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Abstract 

 With growing competition for casino floor space, the Table Games department is 

under increased pressure to improve revenues.  Current systems in the department rely 

upon a supervisor's intuitive knowledge about business trends hourly to respond to 

business levels.  By using Bayesian analysis, it is possible to develop a functional 

revenue management system for making optimal business decisions in the Table Game 

Departments.    



 

iv 

Acknowledgements 

 This thesis could never have happened without the support and love of my family.  

Their encouragement of me to reach my full potential, and their never-ending love for me 

helped me to continue to reach for the highest goals.  Words on a page could never 

express how deeply I appreciate everything they do for me on a daily basis and my never-

ending love for them. 

 The mentorship of the UNLV faculty, especially Dr. Ashok Singh, Dr. Anthony 

Lucas, and Dr. Bo Bernhard has benefited me greatly and encouraged me to develop my 

research skills. I became fascinated by the ability of analytics through Dr. Lucas who has 

closely looked at the gaming industry, and has never shied from challenging the 

established paradigms. Dr. Bernhard encouraged me and others to continually look at the 

world as a source of inspiration and curiosity.  I learned the process of statistical decision 

making from Dr. Singh, without whose mentorship I would not have completed this 

thesis. I also would like to thank Dr. Dennis Murphy for his help with the R programming 

language. I am indebted to all of them for their time and effort in encouraging me to 

become more than just a student, but a researcher, and I look forward to future 

collaboration with them. 



 

v 

Dedication 

 

 

 

 

 

 

 

 

 

For my loving wife, Elizabeth, and son, Alexander, without your support this could never 

have happened. I hope to live up to all your expectations of me. Together in all things.



 

vi 

Table of Contents 

Abstract ........................................................................................................................................... iii 

Acknowledgements ......................................................................................................................... iv 

Dedication ........................................................................................................................................ v 

Table of Contents ............................................................................................................................ vi 

List of Tables ................................................................................................................................ viii 

List of Figures ................................................................................................................................. ix 

Chapter One: Introduction ............................................................................................................... 1 

Purpose ......................................................................................................................................... 2 

Definitions ................................................................................................................................... 2 

Theoretical Framework ................................................................................................................ 2 

Problem Statement ....................................................................................................................... 3 

Assumptions ................................................................................................................................. 3 

Scope ............................................................................................................................................ 4 

Justification .................................................................................................................................. 4 

Chapter Two: Literature Review ..................................................................................................... 6 

History of Revenue Management ................................................................................................ 6 

Expansion of Revenue Management ........................................................................................... 9 

Status of the Gaming Industry ................................................................................................... 10 

Status of Table Games ........................................................................................................... 11 

Revenue Management in Table Games ..................................................................................... 13 

Current systems. ..................................................................................................................... 13 

Systems from literature. ......................................................................................................... 14 

 Survival analysis ............................................................................................................. 14 

 Croston's method ............................................................................................................. 15 

Alternative Integration of Casinos Into Revenue Management ................................................. 16 

Chapter 3: Methodology ................................................................................................................ 17 

Research Questions .................................................................................................................... 17 

Procedure ................................................................................................................................... 18 

Scope. ..................................................................................................................................... 18 

Assumptions. .......................................................................................................................... 18 

Forecasting demand. .............................................................................................................. 19 

Optimization. ......................................................................................................................... 20 



 

vii 

Chapter 4: Results .......................................................................................................................... 21 

Demand ...................................................................................................................................... 21 

Data-mining. .......................................................................................................................... 21 

Establishing the prior distribution. ......................................................................................... 23 

Updating the prior. ................................................................................................................. 24 

Highest posterior density region and credible set. ................................................................. 24 

Player Distribution ..................................................................................................................... 25 

Chapter 5: Conclusion.................................................................................................................... 28 

Introduction ................................................................................................................................ 28 

Findings ..................................................................................................................................... 28 

Theoretical Implications ............................................................................................................ 29 

Managerial Implications ............................................................................................................ 29 

Future Research ......................................................................................................................... 29 

Conclusion ................................................................................................................................. 31 

Appendix A .................................................................................................................................... 32 

Appendix B .................................................................................................................................... 33 

References ...................................................................................................................................... 35 

Cirriculum Vita .............................................................................................................................. 38 

 



 

viii 

List of Tables 

Table 1. List of variable names and representative day parts ....................................22 

Table 2. Credible sets for each player day parts ........................................................25 

Table 3. Player clusters with percentages ..................................................................27  

 



 

ix 

List of Figures 

Figure 1. Decline in table games over a 12-year period ............................................11 

Figure 2. Annual Statewide hold percentage; 1992-2012 ..........................................12 

Figure 3. Mixture demand distribution for total head count of players .....................22 

Figure 4. Density of player counts by day parts ........................................................23 

Figure 5. Cluster plot to determine the minimum number of clusters .......................26 

 

 



 

1 

 

Chapter One 

Introduction 

 The table games department of a casino is, in the eyes of the industry, an essential 

part of the casino. It is where casinos started and has been the heart of the gaming 

industry for decades. Recent trends in gaming, however, have started to erode the amount 

of space dedicated to table games. Side bets and “carnival” games aside, table games and 

their management remain much the same since Nevada passed the Wide Open Gambling 

Act of 1931 (Kilby, Fox, & Lucas, 2005). While the hospitality industry has advanced 

and incorporated technology and scientific methods into their processes, table games 

remain unchanged.  The gaming industry overall has expanded globally in new 

jurisdictions, and in several of these newer areas, table games is a driving profit center. 

This mirrors the trend in Las Vegas gaming development.  

Hold percentage in the industry is a metric by which gaming volume is typically 

quantified. As hold percentages decline, space is made on the casino floor for games or 

machines that produce higher hold percentages, and thus higher profits. This is evident 

from the decline in the number of tables over recent years (Schwartz, 2013a). This trend 

is not unique to one specific type of table game, but rather the group as a whole 

(Schwartz, 2013b).   This decline in the hold percentage, and by association profits, is a 

large portion of the reason for the pressure on table games.    Other industries faced with 

similar issues have found that improved revenue management is helpful in stabilizing 

profits and relieving some of the pressure due to declining revenues (Buckhiester, 2011).  

Developing an optimal table games revenue management system that uses prior 

information will help maximize betting levels at the tables and potentially slow the 
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decline of the table games hold percentage, thus potentially preventing loss of more 

casino “real estate” to slots.  

Purpose 

The purpose of this thesis is to develop and test an effective table games revenue 

management system which utilizes prior information to predict the future. 

Definitions 

The gaming industry uses unique, and sometimes ambiguous, terms for various 

metrics.  The following terms will have the following definitions for their use in this 

study: 

Drop: This is the mathematical calculation of gaming activity for the department 

and represents the net monetary value of each table. Summed for the department, it is 

representative of the total net cash gaming activity for the department.  Casinos in 

Nevada use equation 1 to calculate drop (Lucas & Kilby, 2012).  

Drop=Markers Issued-Markers Redeemed+Cash+Gaming Cheques+Foreign Gaming Cheques (1) 

Hold: This refers to the actual hold percentage, which is mathematically 

calculated as win/drop, and is expressed as a percentage (Lucas & Kilby, 2012). 

Theoretical Framework 

 Revenue management (RM) is a complex process for optimizing revenue from a 

fixed inventory which has applications in various industries.  It has its origins in the 

Airlines industry (Haley & Inge, 2004). By looking at the common practices of RM in 

other industries, it is possible to develop a, RM system that is applicable to a table games 

department. 
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Problem Statement 

 The aspects of table games that call for the use of a revenue management system 

are the variable demand of the games and the variable betting threshold of each player. 

Previous research has looked at other variables such as win per available seat hour, or 

length of each play session (Peister, 2007).  While these variables are helpful, at the basic 

level, the hourly headcount provides a decent indicator of demand to suit our needs.  As 

business levels increase, casino shift managers currently examine the number of players 

at a table and determine if opening additional games would be prudent.  As games open, 

and fill up, the determination is then made if raising minimum bet levels is needed.  This 

works at a reactive level, but is far from optimized. An example would be the case of low 

bet minimum, and the players playing at a higher minimum level without all the games 

being full.  This potential loss of profits could be quite significant over time.  For the 

problem at hand, we will look at the variables of estimated demand and the average bet as 

an indicator of the player’s risk tolerance.   

 By predicting the next time period’s expected demand (Dplayer), in term of head 

count, then applying the percentage of players at each average bet level (Bmin), the 

number of players expected at each betting level can be predicted.  After optimizing and 

considering overall house advantage, we can maximize profit for the next time period in a 

proactive manner.   

Assumptions 

 Some assumptions are made in order to develop a solution for the problem 

described above.  The hourly head count is assumed to be accurate, and representative of 

the demand of the table games to be played.  Likewise, the clusters of minimum bets 



 

4 

 

from the player database are assumed to represent the overall population of the gaming 

public that enters the casino. Since this data is taken, and being applied to, a local 

repeater market casino, the player’s database is a representative sample of the overall 

population for the casino. While this may not hold true for a Strip property, few markets 

resemble the Las Vegas Strip in their makeup and more resemble repeater markets (Lucas 

& Kilby, 2012).  

Scope 

The scope of this study is a Las Vegas repeater market casino, located off the Strip in an 

affluent area, but with several competitors in close proximity and removed from the 

academic environment of UNLV. Data was collected over several months in 2011, and 

then used to build a model.  The model is then calibrated using known demand up to 

August of 2012, adjusting the model as needed for any unexplained demand variations.  

Due to the proximity of high level competitors, the table games department of this 

property must continually adjust for the variable demand, and maximize the betting 

potential of all affluent players.   

Justification 

 Two studies have looked into the development of table games revenue 

management systems, but neither have used the existing counts and player database to 

determine the plan (Chen, Tsai, & McCain, 2012; Peister, 2007).  Both of these studies 

also utilized complex mathematical formulas that, generally, are a deterrent in a practical 

implementation of any system.  This study looks to promote a practical system that is 

effective in the prediction of demand, efficient in the sense that it does not require 
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additional labor to gather the necessary data, and simple so that that most casino 

managers would be able to implement it.     
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Chapter Two  

Literature Review 

 While there is extensive and detailed research in revenue management systems, 

research in the application of these systems in gaming, especially in table games, is 

lacking.  

History of Revenue Management 

 The term “revenue management” can apply to a broad range of decisions made by 

managers. The application dates back as long as man has made business decisions. The 

modern theory of revenue management dates back to the Airline Deregulation Act of 

1978. This allowed airlines to suddenly charge a wide variety of prices and offer new 

flights without government oversight. The rapid influx of new customers, the sudden 

growth expansion, and the technological advancement of computers allowed American 

Airlines to develop a system of price discrimination that allowed it to compete with lower 

cost airlines. This system, over time, evolved into DINAMO in 1985 which is regarded as 

the first large scale revenue management model (Talluri & Van Ryzin, 2004). The impact 

of the new yield management systems was almost immediate. American Airlines started 

to dominate the market, and airlines that were once profitable were soon going into 

bankruptcy. PeopleExpress CEO, Donald Burr, expressed what happened to cause the 

company’s failure and bankruptcy: 

What changed was American's ability to do widespread 

Yield Management in every one of our markets… we didn't 

get our hands around Yield Management and automation 

issues. . . . In my view, that's what drives airline revenues 
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today more than any other factor—more than service, more 

than planes, more than routes (Talluri & Van Ryzin, 

2004,pp.9-10).             

Revenue management utilizing sophisticated mathematical models and scientific 

data entrenched itself into the very fabric of the airline industry. The profitability and 

success of any airline was attributed to the success of the airline’s revenue management 

models. Modern revenue management systems in the airlines are extraordinarily complex 

and deeply integrated into the industry. This has become an impediment to its usage in 

other industries, as it is largely viewed as an airline industry only product, and therefore 

deemed unnecessary in other areas. Another area of resistance to revenue management is 

that airlines do not usually rank highly in customer satisfaction in regards to pricing. The 

perceived association between revenue management and the dissatisfaction with pricing 

by customers causes other areas of concern; hospitality businesses are hesitant to 

potentially suffer the wrath of angry consumers due to pricing disparities.  Southwest 

Airlines, a leader in customer satisfaction in the airline industry maintains a simple rates 

and pricing structure, so much so that the revenue management system they utilize does 

not need the multitude of variables to maximize revenues due to their limited range of 

pricing.  The revenue management model Southwest Airlines utilizes is comparably 

simple when evaluated against competing airlines. This model, being easier to understand 

and implement, holds with Southwest’s management theory of greater efficiency. Though 

their model is simple by comparison, it is still utilized and effective (Talluri & Van 

Ryzin, 2004).  
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 Revenue management does require certain conditions for the process to be 

effective. The first is that there must be differences in customers. If all the customers of a 

business or industry are uniform then there is very little to maximize. The airlines utilize 

price differencing between business travelers and recreational travelers. This includes 

price differencing for days of the week, time of the year, even time of day. Hotels also 

take advantage of variations among customers. While there exists variation between 

businesses vs. recreational travelers, even within these broad groupings there are a 

significant number of variations based upon demographics. In areas where you have 

greater variations, there is a greater potential to exploit that variation and therefore a 

greater potential to maximize revenues. For example, in the airline industry the amount of 

money a business traveler is willing to spend versus a vacation traveler is highly 

significant. Hotel customers share this same trait (Talluri & Van Ryzin, 2004). 

 The next condition would be a variation in demand. If the amount of demand is 

known, accurately and consistently, then there is no need for a sophisticated tool to 

maximize the revenue from that demand. Airline travel is extraordinarily given to 

seasonal, sometimes daily, fluctuations. The greater the inability to forecast demand 

accurately, larger the risk of management not maximizing revenues. This is when the 

need for a sophisticated model or tool comes into play (Talluri & Van Ryzin, 2004).  

 Product perishability and fixed production is the third condition needed for an 

effective process. Airline flights are fixed in their production, because an airline is unable 

to add more seats to a flight once it has reached capacity. It would not be good for 

business to have passengers strapped to the wings, simply because the flight was full and 

the airline wanted to get more people onto a flight. Likewise, once the plane takes off, 
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those seats on that flight can never be resold. There is no inventory to be stored to sell at 

a later date. Once a flight has begun, the opportunity is lost forever (Talluri & Van Ryzin, 

2004).  

 Talluri and Van Ryzin(2004) also considers quality as an indicator of price.  In 

situations where the price of a product is a signal of its quality, a revenue management 

system is unlikely to be effective. I hold this as untrue, unless there is homogeneity in the 

market that purchases the items. The price point of a Ritz Carlton hotel is definitively a 

signal of quality. People largely expect to pay more for a hotel room at Ritz Carlton, than 

say Motel 6, due to the quality of product and service that has become synonymous with 

the brand. However, Ritz Carlton does have a successful revenue management system 

(Garrow & Ferguson, 2009). 

Expansion of Revenue Management 

 The success of revenue management in the airline industry did lead some to look 

for other areas in which to apply revenue management techniques.  Hotels and resorts 

have taken to this trend and have applied revenue management as part of their overall 

process (Buckhiester, 2011).  By applying revenue management to room rates, casino 

resorts have improved profits for the casino. It can be estimated that revenues increased 

by anywhere from five to ten percent depending on the guest segmentation of the 

individual hotel (Buckhiester, 2011).  The benefits of a revenue management system can 

be significant, while the peril of not using revenue management for an industry is just as 

great. A small understatement in demand could result in a one percent decrease in 

revenues (Peister, 2007).  One percent may not make the difference between opening and 

closing a hotel, but it could make a significant impact on the bottom line, and “leaving 
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money on the table” is never an ideal situation for a business.  Restaurants have started to 

look into revenue management techniques as well (Thompson, 2010).  It is becoming 

increasingly clear that as long as the requirements are met, and the data collected, it is 

possible for an industry to adopt revenue management techniques. 

Status of the Gaming Industry 

 The history of the gaming industry is one that goes back into antiquity.  For the 

scope of this paper, though, we will limit our purview to modern gaming, or gaming since 

the passage of the Wide Open Gambling Law in Nevada in 1931. It is generally perceived 

that the passage of this law was a turning point for Nevada, and gaming in general (Kilby, 

Fox & Lucas, 2005).  During 1931 - 1977, gaming in the United States was largely 

constrained to the State of Nevada. In 1976, New Jersey voters passed a referendum to 

allow gambling in Atlantic City, and gambling in Atlantic City was legalized in 1977. 

Since then, tribal casinos have grown in popularity, and there has been a rapid expansion 

of commercial gambling to almost all fifty states.  In 2008, states that did not have either 

a tribal or commercial casino numbered only seventeen, including Hawaii and Utah, 

which have no gaming at all (American Gaming Association, 2009).  In 2012, this 

number declined to fifteen (American Gaming Association, 2012).  Within the last 

decade, gaming has expanded globally.  The amount of competition for gaming revenue 

has never been fiercer. Add to the increased competition the fact that the U.S. economy is 

still hurting from the economic downturn it is no surprise that the domestic gaming 

volumes are down (Tuttle, 2010).   

  The economic recession of 2008 did not seem different from other recessions the 

gaming industry has weathered in the past.  This recession, however, is different from 
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previous economic downturns and the impact on gaming is significant. According to an 

announcement by the AGA, the gaming industry was down 5.5% in 2010 (Tuttle, 2010). 

In addition to this, revenue was down in eight of the 12 states with gaming (Tuttle, 2010). 

Gross gaming revenue in Nevada fell just short of $13 billion in 2007 (American Gaming 

Association, 2009) and dropped to $10.7 billion in 2012 (American Gaming Association, 

2012). Most operators continue to brace for a slow recovery, while faced with increased 

competition due to the proliferation of gaming throughout the United States, Macau, 

Singapore, and other Asian jurisdictions. Moreover, the prospect of online gaming adds 

another level of competition. As a result, casinos continue to explore opportunities to 

reduce costs and increase revenues. Revenue management offers the opportunity to 

maximize revenue and increase profits for casinos. 

Status of Table Games 

 Table games departments are historically the heart of the casino, as casinos began 

their long history with table games (Lucas & Kilby, 2012). Despite this fact, the number 

of table games has been in a steady decline since 2000 (see Figure 1) (Schwartz, 2013a). 

With a small spike in the number of table games largely due to new casino openings, the 

table games department of the casino is under increased pressure to produce.    

 

 Figure 1. Decline in table games over a 12-year period. 
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There is a justifiable reason for the pressure on table games departments.  The 

hold percentage of table games over the past several years is in a steady decline. This is 

evident from Figure 2, in which each line represents the hold percentage per game type in 

the state of Nevada per year (Schwartz, 2013b). 

 

Figure 2. Annual statewide hold percentages; 1992-2012. 

The negative downward trend in hold percentage adds pressure as casinos look to 
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management system in table games a critical issue. 
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obvious.  Once the event happens, there is no opportunity to recover the bet that was not 

placed (Peister, 2007).  Since table games satisfy the necessary criteria, it is possible to 

apply revenue management techniques to the department.  

Revenue Management in Table Games 

 Having established that a table games department meets the necessary criteria for 

a revenue management system, looking at the current systems in place, or those 

theoretically proposed, will help develop the system for this thesis.  

Current Systems 

 The current method of revenue management in table games is an intuitive method 

employed by casino shift managers based upon years of experience.  This method 

requires the Shift Manager to “know” the trends in business from an intuitive standpoint, 

and is a very reactive system.  As volume or demand increases the Shift Manager opens 

new tables to spread players out or raise table minimums. Since table games generate 

revenue through a house advantage built into the game itself on each wager placed, 

maximizing the wagers placed in an hour is a critical component of any revenue 

management system for table games (Peister, 2007).  Shift managers do not have the 

tools to accurately forecast demand; therefore, they are constantly at risk of either 

underestimating demand, therefore leaving “money on the table”, or overestimating 

demand and wasting labor.  The current system in a casino is highly dependent on the 

abilities and experience of the Shift Manager, which makes that one person, and the 

person's experience, very critical to the success or failure of the table games department.  

If that person retires, then a new Shift Manager needs either comparable experience or 
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extensive training. Fortunately, there is literature on possible revenue management 

systems for table games. 

Systems From Literature 

 There are two systems currently in the literature.  Looking at these systems will 

allow one to determine what has already been developed for a table games revenue 

management system, and identifying their weaknesses provides an opportunity to develop 

a better system. 

Survival analysis. 

 Peister (2007) published a revenue management system applying survival 

analysis.  In his paper, he established the win per available seat hour (WPASH), and 

looked at maximizing casino win per seat hour. Utilizing processes similar to ones used 

by Casino Shift Managers, by manipulating the table minimums and number of open 

games, Peister (2007) created a distribution that sacrificed a few seats to increase the 

number of hands dealt at a table, while maximizing the casino win.  He also identified a 

major data issue for any potential revenue manager; the actual demand is censored, when 

demand exceeds capacity there is no way to know how many players the casino “loses” 

due to an inability to find a seat. Peister (2007) applied a Cox survival regression to 

predict the survival of each seat per hour, i.e., the likelihood of a seat staying vacant 

throughout the entire hour.  The regression model calculates this rate from equation (3): 

 ( )   (               )    (3) 

Where h(t) is the hazard rate and 0,  1, ..., p are the unknown regression coefficients. 

Since an analyst would have to evaluate each regression coefficient as an 

exponential value to determine the effect on survival, an analysis with several variables 
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could be a lengthy and complicated process to determine the effect of each coefficient.  

Either way, the mathematical calculations are complicated and difficult to one without 

extensive mathematical and statistical training.  Peister (2007) acknowledges this 

weakness of the model as well. One of the primary reasons for the use of the Cox 

Regression model is due to an unknown underlying distribution of the players (Peister, 

2007).  

Croston’s method. 

 Chen, Tsai, and McCain (2012) looked to alter the landscape by measuring 

theoretical win rather than gross win. They sought to apply Croston’s method that is able 

to forecast intermittent demand, since it is a simpler process to interpret.  The authors 

also separated themselves from Peister by comparing their simulated results to actual 

revenue numbers from a casino.  The authors used two equations (Equations 4&5) to 

forecast demand size Zj and arrival times Pj (Chen et al., 2012): 

   (   )        
         (4) 

   (   )                (5) 

They then estimate game demand at any given hour through a ratio of the two 

equations.  Once demand is determined, a maximization equation is then applied to 

determine the maximum house advantage for the given demand by adjusting the spots per 

table, minimum bet, average wager, and table limit.  This develops the table-opening plan 

for the shift manager, based upon the forecasted demand, for the maximization of house 

advantage.  In their simulated data, the casino could have potentially brought in more 

than sixteen thousand dollars in theoretical incremental revenue for the blackjack tables 
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on a given day.  This would represent a considerable increase in available revenue (Chen 

et al., 2012).   

Like Peister (2007), the authors’ study has some weaknesses. Primarily, in their 

simulations, they assumed uniform distribution of betting between table minimum and 

table maximum (Chen et al., 2012).  This is almost never the case; in fact, most Shift 

Managers would look upon results based on this assumption as highly suspicious.  Their 

method also requires extensive data collection and is labor intensive.  Even though this is 

a simpler method, this weakness still leaves room for improvement in a table games 

revenue management system. 

Alternative Integration of Casinos Into Revenue Management 

 There have been other studies on incorporating revenue management in the 

gaming business, but most of these surround the hotel’s revenue management system. 

This can still have a positive effect in not only the hotel’s revenue numbers, but also the 

casino’s as well (Chen et al., 2012) .  Caesar’s Entertainment currently takes into account 

player gaming history when offering room rates, therefore ensuring that the highest 

theoretical win gamblers are staying in the hotel. This improved their gaming win per 

room by approximately fifteen percent (Chen et al., 2012) .  Through the data mining 

process, casino resorts have started to develop a better understanding of the guests to the 

property, and therefore have started offering more discriminating room rates based on 

their value as a gambler (Hendler & Hendler, 2004) .  This can lead to a better 

development of a revenue management system for table games. 
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Chapter 3 

Methodology 

 The purpose of this study is to develop an operationally efficient table games 

revenue management system; we must keep that goal in mind throughout.  The 

methodology of developing a revenue management system for table games is a multi-step 

process.  It begins with data collection and determining the best course of action for the 

analysis. Each step of the process adds more information to the overall system to reduce 

the amount of intuitive guesswork needed by the operating casino shift manager.   

Research Questions 

 The analysis of the data begins with the analysis of demand.  Hourly demand data 

is inherently a time series collection.  Therefore, a time series analysis would be a logical 

plan for forecasting demand. However, after looking at the data, the realization that the 

miscellaneous variables to produce a reliable enough prediction model through time 

series analysis would be cumbersome and limited in scope. This would not suit the needs 

of creating an operationally efficient model, which would require the ability to update 

quickly and with flexibility. Additionally, time series regression requires data to be 

consecutive.  This either requires the casino to start tracking hourly head counts, or have 

a large block of consecutive hourly head counts in a recent time period.  Since these 

options may not be available at all properties, an alternative method was sought out.    

 A Bayesian approach allows one to utilize expert opinion and prior knowledge of 

a system, and is quickly and easily adaptable by using historical data and prior 

information to predict the demand for the next time period and each subsequent 

observation, updating the model and prediction using the next set of observed data 
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(Bolstad, 2004).  This allows for a very flexible model that would adopt itself based on 

recent observations.  

Procedure 

Scope 

 The basis for the demand data is hourly head count data from a repeater market 

Las Vegas casino located in an affluent suburban neighborhood.  The past several years 

of hourly head count data was collected; and since it was broken out by game type, it was 

summed to determine the complete hourly head count demand.  Additionally, player 

betting information was pulled from the player tracking system.    Gaps in the hourly 

demand data was used to portion the data into segments to develop the model.   

Assumptions 

 In Bayesian analysis, the main assumptions reside with the player database betting 

information.  It is assumed that the player database is representative of the population of 

bettors at the property as a whole.  Since this is a repeater market property, the player 

database is extensive and the assumption of it being representative of the population is 

reasonable.  The assumption with the demand data is that it is accurate.  Since the data is 

gathered by observation and physical head counts, there inherently lies some error.  

Likewise, the head counts only occur once each hour and are not constantly tracked.  In 

other words, if a player is betting at the time of the head count, the player is included in 

the count. If there is high turnover of the seat, however, this is not represented.   
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Forecasting Demand 

 Since demand is strictly positive, a two-parameter gamma distribution is fitted to 

the demand distributions.  A two-parameter gamma distribution is composed of two 

independent parameters shape (α) and rate (λ); since the exact joint posterior distribution 

of (α, λ) is intractable, Lindley’s approximation is used (Pradhan & Kundu, 2011). 

The equations for the Lindley approximation (Equations. 6 & 7) use the method 

of maximum likelihood to estimate both  and λ based on the current observed data, in 

addition to the  and λ from the prior data’s distribution of parameters (Pradhan & 

Kundu, 2011).   Once a suitable segment of prior data was elicited, it was sectioned to 

determine the distribution of both the  and  for each day part of the demand data.  The 

posterior parameters for the current period are used as prior parameters for the next time 

period.  As more observed data is gathered, the process is repeated to further refine and 

develop the model. 
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 Once the Bayes estimates are calculated, a Poisson distribution updating is used to 

update the estimate to a new posterior distribution (See Appendix A). This is done in R 

with the Bolstad package. Once the final posterior is calculated given the current data, the 

Laplaces Demon package for R is used to calculate the highest posterior density region, 

and provide the 99% credible set.  Demand for each game type will be determined based 

on historical usage of each game type.  
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Optimization 

 Once the credible set for the next time period is calculated, the appropriate table 

minimums and number of games to open is then configured through the optimization 

algorithm in Excel to maximize the revenue for the time period.  The optimization 

algorithm will seek to maximize either table minimums, or number of games, depending 

on the situation.  Since all metrics used in table games to determine business volume (e.g. 

Theoretical hold, hold, drop) can be figured as a function of both the number of games, or 

players at each game, and the minimum betting level, the objective function to be 

optimized will be a function of table minimums and number of tables.
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Chapter 4 

Results 

The purpose of this study is to develop an operationally efficient revenue 

management system for table games, which is to say that we ultimately wish to reduce 

the amount of guesswork the casino shift manager has to do when determining the 

upcoming time period’s number of players.  To this end, the data was evaluated first to 

determine the forecast for demand, and then the player base was segmented via cluster 

analysis. The entirety of the data analysis was done in the R programming environment 

for statistical analysis (R Core Team, 2012)  

Demand 

The demand data analysis had to be done in several parts.  The first part involved 

exploratory data analysis of the first set of data, and establishing the informative prior for 

the Bayesian analysis.  The second step of the analysis involved updating the Bayesian 

Prior with the observed data for the next period. The highest posterior density for the 

posterior distribution is then calculated, which in turn yields the required credible set. 

This credible set is used to estimate the number of each betting level of player for the day 

part.  

Data-Mining  

Plotting the density of the demand, represented by the variable “ttlhc”, showed 

that the number of players has a mixture distribution (see Figure 3). 
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Figure 3. Mixture demand distribution for total head count of players. 

 

The initial data analysis showed the presence of five sub-populations in the 

mixture distribution.  The count data was separated initially into weekends (Fri-Sun), and 

weekdays (Mon-Thurs).  This was then further split into different day parts of the 

demand variable.  Each day part was given a unique name (see Table 1). 

Table 1: 

 List of Variable Names and Representative Day Parts. 

Variable name in R Representing day part 

wd1 Mon-Thurs(2AM-2PM) 

wd2 Mon-Thurs(2PM-2AM) 

we1 Fri-Sun(5AM-8AM) 

we2 Fri-Sun(8AM-12PM) 

we3 Fri-Sun(12PM-5AM) 

 

The day part selection was done by trimming the selection until smooth density 

curves were provided (see Figure 4). 
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Figure 4. Density of player counts by day parts.  

Establishing the Prior Distribution 

Each sub-population was then sampled and the shape and rate from each was 

estimated and fitted with a gamma distribution.  A gamma distribution was selected since 

the demand curve is always positive, and cannot be negative by the definition of demand.  

The underlying principle of the sampling method is similar to frequentist statistical 

measurement. The individual samples must trend toward the overall curve of the whole.  

By fitting each sub series of the initial demand data, we are able to estimate the overall 

gamma distribution of the sample, as the parts must comprise the whole.  Once the alpha 
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and lambda estimates are stored, the MLE’s of each distribution can then be calculated. 

The MLE is calculated through the rGammaGamma package with sampling of 10,000 

and a tolerance of .001.  Once the MLE’s were saved, we were then able to utilize 

equations 1 and 2 to compute the Bayes estimates of the distributions.  This yielded an 

informative prior, which will be updated given the next set of data. Appendix B has the R 

code used to establish the prior.   

Updating the Prior 

  Once the informative prior for each day part is calculated, the next step is to 

update the prior given the new data.  The formula for updating a Bayesian distribution is 

simply: 

                              

The prior in this case is updated using the Bolstad package for R (Bolstad, 2004).  

Updating each prior gives the posterior distribution given the observed data, and the 

posterior is adjusted based on the likelihood that the observed data came from the prior 

distribution.  This process is then repeated for the following set of observations.  Each 

segment is updated with two sets of observed data to help refine the model.  Due to the 

large number of new observations, the posterior distribution is dominated by the 

likelihood of the observed data, something that would not happen if only one or two 

observations were made. 

Highest Posterior Density Region and Credible Set 

 Once the joint posterior is calculated, it is then possible to find the highest 

posterior density region, which will give the credible set for the distribution.  The primary 

difference between a confidence interval and a credible set is that a confidence interval 
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provides frequentist coverage before the data are collected, whereas the credible set is 

based on the observed data (Bolstad, 2004).  Since this is a 99% credible interval, the 

data is showing that there is 99% probability that the true random parameter lies within 

the interval, rather than a 99% of other calculated intervals will include the constant 

parameter (Bolstad, 2004).  The credible sets for the demand data is as follows (see Table 

2). 

Table 2  

Credible sets for each player day parts 

Day Part Lower limit Upper limit 

 MON-THURS(2AM-2PM) 13.6743 13.9539 

 MON-THURS(2PM-2AM) 44.9798 45.5202 

 FRI-SUN(5AM-8AM) 9.9516 10.4916 

 FRI-SUN(8AM-12PM) 13.6652 14.2490 

 FRI-SUN(12PM-5AM) 54.1618 54.7625 

 

 The expected demand for each day part can then be used in conjunction with the 

player distribution to improve the accuracy of the Shift Manager estimates of how many 

games to open and how to set the table minimums. 

Player Distribution 

 Now that the expected demand for the next time period is calculated, the Shift 

Manager will need to estimate the number of players coming in at certain thresholds.  

This is done by segmenting the player distribution by average bet.  The casino player 

database was taken from three years’ worth of player betting data with over 58,000 player 

betting information in it.  While not all players use player’s cards while playing table 

games, it is a reasonable assumption that such a robust sample is highly representative of 

the population of players for this repeater market casino.  The data was analyzed by k-
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means clustering in the R software package.  The initial evaluation of the minimum 

number of clusters to maximize the effective change in the sum of squares between the 

distances of the clusters is six (see Figure 5).  

  

Figure 5. Cluster plot to determine the minimum number of clusters. 

 

 After assigning each player to a cluster, the mean values for each cluster is 

calculated.  As expected, from Pareto’s law, the majority of players fall into the lowest 

value cluster.  This cluster  has a mean value of $9.88 (see Table 3).  Once thing to 

consider is that the casino typically offers $5 minimum tables, yet the average bet is 

almost $10.   This potentially supports anecdotal theory by casino managers that a 

players’ average bet is approximate 1.5 to two times the table minimum. Since the centers 

2 4 6 8 10 12 14

0
e

+
0

0
2

e
+

0
7

4
e

+
0

7
6

e
+

0
7

8
e

+
0

7
Change in Sum of Squares with Number of Clusters

Number of Clusters

W
it
h

in
 g

ro
u

p
s
 s

u
m

 o
f 
s
q

u
a

re
s



 

27 

 

for the k-means is not preset, the center comes from the data itself, this anecdotal theory 

is potentially supported through this.   

Table 3 

Player clusters with percentages  

Cluster Average $. bet Percentage 

1       228.79    0.56 

2       649.68    0.09 

3         69.87    3.58 

4    2,700.42    0.01 

5            9.88  74.93 

6          25.00  20.83 

 

 Once the player betting data is segmented, the percentage of players in each 

player cluster is then calculated (see Table 3).  Since this is representative of the entire 

population of players for the casino, the assumption is that any random sample of 

sufficient size would have the same player distribution.  Therefore, the percentages in 

each cluster can be applied to the expected number of players for each day part.  This 

would give the Shift Manager the expected number of players for each betting level at 

each day part.  The Shift Manager could then determine if tables would need to be 

opened to accommodate future players, and at what level the table minimums should be 

set. 
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Chapter 5 

Conclusion 

Introduction 

 The increase in competition from internal and external gaming markets has 

created a pressure on the table games departments in Las Vegas to maintain the historic 

hold percentages of a time when Las Vegas casinos was more monopolistic.  Other 

revenue centers within the casino have implemented technology to increase performance. 

However, Table Games departments still utilize the intuition of Casino Shift Managers to 

maximize revenues, and set the number of open games and table minimums.  While some 

Shift Managers are very experienced and there is no substitute for their level of 

experience, the system is still very reactionary and fragile.  By utilizing a revenue 

management system, Shift Managers can reduce the uncertainty of their predictive 

estimates, and potentially increase table games revenue by optimizing the table 

minimums and number of open games.  This study sought to answer the question: 

Could a table games revenue management system using Bayesian techniques be 

developed? 

Findings 

 The system laid out in this paper takes into account the short-term fluctuations of 

demand, while not having to remake an entire theoretical model.  The Bayesian updating 

of the distribution can occur with as little as one observation, while always estimating the 

next time period’s demand estimate.  Over time, the model will automatically adjust for 

unpredictable variables, such as economic changes, as this would be reflected in the 

demand and adjusted for without the need to rebuild the model.  By allowing the 
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distribution parameters to be random, the model is not too rigid to ignore unexpected 

events.   

Theoretical Implications 

 Building on the works of Peister (2007) and Chen, Tsai, and McCain (2012), we 

can see that a revenue management system does help to improve table games revenue.  

The Bayesian model put forth in this paper will help improve this by offering an adaptive 

model that does not need detailed player information or rebuilding of the model if 

environment variables change.  Likewise, since Bayesian techniques work more in tune 

with intuitive thought processes, it is easier for operators to grasp the concepts put forth. 

Managerial Implications 

 Operators need to be able to reliably estimate the incoming volume to be able to 

adequately schedule for incoming business.  By utilizing a revenue management system, 

operators are able to use the massive amount of data collected on a daily basis to reduce 

the uncertainty in the determination of the number of players for the Table Games 

department.  In turn, this could potentially increase the revenue of the table games 

department over time as well. 

Future Research 

 The fact that the minimum cluster was almost twice the amount of the current 

base table minimum is an area for future research.  The effect of re-establishing what the 

bare minimum bet should be in the repeater market casino, and its effect on player 

satisfaction is an area that could potentially allow operators to challenge current long-

standing beliefs. 
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 The revenue management model could also be strengthened by using 

observational data gathered by observing players as they enter the property and noting 

what attracts certain players to certain games. This could be incorporated into the 

database so the model could then classify players to each game type. 

 The demand data of this research is limited, as it does not contain information in 

unconstrained demand.  That is to say, if the demand is greater than the number of tables 

available in the casino, there is no way to record the amount of play that was lost due to 

unavailable seats.  Similarly, if the table minimums were too great for a player, there is 

no record of players who showed interest in the game, but were priced out.  The demand 

data is also limited in the sense of the time period observed. If a seat was observed open 

at the count, subsequently filled, and vacated again before the next count, the observed 

count would be zero. While for the purposes of this study, this limitation was negligible, 

this limitation could be removed through observational behavioral data gathered about 

players. 

Additionally, the applications of this research can extend far beyond the scope of 

casinos, specifically table games departments.  Since Bayesian techniques are 

generalizable, and able to update any given distribution.  Demand for any industry is 

consistently based on an underlying gamma distribution. One potential area where these 

calculations can be applied to in future research are restaurants. 

 Restaurants could use the prediction of demand with a cluster analysis of group 

size and average check by group.  This would require tracking of dining groups, this 

would allow a restaurant to maximize floor layout to increase the number of four tops or 

two tops based to maximize revenue and table turn around. The model proposed in this 
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paper could be adapted to apply to bolster the current systems of revenue management in 

hotels as well.  Comparative studies testing frequentist regression models and Bayesian 

predictive models would be able to highlight strengths and weaknesses of each group. 

Conclusion 

 By using Bayesian techniques, it is possible to develop a revenue management 

system that would reduce uncertainty in the Shift Manager’s estimations of future 

business.  By reducing this uncertainty, the department can maximize revenues in a 

proactive manner, and the system can be used as a tool to assist casino managers in the 

better management of the table games department.
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Appendix A 

The demand information is assumed to follow a Poisson distribution with mean of θ, 

since demand will be discrete.  θ will follow the Gamma distribution g(θ;α,λ).  g*(θ| ) 

then is a gamma distribution.  This distribution has α0 and λ0 that was estimated from past 

data via Lindley’s approximation where θ was observed to follow the gamma 

distribution.  This was then updated via the Bolstad package in R via a Poisson 

likelihood. Since Gamma and Poisson are conjugate distributions, applying the Poisson 

likelihood to the Gamma distribution yields the Gamma posterior g*(θ).  The HPD of 

which provides the credible set for the estimation of demand.  
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Appendix B 

The initial data was loaded into R as three different data sets.  The initial data set 

provided the initial estimate of the distributions and the information for Lindley’s 

approximation.  This data, after being loaded, and separated into distinct distributions, 

was run through a function to segment the data, calculate the α and λ lambda of each 

segment via equations 8 and 9. 

 

  
 ̅ 

   (8) 

   
 ̅

   (9) 

 

The R code was compiled into a function, b.post, and applied to each distinct distribution 

providing the prior gamma parameters

b.post<-function(x,y){ 

 col.names<-c("shape","rate") 

 post.1<-as.data.frame(matrix(1,nrow=1,ncol=2,dimnames=list("estimate",col.names))) 

 wd1break<-data.frame(1:(ceiling(nrow(weekdays_1)/10))) 

 wd2break<-data.frame(1:(ceiling(nrow(weekdays_2)/10))) 

 we1break<-data.frame(1:(ceiling(nrow(weekends_1)/10))) 

 we2break<-data.frame(1:(ceiling(nrow(weekends_2)/10))) 

 we3break<-data.frame(1:(ceiling(nrow(weekends_3)/10))) 

 

 #define prior  

 if (x==1){ 

  if (y==1) {z.i<-weekdays_1.t1$ttlhc;x.i<-weekdays_1}else 

  if(y==2){z.i<-weekdays_1.t2$ttlhc;x.i<-

as.data.frame(rgamma(nrow(weekdays_1),wd1$alpha.bayes,rate=wd1$lambda.bayes.rate))} 

   

   

  for (i in (1:ceiling(nrow(x.i)/10))){ 

   wd1break$mean[i]<-mean(x.i[((i*10)-9):(i*10),]) 

   wd1break$var[i]<-var(x.i[((i*10)-9):(i*10),])} 

  wd1break<-wd1break[-1] 

  wd1break<-na.omit(wd1break) 

  wd1break$lambda<-wd1break$mean/wd1break$var 

  wd1break$alpha<-(wd1break$mean)^2/wd1break$var 

  fit.wd1.lambda<-fitdistr(wd1break$lambda,"gamma") 
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  fit.wd1.alpha<-fitdistr(wd1break$alpha,"gamma") 

  a<-fit.wd1.lambda$estimate[1] 

  c<-fit.wd1.alpha$estimate[1] 

  d<-1/(fit.wd1.alpha$estimate[2]) 

  b<-1/(fit.wd1.lambda$estimate[2]) 

  ahat<-rGammaGamma::gammaMLE(z.i,niter=10000,tol=.001) 

  

This process is repeated for each distinct distribution. The function then establishes the 

other necessary variables and runs Lindley’s approximation. 

 

 

#establish all other variables 

 n<-nrow(x.i) 

 alpha.hat1<-ahat[1] 

 lambda.hat1<-1/ahat[2] 

 psi.prime1<-trigamma(alpha.hat1) 

 psi.dblprime1<-psigamma(alpha.hat1,deriv=2) 

  

#calculate Bayes Estimates 

 alpha.hat.b<-alpha.hat1+ 

   (1/(2*n*(alpha.hat1*psi.prime1-1)^2))*(-

psi.dblprime1*alpha.hat1^2+psi.prime1*alpha.hat1-2)+ 

   (a+c-2-d*alpha.hat1-b*lambda.hat1)/(n*(alpha.hat1*psi.prime1-1)) 

 lambda.hat.b<-lambda.hat1+ 

   ((alpha.hat1*lambda.hat1)/(2*n*(alpha.hat1*psi.prime1-1)^2))*(-

psi.dblprime1+2*(psi.prime1)^2-((3*psi.prime1)/alpha.hat1))+ 

   (lambda.hat1/(n*(alpha.hat1*psi.prime1-1)))*((c-1)/alpha.hat1-d)+ 

   (((lambda.hat1)^2*psi.prime1)/(n*(alpha.hat1*psi.prime1-1)))*((a-1)/lambda.hat1-b) 

  

 

#save Bayes Estimates 

 if (x==1){wd1$alpha.bayes<<-alpha.hat.b 

   wd1$lambda.bayes.rate<<-lambda.hat.b}else 

 if (x==2){wd2$alpha.bayes<<-alpha.hat.b 

   wd2$lambda.bayes.rate<<-lambda.hat.b}else 

 if (x==3){we1$alpha.bayes<<-alpha.hat.b 

   we1$lambda.bayes.rate<<-lambda.hat.b}else 

 if (x==4){we2$alpha.bayes<<-alpha.hat.b 

   we2$lambda.bayes.rate<<-lambda.hat.b}else 

 if (x==5){we3$alpha.bayes<<-alpha.hat.b 

   we3$lambda.bayes.rate<<-lambda.hat.b} 

} 

  

 The prior is now ready to be updated with new data and calculate the HPD to 

determine the credible set.  
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