with the angle-of-arrival technique, and derive position from a

single base station [19].

The positioning techniques discussed above can be used along with self-positioning (handset

based positioning) or remote-positioning (network based positioning). In the former, it is the

responsibility of the handset to calculate the location based on reception signals from base stations.

In the latter, it is the responsibility of the system to work in a co-operative manner to calculate

the location of the device. The advantage of self-positioning is that it preserves privacy of the

user. The main advantage of remote-positioning is that locations can be calculated on most types

of existing phones, and the users would not need to upgrade their phone. One disadvantage of

self-positioning is that it is not practical to use the signal profiling method because the device

would need to carry along a large database that needs to be continuously updated. For both of

these methods to be used for travel time estimation, there needs to be a Location Service Center

to continuously gather the resulting location information from either the network or the device,

and process it to calculate travel time [19].

2.4 DOT Implementations

The Tennessee Department of Transportation (TDOT) has implemented an intelligent transporta-

tion system called SmartWay. The system is composed of many components, including roadway

tra�c sensors, camera video surveillance, dynamic message signs, freeway service patrol vehicles,

transportation management centers, and various means of distributing information back to mo-

torists. They recently released the TDOT SmartWay mobile application for iOS and Android.

This application allows customers to monitor tra�c conditions, view live camera feeds, receive

incident notifications, and even receive Amber Alerts. The system costs about $1.3 million to

maintain annually [21].

The Federal Railroad Administration (FRA) launched an application to provide safety infor-

mation on the nation’s highway-rail grade crossings. The goal of this application was to increase

awareness of railway crossings around an individual in order to improve safety. The application

also allows users to report information about grade crossings back to the FRA [22].

The Iowa Department of Transportation has implemented an application called “Iowa 511” to

provide real-time tra�c information to motorists. The application shows current tra�c speeds in

a zoom-able and scrollable map. Furthermore, users can look at live camera feeds, get updates

on road work, and read text from electronic roadway signs. The 511 information is also made
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available via a mobile website, a full desktop based website, telephone, social media websites, and

XML feeds [23]. The Virginia Department of Transportation, Utah Department of Transportation,

and North Dakota Department of Transportation also have a similar application to disseminate

511 information to motorists [24, 25, 26].

The Colorado Department of Transportation (CDOT) has launched real-time notifications of

road conditions to users of its CDOT Mobile application. In order to not overburden the users

with irrelevant notifications, the system will only generate notifications for major accidents, road

closures, and other incidents that have significant impact on travel time. Also the notifications

are sent only at peak travel times. The goal of providing real-time notifications is to give busy

motorists, that would otherwise not check tra�c alerts, relevant information regarding tra�c

conditions so they could pick an optimal route to their destination [27].

The United States Department of Transportation’s Intelligent Transportation Systems Joint

Program o�ce has initiatives focused on intelligent vehicles and intelligent infrastructure to cre-

ate intelligent transportation systems. The Real-Time Data Capture and Management program is

aimed at capturing data from connected vehicles, mobile devices, tra�c management centers, auto-

mated vehicle location systems, toll facilities, parking facilities, and transit stations. Furthermore,

this program explores means of distributing the collected data in real-time to relevant parties, and

archiving the data for future analysis [28]. The data that is collected also enables the creation

of mobile applications, which is the goal of their Dynamic Mobility Applications program. The

Applications for the Environment: Real-Time Information Synthesis (AERIS) program is aimed

more specifically at creating applications that facilitate “green” transportation choices by travelers

and operators. The AERIS program explores five di↵erent application bundles: Eco-Signal Oper-

ations, Eco-Lanes, Low Emissions Zones, Eco-Traveler Information, and Eco-Integrated Corridor

Management. Applications under the Eco-Traveler Information bundle help travelers pick the

most eco-friendly route (minimizing fuel consumption), get fueling information, search for parking

places, and get real-time driving advice in order to drive in a more fuel e�cient manner [29].

10



Chapter 3

Case Studies

In this chapter, we report on five interesting case studies that showcase the usage of smartphone

data to improve transportation systems. These projects come from a variety of sources, and give

a good indication of the widespread research and development in this field.

3.1 Mobile Millennium & Mobile Century Field Experiment

Mobile Millennium project was one of the earliest broad scale projects aimed at making use of

data collected from GPS sensors in cellular devices to monitor real time tra�c conditions, and

relay that data back to consumers. The project came about through close collaboration between

partners in the public sector, private sector, and academia. In particular the partners involved

were Nokia Research Center (NRC), California Center for Innovative Transportation (CCIT), and

University of California at Berkeley. The project ran through a period of one year in the bay area,

launching on November 10th, 2008, and ending on November 10th, 2009. During that time period,

they had a mobile application that was available for consumers to participate in the program. It

was one of the first consumer tra�c estimation applications in the market, with more than 2000

registered users. The Mobile Millennium tra�c monitoring system continues to be operational, and

broadcasts highway and arterial tra�c information in real-time using data gathered from various

feeds. The Mobile Millennium project was an extension of an earlier project called the mobile

century field experiment, which was also conducted by researchers at University of California at

Berkeley [30].

The mobile century field experiment, which preceded the mobile millennium project, was used

to determine the feasibility of leveraging existing GPS devices and communication network to

create a tra�c monitoring system. The system was composed of four layers: the GPS-enabled

smartphones, the cellular network, data aggregation and tra�c estimation servers, and information

consumers. The experimenters utilized 100 vehicles equipped with Nokia N95 phones driving 10
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mile loops for eight hours across a stretch of freeway near Union City in the San Francisco Bay

Area. This section of highway was ideal for the experiment because it experienced both free-flow

and congestion throughout the day, which allows the system to be tested under a variety of tra�c

conditions. Previous studies have shown that no more than 5% penetration of probe vehicles

are necessary to get an accurate estimate of travel time. Given that about 6000 vehicles cross

that section of freeway per hour and there are 100 test vehicles, the required cycle time was 20

minutes [5].

One of the areas the mobile century project explored was that of a sampling strategy with

respect to GPS data. They identified two types of sampling strategies, temporal sampling and

spatial sampling. Temporal sampling is where the vehicles report their information at time interval

T irregardless of their positions. And spatial sampling is where the vehicles report their information

as they cross a spatially defined boundary. The former is more challenging because it presents a

heavier communication load on the back end servers, and it does not preserve the privacy of the

transmitting party. They chose the later approach, and devised Virtual Trip Lines (VTLs) as a

means of achieving spatial sampling [5].

The application was designed to send travel time data from the phone to their servers as the

motorist crossed one of the designated VTLs. Virtual trip lines are geographic markers across

a roadway where each line is identified by two GPS locations. These VTLs are downloaded by

the application for nearby locations, and stored locally on the device. The advantage in using

VTLs is that it protects the privacy of the individuals sending the GPS data. It achieves this

because the data points being sent are identified by the ID of the VTL, and not by the mobile

device that generated the update. All data packets sent from a mobile device must contain mobile

device identification information for billing purposes by the network provider. The mobile century

system removes this information by first passing the requests through an ID proxy server, which

authenticates each client and then removes the ID information [5].

The data being sent from the smartphones includes position, speed, direction of travel, and

optionally travel time between two consecutive trip lines. This data gets aggregated by virtual

trip lines, and gets fed into algorithms which run on tra�c estimation servers at Berkeley. Since

the tra�c density cannot be extrapolated from the incoming data stream from smartphones, they

were not able to use Lighthill-Whitman-Richards (LWR) partial di↵erential equation (PDE) that

is typically used in tra�c theory. Instead, they came up with a new partial di↵erential equation,

based on the original LWR PDE, that is designed to take in velocity measurements as input. The

resulting model was discretized using Godunov scheme so that the Ensemble Kalman Filtering

(EnKF) approach could be used to estimate the velocity field in the highway [31]. Kalman Filtering

(KF) and Particle Filtering (PF) are techniques that are used often for tra�c state estimation,

but the advantage of the method proposed in this project is that it combines the best of the two
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approaches [31]. The resulting tra�c estimates with the highest confidence gets pushed to the

tra�c report server, which is the endpoint for information consumers [5].

The experimental results were very encouraging, and the speed estimates closely matched the

511.org displays which combines data from loop detectors, FasTrak-equipped vehicles, and speed

radars. Since the smartphones logged location data every T seconds as well, they were able to

reconstruct VTLs at any point in the route. Specifically, they recreated VTLs at the 17 loop

detector sites, and compared the velocity estimates between the two methods. Their finding was

that the results matched very closely, showing that cell phone data was an adequate replacement

for loop detector data. The ground truth velocity was calculated by using high definition video

cameras and license plate recognition. The results showed that the VTL based data estimates were

actually closer to the ground truth than the loop detector data. Another finding from this study

was that a penetration rate of about 2-3% among the driving population would be su�cient to

provide accurate measure of tra�c flow [5]. This encouraging finding was one of the reasons the

mobile millennium project came about.

3.2 Google Maps Tra�c Estimates

The tra�c estimates shown on Google maps 3.1 is a good example of collecting data from mobile

devices to improve transportation e�ciency. It uses crowd sourcing to gather data, sent from a

multitude of mobile devices, to give an estimation of real time tra�c conditions. Green indicates

low congestion, yellow indicates medium congestion, and red indicates high levels of congestion [32].

The data comes in from Google Maps applications for mobile devices, if the device is GPS enabled.

The data is collected continuously as the vehicle is in motion, and this stream of data is then

aggregated to get an estimate of how fast the vehicle is moving. The data being reported from

vehicular tra�c is further aggregated to smooth out anomalies and outliers in the data. For

example, a postman stopping more often than the average driver would be removed from the

dataset [33].

Google has taken steps to ensure that data collected from the users does not compromise their

privacy. First of all, the data being sent is anonymous, and thus cannot be used to pinpoint

a specific person. When a variety of data is being reported, they combine the data to make it

di�cult to tell one device from another [33]. They also delete the start and end points from

the route data being reported so that it is not possible to tell the complete route taken by the

anonymous person. If the users are still wary of their privacy being compromised, they can opt-out

of the data collection.

This system already has provided many benefits to users, and it also has tremendous potential

for future improvements. One of the biggest benefits to the end user is being able to reduce time
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taken to travel from point A to point B by avoiding roads that are congested. The mapping

application allows the user to pick among several routes along with the estimated time it would

take for the route. The user can also zoom-in on the map to see the colored tra�c indicators

overlaid on the roads. An area for improvement is if the application is able to divert tra�c to

alternate routes based on real time tra�c estimates [33]. This would have a positive impact on

the whole transportation grid. Another area for improvement would be giving an estimate on how

long it would take the congestion to clear up; that way people could choose to delay their trip

instead of waiting in tra�c.

Figure 3.1: Google Maps Tra�c Estimates.

3.3 Nericell

The Nericell project was aimed at monitoring road and tra�c conditions using smartphones, with

an emphasis on developing world environments where road conditions are more complex. In con-

trast to the Mobile Millennium project and Google Maps Tra�c Estimates, this project uses sensors

besides the GPS sensor. In particular, the accelerometer and microphone were used to infer road

conditions and noisiness of tra�c respectively. Additionally, it was also designed to sense bumps

on the road, braking, and honking in order to infer tra�c conditions [34].

The microphone was used as a sensor in this case to detect honking. They were careful not to

transmit any audio to the server. Instead, they processed the audio samples to detect honks on

the phone, and sent the processed information to the server. Simply detecting spikes in the audio

samples was not su�cient to detect honks because honk sounds tend to be muted inside an enclosed

14



vehicle, and also loud sounds could be mistaken to be a honk. Therefore, they opted for a heuristic-

based approach. They were able to detect spikes in the energy level in the frequency domain of

the audio sample. If the spike was between 5 and 10 times the mean, then they considered it a

honk. According to their calculations this detection scheme was very energy e�cient, only taking

58 ms of CPU time to detect honks in 1 second of audio [34].

The accelerometer was used as a bump detector. The challenge here was that the impact of the

bump varied depending on the speed at which the vehicle was traveling. To mitigate this challenge,

the researchers devised two separate detectors - one to be used at low speeds (< 25 kmph), and

one to be used at high speeds (�25 kmph). The bump detector for low speeds looks for a sustained

dip vertically, reaching below a threshold T and lasting for at least 20 ms. The bump detector for

high speeds looks for a steep rebounding spike vertically, as a result of the vehicle’s tire hitting the

bottom of the pothole. The false positive rate for both detectors was very low (< 10%); however

the false negative rate for both detectors was high (20-30%) [34].

For brake detection, the researchers had the option of either using the GPS or the accelerometer

for sensing. They opted to use the accelerometer because it consumes less power than the GPS.

Also it is more challenging to detect brakes using the GPS at low speeds due to its localization

error of 3-6 meters. If we assume the vehicle is traveling along the x-axis, then braking would

make the accelerometer experience a force pushing it forward causing it to have a surge in the x-

direction(a
x

). Hence, to detect a brake, they computed the mean of a
x

over a period of N seconds.

If the mean exceeds a threshold T then it is considered a brake. To measure the accuracy of this

detection method they needed to establish ground truth. And for that purpose they used GPS

based brake detection. They computed the instantaneous speed, and if the vehicle experienced a

deceleration of at least 1m/s

2 sustained over at least 4 seconds then it was considered a brake.

The results showed that the false negatives were low at 4-11%, while the false positives rates were

quite high at 15-31% [34].

As the program detects various roadside conditions, it is important to mark the location where

the conditions were detected. They considered GPS, WiFi, and GSM based techniques based

on previous studies in outdoor localization. But GPS and WiFi options were discarded because

they consume a lot of energy, and therefore it would be an impediment for user adoption of

the application. They applied RSSI-based localization algorithms on GSM data as described in

previous studies, but due to the high density of cell towers in Bangalore these algorithms were not

very reliable. Instead, they used the simple approach of strongest signal based localization. This

approach relies on a database of strongest signal tower IDs at a given latitude and longitude. The

phone’s position could then be located via this database given the current strongest signal tower

ID. The results from experimenting with this localization method showed that the median error

for distance was 117 meters, and the median error for speed was 3.4 kmph [34].
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3.4 ParkSense

ParkSense is a project aimed at using smartphone based sensors to detect if a driver has vacated a

parking spot. Furthermore, the researchers wanted to keep the power consumption of the smart-

phone as low as possible in order to make the final solution more viable for real-world use [35].

This study is di↵erent from previous work in the field in many ways. Google OpenSpot is an

application that attempt to find vacated parking spots by using crowd sourcing [36]. It lets the

vacating driver manually submit that he or she is vacating a parking spot, thereby the querying

users can see the vacated spot on a map. However, in practice very few users have been reporting

vacated spots because there is no incentive to do so. Therefore, the application has rarely had up

to date information for querying users. As discussed briefly in the smart data collection section 2.1,

there are many projects aimed at using wireless sensor nodes to detect parking availability in real

time. However, ParkSense does not rely on installation of additional sensors. It merely piggy backs

on smartphone sensors that people are already carrying around.

Instead of creating a whole system from scratch, ParkSense seeks to augment existing pay-

by-phone applications by providing real-time parking availability data. Since these pay-by-phone

applications require the user to pay for the spot upon parking, otherwise the user would risk a

parking ticket, it was possible to detect when a driver has parked at a spot. But these application

were not able to accurately determine when a parking spot was vacated because in most cases the

spot was vacated before the time has expired. Therefore the main objective for the ParkSense

project was to detect when the user has vacated the spot. Furthermore, the detection process

should be automated such that it requires no involvement from the user other than the initial

installation of software on their smartphone [35].

They considered the many sensors available on the phone as possibilities with the goal of picking

a sensor that minimizes power consumption while still being adequate enough to detect whether a

parking spot has been vacated. They first considered the GPS sensor, which is one of the highest

power consuming sensors on the phone. It is possible to detect when the driver has returned to

the parking spot by continuously tracking the GPS location, and the subsequent rapid change in

GPS location would indicate the user is driving away. But in addition to the power consumption

worries, this sensor choice would not be very accurate in cases where the user parks the car and

moves indoors quickly. The second sensing option would be to use a network based location API. In

this method, the phone would scan the surrounding for Wi-Fi access point SSIDs, which gets sent

over the network and looked up against a database to get the location information. However, this

method only o↵ers very coarse grained location tracking, and is limited by the existing database

of SSIDs. The third option they considered was doing a passive scan for surrounding Wi-Fi access

points to get a relative location estimate, and this option was selected because it was su�cient
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to meet the requirements and it was the most energy e�cient. Furthermore, the accelerometer

readings from the phone could have been used to detect whether the user is walking or driving,

and then trigger the more energy expensive Wi-Fi based sensing as necessary [35].

The design of ParkSense uses Wi-Fi access point sensing to detect when a user has vacated

a parking spot. After the user has paid for the parking spot using an existing pay-by-phone

smartphone application, ParkSense captures the signature of the current location via a set of

surrounding wireless access point SSIDs. This signature can be represented as follows, where s
p

(i)

is the SSID and w

p

(i) is the reception ratio for access point i, and n is the total number of access

points observed.
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This signature does not get converted to GPS based location coordinates. But it is su�cient

to meet the requirements of ParkSense, which is to detect when a user has returned to the parking

space and detect when the user has vacated the parking space. As the user moves away from the

vehicle, ParkSense continues to gather these signatures at regular intervals.

In order to detect the user has returned to the vehicle, ParkSense attempts to match the

periodically generated signature against the starting signature (from the parked location). One

of the di�culties they ran into in this process was that the wireless environment is continuously

changing, even if the person and the mobile device is stationary. To get around this issue, they

decided to use a set of normalized reception ratios Ŵ
p

as follows, where ŵ

p

(i) = w

p

(i)/
P
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The following equations were used to define matching between the original signature S
p

and W

p

against the continuously generated signatures S
t

and W

t

. Equation 3.2 was referred to as weighted,

where 0  M  1 and l = |S
p

\ S

t

|. Equation 3.3 was referred to as the weighted di↵erence

because this function penalizes access points for di↵erences between the originally observed and

the currently observed values. Equation 3.4 does not take into account reception ratio at all, rather

it calculates the percentage of original access points being observed.
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In order to test whether the user has begun to drive away from the parking spot, they computed

Jaccard similarity, equation 3.5, between successive signatures at regular intervals. The Jaccard

similarity of two sets S and T is the ratio of the size of the intersection of S and T to the size of

their union [37]. In this case the Jaccard similarity is the ratio of the number of access points in

common between the two signatures to the total number of access points in the two signatures.

As the vehicle increases in speed the Jaccard similarity is smaller.

J =
|S

t

\ S

t�1|
|S

t

[ S

t�1|
(3.5)

The results from experimentation were encouraging, but there are some scenarios in which this

system is not e↵ective. If the user parks the car and then drives away in a friend’s car close by,

then ParkSense will falsely detect a vacant spot. And if the person paying for the parking is not

the person that unparks the car, then ParkSense could not detect the unparking event.

3.5 Predicting Bus Arrival Time

The aim of this project was to predict bus arrival time using mobile phones that the passengers

carry. Although bus companies provide a schedule on bus arrival time at each bus stop, this

time could vary for a number of reasons. The current tra�c conditions might cause a slow down,

perhaps the bus was involved in a tra�c accident, or perhaps the printed schedules are out of date.

Previous studies in this field of transit tracking systems largely relied on GPS enabled devices on

board transit vehicles. In particular, EasyTracker [38] presented a self contained system where

the transit agency would only have to install an EasyTracker enabled smartphone in each of their

vehicles in order to get real time tracking.

The system was composed of three main components: querying users, sharing users, and back

end servers. Querying users would use the mobile application to find the arrival time of the bus

they are interested in. The sharing users are those that are traveling on buses with the mobile

application installed on their smartphones. The back end servers are where the data from sharing

users were processed and made available to querying users. The back end servers are first fed with

data from the pre-processing stage, where the operators of the system would gather data on bus

routes and their corresponding cell tower sequence [39].

The bus routes were identified by using cell tower sequences that the passengers on the bus

would encounter along the bus route. The phone would typically connect to the tower with the

strongest signal at a given location. However, when there are multiple cell towers with similar

strengths, the phone could connect to either one of them. To get around this problem, the re-

searchers decided to include the top three cell towers by signal strength when recording the cell

tower sequence along the bus route. They were able to identify the cell towers by wardriving along
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the bus route, and taking note of the cell tower IDs [39]. It may be possible to automate this

process, whereby the driver would click the begin button at the start of the route to signal the

application to start recording the cell tower IDs along the route and report back to the back end

servers. This could be part of an initialization process a bus driver would have to complete to get

that bus route into the system.

In order to make use of data sent from sharing users, it was necessary to first detect whether the

sharing user is actually on a bus. There were previous studies that researched context awareness

and transportation mode detection using mobile sensors. In [40], the authors were able to combine

wireless on-body sensors with the additional sensors and computational power of smartphones to

come up with a system that was able to classify a variety of postures and activities. However,

those approaches were not applicable in this case to distinguish a user on a bus. The approach

taken in this study was to use the microphone on the smartphone to sample the beeping sound

given o↵ by card readers deployed on buses to collect transit fees. Through experimentation it

was found that a sampling rate of 8KHz was su�cient to detect the beep signal in the 1KHz and

3KHz frequency bands [39].

The cell tower ID based detection alone was not su�cient to distinguish between buses vs. rapid

trains because the train routes have segments that overlap with bus routes. To further distinguish

between these two modes of transportation the researchers made use of the accelerometer readings.

The readings were evidence to the fact that rapid trains move at relatively stable speeds compared

to buses which experience frequent acceleration and deceleration. They took measurements from

the accelerometer at 12.5 second intervals, calculated the variance in acceleration during that

window, and used a threshold to distinguish between the two modes of transportation (bus vs.

rapid train) [39].

The researchers used a modified version of the Smith-Waterman algorithm, which is a dynamic

programming algorithm for sequence matching [41], to match cell tower sequences coming from

sharing users to the cell tower triplet sequences stored in the database. The matching process

begins only if the sequence of cell tower IDs reported by the user exceeds a threshold value greater

than seven. The reason being that since many of the bus routes overlap, a minimum of seven

cell tower IDs are necessary to reliably distinguish between the di↵erent bus routes. Once the

algorithm is triggered, it returns back a score for each of the routes in the database, and the route

with the highest score is selected. If the highest score is less than a threshold value then the

prediction is postponed as well [39].

Sometimes, the cell tower ID sequences sent by sharing users are not long enough to meet the

minimum threshold of seven IDs. In that case, to still make use of that sequence, the back end

server needed to concatenate sequences from sharing users until the sequence is su�ciently long.

To accomplish that, the sharing users were made to send the time interval between audio beeps of
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the card readers. The back end server would then be able to group incoming data by beep interval,

and cell tower IDs. Thereby it was able to concatenate sequences until a su�ciently long sequence

was formed [39].

The arrival time prediction is quite straight forward because they simply summed up the

dwelling time in each of the segments, using historical data, from the current position to the

queried bus stop. If dwelling time in cell i is T
i

, 1  i  n, and the bus’s current cell number is k,

and the queried bus stop’s cell number is q, then the arrival time can be estimated by Equation

3.6.

T =
q�1X

i=k

T

i

� t

k

+ t

q

(3.6)

There are some areas for improvement in the system to make it more reliable. One problem is

that since the cell tower ID sequence has to be su�ciently long, it is not possible to get predictions

for the first few bus stops. The system might have to resort to using historical data for those

bus stops. Overlapped routes remain a challenge especially in downtown areas where several bus

routes share significant overlapped segments [39].
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Chapter 4

NDOT Smart Data Collection

Application

The Nevada Department of Transportation (NDOT) is mandated to collect crash incidents data

and report them to the federal government. This entails data collection using paper forms, and

thereafter data entry into computer systems. Unfortunately, it is a very time consuming process

and introduces errors in both the data collection and data entry. The form that is necessary to

be filed for each accident is the SR1 form, and it is shown in 4.1. It lists the location information

where the accident took place, and the parties that were involved in the accident. If more than

two parties were involved, additional forms would need to be attached. There are three form fields

for location information, and 27 form fields per each party involved in the accident. The o�cer

on duty would be tasked with filling out this form at the time of the accident, and then upon

return to the o�ce it would have to be entered into an electronic system for storage and reporting

purposes.

Therefore, we looked into creating an application that can reduce errors in data collection, and

reduce the time taken for data collection. The final implementation involved creating a mobile

application, taking advantage of sensors and input devices built into the phone, to reduce data

entry but still derive all the data needed for the form.

The three location related form fields were extracted by using reverse geo-location. Out of the

27 form fields per party, 10 fields each were driver and owner information. This information was

extracted by decoding the barcode found on the back side of Nevada driver licenses; details on this

process is discussed later. Six of the fields were vehicle information, and four out of six of these

fields (Year, Make, Body Type, VIN) were extracted by looking up information from an external

API by using the Vehicle Identification Number (VIN). The license plate number and state could

possibly have been extracted by using OCR on the license plate image, but in this case the user
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Figure 4.1: SR1 Form, Report of Tra�c Accident.

was given text fields to type in that information.

4.1 Design & Implementation

After reviewing the requirements set forth by the NDOT, we considered multiple design possibilities

to meet the requirements. It was understood that creating and deploying a production ready system

was beyond the scope of the project considering resource constraints, and what was necessary was

the creation of a prototype that demonstrated the viability of such a system.

The first idea was to create a Ruby on Rails based web application with a SQL based database

back end to lookup driver information. One of the challenges we ran into with that idea was in

gathering sample data and accurate database schema that we could use in our prototype applica-

tion. It was possible to generate garbage data and make up a convenient database schema, but that

would also lose any value in the created prototype because we would not be addressing any real

world di�culties in managing data from possibly complex and secure data sources. We considered

Ruby on Rails because it is open source, and it is based on MVC architecture. However, we did

not have much prior experience with that technology, and with the tight deadlines it could have

been a problem to complete in time. The biggest drawback with this fully web based design was

that we would not have fine grained control over the size and quality of the images that would

get captured from the camera and sent to the server. Furthermore, we couldn’t use the camera to

detect barcodes from the video feed because at the moment, web applications can not have control

over device components.

The second design idea was to focus the prototype fully on extracting the license plate number
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through OCR, and using that to lookup form information by querying a back end database. There

were numerous challenges with that idea, and would have been quite complex to implement reliably.

The challenges were that each state has di↵erent plate designs, getting a high quality picture that

will yield accurate OCR results, and again the di�culty in gathering accurate data and schema.

Furthermore, even though it would be an interesting research experiment to implement that idea,

in reality it is not too di�cult to type in six or seven characters of the license plate. And also

considering that there are many license plate recognition systems available in the market, we would

be re-inventing the wheel in a sense. Therefore, we abandoned this approach, and considered it a

distant possibility if we had time left over after creating a basic prototype.

Finally, we decided to implement a system composed of a mobile application, back end web

service, and a live incident reporting map. The mobile application would be the interface o�cers

would use to collect data and transmit that data to the service. The service would parse out the

incoming data, validate the data, and store that data in a database for retrieval and reporting

purposes. The live incident reporting map is a tool for information consumers. The details of this

system is presented in the sections below.

4.1.1 Application Architecture Overview

The application consists of three main components: an iPhone application, a Representational

State Transfer (REST) based web service, and a live incident reporting map.

Figure 4.2: Architectural overview of the application.

The client side application was used to gather location data (Street, City, and County), driver

licenses of parties, Vehicle Identification Numbers (VINs) of the vehicles, and license plate number

& state of the respective vehicles. This data was serialized to JSON format, and in particular the

image files were compressed, and the byte data was converted to a Base 64 Encoded string to be
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conformant with the JSON standard. The payload size of the message was directly proportional

to the number of parties involved because more parties involved means more driver license images

would need to be sent to the server.

The server side REST web service consumed the JSON payload from the incoming HTTP re-

quest, and converted it to a C# object through model-binding built-into the ASP.NET framework.

This object was then used to validate form input, and to extract all the information needed to

build the SR1 Form object. The resulting SR1 form object was stored directly in the MongoDB

database.

The live incident reporting map made use of Google Maps API to render the map, and Mi-

crosoft’s ASP.NET SignalR library to add real-time web functionality. This would be a tool

travelers can use to lookup ongoing tra�c incidents.

4.1.2 Tools and Technologies

Git was used as the source control tool for this project. One of the main reasons for this choice was

the availability of free code hosting platforms for Git, which reduced the need for us to spend time

setting up a system that would allow collaboration. Both the iOS application and the back end

web application source code were hosted on public repositories on github.com, which is a site that

hosts git repositories, in order to collaborate with others that might be interested in contributing

to this project. Github has many tools like issue tracking, code review, and wiki pages to help

manage the project but those features were not used in this project.

Development on this project was done on an Apple computer because of the need for Mac OS in

order to compile iOS applications. And a Windows 8 virtual machine was used to do development

on the C# based web service. Visual Studio was the main tool used to develop, compile, and

deploy the back end application. On the client side, the Appcelerator Titanium platform was used

to create the application. Titanium Studio was the tool used to develop, compile, and deploy the

iOS application. It is a free tool available for download from Appcelerator.

The iOS application was deployed and tested on an iPhone 5. The simulator was used during

the development phase, and finally it was deployed on the phone for testing. TestFlight application

was used to distribute the application to parties that were interested in trying out the application on

their own phone. TestFlight is a free platform used to distribute beta and internal iOS applications,

but it is not an alternative to the Apple AppStore [42]. Fiddler, which is an application that lets

users send and analyze HTTP requests and responses, was used to test the web service with sample

requests and payloads [43].
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4.1.3 Client Side Mobile Application

The client side iOS application was built using Appcelerator Titanium mobile development plat-

form. The main design pattern used to organize the code was the Model-View-Controller (MVC)

pattern using the Alloy framework. Business logic code for the application was separated out from

the user interface specific code, and into self-contained exportable CommonJS modules.

MVC is a common architectural pattern used to organize user interface code. When considering

a given use case, models are the objects being operated on for that use case. For this application, the

main model object was the form object, which contains all the data the client application collects

to complete the SR1 form. The controllers contain code that processes the requests coming in from

the user by way of user interface controls. An example of a controller used in this application was

the location controller. It contained code to access the geo-location features of the device to get

the location of the accident, and it also contained code to set the model state if the user manually

changed the location information. The views contain code that renders user interface controls, and

populating those controls with data if a corresponding model object is provided. An example of

a view from the application was the location view (Figure 4.3). It contained controls to show a

map to the user, collect location data from the user, and navigate back and forth between other

views in the application. If the form model object already contained location information, that

information was used to pre-populate values for the controls in the view.

<Alloy>
<Window c l a s s=” conta ine r ” id=’ winLocation ’ t i t l e=”Locat ion ”>

<Scro l lV iew layout=” v e r t i c a l ”>
<View id=”mapview” ns=”Ti .Map” width=”320dp”

he ight=”260dp” top=”0dp”
onComplete=” setRegion ” animate=” true ”

r eg i onF i t=” true ” userLocat ion=” true ”
mapType=”Ti .Map.STANDARDTYPE” >

</View>
<Label c l a s s=’ lb lAddres s ’ t ex t=” St r e e t ”></Label>
<TextFie ld id=’ t x tS t r e e t ’></TextFie ld>
<Label c l a s s=’ lb lAddres s ’ t ex t=”City”></Label>
<TextFie ld id=’ txtCity ’></TextFie ld>
<Label c l a s s=’ lb lAddres s ’ t ex t=”County”></Label>
<TextFie ld id=’ txtCounty ’></TextFie ld>
<Label id=’ btnNext ’ onCl ick=”btnNext onClick ”

text=”Next >>”></Label>
<Label he ight=’ 20dp ’></Label>
</ Scro l lV iew>

</Window>
</Al loy>

Figure 4.3: Location View Markup.

Among the many benefits of the separation of responsibilities into modules were code reusability,

testability, and reduced application startup time. Modular code allows us to reuse the functionality

that is encapsulated in the modules throughout di↵erent use-cases of this particular application and

also in other applications if we wish to do so. In particular, should we decide to extend our mobile
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application to support other platforms (Android, Blackberry, or Tizen), we can create platform

specific user-interfaces but still utilize the same modules. This re-use of code is the very strength

of the Titanium platform because as more and more mobile devices and platforms enter the market

it becomes increasingly strenuous and costly to develop and maintain platform specific application

code. Since most applications have the same use-cases regardless of the platform, it becomes a

necessity to ensure that the core business logic is mirrored across the di↵erent platforms. Testing of

the business logic code becomes much easier because that code is separated out from the harder to

test user-interface specific code. The user-interface specific code, having been separated out from

the business logic, becomes less of a necessity to test because we can assume it is the obligation of

the framework developer (Appcelerator Titanium) or the user interface controls developer (third

party developer, or platform sdk provider) to test that code. An example of user-interface specific

code is shown in Figure 4.4. It instantiates the backing controller for the view, and uses that to

open the view. Since there is no application specific logic in there we can assume that it should

work as specified by the framework developer. The modules were loaded just-in-time as requests

come in through the controllers, thereby removing the need to load extraneous code at application

startup, which in turn reduced the time for application’s initial startup. And once a user closed a

view that used a module, that module was unloaded to preserve memory.

var l o c a t i o nCon t r o l l e r = Alloy . c r e a t eCon t r o l l e r ( ’ Location ’ ) ;
$ . tabMain . open ( l o c a t i o nCon t r o l l e r . getView ( ) ) ;

Figure 4.4: Code snippet to open a new view.

Some modules were obtained through Appcelerator Open Mobile Marketplace, some were open

source JavaScript modules obtained through Github, and others were application specific code

that were refactored into modules. Appcelerator Open Mobile Marketplace is an exchange for

application component producers and consumers. It includes both free and paid app modules,

templates, design elements, and cloud extensions [44]. The RedLaser Barcode Scanner module

was one that was downloaded through Appcelerator Open Mobile Marketplace. It is a module

that is provided free of charge by Appcelerator, but it does have limited use restrictions for the

free version. As of this writing, the limit was 25 scans per device and application combination.

However, this was su�cient for proof of concept and testing purposes. Moment.js was an open

source JavaScript library that was obtained through Github. It provides functionality as far as

parsing, manipulating, and formatting dates [45]. In this application it was used to format the

dates to a more readable format. ServiceAgent.js is a module that was created specifically for this

application to encapsulate the logic in communicating with the web service, and to provide the

business logic code an interface to access the web service.
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Figure 4.5: Client side mobile application sequence diagram.

4.1.4 Server Side Web Service

The server side RESTful web service was built using Microsoft ASP.NET Web API platform. This

web service was used to accept data sent from client applications in JSON format, and using that

information to generate the complete SR1 form for storage and post processing.

The Web API based service uses REST principles when processing the requests. The re-

quests come in the form of a URI, a verb (GET, PUT, POST, DELETE), and a set of HTTP

headers. The endpoint URI identifies the resource being operated on. In the NDOT appli-

cation the endpoint URI was http://ndot.azurewebsites.net/api/sr1form, in which case

http://ndot.azurewebsites.net/api/ is the base URI and /sr1form is the resource being oper-

ated on. GET requests were used to read previously submitted forms that were stored in MongoDB.

HTTP basic authentication was used to prevent unauthorized access to the data. This authenti-

cation scheme simply sends the username and password, base 64 encoded, in the Authorization

HTTP header. It has to be used along with SSL enabled to prevent others from decoding the

username and password. POST requests were used to send form data from the iOS client appli-

cation to the service. The service was stateless, meaning that the server does not store context in

between requests and that all the data needed to process the request is being sent by the client on

each request. HTTP status codes were used in responses back to the caller to indicate the result of

processing the request. For example, if the client did not send required information to the service,
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Figure 4.6: Server side web service sequence diagram.

the service would respond with a status code of 412 Precondition Failed. If the server successfully

processed a POST request to the sr1form endpoint, a 201 Created status code was sent.

public c lass Sr1ClientFormData
{

public string St r e e t { get ; s e t ; }
public string City { get ; s e t ; }
public string County { get ; s e t ; }
public List<ClientActor> Actors { get ; s e t ; }

}

Figure 4.7: Sr1ClientFormData model object.

The model object accepted by the server side application is shown in Figure 4.7. It contains

the geographical data where the car accident took place, and a list of actors (parties that were

involved in the accident). The service was able to deserialize the incoming JSON to the above

model object using the technique of model-binding built into Web API. The web service first goes

through a process known as content negotiation, where it looks at the incoming HTTP request

and determines how best to parse that information. If the request explicitly contains a Content-

Type header, and specifies an acceptable media type, then the server tries to make use of that

information provided that a corresponding MediaTypeFormatter is available. If no content-type

was provided by the client, then the server looks at the request body and attempts to pick a

suitable MediaTypeFormatter to parse the content. By default, the service is able to parse data
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coming in as JSON, XML, or URL-encoded form data and build an object, but it is also possible

to define custom media type formats and custom model binding logic. For the default JSON model

binding to work, the keys of JSON fields must match the field names of the C# object.

Once the service has a Sr1ClientFormData object to work with, it goes through that object

and builds a corresponding Sr1FormData object which contains all the information needed for

the form. It loops through the list of ClientActor objects of the incoming object, and looks up

additional information as necessary to build the list of Actor objects of the Sr1FormData object.

Vehicle information was looked up using the Edmunds Vehicle API. Edmunds Vehicle API is

provided free for developers, but it is necessary to register with them in order to get an API key

for development. This API is also rate limited to two requests per second and 5,000 requests per

day, but for our demo purposes this was not an issue. Request was made to their API with the

VIN number provided from the client, along with the API key, and format equal to JSON. The

resulting JSON was parsed to get the vehicle’s make, model, and year.

Driver information was looked up by decoding the driver license barcode image sent by the

client. The image comes into the service as a base 64 encoded string, therefore it was first base

64 decoded, and the resulting byte array was converted to an Image object. This image was then

passed to the barcode reader module provided by the ZXing.net barcode reading library. The

search was scoped by specifying that the expected format is PDF 417. ZXing is an open source

library that is able to process images containing barcodes and decode the text that the barcode

represents. It currently supports virtually all major barcode formats including CODE 39 which was

used for decoding the VIN barcode, and PDF 417 which was used for decoding the driver license

barcode image. This project also provides implementations for all major programming languages.

For this application, the .NET port of the project was used. It was provided as a NuGet package,

therefore including it in the application was easy.

Once the driver license barcode image was decoded by the ZXing library, the text contained in

the barcode was obtained. However, the text requires further decoding as it was in a format de-

signed by American Association of Motor Vehicle Administrators (AAMVA) [46]. Figure 4.8 shows

an example of the text returned from the ZXing library. Here the card holder’s real information

was changed for confidentiality but the format is preserved.

The data elements are in separate lines beginning with an element ID. The AAMVA specifica-

tion gives further detail as far as how each data element is formatted. The parsing was done by

splitting the string by the end-of-line delimiter to get a list of strings. And then the element IDs

were searched to get the field information. For example, the element ID DBB corresponds to Date

of Birth of the card holder. Sometime a single element contains multiple data fields, in which case

additional parsing steps were required.

One of the big obstacles in creating this application was that the driver license barcode image
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@
ANSI 636049030002DL00410264ZN03050088DLDCAC
DCBA
DCDNONE
DBA03282016
DCSJONES
DCTMIKE D
DBD03102012
DBB03281988
DBC1
DAYBLK
DAU068 in

DAG331 MAIN ST
DAILAS VEGAS
DAJNV
DAK891296069
DAQ1402041243
DCF000122820260394621628
DCGUSA
DCHNONE
DAH
DAZBLACK
DCE3
DCK0009682849901
DCU
ZNZNAN
ZNB10102008
ZNC5’ 08 ’ ’
ZND150
ZNENCDL
ZNFNCDL
ZNGN
ZNH00096828499
ZNI00000003399

Figure 4.8: NV Driver License barcode encoding.

has to be within +/- 5 degree skew. In practical use, this was very di�cult to achieve. After many

trials and errors it was possible to get a few images that were capable of being decoded. It was

necessary to use a stand to hold up the phone, and line up the driver license against an edge to

get images that would decode successfully. Furthermore, on the back of the Nevada driver license,

there are two barcodes, and the image submitted to be processed should be cropped to only include

the 2D PDF-417 barcode so that the ZXing library can successfully decode the barcode. The built

in editing functionality provided by the Apple SDK was su�cient to crop the image. Additionally

the camera needs to be well focused on the barcode to avoid blurry images, which also causes the

decoding to fail.

Unit tests were written to ensure that certain functionality work as expected. A unit test was

written to ensure that a sample Nevada driver license barcode could be parsed to extract driver

information. A unit test was written to ensure that for a known VIN, the Edmunds API returned

correct data. Unit tests were written to verify the incoming form had required data: city, street,

county, and at least one actor. The web service endpoint as a whole was tested against mock HTTP

requests to verify that the response was acceptable. This was achieved by setting up context for the

request, mocking the dependencies required by the controller, getting the response, and asserting

that the status code was as we expected. An example of such a test is shown in Figure 4.9, and it

checks that an acceptable client request succeeds and returns a 201 Created status code.
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Figure 4.9: Unit test to test form gets processed correctly for a valid request.
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The service was deployed on Microsoft’s Azure cloud platform. Azure o↵ers developers a plat-

form to deploy their application infrastructure on Microsoft’s globally distributed data centers.

The platform supports numerous programming languages, and provides access to Microsoft devel-

oped services and third party services to help developers get their applications done faster and in

a more scalable way [47]. Azure also has good integration with source control systems like Git and

Team Foundation Server, and o↵ers the ability to rollback to previous versions. The deployment

to Azure was done from Visual Studio through the Web Deploy utility. The site to host the ap-

plication was first created through the Azure management portal, then the publish profile for the

corresponding site was imported to Visual Studio to provide the integration between the Azure

account and the Visual Studio solution. Once the integration is established, the publish wizard in

Visual Studio guides the user through the deployment steps. Azure’s a pay-as-you go model allows

for flexibility and cost savings because the amount charged is proportional to the resource usage

of the service. Due to the free credits o↵ered by Microsoft, and the low usage of this service, there

were no costs associated with it.

The MongoDB database, used for storing the form data, was hosted on Azure through the

third party service provider MongoLab. They o↵er a shared plan that is free to use for testing

purposes and includes half a GB of storage. Therefore, it was used for this application and was

quite su�cient. MongoDB was a natural fit for storing the form data because each form could be

stored as a single document in MongoDB without needing to define a complex database schema.

In particular the model object that was used in the application code could be serialized and

stored directly without needing to map the model properties to specific tables and columns. Data

access layer code was minimal in this case because the MongoDB C# driver, and the generic

IRepsitory interface were adequate at interacting with the database. Querying form data is also

simplified because the data does not have to be reassembled by joining across relational tables. The

MongoDB C# driver is able to take C# Language Integrated Query (LINQ) code and convert that

to matching MongoDB queries. Therefore there was no need to write MongoDB specific queries

within the application code to retrieve data from MongoDB.
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4.1.5 Live Incident Reports Map

A live incident reporting map interface, Figure 4.10, was created for travelers and back o�ce

personnel to get real time updates on incidents as they happen. This interface is accessible at http:

//ndot.azurewebsites.net/, and it shows incidents reported from the client mobile application

and basic information about each incident when the user clicks on the marker.

Figure 4.10: Live incident reports map on a mobile phone.

Google Maps JavaScript API was used to map the incident locations on a map. The Google

Maps JavaScript API is free for limited usage, but it does require the developer to obtain an API

key [48]. The API itself is very simple and straightforward to use, and there are good examples

and documentation on it. The basic use case of it requires a HTML div element to render the map,

a reference to their cloud hosted JavaScript source, and initialization of a map object in JavaScript

at a specified latitude, longitude and zoom level. In addition to the basic map, this application

made use of markers and info windows to display incident information. Markers identify a location

on a map given a latitude, longitude and a reference to the map JavaScript object. It was also

possible to add an animation to the marker when it first gets added to the map. The info window
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feature allows the user to see more detail when its corresponding marker is clicked. In this case

info windows were used to show the street, date, and actor count of the incident.

Real time updates were made possible using Microsoft’s ASP.NET SignalR library. SignalR

makes it really easy for .NET developers to add real-time functionality to ASP.NET based web

applications. Instead of the client having to poll the server for updates using AJAX requests, the

server is able to push data to the connected clients right away. SignalR abstracts away the various

means of achieving bi-directional communication between the client and the server (websockets,

long-polling, server sent events, forever frame), and gives the developer a high level API for doing

Remote Procedure Calls (RPC) from the server to the client [49]. The server can do the RPC calls

on either a single-recipient, on a group, or on all clients. For this application, a broadcast style

call to all the connected clients was used because all the users are allowed to see all the incidents.

A “hub” was defined in the server side code as that is the high level abstraction SignalR uses to

manage the communication between the client and the server. After the original form data was

processed and stored in MongoDB, the server could notify the client of the new incident by using

code shown in Figure 4.11.

var hubContext =
GlobalHost . ConnectionManager . GetHubContext<IncidentsHub >() ;

hubContext . C l i en t s . Al l . addNewMarkerToPage ( form . Latitude , form . Longitude
, form . Street , form . CreatedDate . ToString ( ) , form . Actors . Count ) ;

Figure 4.11: Code snippet showing server calling JavaScript client method.
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4.2 Test Setup

The application was put through a series of testing scenarios to see how it compares against the

paper form entry. The main goal of this experimentation was to test the speed of completing the

form, comparing the mobile application to the paper form. The independent variable in these cases

was the method of input (mobile application or paper form). The dependent variable was the time

to completion measured in seconds. Three separate trial runs were conducted, each involving one,

two, and three actors respectively. Many variables were kept constant throughout the trial runs

including location of incident, actor’s driver licenses, and actor’s vehicle identification numbers.

The mobile device was connected to a local wireless endpoint with 3 Mbps download speed, and 768

Kbps upload speed to communicate with the web service hosted on Azure. All the data needed to

complete the form was available before beginning to complete the form. The vehicle identification

number barcodes for three vehicles were printed out ahead of time, rather than scanning it from

the vehicles.

The main di�culty in running the experimentation was the di�culty in capturing the driver

license barcode su�ciently enough for the decoding software to work properly, but also not to let

the file size be too large as to slow down the process. And another di�culty was the requirement

that the barcode has to be almost perfectly horizontal. The AAMVA North American Standard

for driver licenses specify that the skew shall not be more than +/- 5 degrees [46]. To get around

these limitations various methods were tested. One was to use a barcode scanning module that

was marketed as being able to read the PDF417 symbol right from the camera feed. This would

have meant that we could transfer the text that was encoded in the barcode instead of the actual

image to the server. However, in practice that module did not work. Second, an overlay view

with a rectangle image capture area was put on top of the camera view with the aim that it

would allow the user to capture a more horizontal image. However, in practice this still produced

a lot of unusable image captures. Finally it was decided to use a stand to line up the barcode

horizontally, test that those images were usable by the barcode decoder, and use those images for

the experiment.

Ideally we should have been able to run the experiments on real world scenarios, and by the

actual end users. However, it was not possible for this prototype application for a number of

reasons. First, as mentioned earlier the di�culty in capturing a processable driver license barcode

would have been very frustrating in real use. Second, since the form data is hosted on a third

party server beyond the control of NDOT, there would have been privacy concerns in using the

application. Third, there would have been di�culty in distributing the application because of

the need to have the application approved through Apple and published on the Apple App Store.

Lastly, there was a limitation on the RedLaser module usage, which is limited to non-commercial
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use.

4.3 Test Results

In the first test scenario, Table 4.1, the incident involved two actors, which is expected to be the

most common usage of the application. The owner of the vehicle was selected to be same as the

driver, which removed the need for ten fields. The actor type “Driver” was selected for both actors.

Table 4.1: Test results for incident involving two actors.
Method Trial 1(s) Trial 2(s) Trial 3(s) Average(s)

Paper Form 315 258 230 267
Mobile App 110 122 98 110
Paper Form + Electronic Data Entry 456 380 343 393

The following experiment, Table 4.2, was similar to the previous experiment, with the goal here

being to see the impact of an additional actor on the form completion time. The additional actor

was also “Driver” type, and the owner was selected to be the same as driver.

Table 4.2: Test results for incident involving three actors.
Method Trial 1(s) Trial 2(s) Trial 3(s) Average(s)

Paper Form 425 361 342 376
Mobile App 164 139 131 144
Paper Form + Electronic Data Entry 509 404 390 434

For this last experiment, Table 4.3, the goal was to see how manual data entry on a mobile device

faired against filling out the paper form. The mobile device still picked up location information

using the geolocation features, therefore it was not necessary to fill out three of the fields (Street,

City, County). The geolocation picked up the correct location on all three trials, therefore it was

not necessary to make corrections to those fields. There were a total of twelve fields to be filled

out in this case. In the mobile application, the data was entered manually rather than using the

driver license barcode to extract the data.

Table 4.3: Test results for incident involving one actor.
Method Trial 1(s) Trial 2(s) Trial 3(s) Average(s)

Paper Form 68 57 76 67
Mobile App - Manual Data Entry 62 71 62 65
Paper Form + Electronic Data Entry 108 88 105 100
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4.4 Analysis

In Figure 4.12 we see a visualization of the experiment involving two actors. Across all the trials,

we see that the mobile application was faster at filling out the form than the paper form, and

the paper form with electronic data entry. By looking at the average time, the paper form took

2.43x longer to complete than the mobile application form, and the paper form with electronic

data entry took 3.57x longer to complete. The experimental data supports the hypothesis that the

mobile application would be faster at completing the form. Interestingly, we see that with both

the paper form and paper form with electronic data entry that the time to complete got reduced

with each new trial. One possible reason for this is that the experimenter got more familiar with

the data after completing each trial, and that reduced the number of times he needed to check

back with the data source to do the data entry. On the other hand, the completion time for the

mobile application was very stable across the three trials.

Figure 4.12: Chart showing data entry method vs completion time. Data from table 4.1.

The pie chart on Figure 4.13 is a visualization of the average completion time for the experiment

involving three actors. There we get a sense of how much more e�cient the mobile application

is compared to the other two methods. The paper form took 2.61x longer to complete, and the

paper form with electronic data entry took 3.01x longer to complete. Compared to the previous

experiment involving two actors, the paper form took 40% longer to complete, while the mobile

application took 31.5% longer to complete. This is close to the expected value, since the number

of actors increased by 50%, but the mobile application’s performance was outstanding per each
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additional actor.

Figure 4.13: Chart showing average completion time for each of the data entry methods as a
percentage. Data from table 4.2.

The results from the third experiment in table 4.3 shows that the time to form completion is

about equal between the mobile application and the paper form. This suggests that even in the

worst case, where no data extraction from barcode data is done, the mobile application is worth

considering. However, the advantage in the mobile application comes when compared to the paper

form with electronic data entry because the mobile application can electronically post the resulting

form data instantly. In fact the mobile application was 65% faster compared to paper form with

electronic data entry.

4.5 Future Works

It would have been possible to extract the license plate information using OCR on the license plate

image. There is an open source OCR library, tesseract-ocr, that could have been used for this

purpose [50]. It was originally developed at HP Labs between 1985 and 1995, and was one of the

top three OCR engines in the 1995 UNLV accuracy test. Since then the project was taken over

by Google and has been improved. One challenge here would be in honing in on the plate number

and state specifically when there are many stickers and fonts on the license plate. Also capturing a

good image in unfavorable weather conditions, lighting conditions, and angles would make it quite

a challenge.

Furthermore, the application could be further developed to integrate with existing IT systems

at the NDOT. O�cers could log into the application using their existing network credentials, and
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the application could then file the form directly to NDOT’s database systems using the logged in

identity. The license plate’s state could also have been looked up based on license plate number

if the application had access to that information from NDOT or the state Department of Motor

Vehicles (DMV). And also driver and owner information could have been filled in by searching for

the specific record against a database instead of extracting that information from the driver license

barcode.

The accuracy of the driver license barcode capture needs to be dramatically improved if this

application is to be used in practice. Perhaps a stand could be developed to place the driver

license and the phone at a good distance and angle so that the barcode image can be captured

more reliably. Another solution would be to move the decoding logic from the server side to the

phone itself, and use a more reliable commercially available PDF-417 decoding library.

In practice, poor network connectivity would also be a barrier to adoption for the application.

The application could be enhanced to support local storage such that if there is no network

connection, the data would be stored to the local SQLLite database on the device, and then upload

the data once a connection is re-established. Storing the data locally first before transmitting to

the server has the added benefit of being more reliable in that it can keep retrying if there were

errors during transmission.
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Chapter 5

Conclusion

In this paper, we explored many di↵erent ways of using mobile devices to collect transportation

data, and using that data to ultimately improve transportation scenarios. The rapid increase in

smartphone usage by travelers means that it is becoming a viable and exciting source for data

collection at a global scale in a cost e↵ective way. Even regular phones have become a good

source for travel time data collection due to new legislation and infrastructure changes that makes

it possible to locate phones very accurately. This is an exciting and growing area as we see

organizations from the public sector, private sector, and academia are contributing to research

and development of novel techniques and products. As smartphones continue to drop in price,

increase in the number of sensors, and also become more accurate in their sensing capabilities, we

can expect to see more interesting projects and innovative solutions.

The GPS sensor on the smartphone along with network communication capabilities of the phone

have been the focal point around much of the research and innovation. The Mobile Millennium

project and Google Tra�c Estimates both use these sensors and capabilities to full e↵ect by

collecting the GPS data, processing it through online algorithms, and presenting the resulting

tra�c estimates back to the users. Even though these innovations stand to give consumers great

benefit, there are privacy concerns for the users willing to share the data. Some of these concerns

are alleviated by removing user identification information from incoming requests, and also by

using spatial sampling techniques. We also saw some case studies making use of the accelerometer,

microphone, and Wi-Fi sensor on the smartphone. These sensors consume much less power than

the GPS sensor, making them more desirable because reduced battery life drainage means more

users would be willing to participate in collecting and sharing the data. It was also possible to use

these low power sensors to trigger the high power GPS sensor, which would save power compared

to using the GPS sensor exclusively.

We reported on some novel case studies involving the use of smartphones to detect road condi-
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tions, and provide valuable data to end users. Nericell, ParkSense, and bus arrival time prediction

projects were all conceived and implemented in academia. These projects show great promise in

real world use, but we see that they have to move beyond academia and integrate with existing

or new commercial products to be viable for continued use by the users. The Mobile Millennium

project for example was one of the first major projects that explored the use of smartphone GPS

data to estimate tra�c conditions, but eventually the stakeholders were not able to maintain it for

long term without revenue from the product. The same technology integrated with Google Maps

to provide tra�c estimates continues to be of great service to end users and available for continued

use. The ParkSense application could be integrated with existing pay-by-phone providers to locate

available parking spots, thereby providing convenience to end users, increasing revenue for the

pay-by-phone provider, and also increasing revenue for the parking space owners.

Lastly we reported on our implementation of a smart data collection application for the purpose

of collecting data at accident scenes. An iPhone application was developed using Appcelerator

Titanium mobile development platform which would extract data from various sources and submit

to a web service. The web service, which was developed using Microsoft’s ASP.NET Web API

platform, accepted the data from mobile clients, extrapolated data through decoding driver license

barcodes and looking up vehicle information through an external API, and finally produced the

necessary form. The form was saved in a MongoDB collection for this prototype application, but

it is feasible to electronically submit the form to appropriate authorities. The goal in creating this

application was to reduce the time taken to complete the form while also simplifying the process

and getting more accurate data. The experiments done in comparing the mobile application to the

paper form showed that the mobile application was indeed much faster than the paper form. The

whole process was also simplified because we cut down on the steps needed to convert the paper

form to electronic format. The reliability of the data collected could not be verified because we

were not able to compare the application against the existing method side-by-side in real world

use. Even though the experimental results were promising, there are a lot of obstacles to overcome

in order to make this prototype project viable for practical use.
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Appendix A

NDOT Application Screenshots

Figure A.1: Home screen of the app, start point for the SR1 form.

42



Figure A.2: Location screen where the user inputs location of the incident.

Figure A.3: Actors screen showing all of the actors involved in the tra�c incident.
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Figure A.4: Actor detail screen where the user inputs details of the actor.

Figure A.5: User can manually input details of the actor as well.
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Figure A.6: History screen showing a summary of previously submitted form data.

Figure A.7: History detail screen showing the full form data.
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Appendix B

NDOT Application Source Code

The source code for the iOS application is available for download at https://github.com/simplecoder/

ndot-client and it requires Titanium Studio to develop, compile, and deploy. During develop-

ment, Titanium SDK 3.1.3.GA and iOS 7.0 SDK was used build the project. It may or may not

be compatible with future SDK versions.

The source code for the web service is available for download at https://github.com/simplecoder/

ndot-service and it requires Visual Studio in order to develop, compile, and deploy. In particular,

Visual Studio 2012 was used along with .NET 4.5 and IIS Express during development.
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