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ABSTRACT 
 

The effect of single crystal elastic and plastic anisotropy on stress and 
strain heterogeneity: comparison of olivine to other common minerals 

 
By 

 
Christopher J. Cline II 

 
Dr. Pamela C. Burnley Examination committee chair 

Associate Research Professor 
University of Nevada Las Vegas 

 
 
 In order to investigate the influence of single crystal elastic anisotropy on 

the heterogeneity of stress distributions during polycrystalline deformation 

multiple deformed crystalline materials were analyzed using electron backscatter 

diffraction (EBSD). Deformation experiments were conducted on samples of 

Solnhofen limestone using a modified Griggs piston cylinder apparatus at UNLV, 

and also on San Carlos olivine using the D-DIA multi-anvil press at the National 

Synchrotron Light Source beamline X17B2. Analysis of the mechanical twins in 

deformed calcite and kink bands in olivine help elucidate deviations in local 

stress directions away from that of the applied macroscopic stress. Combined 

calculated compression directions in each microstructured grain shows that in 

both olivine and calcite the mean deviation of local stresses is approximately 25º, 

with maximum being 35º and 40º respectively. Experimental observations were 

compared with finite element models (FEMs) of olivine, quartz and calcite. The 

models were constructed using the full elastic tensor of each material, as well as 

an estimated single crystal yield stress. The FEMs show that with increasing 

single crystal elastic anisotropy there is an increase in deviation of the local 
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compression direction away from the macroscopic compression direction, up to 

12, 13 and 19º respectively, but lack the magnitude that is observed in the 

experimental deformation. I hypothesize that this discrepancy originates from the 

lack of a grain boundary structural component in the FEMs, thus providing 

evidence of the importance of grain boundary sliding during polycrystalline 

deformation. In addition, the experimental deformation results do not show a 

strong correlation between the elastic anisotropy of the single crystal and the 

spread in local compression directions. This behavior is attributed to the differing 

plastic anisotropy of both materials, indicating the importance of plastic 

anisotropy in the prediction of stress and strain heterogeneity in polycrystalline 

deformation based off of single crystal properties.   
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CHAPTER 1 

INTRODUCTION 

The rheology of the upper mantle regulates multiple tectonic processes on 

earth, thus it becomes paramount to obtain a complete understanding of the flow 

laws and distribution of stress within this portion of the earth. Since olivine 

(Mg,Fe)2SiO4  is both the least viscous and most voluminous mineral in the upper 

mantle, deformation experiments using olivine have been the center of mantle 

studies for over four decades (e.g. Goetze, 1978; Demouchy et al., 2009; Faul et 

al., 2011). Studies include work on both single crystal (Durham et al., 1977; Bai 

and Kohlstedt, 1992; Raterron et al., 2007; Raterron et al., 2011) and 

polycrystalline deformation (Carter and Ave'lallemant, 1970; Stoker and Ashby, 

1973; Goetze, 1978; Karato and Yu, 1993; Karato and Jung, 2003; Hansen et al., 

2011) to establish flow laws, which are empirical fits to experimental data, and to 

also understand microstructural evolution (Green and Radcliffe, 1972). These 

deformation experiments are intended to elucidate mantle processes by being 

conducted at realistic pressure and temperature conditions found along the 

geotherm; but other parameters of volumetric and temporal scale require large 

extrapolations before data can be accurately interpreted (Bai et al., 1991; Karato 

et al., 1998; Karato, 2010).  

High pressure and temperature experiments 

Most high pressure apparatuses employ the simple relationship pressure 

= force/area to produce a high pressure environment (Fig. 1a). This relation 

provides two methods for creating a high pressure environment 1) increase the 
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applied force or 2) decrease the area over which the force is applied. Many types 

of high pressure apparatuses have been developed that utilize this relationship 

between achievable pressure and sample volume (Fig. 1b). Limitations on the 

applied stress are ultimately determined by the strength of all the materials used 

in the specific apparatus. Currently, for large volume deformation the strongest 

material available for use as force-generating anvils or pistons, such a tungsten 

carbide and cubic boron nitride, have compressive strengths that range from 4 to 

8 GPa. Thus, to reach higher pressures the sample volume must decrease 

(Getting et al., 1993). 

 

  

Figure 1a. Depiction of D-DIA anvil and sample. Ab represents the surface area 
of the back of the anvil which is in contact with the pressure source, As 
represents the surface are of the sample. Figure 1b. Pressure and temperature 
limitations for different apparatuses. Pressure/temperature limitations in common 
large volume high pressure deformation apparatuses plotted in relation to the 
geotherm, volumes in parentheses are listed in mm3. Notice that to achieve any 
pressure above approximately 25 GPa, large volume deformation is no longer 
viable and extremely small samples volumes are required, such as found in 
diamond anvil cell, redrawn inspired by Karato (2010). 
 

 

a) b) 
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For polycrystalline deformation studies, decreases in sample volume are 

usually accompanied by a decrease in the grain size in order to maintain 

satisfactory grain statistics. With sample volumes in the multi-anvil deformation 

apparatus generally constrained to 2 mm3 (refer to Fig. 1b), experimental grain 

sizes are usually on the order of 10's of μm’s, differing from  presumed mantle 

grain sizes (10’s of μm’s up to 10’s of mm’s) by multiple orders of magnitude 

(Nicolas, 1978; Ave’lallemant et al., 1980). This discrepancy in grain size adds 

complexity to data interpretation as many aggregate properties and deformation 

mechanisms in olivine have been shown to be sensitive to mean grain size, such 

as: seismic wave attenuation (Faul and Jackson, 2005; Jackson et al., 2002), 

grain boundary sliding (Lee et al., 2002; Hirth and Kohlstedt, 2003; Hansen et al., 

2011) and activation of diffusional processes (Karato et al., 1986; Karato and Yu, 

1993; Hirth and Kohlstedt, 2003). For a microstructural study, such as this one, 

this grain size sensitivity needs to be taken into account to ensure the experiment 

is conducted at the correct conditions to activate the desired deformation 

mechanisms (i.e. dislocation glide vs. diffusion creep).  

Temporal and volumetric extrapolations 

The issues of temporal scale in deformation experiments are far more 

difficult to overcome than those of a volumetric origin. Inevitably, the duration of 

experiments are limited by the human timescale. These time constraints mean 

that experimental strain rates are generally between 10-3 - 10-6 s-1, in contrast to 

the estimated mantle strain rate of 10-12 – 10-16 s-1 (Karato, 2010). Thus, large 
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extrapolations of flow data are needed in order to be applied to mantle processes 

(Karato et al., 1986; Karato, 1988).  

Mainly the extrapolation is not a correction of strain rate, but the 

differential stress which is applied to the sample. The relationship between stress 

and strain rate is illustrated by a flow law which is used to empirically fit 

experimental mechanical data (Equation 1). Equation 1 is a flow law Where  ̇ is 

strain rate, A is a parameter based on the material, σ is the differential stress, n 

is a deformation mechanism-specific stress exponent, Q is activation energy, P is 

pressure, V is volume, R is the ideal gas constant and T is temperature in Kelvin. 

In (equation 1), the value of strain rate is a function of the differential stress, so 

as our experiments are forced to higher strain rates than naturally occur in the 

mantle, by consequence the applied stress must also increase to unrealistically 

large values.                        

                       ̇         (
       

  
)                       eq.1 

 
As with the sensitivity that deformation mechanisms have to grain size, similar 

effects are observed at particular differential stresses. (Figs. 2a and 2b) are two 

different deformation mechanism maps for olivine which show how stress, grain 

size and temperature relate to different deformation mechanisms and strain rates 

(Kirby, 1983). It is clear from (Fig. 2b) that the extrapolations needed to justify 

deformation experiments are quite large, and can benefit from substantiation by 

additional means. 
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Figure 2a. Deformation mechanism map for olivine at a grain size of 1mm. 
Temperature has been normalized to melting temperature, From Kirby (1983). 
Figure 2b. Deformation mechanism map for olivine at 7 GPa and 1700 K. From 
Karato (2010). 
 

Modeling polycrystalline plasticity  

In order to better extrapolate the rheological behavior of polycrystalline 

earth materials to stress conditions and timescales that are unachievable in a 

laboratory setting, some sort of model is required (Karato, 2010; Karato 1998; 

Karato and Yu, 1993; Hirth and Kohlstaedt, 2003). Numerical models are 

particularly appealing for this task, but for these models to provide a sound 

platform for extrapolation they must be based on a sound understanding of all 

deformation mechanics that are operating in the real material. In a simplified 

description the mechanics of polycrystals can be thought of as having three 

components 1) the mechanical properties of the individual grains, 2) the 

mechanical properties of the grain boundaries and 3) the macroscopic aggregate 

response, which consists of the interaction of the other two components within 
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the polycrystal. The individual reaction of a constituent grain within a polycrystal, 

also known as a crystallite, to an applied stress is fairly well understood from the 

studies on single crystal deformation listed above and others; also, the 

macroscopic response of an aggregate is easily measured using laboratory 

techniques. The complexity arises when attempting to model how the 

microscopic stress and strain of the constituent grains relate to the macroscopic 

stress and strain of the aggregate (Castenlau et al., 2008).  The early models of 

polycrystalline plasticity that were developed to describe the relationship between 

aggregate response and crystallite behaviors are end member descriptions, 

either focusing on homogeneous stress or strain throughout the whole 

polycrystal.  

Sachs model – constant stress 

One of these end-member models is known as the Sachs model, which 

assumes that each grain within a deforming aggregate is subjected to the same 

stress state and that this stress is equivalent to the macroscopic stress (Sachs, 

1928). This type of constant stress state in a polycrystal is also known as the 

Ruess state. In addition, Sachs also proposed that each crystallite deforms 

utilizing only the slip systems with the highest value of resolved shear stress, 

thus satisfying Schmid’s law, see (Fig. 3).  
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Figure 3. Components of the Schmid factor calculation. α is the angle between 
the applied differential stress and the normal of the slip plane, and β is the angle 
between the slip direction and the applied stress. Schmid factor is a value 
between 0 and 0.5 which is a geometric description of the amount of shear stress 
resolved on a specific slip plane and direction, calculated using the equation S.F. 
= (Cos α • Cos β) (Hull and Bacon, 1984). In the case of the Sachs model, only 
the slip system with the highest Schmid factor will be activated (Clausen, 1997). 
In the situation of a crystal being orientated along a symmetry axis and two slip 
systems have identical Schmid factors, both systems will be activated. 

 

When both of these aspects of the model are combined, the product is a 

model that considers each crystallite as an unconfined deforming single crystal, 

which is where the model begins to break down (Zhao et al., 2007). During 

deformation grains will change shape to relieve internal stresses by dislocation 

motion, but within a polycrystal the shape change cannot be arbitrary, since it is 

also controlled by the surrounding grains. If the position and shape change of the 

neighboring crystallites is not taken into account compatibility among grains is 

lost due to the creation of voids and overlap at grain boundaries, (Zhao et al., 

2007; Delannay, 2001).  
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Taylor model – constant strain 

 The other end-member is the Taylor model, in which each grain in an 

aggregate is envisioned to accommodate the same amount of strain as the 

aggregate in total (Taylor, 1938). The constant strain state of each grain in a 

polycrystal is also known as the Voigt state. This model employs five active slip 

systems per grain in order to accommodate the appropriate amount of strain, in 

contrast to the Sachs model which only actives one slip system (Taylor, 1938; 

Kozaczek et al., 1992). Also, the stress state of each grain is dependent purely 

on its orientation, thus grain populations of different orientations will exhibit 

different stress states and grains cannot transfer stress to neighboring grains 

(Delannay, 2001). Since there is no means of maintaining stress equilibrium 

within the polycrystal, the model cannot be valid (Zhao et al., 2007; Delannay, 

2001).   

The Sachs and Taylor models both make similar assumptions which lead 

to the ultimate invalidity of both models; they both define deformation as being 

described exclusively within populations of grains defined purely by their 

orientation. This assumption overlooks two important phenomena which are 

consistently observed in experimental polycrystalline deformation: 1) Variability 

does exist within grain populations that share orientations during deformation and 

2) stress and strain heterogeneity exist at both the inter- and intragranular scale 

(Clausen et al., 1998). Simplistically, these models do not account for the elastic 

anisotropy of the material, or the contribution of multiple grains on both the strain 

rate and stress state of each constituent grain within the polycrystal (Molinari et 
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al., 1997: Clausen, 1997). This issue was resolved with the next generation of 

models that began incorporating the changing stress state of constituent grains 

within the aggregate into the determination of each individual grains behavior. 

These models are described as self-consistent, since they utilize internally 

calculated values of stress at a given increment of deformation in the 

determination of the stress state for a grain at the next increment (Turner and 

Tome, 1994). Currently there exist two main schemes utilized to determine self-

consistent values of effective stress within these models: 1) use the average 

stress state of all grains (mean field), or 2) use the full description of each 

individual stress state present in each grain (full field).  

Self-consistent model – mean field 

Self-consistent theory was first used in a description of polycrystalline 

deformation by Kroner (1961) and utilized the theory of inclusions presented by 

Eshelby (Eshelby, 1957; Kroner, 1961; Clausen, 1997).  The theory relies on the 

finding that if elliptical inclusions are deformed in a homogeneous matrix, and 

both have linear properties, there can be uniform stress and strain rates at the 

intragranular scale (Eshelby, 1957; Delannay, 2001; Clausen, 1997). By 

providing intragranular stress and strain equilibrium throughout a deforming 

aggregate, there were no longer any violations of stress equilibrium or grain 

continuity, as in the Taylor and Sachs model respectively. This theory provided a 

sound basis to then build a numerical model (Delannay, 2001). The elastic-

plastic self-consistent model (EPSC) of Turner and Tome (1994) is just one of 

these models, in which grains are represented by elliptical inclusion deforming 
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within an infinite homogeneous matrix (IHM), representative of an aggregate 

matrix (Turner and Tome, 1994). Initial input data includes orientation data 

through the use of Euler angles, all possible slip systems in the single crystal and 

their associated CRSS. As strain is imposed through the IHM each grain 

responds according to the single crystal rheology (Turner and Tome, 1994). 

The properties of the IHM are calculated by averaging the reaction of all grains to 

the stress field, and is recalculated after each grain in the simulated aggregate 

has been subjected to the previous calculated stress, thus the given name of 

mean-field model, see (Fig. 4) for a visual of this process (Molinari et al., 1997; 

Castenlau et al., 2008). This type of model can be used to determine 

macroscopic stresses on a polycrystal, but it still lacks the ability to model plastic 

interactions between neighboring grains, including stress and strain localization 

which is commonly observed in deforming aggregates (Delannay, 2001; Hansen 

et al., 2012).  

 

Figure 4. Stress state calculation using the IHM in self-consistent models. 
Modified from Molianri et al. (1997). 
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Full field models 

 In contrast to the mean field approach, there exist other models known as 

full field models that incorporate fluctuations in intragranular stress and strain 

rate as well as the plastic interaction of these grains to describe the overall 

aggregate behavior (Castenlau, 2008; Burnley, 2013). There exists numerous 

variations to the full field technique including simple 2D plane-strain finite 

element models (FEM) used by Burnley (2013), and the more complicated 3D 

Fast Fourier Transform (FFT) models used in Castenlau et al. (2008) and (2010); 

but due to the large computing power needed for 3D models and the small grain 

statistics of FFT models, we will focus on the FEM technique. Recent work within 

our lab using 2D plane-strain FEMs has elucidated some shortcomings of the 

mean field approach to modeling. In our models, the plastic interactions between 

grains have been observed to effect variations of the local stress tensors within 

the aggregate in both magnitude and direction away from the macroscopic stress 

tensor. These variations in the stress tensor produce patterns similar to force 

chains that are observed in deformation experiments on granular materials and 

appear to be a direct consequence of stress percolation (Fig. 5). The density of 

stress localization was directly affected by the anisotropy of the elastic and 

plastic properties of the single crystals used to construct the model, but were 

exaggerated from anisotropy values observed in earth materials. These results 

do not directly correlate to the models on geologic materials since the values of 

anisotropy were exaggerated, but did provide a framework to further explore the 

relationship between stress patterning and single crystal properties. 
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Figure 5. Example of FEMs with varying elastic properties. 4 FEMs are shown 
with increasing constituent grain anisotropy from a to d. E represents the range 
of Young’s modulus and v represents the range of Poisson ratio assigned to 
each grain population. The scale indicates the value of equivalent Von Mises 
stress (in GPa) for each model after a vertical load of 0.1 GPa is applied. Notice 
the difference in stress magnitudes present in the isotropic model (a) from 0.08 – 
0.1 GPa compared to the anisotropic model (d) of -0.02 – 1.03 GPa, modified 
from Burnley (2013). 
 

Objectives 

The aim of this study is to provide new insight into single crystal controlled 

stress percolation in deforming polycrystals, similar to the study using finite 

element models. In contrast, I use an experimental technique and geologically 

relevant materials in order to further define the relationship between stress 

direction modulations in a deforming aggregate, and the anisotropy of the elastic 
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and plastic strengths of the single crystal. By conducting a suite of deformation 

experiments utilizing multiple monomineralic polycrystals that have a range of 

single crystal anisotropies we can infer the total stress direction modulation within 

each material. This was done by analyzing microstructures in each material that 

form with a preferred orientation to an applied stress direction, such as 

deformation twins and kink bands. It must be emphasized that I am not 

reconstructing the complete local stress tensor modulations within the 

aggregates; I am only determining the modulation of stress directions within each 

material, not the magnitudes. Studies have been conducted using deformation 

twins in calcite to estimate both the direction and magnitude of a stress tensor 

acting on an aggregate, but this type of analysis averages numerous local stress 

tensors calculated by twin sets and disregards the variations between individual 

grains and is thus not applicable to this study (Burkhard, 1993; Becker et al., 

2006; Lacombe, 2007; Jang et al., 2012). Establishing the relationship between 

strain heterogeneity and single crystal properties will provide the ability to predict 

local stress direction inhomogeneities and stress patterning in a deforming 

polycrystal based largely on the properties of the single crystal. The ability of this 

relationship to be predictive has direct implications on advancing the current 

state of geologically relevant numerical models.  

The Reuss stress state (all crystallites having equal stress) has long been 

shown to be a simplified interpretation of the stress field within a polycrystal, but 

is still commonly used in linear combination with the other isostate bound, Voigt 

state (all crystallites having equal strain), to determine the effective macroscopic 
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moduli in aggregates for studies on seismic anisotropy (Dolle, 1979; Mainprice et 

al., 2000; Chen, 2006; Murray, 2013). By establishing a more realistic construct 

of stress patterning through percolation theory into popular computer models, I 

can then begin to abandon the use of an assumed Reuss state of stress and 

start to converge on a more realistic description of stress distribution in a 

deforming aggregate (Burnley, 2013). To the author’s knowledge there are 

currently no numeric models that account for modulations in the local stress 

direction during polycrystalline deformation, which is the main inspiration for 

conducting this study. In addition to contributions within the mineral physics 

community, the implications could be farther reaching into the geologic 

community providing new insight on how we interpret paleostress from 

deformation microstructures in the field, and could also be of interest to the 

material science community as a whole.  

  



 

15 
 

CHAPTER 2 

BACKGROUND 

  In making the selection of materials for the deformation experiments two 

criteria needed to be met 1) there was a range of anisotropy values between the 

materials, and 2) each of the chosen materials form deformation microstructures 

from which local stress direction can be inferred. By meeting both of these 

criteria we maintain the ability to determine modulations in local stress directions 

as a function of constituent single crystal properties. Defining the elastic 

anisotropy of a single crystal is straight forward and several methods have 

already been devised. Plastic anisotropy is more difficult to quantify, different 

materials possess different symmetries, varying number and arrangement of slip 

systems and can have either open or closed yield surfaces. For these reasons 

we will be quantifiably comparing anisotropy values of the materials in this study 

using measures of elastic anisotropy. 

There are two schemes for calculating elastic anisotropy values. The first 

method was developed by Ledbetter and Migliori (2006), which uses the 

maximum and minimum single crystal shear wave velocities to define an 

anisotropy value A*.  (Equation 2) shows the calculation of A* where V1 and V2 

are the minimum and maximum shear sound wave velocities within a single 

crystal (Ledbetter and Migliori, 2006).  

 

                                               
    

                                      eq.2 
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The second method simply involves using the ratio of the maximum and 

minimum Young’s modulus for each material, which will be referred to as Y*. The 

Young’s modulus is used since it is the measure of stiffness in a material and a 

direct result from the elastic tensor. Both of these methods allow anisotropy 

values to be determined in a way that is comparable between all crystal 

symmetries, unlike other methods such as the one developed by Zener (1948) 

which utilizes the elastic constants C11, C12 and C14, thus is only applicable for 

materials with cubic symmetry (Zener, 1948; Ledbetter and Migliori, 2006). 

(Table 1) shows values of A* and Y* for a selection of geologic materials. 

 

Table 1 
List of selected materials and their respective elastic anisotropies 

      Material symmetry     A*     Y*          Reference 

halite cubic 1.42 1.34 Srivastava, 2007 
MgO cubic 1.55 1.41 Anderson, 1966 

†‡olivine orthorhombic 1.55 1.75 Abramson et al., 1997 
galena cubic 1.94 1.74 Padaki et al., 1981 

hornblende monoclinic 1.91 1.90 Ahrens and Bass, 1995 
†quartz trigonal 2.38 1.86 Kimizuka et al., 2007 

†‡calcite trigonal 2.95 2.58 Lin, 2013 

† indicates material was used in finite element models. ‡ indicates material was 
used in deformation experiments. A* refers to the method of determining 
anisotropy published in Ledbetter and Migliori, 2006. Y* represents the ratio of 
the maximum and minimum Young’s modulus. All elastic constants are from 
measurements made at ambient conditions. 

 

 Numerous materials accommodate strain by either deformation twinning 

or kinking. We chose materials within this population that have different values of 

A* and Y* which can be made into mono-phase polycrystals with a relatively 

small and homogeneous grain size. In addition, the synthesis of the starting 

aggregates cannot induce any microstructures or crystallographic preferred 



 

17 
 

orientation (CPO). Microstructures formed during the production of the aggregate 

will bias the determination of local stress directions; any CPO in the starting 

material is not ideal as it will decrease the anisotropy of the aggregate and the 

mechanical properties will begin to become more analogous to single crystal 

behavior. Olivine was the first choice of material for deformation experiments, 

followed by calcite because of the large difference of 1.4 in values of A*.  Quartz 

was used in this study, but does not form any stress dependent microstructures, 

therefore it was only used in finite element models and not for deformation 

experiments. 

Crystallography of materials selected for deformation 

Olivine 

  Olivine is a group of minerals in which a solid solution between two end-

member minerals exists; one is Fe bearing, fayalite (Fe2SiO4: Fa100) and the 

other Mg bearing forsterite (Mg2SiO4: Fo100). Peridotite samples from the upper 

mantle show limited chemical variability and usually have compositions within the 

range of Fo89 to Fo94. Due to this Mg rich composition the forsterite unit cell is 

used for descriptions of crystallography in the remainder of this study (Dehoog et 

al., 2010). Forsterite is a nesosilicate within the space group Pbnm, with cell 

parameters of a = 4.752 b = 10.193 c = 5.977 (Fig. 6a; Hazen 1976). The unit cell 

contains two octahedral sites across which Mg+2 and Fe+2 are randomly 

scattered, M1 and M2. M1 shares two edges with a silica tetrahedron and four 

edges with neighboring M1 octahedrons, and M2 shares only two edges with 

neighboring octahedral and one edge with a silica tetrahedron (Smyth and 
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Hazen, 1973). The bonds in the silicon tetrahedron mostly have covenant 

character in comparison to the Mg-O bonds which are mostly ionic. Since ionic 

bonds are weaker than covalent, the slip systems within the single crystal 

operate so glide occurs along planes which break Mg-O bonds (Poirier, 1975). 

Through single crystal deformation experiments and electron microscopy, eight 

slip systems have been found to operate within the single crystal, (Fig. 6b; Carter 

and Ave’Lallemant, 1970; Durham et al., 1977; Raterron et al., 2008; Raterron et 

al., 2012).  

 

 

Figure 6. (a) Unit cell of forsterite. Blue represents silicon tetrahedrons and green 
spheres representing Mg atoms, redrawn from Couvy (2005. (b) Schematic of all 
slip systems in olivine. Colored planes represent slip planes while similar colored 
arrows indicate the burgers vector on that specific crystallographic plane, 
modified from Castnelau et al. (2008). 
 

As is depicted in (Fig. 6b) [100] slip occurs on multiple planes: (010) and 

(001), then three planes {011}, {021} and {031} which are referred to as pencil 

glide slip systems; [001] slip only occurs on the (100), (010) and {110} planes. 

Multiple slip systems (Fig. 6b) are active during polycrystalline deformation, but 

the last 40 years of experimentation has shown that the [100] burgers vector 
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dominates at high temperature and low strain rate conditions, and the [001] 

burgers vector dominates slip during low temperature and high strain rates (Fig. 

7; Carter and Ave’lallemant, 1970; Durham and Goetze, 1977; Karato et al., 

1986; Raterron et al., 2007; Raterron et al., 2012). Because there are only two 

permissible burgers vectors, olivine only possesses three linearly independent 

slip systems. Thus, olivine fails to meet the Von Mises criterion for arbitrary 

plastic strain, which requires five independent slip systems to ensure strain 

compatibility during deformation (Von Mises, 1928; Castenlau, 2008). In addition 

to this deficiency, the geometry of the eight slip systems do not allow for 

dislocation creep to accommodate strain when stress is applied in the axial 

directions. These properties of the single crystal necessitate additional 

deformation mechanisms to allow polycrystalline deformation, which is partially 

achieved through the formation of kink bands (Burnley et al., 2013). Kink bands 

have been observed in both natural lherzolites and experimentally deformed 

polycrystalline samples of olivine since the work of Raleigh (1968) (Nicolas et al., 

1971; Green and Radcliffe, 1972; Durham and Goetz, 1977; Ave’ Lallemant, 

1985). As explained by Christie et al. (1964) and Raleigh (1968), the morphology 

of kink bands can be used to determine which slip system is active in kinked 

grains (Christie et al., 1964; Raleigh 1968). The morphology can also be used to 

infer the compression direction acting upon each kinked grain, which is how they 

will be used in this study.   
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Figure 7. Active slip systems as a function of strain rate and temperature. 
Pressure is constant at 1.5 GPa, modified by Karato et al. (2008) from Carter and 
Ave’Lallemant (1970).   
  

 Kink bands form due to a buckling instability which is a consequence of 

the single crystal inability to accommodate strain via dislocation glide in the axial 

directions (Burnley et al., 2013). During the formation of a kink band, dislocation 

glide occurs on a plane orientated at a very low angle or parallel to the applied 

stress, thus providing motion on a prominent slip system which has little to no 

resolved shear stress at the initiation of slip (Lenze et al., 2005). There are three 

important components of a kinked grain, the kink band boundary, glide plane and 

rotation axis, which are traditionally used in the determination of active slip 

system, see (Fig. 8; Christie et al., 1964). During slip along the slip plane, the 

glide direction will form normal to the kink band boundary, and portions of the 

crystal inhomogeneously slip which causes rotation about an axis defined by the 

intersection of the slip plane and kink band boundary (Raleigh, 1968). By 
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determining the orientation of the rotation axes in a kinked grain, the 

compression direction can then be inferred (Lenze et al., 2005). A study 

conducted by Burnley et al. (2013) analyzed kinked grains in deformed Mg2GeO4 

olivine using EBSD, (Fig. 9). In this figure the kinked grain can be visually 

identified in photomicrograph and EBSD orientation map by the distinctive 

crystallographic domains separated by sub-parallel fractures. The pole figures 

from the kinked grain can be used to determine the rotation axis; data points on 

the [010] plot show a superposition of poles, while the [100] and [001] poles are 

distributed along great circles. This trend is indicative of rotation about [010], and 

since the [001] poles are at low angle to compression, the [001] is identified as 

the compression direction (Burnley et al., 2013). In this study, the same 

technique will be used to determine the local compression direction for each 

kinked grain identified in the deformed olivine samples. 

 

 

Figure 8. Elements of a kink band in olivine. Notice the rotation axis is normal to 
the glide direction and parallel to the intersection of the kink band boundary and 
glide pane from Lenze et al. (2005).  
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Figure 9. Kinked magnesium germanate grain imaged using EBSD. Mg2GeO4 
grain photomicrograph (upper left), and a EBSD map (upper right). Notice the 
different orientation domains separated by sharp sub-parallel fractures. (lower 
half) The [010] axis show a superposition while the [100] and [001] poles are 
distributed along great circles. Experimental compression is in the vertical, figure 
from Burnley et al. (2013). 
 

Calcite 

 Calcite twins have been utilized to provide information on both the stress 

direction and incremental strain in deformed rocks since the early descriptions of 

their morphology in works by Turner, (1953); Groshong, (1972) and Spang 

(1972) (Burkhard, 1992). Since these early works many alterations have been 

made to the classic method of stress analysis via calcite twin morphology which 

include: weighting the amount of twinned grains to calculate relative stress 

magnitudes (Spang, 1972), determining intragranular twin density as a proxy for 

shear strain (Groshong, 1984) and the evaluation of negative expected values 

(NEV) which measure the homogeneity of strain in a twin data set in relation to a 
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theoretically predicted strain tensor calculated only using the twin set with the 

highest Schmid factor (Pfiffner and Burkhard, 1987) (Burkhard, 1992). For the 

purpose of this study only the modulation of local stress directions is of 

importance, and since the values of temperature, pressure and macroscopic 

stress are measured during the experiment, the classic technique of determining 

compression direction by use of the c-axes and twin composition plane of each 

grain will be adequate.  

 Deformation twinning in calcite aggregates is the most dominant 

deformation mechanism during low temperature/low stress deformation due to 

the extremely low critical resolved shear stress of ~ 30 bars at less than 350ºC 

(Wenk et al., 1973). Above this temperature the role of deformation twinning is 

minimized and strain is either accommodated by recrystallization or dislocation 

glide on r-planes {10-11} and f-planes {02-21} (Fig. 10; Rybacki et al., 2013; 

Wenk et al., 1973). The twinning system is defined by the composition plane, or 

e-plane {01-12}, and the twin direction which is defined by the intersection of the 

e-plane and the cleavage plane r{10-11}, see (Fig. 11a). The c-axis, pole to the 

e-plane and glide direction in a twinned grain are coplanar with respect to the 

preferred compression and tension axes, and the twin geometry can be seen in 

(Fig. 11a) (Laurent et al., 2000; Tielke, 2010; Jang et al., 2012). In a host grain 

the angle between the c-axis and e-plane pole is 26º, after the grain twins the c-

axis is rotated to the opposite side of the e-plane pole by 26º in the twinned 

domain, creating an angular misorientation between the host and twin c-axes of 

52º (Fig. 11b; Spang, 1972; Groshong, 1972; Burkhard, 1993). It is important to 
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note that due to the trigonal symmetry of calcite, twinning may occur on any of 

the three {10-11} planes, and with large amounts of strain multiple twinning 

planes can be activated simultaneously (Burkhard, 1993). Multiple twin sets in a 

single grain complicates the determination of a single compression direction 

based of the twin morphology, and thus high strains were avoided during 

deformation experiments. 

 

 

Figure 10. Slip systems in calcite as a function of temperature and CRSS. Notice 
the very low stress required to activate e-twinning compared to dislocation glide 
in the low temperature slip regime modified from Rez and Melichar (2010). 
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Figure 11. (a) Stereonet showing main components of e-twins in calcite. C-axis is 
in center with the three e-plane poles distributed around by 120º due to the 
trigonal symmetry of the single crystal. The angle between the e-plane pole and 
c-axis is 26º, with compression being 45º from the e-pole. The pole to the 
cleavage plane is indicated by r, and g is the glide direction for the e1 twin 
system, modified from Burkhard (1993). (b) Schematic cross section of calcite 
twin. The stippled box represents the host grain with the grey regions as twinned 
orientations, modified from Spang (1972). 
 

  Stress and strain analysis utilizing calcite twins in natural samples use a 

large number of twins to calculate an average stress or strain tensor acting on a 

regional scale. (Fig. 12) from Spang (1972) spread shows just one of these 

classic studies in which 50 twinned calcite grains have been analyzed by taking 

advantage of the coplanar relationship between compression, tension, e-plane 
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pole and c-axes of the twin and host (Spang, 1972). Using a u-stage, 

compression direction is calculated from each twinned grain and plotted on a 

stereonet. By averaging the calculated compression direction vectors, a single 

stress vector is determined which is produced from the entire population of 

twinned grains (Burkhard, 1993). In (Fig. 12) it can be observed that the 

calculated compression directions show a spatial distribution away from the 

determined macroscopic stress direction. Understanding this spread in 

compression data is the main objective of this study, and has not been 

addressed by any of the previously mentioned authors. By modifying the 

classical technique of calcite twin analysis by using EBSD and a known applied 

macroscopic stress direction the deviation in local stress directions can be 

accurately determined and compared with other minerals. 
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Figure 12. Calcite paleostress calculation using eigenvector analysis. Equal 
area stereographic projection with the calculated compression direction from 
50 twinned calcite grains. C1, C2 and C3 are representative of the calculated 
eigenvectors for the data set which correspond to the principal directions of 
the macroscopic stress tensor, with C1 = σ1, C2 = σ2 and C3 = σ3, from Spang 
(1972). 
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CHAPTER 3 

METHODOLOGY 

 This study utilized a number of different experimental and observational 

techniques. Two types of deformation apparatuses were used in the 

experimental portion of this study: a modified Griggs type piston cylinder 

apparatus and the deformation-dia multi-anvil press. After deformation, scanning 

electron microscopy (SEM) along with electron backscatter diffraction (EBSD) 

was performed at either Electron Microanalysis and imaging Laboratory (EMiL) 

located at the University of Nevada Las Vegas, or the microscopy lab located at 

University of California Santa Barbara. In addition to the deformation 

experiments, finite element models were also used to better constrain local 

stress direction modulations during polycrystalline deformation.  

Griggs apparatus  

The Griggs machine is a modified piston cylinder apparatus. This 

apparatus allows for the independent pressurization and deformation of a sample 

by using both a hydraulic ram (for pressure) and deformation piston in line with a 

loading column (for deformation) (Griggs, et al., 1960). Temperature is monitored 

by a single side entry type S thermocouple (100% Pt/ 90%Pt 10% Rh). Signal 

from the thermocouple is routed directly into the data acquisition system where it 

is treated with a built in cold-junction compensator. A pressure correction has not 

been applied to the recorded temperature because the findings of Lazarus et al. 

(1971) indicate that at the largest correction that would be appropriate for a type 

S thermocouple is approximately 0.6°C/kb at 800°C, a negligible deviation for the 
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purpose of this study. Differential stress is recorded from a load cell that is 

attached directly to the loading column and upstream of the deformation piston. 

Attached to this load cell are two horizontal supports that secure the linear 

variable differential transformer’s (LVDT) that record the vertical position of the 

deformation piston, and are used in the determination of strain in-situ. 

Confining pressure data is acquired from an Omegadyne pressure 

transducer, which records the pressure within the lines that supply oil to the top 

of the hydraulic ram. In order to determine the confining pressure on the sample 

we use the factory calibration to convert the mV output from the transducer to 

psi. Oil pressure is applied to the top of the hydraulic ram, so a conversion is 

made between this surface area and the surface area of the confining pressure 

piston directly below to provide the actual sample pressure. 

There is a source of error within this pressure reading that is caused by 

the internal friction within the hydraulic ram. Inside of the ram there is a large O-

ring that seals oil in either the upper or lower portion of the ram. As the ram is 

pressurized and oil is transferred from the lower reservoir to the upper, the 

friction of this O-ring will produce a slight increase in recorded pressure. This 

contribution can be described by the following relationship: recorded pressure = 

confining pressure + internal friction within the ram. Currently the total 

contribution of this friction to the value of recorded pressure is not known for this 

specific Griggs machine, but Burnley and Getting, (2012) have shown that 

deviations between actual and recorded pressure can be up to 10%. All data 

from the Griggs machine instruments are recorded using an Omega engineering 
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data acquisition system (OMB-DAQ-2416-4AO). This suite of data includes: 

temperature, pressure, differential stress and LVDT position. Data is recorded at 

a frequency of approximately 2 Hz and to an accuracy of 10-7 volts; combining 

this with the uncertainty of each instrument we can achieve accuracy within 1°C, 

<0.1mPa for pressure, <0.01mPa for differential stress and .01mm in deformation 

piston position. 

Calcite deformation (Griggs) 

Starting material and sample assembly 

 For calcite deformation experiments Solnhofen limestone (Upper Jurassic, 

Bavaria) was chosen as the starting material because of its very homogeneous 

grain size (~10µm) and microstructure free grains (Barber and Wenk, 1973). This 

specific limestone has been used for calcite deformation experiments for these 

same reasons since the mid 1970’s (Barber and Wenk, 1973; Wenk et al., 1973; 

Rybacki et al., 2013). The homogenous small grain size ensures the stress field 

in the sample is not complicated by the presence of anomalously large grains, 

and also maintains adequate grain statistics in the deformed aggregate.  

Calcite samples were cored from a block of Solnhofen limestone, provided 

by Dr. Eric Rybacki from the Helmholtz Centre Potsdam, using a 1/4 inch 

diamond core drill. Cores were then cut into 15 mm long cylinders using a slow 

speed diamond saw and inserted into a Cu jacket before being placed into the 

Griggs sample assembly (Fig. 13). The jacketed calcite was then placed into a 

NaCl sleeve along with two alumina pistons used for creating the differential 

stress on top and bottom of the cylinder. The jacketed sample and pistons were 
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then placed inside of a graphite sleeve used for resistive heating. The furnace 

assembly and sample are placed into a pressure media of larger NaCl rings and 

placed on top of the bottom tungsten carbide piston. A Pb plug is used on the top 

to transfer load from the ram to the NaCl and a Cu ring is inserted in between the 

Pb and NaCl for a furnace contact.  

 

Figure 13. Diagram of the Griggs modified piston cylinder sample assembly. 
Sample is calcite core with a Cu jacket. NaCl is used as the pressure media and 
heated through the use of a vertical graphite furnace. Temperature is monitored 
through a single side-entry Pt/Rh (type-S) thermocouple which is inside the 
mullite insulation. 
 

Experimental procedure 

Samples were brought up to pressure over a 24 hour period. This allowed 

plenty of time for the NaCl to creep, and prevented any stress concentrations 

within the assembly that could prematurely produce deformation twins and 

biased microstructures. After the desired pressure was reached the temperature 

was increased at a rate of approximately 1/4 ºC sec-1 until reaching the run 

temperature, see run conditions in (Table 2). When the sample reached pressure 

and temperature the deformation piston was engaged at a constant rate which 
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produces a sample strain rate of 1.0 x 10-3sec-1 until the deformation piston made 

initial contact with the sample. Once contact is made the deformation piston is 

immediately stopped and the motor reversed for approximately one minute so the 

piston is no longer touching the sample. This provides an opportunity to slow the 

motor down to the experimental strain rate of 1.0 x 10-4 before the motor is 

engaged again for the deformation. During deformation sample strain is 

monitored in-situ by the two external LVDT’s and a feeler gauge which are 

attached to the piston. Upon reaching the target strain the motor is stopped and 

the sample is quenched to preserve deformation microstructures; then the motor 

is reversed at 1.0 x 10-3 and pressure is bled off at roughly 2 kb/hour.  

 
Table 2 
Summary of conditions for calcite deformation experiments 

Sample 
Temperature 

(°C) 
Pressure(kb)  ̇ (sec-1) Total   (%) 

Sfn_002 300 2.5 1.0x10-4 14 

Sfn_004 200 2.5 1.0x10-4 16 

 

D-DIA experiments 

D-DIA experiments were conducted utilizing beam line X-17B2 at the 

National Synchrotron Light Source. Using a synchrotron beam line allows in-situ 

x-ray diffraction data during deformation experiments which is used for stress 

and strain measurements. The D-DIA is a type of multi-anvil deformation 

apparatus that uses 6 cubically arranged anvils to provide independent 

pressurization and deformation of the sample. (Figs. 14a and 14b) Shows the 

geometry of the six anvils in relation to the two guide blocks that are used to 
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pressurize the sample, one anvil in each guide block in the vertical, and four 

arranged opposing at 90º in the horizontal, making a cubic arrangement. As 

noted in Durham et al. (2003), the back side of each horizontal anvil comprises 

two faces of a virtual octahedron (Durham et al., 2003). By the symmetry 

imposed from the advancing guide blocks and anvils, all axes of the virtual 

octahedron are then strained equally and thus provide hydrostatic pressure to the 

sample. In order to create a deviatoric stress, oil is pumped using two differential 

rams behind the top and bottom anvils located within the guide blocks allowing 

them to advance independent of the other four, see (Fig. 14ba; Wang et al., 

2003). By advancing just one anvil pair, a deviatoric stress is created thus 

altering the previously cubic stress field to one that is tetragonal. The induced 

flow is approximately axially-symmetric with respect to the cylindrical sample 

(Durham et al., 2003, Wang et al). By advancing an anvil pair pressure would 

begin to increase on the sample as deformation progresses, but the D-DIA has 

the capability of bleeding off oil from the main ram (p1 in Fig. 14b) while 

advancing the differential pumps ( p2 and p3 in Fig. 14b) in order to maintain a 

constant sample pressure during deformation (Wang et al., 2003). 
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Figure 14a. D-DIA module, shows how 
the vertical pressure applied by a 
hydraulic ram is converted into a six-
sided cubic stress field Modified from 
Wang et al. (2003). 

 

Figure 14b. Cross section view of the D-
DIA. P1 is the main ram used for 
pressurization, while p2 and p3 are the 
differential rams used for deformation, 
Long et al. (2011).  

 

Pressure and differential stress 

 The values of pressure and differential stress are obtained from in-situ x-

ray diffraction collected during the experiment. Polychromatic x-rays enter the 

sample through a small gap between the front anvils, then exit through an X-Ray 

transparent anvil made of either sintered diamond or cubic boron nitride. The 

diffracted X-rays then passes through a double slit system and is collected by a 

10 element energy dispersive detector at a 2θ angle of approximately 6.5º. 

Spectra are collected in 60 second intervals for 5 cycles on the sample, then 

repeated on the crushable alumina piston. Before analysis each block of 5 

spectra are added together to provide a greater intensity. This type of processing 

allows a more detailed analysis of the rapidly changing stress state in the 

a b 
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beginning of the experiment if needed. Once the spectra are compiled, peaks are 

identified and fit using a program provided by the beam line called Plot 85 to 

determine d-spacing values for each (hkl). D-spacing values are then used to 

determine the evolution of lattice strain throughout the experiment. Values of 

strain can be obtained by comparing the values of d-spacing from each 

diffraction pattern to a hydrostatic diffraction pattern collected before the 

deformation began. This is shown in (Equation 3), where dhhkl is the hydrostatic 

value of d-spacing and dfhkl is the values of d-spacing calculated from each 

diffraction pattern.  

                                              
     -      

     
                                 eq. 3 

The pressure on the sample was also calculated from diffraction data by using 

the measured temperature and calculated cell volume in conjunction with a third-

order Birch–Murnaghan equation of state program from Ross Angel of the 

University of Padova called EosFit 6.0. 

Strain and strain rate  

Sample strain and strain rate are calculated from X-Ray radiographs 

collected after each block of 5 spectra. Radiographs are produced by imaging 

fluorescence of the transmitted beam by a YAG crystal with a CCD camera (Fig. 

15). In the radiograph the sample is visible along with two Pt foils placed on 

either end. In-situ strain is measured in the axial direction by monitoring the 

distance between the Pt foils during deformation. Strain rate is then calculated by 

plotting the values of strain as a function of time.  
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Figure 15. Radiograph taken through the anvil gap in the D-DIA. This image 
shows the long axis of the deforming sample, which is parallel to compression, 
and the Pt foil strain markers. Using the foils, strain is calculated in-situ. 

  

Olivine deformation 

Starting material and sample assembly 

 Phenocrysts of San Carlos olivine (Fo90) were used as a starting material 

for olivine deformation experiments. The phenocrysts were approximately 1cm in 

diameter and optically free of oxidation. The grains were crushed and ground 

using a corundum motor and pestle. The powder was packed into a Ni jacket 

along with an alumina piston and Pt foil markers on either end of the olivine 

powder (Fig. 16). The Ni jacket not only contains the powder, but also helps 

control the oxygen fugacity of the sample. The Ni jacket is then placed into a 

hexagonal boron nitride sleeve that acts as a pressure media. This sleeve is then 

placed into a graphite sleeve which is used as a resistive heater. Temperature is 

monitored by a single top entry Pt/Rh thermocouple which is threaded through 

alumina insulation and placed directly above the Ni jacket. The thermocouple 
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insulation is cemented with zirconia glue into an alumina ring which allows it to 

be used as a piston. 

 

 

Figure 16. Diagram depicting the D-DIA sample assembly. Outer mullite is a 
sphere which fits into 2 pyrophyllite seats forming a cube that fits inside the D-
DIA assembly shown in Figure 14a 
 

Experimental procedure 

 Olivine samples were brought up to the desired run pressure at a rate of 

approximately 5kb/hour at room temperature. Once pressure was reached the 

samples were heated to an annealing temperature of ~ 1100°C for approximately 

2 hours. During the annealing the differential motors were engaged at 0.5mm/sec 

until the oil pressure from the differential lines indicated that a load was being 

applied to the sample. This step ensures that deformation can begin immediately 

once the final experimental conditions are reached. Temperature was then 

dropped to run conditions and diffraction patterns were taken to ensure the 

sample was at hydrostatic conditions before starting the deformation. Then the 

motor was slowed down to advance at only 2μm/sec and deformation began. 
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Once the deformation was complete the sample was quenched to preserve any 

microstructure and the sample was unloaded by retracting the main and 

differential rams. A summary of experimental conditions for olivine deformation 

can be seen in (Table 3). 

 

Table 3 
Summary of conditions for olivine deformation experiments 

Sample Temperature 
(°C) 

Pressure(GPa)  ̇ (sec-1) Total   (%) 

San_197 700 5.0 1.45x10-5 15.5 

Ol_412 900 4.5 2.0x10-4 35† 

†Indicates approximate value due to lack of in-situ x-ray diffraction 

 

Electron backscatter diffraction 

After deformation each cylindrical sample was mounted in epoxy and cut 

parallel to the direction of applied stress. The cut surfaces were then manually 

polished using diamond grit in the following steps: 9μm, 6μm, 3μm, 1μm, 0.5μm 

and 0.25μm. This was then followed by a final polish on a Buehler Vibromet2 

vibratory polisher using a 0.05μm, basic colloidal silica solution for approximately 

12 hours. The vibratory polish is a critical step for preparation of samples that are 

to be analyzed using EBSD, as it removes any surface damage and dislocations 

that have been introduced in the sample by the manual polishing procedure. 

Without removing these surface dislocations, Kikuchi patterns appear less sharp 

and indexing rates drop (Maitland and Sitzman, 2007). In order to prevent 

charging, all samples were dried in a vacuum oven before a 0.5 nm carbon coat 

was applied using an evaporative coater. Samples that were carbon coated were 
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then dried again in the vacuum oven before being placed in the SEM for EBSD 

analysis. 

EBSD orientation maps were produced on one of two scanning electron 

microscopes (SEM). This first instrument is a JEOL JSM 6700F field emission 

scanning electron microscope (FESEM) equipped with an Oxford Nordlys II 

EBSD detector located at the University of Nevada Las Vegas EMiL lab. The 

second is a FEI Quanta 400f field-emission, environmental scanning electron 

microscope located at the University of California Santa Barbara. Post 

processing of OIMs was completed using the HKL technologies software suite, 

Channel 5. A summary of run conditions for all EBSD maps is seen in (Table 4). 

 

Table 4 
Summary of EBSD map acquisition settings 

sample stepsize bands hough 
resolution 

reflectors MAD 
limit 

lab 

San_197 0.5 5-6 80 65 1.3 UCSB 

Ol_412 0.5 5-6 80 56 1.3 UCSB 

Sfn_002 0.5 6-7 60 60 1.3 UNLV 

Sfn_004 0.5 6-7 60 60 1.3 UNLV 

*lab refers to which institution was used to produce the EBSD orientation maps. 

 

EBSD orientation data are produced by analyzing a specific type of 

diffraction pattern known as an electron backscatter diffraction pattern (EBSP), 

which is composed of intersecting lines known as Kikuchi bands. Kikuchi bands 

are produced by inelastic scattering of electrons along crystallographic planes 

within the crystal that have met the Bragg condition (nλ = 2dhkl sinθ)  and the 
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intersections of these bands are representative of the zone axes (Maitland and 

Sitzman, 2007). EBSD orientation maps are created by rastering the electron 

beam in the SEM across a sample that was been mounted at a high tilt (70° from 

the beam normal) and at each point in the raster, or step, a diffraction pattern is 

produced see (Fig. 17). The diffraction patterns from each step are collected 

using a phosphorus screen in conjunction with a charge-coupled device (CCD) 

camera within the EBSD detector. After the collection of each EBSP pattern, the 

software automatically indexes each pattern by first converting the linear data 

within the EBSP to point data by using a Hough transformation. Once this 

transformation is complete the diffraction data is compared to the known 

standard for the material (referred to as a match unit) that is being analyzed. 

From this data a 3-D orientation is assigned along with a value of mean angular 

deviation (MAD) for each step (Maitland and Sitzman, 2007). MAD values 

indicate the angular deviation of the diffraction pattern in reference to the known 

standard and are a measure of the goodness of fit. See (Table 4) for MAD value 

thresholds and match units used in each map. These discrete steps that contain 

3D orientation data become the individual pixels that comprise the EBSD 

orientation image map (OIM). All crystal orientation data is recorded using Euler 

angles according to the Bunge convention (φ1, Φ, φ2) with respect to the sample 

coordinate system. 
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Figure 17. Geometry of EBSD acquisition. Electron beam interacts with sample 
orientated at a 70° tilt from the beam normal with the EBSD detector directly 
adjacent to the sample. X,Y and Z indicate the FESEM coordinate system while 
Xm, Ym and Zm indicate the sample coordinate system. 

 

Post-Processing began with the reduction of noise within the raw 

orientation maps. This procedure started with the alteration of erroneous data 

points referred to as "wild-spikes”. These pixels are defined as a single pixel 

surrounded on all sides by pixels sharing an orientation different from that of the 

center pixel. Wild-spikes are eliminated by averaging the orientations of all 9 

neighboring pixels and assigning that orientation to the original wild-spike 

(Maitland and Sitzman, 2007). After the removal of wild-spikes, additional data 

refinement was completed to eliminate further noise. This process involved 

altering the definition of what a wild-spike is to include pixels where only 8 of their 

9 neighbors deviate and then repeating the process (Fig. 18). These steps have 
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been shown in the literature to smooth the data without the addition of erroneous 

data. A detailed description of this process can be found in Hansen et al. (2012).  

Olivine samples require further noise reduction due to a systematic 

misindexing of the EBSP's by the EBSD software. The misindexing is a product 

of the pseudo-three fold rotational symmetry about the [100] in the olivine Kikuchi 

pattern produced by the fcc arrangement of the oxygen sub-lattice within the 

olivine structure (Bystricky et al., 2006; Hansen et al., 2012). Systematically 

misindexed points are easily identified visually, refer to (Fig. 18). They are 

removed as normal practice in the grain detection procedure by ignoring high-

angle grain boundaries with rotations of 60° increments along the [100] (Bystricky 

et al., 2006; Hansen et al., 2012). 

 

 

Figure 18. Noise reduction process in EBSD maps. The left side of the figure 
shows a portion of a raw EBSD map of olivine. Bright colored single pixels within 
the green grain are noise, while dark brown pixels are systematically misindexed 
points. The right side shows the same portion of the map that has been properly 
noise reduced by means of the next neighbor technique, as well as the 
elimination of systematically misindexed rotations about the [100] 
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Finite element models 

Construction and physical properties 

 Finite element models were constructed using MSC.MARC Mentat, a 

commercial engineering finite element program. Each material was modeled as a 

rectangular array of 2,574 hexagons, see (Fig. 19). Each hexagon was divided 

into 48, 6-noded elements. Nodes along the boundaries of each hexagon are 

shared with the neighboring hexagon, thus displacement along the hexagon 

boundaries is not permitted. This model geometry is the same as used in the 

Burnley (2013) study, and a detailed description can be found within. The 

hexagons were divided into 14 populations down from the original 25 of the 

original Burnley models, then assigned different mechanical properties in order to 

simulate randomly orientated single crystals distributed throughout a monophase 

polycrystal. The elastic tensors were produced by rotating the full elastic tensor 

of each material by specific Euler angles and since the orientation of each grain 

is known the critical resolved shear stress of each slip system can be calculated 

using the Schmid equation and a yield stress accurately assigned to each 

population, see (Fig. 19) for an example. (Table 2) shows what Euler rotations 

were applied to each materials stiffness matrix to produce the 14 different 

subpopulations in each FEM.  
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Figure 19. Finite element mesh with grain populations. The finite element model 
geometry of each material before deformation. Each color represents 1 of the 
original 25 populations from the Burnley FEMs to which physical properties were 
assigned. The inset is a magnified view which shows the triangular meshing of 
individual hexagons, from Burnley (2013). 
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Figure 20. Example of Euler rotations made to elastic tensors. This figure shows 
one of the 14 different rotations applied to the elastic tensor of olivine. C ijkl is the 
original tensor from Abramson et al. (1997) and after the euler rotation C’ijkl is 
produced which is then used as the elastic properties of one of the fourteen 
populations of structural elements within the finite element model. 
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CHAPTER 4 

RESULTS 

Olivine EBSD analysis 

 One EBSD orientation image map (OIM) which covered most the 

sectioned and polished surface was produced from each deformed olivine 

sample. (Fig. 21) shows photomicrographs of each sample after deformation, 

sectioning and polish. The locations of the EBSD maps are outlined with a red 

box. Small representative subsets of each noise reduced OIM can be seen in 

(Figs. 22 and 23).  

 

  

Figure 21. Photomicrographs of deformed and sectioned olivine samples. Red 
box indicates area where EBSD map was aquired. (a) Photomicrograph of 
deformed San_197. Deformed to low strain of (15.5%)  (b) Photomicrograph of 
deformed Ol_412. Deformed to high strain of (35%), rectangular shape under the 
sample is the bottom alumina piston. Compression is in the vertical for both 
samples 

a b 
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Figure 22. Euler angle coloration on EBSD map of San_197. Euler orientation is 
shown after noise reduction procedure. Compression is in the vertical direction 
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Figure 23 Euler angle EBSD map of Ol_412. Euler orientation is shown after 
noise reduction procedure. Black areas which surround grains are non-indexed 
points. Compression is in the vertical direction. 
  

The high strain and low strain olivine OIMs are visually different in terms of 

grain shape, grain size and indexing rate, especially in regions near grain 

boundaries in sample Ol_412. Upon seeing how different the physical samples 

were, the first objective was to understand if the distribution of strain shows any 

relation to Schmid factors of individual grains. 

Olivine Schmid factor and misorientation analysis 

 Previous authors such as Gennerat et al. (2012) and Farla et al. (2011) 

have shown that Schmid factor does not provide an accurate prediction of 

intragranular deformation within deformed aggregates of ice and olivine 

respectively. To verify these findings in the olivine samples, mean misorientation 

maps were produced and visually compared to Schmid factor maps. Mean 
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misorientation maps are a measure of intragranular misorientation angle; values 

of misorientation are given to each pixel by averaging the orientation of each 

pixel and the 8 neighboring pixels then determining the deviation away from this 

average for the central pixel. Since misorientation is caused by the presence of 

dislocations this type of map is used as a proxy for dislocation density and 

therefore a measure of intragranular deformation. An example of a mean 

misorientation map from sample San_197 can be seen in (Fig. 24). Once 

misorientation maps were made, eight Schmid factor maps were produced from 

each complete EBSD map from both olivine samples for comparison. Schmid 

factor maps color each pixel according to its Schmid factor for a given slip 

system and provides information on which grains are favorably orientated for slip 

on a given slip system. Each map represents one of the eight slip systems which 

are observed in deformed olivine; [100](010), [001](100), [100](001), [100](011), 

[100](021), [100](031), [001](110) and [001](010). Only seven slip systems were 

analyzed because the slip systems [100](001) and [001](100) produce identical 

Schmid factors for each grain due to the symmetry of the single crystal 

(Castenlau et al., 2010). An example of a Schmid factor map for the [100](010) 

slip system in sample San_197 can be seen in (Fig. 25). Using the deformation 

mechanism map for olivine from (Fig. 2) it is possible to predict which slip system 

should be the most dominant during deformation at the experimental conditions, 

but to ensure all deformation involving all slip systems is accounted for, Schmid 

factor maps were produced for all slip systems. 
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Figure 24. Mean misorientation EBSD map of San_197. Same map subset 
shown in Figure 22 colored showing the mean misorientation around groups of 
3x3 pixels. All nine pixel orientations are averaged then the center pixel 
orientation is given a misorientation value in relation to the average. No grain 
boundaries are drawn on the map, but can be inferred by abrupt truncations of 
areas of differing misorientation. 
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Figure 25. Schmid factor EBSD map of San_197. Same map subset shown in 
Figure 22 colored by Schmid factor. Rainbow scale is used with blue to red 
indicating Schmid factor from 0.0 to 0.5 respectively of the [100](010) slip 
system.. 

 

When comparing (Figs. 24 and 25) it can be observed that there is a lack 

of correlation between Schmid factor and the amount of intragranular 

deformation. To quantify the relationship between Schmid factor and mean 

misorientation, graphs were produced that plot the Schmid factor for all 8 slip 

systems in each grain against the mean misorientation of that specific grain, see 

(Fig. 26) for this graph from sample San_197. In addition a graph was produced 
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from this same data set which plots only the highest value of the 8 Schmid 

factors in each grain against mean misorientation, also in (Fig. 26). 

 

 

Figure 26. Schmid factor vs. mean orientation. Upper) A plot of Schmid factor 
against the value of intragranular misorientation for each olivine slip system from 
sample San_197. Lower) the same grain set from the upper graph but only the 
slip system with the highest Schmid factor is plotted. Notice the y-axis scale 
starts at zero when moving to the upper graph. Also, the Schmid factors for the 
[100](001) and [001](100) slip systems are equivalent due to the symmetry of 
olivine. Only grains with a diameter > 5µm are used. 

 

The upper graph in (Fig. 26) shows no apparent correlation between 

Schmid factor and mean misorientation. If a correlation was present one could 

expect to see an increasing value of intragranular misorientation with increasing 
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values of Schmid factor; instead, it appears that mean intragranular 

misorientation is independent of changing values of Schmid factor. To further 

determine the distribution of intragranular misorientation as a function of Schmid 

factor histograms were then produced by binning Schmid factors by 0.05 and 

examining the frequency of grains within each Schmid factor population, (Figs. 

27 and 28) show these graphs for the [100](010) slip system. This was done to 

observe in subtle shifts in the mean value of misorientation as a function of 

Schmid factor, which could not be resolved from (Fig. 26). From (Figs. 27 and 

28) it is observed that mean values of misorientation are consistent with 

changing values of Schmid factor, approximately 1° for San_197 and 1.25° for 

Ol_412. In addition, it appears that values of misorientation become more diffuse 

in the higher strain experiment (Ol_412).  
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Figure 27. Histogram of mean misorientation in San_197. A graph showing the 
frequency of a given intragranular misorientation angle throughout sample 
San_197 plotted  as a function of Schmid factor for the [100](010) slip system.  
 

 

Figure 28. Histogram of mean misorientation in Ol_412. A graph showing the 
frequency of a given intragranular misorientation angle throughout sample 
Ol_412 plotted  as a function of Schmid factor for the [100](010) slip system 
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Olivine local stress direction deviations 

 In order to evaluate the degree of variation in the orientation of maximum 

compressive stress in olivine, kinked grains were identified and analyzed. Kink 

bands are easily identified in EBSD OIM’s because the crystallographic domains 

within a kinked grain have discrete orientations that are separated by high angle 

grain boundaries.  An example Euler angle EBSD map showing three grains 

containing kink bands can be seen in (Fig. 29). To confirm each kink band, 

misorientation angle transects were used in combination a 3-D crystal viewer in 

the Tango software (part of the HKL EBSD software suite) to verify that each 

domain is separated by a sharp high angle boundary, and the grain is rotating 

back and forth about a common rotation axis, seen in (Fig. 30). Kink bands were 

only observed in the high strain sample Ol_412.   

 

 

Figure 29. EBSD map of Ol_412 showing kinked grains. Three examples of 
grains with kink bands are outlined with red boxes. Notice the sub-parallel black 
lines within the kinked grains; these are areas of non-indexing due to fractures. 
Compression is in the vertical direction. 
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Figure 30. Process used to confirm kink bands in olivine. (a) Expanded view of 
kinked grain. The red line represents the misorientation transect and the blue 
lines separate 4 different domains within the kinked grain. (b) Misorientation 
profile of kinked grain. Notice the sharp boundaries between each 
crystallographic domain. (c) 3-D crystallographic orientation of domains in kinked 
grain. Axes are represented by red=100, green=010 and blue=001. Note the 
crystal is rotating about the 010 axis. 
 

 Once each kinked grain was verified the compression direction for each 

grain was determined. From earlier studies on kink bands in olivine it is known 

that the shortening direction in a kinked grain will be oriented normal to the 

rotation axis of the kink band (Lenze et al., 2006). By making pole figures of the 

kinked grains which display the main crystallographic axes the kink morphology 

can be determined. Since the [100] and [001] axes are the only Burgers vectors 

that accommodate dislocation glide in the single crystal, in a kinked grain one of 

these axes must be the compression direction, (Fig 31). The rotation axes being 
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normal to the compression direction then must be the [010] and can be 

determined by the axis which contains a superposition of data points in a pole 

figure, while the other two axes show a smearing of data points. All of the kinked 

grains that were analyzed show similar morphology to the kinked Mg2GeO4 

olivine grains in Burnley et al. (2013) and Raleigh (1964), with the [010] being the 

rotation axis and [001] indicating glide direction on the (010)[001] low 

temperature slip system.  

 

 

Figure 31. Kinked grain confirmation. Three kinked grains are shown in an Euler 
orientation map produced form sample Ol_412. The rotation axes can be 
determined to be the [010] due to the superposition of data points, while the other 
two axes show a smearing of data points. 
 

 In order to observe how the preferred compression direction varies 

throughout the sample, the kinked grains were plotted on a single set of pole 

figures (Fig. 32). The [001] poles on (Fig. 32) form a point maximum and the 

[100] and [010] poles form girdles. This pattern is to be expected due to the 
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uniaxial symmetry of the deformation stress field. It can also be observed that the 

girdles are not orientated normal to North/South direction of the stereonet. This 

rotation could be attributed to one or both of the following: 1) the sectioning cut 

after deformation not being perfectly aligned parallel to applied compressive 

stress, or 2) the sample geometry after deformation was less than optimal, as 

seen in (Fig. 21). To correct for this rotation in the data a single point for each 

kinked grains cluster of [001] poles was chosen, then the mean vector was 

calculated from this population using the eigenvector function in the program 

Sterowin, (Fig. 33). The data set of [001] poles was then rotated such that the 

mean vector plotted at 000°, 00° on the stereonet, allowing for comparison of 

angular variations in preferred compression to the calcite data set.  

 

 

Figure 32. All kinked grains on a pole figure. Upper pole figure shows the raw 
orientation data of 8 kinked grains from sample Ol_412. Lower pole figure is 
contoured using a halfwidth of 15º and pixel averaging of 5º. Compression for 
both pole figures is vertical. The [001] axis is at low angle to compression while 
the [100] and [010] for girdles normal to compression.  
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Figure 33. Rotation of calculated compression directions in kinked grains. Upper 
pole figure shows the [001] axes of the 8 kinked grains identified in Ol_412. 
Square inside upper pole figure represents the mean vector determined by 
eigenvector analysis. Lower pole figure shows the data set rotated such that the 
mean vector is orientated at the 0, 0 point on the stereonet. 
 

Calcite EBSD analysis 

 Two EBSD OIMs were produced from each deformed calcite sample, 

covering a total area of approximately 7mm2 for each sample. Photomicrographs 

of the sectioned and polished samples can be seen in (Fig. 34). One EBSD Euler 

orientation map for each sample is shown in (Figs 35 and 36).  
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Figure 34. (a) Photomicrograph of sample Sfn_002. Left and right extremities of 
the photo shows the polished Cu jacket used to confine the sample. 
Compression is vertical. (b) Photomicrograph of sample Sfn_004. Left and right 
extremities of the photo shows the polished Cu jacket used to confine the 
sample. Compression is vertical. 
 

 

Figure 35. EBSD OIM of Sfn_002 after noise reduction. Compression is vertical 
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Figure 36. EBSD OIM of Sfn_004 after noise reduction. Compression is vertical. 

Calcite local stress direction deviations 

 Mechanical twins in the calcite samples were used to determine 

modulations in the direction of maximum compression. Mechanical twins in 

calcite are visually similar to kink bands in olivine when viewing an OIM. Twins 

form discrete domains separated by high-angle boundaries. Examples of twins in 

the Sfn_002 Euler map can be seen in (Fig. 37). E-twins form with a 

misorientation of the c-axis between the host and the twin of 52º about <20-21>, 

therefore after visually identifying twins they are easily verified using 

misorientation transects and pole figures, see (Fig. 38). Valcke et al. (2006) and 

Tielke (2010) has shown that when using misorientation transects, e-twins show 
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diagnostic misorientation values of ~ 78° (Valcke et al., 2006; Tielke, 2010).  

Using misorientation transects on OIMs and pole figures to confirm the 52° c-axis 

separation, a total of 60 twinned grains were identified, 30 from each deformed 

sample of Solnhofen (Fig. 38). To ensure deformation twins were not formed 

during the pressurization and heating stages of each experiment, a third sample 

of Solnhofen was placed in the Griggs apparatus and brought up to 2.5 kb and 

300ºC and then quenched without deformation. This sample was prepared using 

the same method as the deformed samples and analyzed using EBSD. The OIM 

shows no visible twins which is also confirmed using misorientation transects, 

(Fig. 39). 

 

 

Figure 37. EBSD OIM of Sfn_002 showing twinned grains. Euler orientation map 
from sample sfn_002 (same as Figure 35) with a few representative twinned 
grains outlined in red boxes. Compression is vertical. 
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Figure 38. Confirmation of twinned grains. (a) Expanded view of twinned grain in 
Sfn_002. The green line represents the location of the misorientation transect. (b) 
Pole figure showing c-axis of host and twinned grain. Note the c-axes of the twin 
and host are 52° apart. (c) Misorientation profile from twinned grain. Each 
domain is separated by a sharp boundary of ≈78°, which is diagnostic of calcite 
twins in EBSD OIMs (Valcke et al., 2006). 
 

 

Figure 39. EBSD OIM of Sfn_001 with no twins. This sample was brought up to 
2.5kb and 300ºC to ensure that the heating and pressurization procedure does 
not produce any mechanical twins. No twins are visible within the OIM. 
 

Once the calcite twins were verified, the compression direction for each 

grain was determined. First the c-axes of the twin and host domains were plotted 

on a stereonet, then using the method of Tielke (2010) the Euler angles for each 
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domain were converted to trend and plunge of the c-axes and plotted using the 

program Sterowin, (Fig. 40). Using the eigenvector analysis built into Sterowin, 

the mean vector of the two c-axes vectors is calculated and plotted on a best-fit 

great circle from the two c-axes. From studies on deformation twins in calcite 

(e.g. Burkhard, 1992 and Jamison and Spang, 1976) it is known that two c-axes 

are coplanar and are each orientated 26° away from the bisecting e-plane pole; 

thus the mean vector which was calculated in the eigenvector analysis is 

representative of the e-plane pole of the twinned grain, (Fig. 40). The preferred 

compression and tension directions are located 45º away from the e-plane pole 

along the calculated best-fit great circle, (Fig. 40). A program provided by Jacob 

Tielke was used to determine the associated compression and tension vectors, 

from measurements of the two c-axes, and the calculations of the e-plane pole 

and orientation of the best-fit great circle (Tielke, 2010). After the compression 

directions were determined for all 60 individual twins, they were combined on a 

single stereonet to examine their spatial distribution in comparison to the applied 

macroscopic compression direction, (Fig. 41).  
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Figure 40. Calculation of preferred compression direction. Upper left shows a 
twinned grain from an Euler orientation map. Bottom left shows the associated 
pole figure of the [001] for the shown twinned grain. Stereonet on right shows the 
determination of compression direction from the orientation of the two c-axis and 
e-plane pole. Numbered boxes indicate the eigenvectors, 1 being equivalent to 
the e-plane pole. 
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Figure 41. Compression directions from both calcite experiments. Upper 
stereonet shows the 30 calculated compression directions from twins in each 
deformed calcite sample. Bottom stereonets show the combination of all 
calculated compression directions from all twinned grains from both samples of 
Solnhofen. Bottom right, contoured stereonet of all data points to 1% area. All 
stereonets are upper hemisphere projections.  
 

 

Finite element model local stress deviations 

 One finite element model was produced for each material, calcite, quartz 

and olivine. Within each model, 14 different grain populations were used which 

had different elastic constants and yield stresses and were run with different 

values of constant stress (Table 5). After completion of all constant stress FEM 
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runs, the stress tensor was extracted from each node (288 nodes/grain, or 

741,312 nodes total) according to which of the 14 subpopulations the node is 

included in, (Fig. 42). This tensor is in the model coordinate system where x ,y 

and z are represented by σ11, σ22 and σ33 respectively; since compression is 

vertical, σ22 is the stress component of interest. In addition, the diagonalized 

stress tensor was extracted from which the maximum compressive stress was 

used. Once the two stress components were extracted (Equation 4) was used to 

convert the stress magnitudes of both tensor components into the angular 

variation of the local stress tensors at each node in relation to the macroscopic 

applied to the model.  

                                     (
             

 
)                        eq. 4    

Where θ is angular variation between the macroscopic stress being applied to 

the model and the local diagonalized stress tensor (  , a pictorial description of 

the conversion to angle is seen in (Fig. 43).  

 

Table 5 
Run conditions for each finite element model 

material yield stressmin 

(MPa) 
yield stressmax 

(MPa) 
σ  

(MPa) 
plastic ε 

(%) 
total ε 

(%) 

Calcite 10 14 15.0 0.0001193 0.005811267 
Quartz 60 230 60.0 0.0001019 0.015825802 
Olivine 82 136 150 0.0006521 0.09513313 

*values of stress are final values at which model successfully ran 
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Figure 42. Example subsets of FEMs. Small example subsets (approximately 8% 
of whole model) of FEMs from different FEM runs. (Left) shows arrows which 
indicate the direction and magnitude of the diagonalized stress tensor in 
approximately 90 grains. (Right) expanded view of the subset, blue lines show 
the angular relationship between the diagonalized stress tensor and the σ22 
direction. 

 

Figure 43. Pictorial description of stress variation calculation in FEMs. θ 
represents the angle between the σ22 component of the stress tensor for each 
node, and maximum stress represents the principal component of the 
diagonalized stress tensor. 
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To calculate the bulk aggregate stress direction modulations, the values of 

mean angular variation, median angular deviation, standard deviation of the 

angular deviation and maximum angular deviation of the 14 subpopulations are 

averaged which can then be compared to stress directions modulation values 

obtained from the experimental results, see (Fig. 44) for summary.  

 

 

Figure 44. Summary graph of all FEM angular variations. Plotted are the 
average, median and standard deviation of stress direction deviations away from 
the macroscopic applied stress as a function of single crystal elastic anisotropy.  
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CHAPTER 5 

DISCUSSION 

Misorientation distribution 

 This section will examine the results of the Schmid factor and mean 

misorientation analysis. From the histograms in (Figs. 27 and 28) it can be 

observed that within the olivine samples increasing strain does not alter the 

distribution of intragranular strain amongst grains of different Schmid factors. The 

maximum mean misorientation angle through all Schmid factors of each plot 

occurs at approximately 1.5º. The only significant difference arises from the 

larger distribution of misorientation angles observed in the higher strain 

experiment, which is to be expected. I postulate that this trend of an increased 

broadening of the distribution of intragranular misorientations would continue up 

to the onset of dynamic recrystallization. At this point, if deformation is still 

occurring in a dislocation glide regime, new grain growth will be controlled either 

by subgrain rotation or grain boundary migration (Bysticky et al., 2000; Zhang et 

al., 2000). In either case, each controlling mechanism initiates the development 

of a distinct lattice preferred orientation (LPO) in the aggregate. The two different 

deformation mechanisms produce different patterns of LPO, being dominated by 

strain or the stress, but in either case the production of a LPO will produce a 

larger population of grains with similar orientations that are well orientated for 

dislocation glide (Karato, 1987; Zhang and Karato, 1995). Thus the population of 

recrystallized grains would have higher Schmid factors and the overall 

occurrence of high Schmid factor grains will increase. Since numerous studies 
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(e.g. Gennerat et al., 2012 and Castenlau et al., 2010), including this one, have 

shown that intragranular deformation is not effected by Schmid factor, it seems 

that even with an increase in the number of grains with higher Schmid factors 

from recrystallization, there would be no effect on the observed pattern of mean 

misorientation values seen in (Figs. 27 and 28). These findings indicate that for 

any amount of strain, Schmid factor is not a controlling factor in stress 

distributions during deformation of aggregates. 

Experimental local stress direction modulations 

Constraints on calculated compression directions 

 This section will analyze the difference in calculated compression 

directions from olivine and calcite, and the associated error involved. When 

preferred compression directions are calculated from both types of 

microstructures it must be noted that these are not the only compression 

directions that can produce the microstructure. The deformation mechanisms 

used in this study have a critical resolved shear stress and direction just as a slip 

system operating in dislocation glide. Also, just as in glide, the angular 

relationship between slip plane and direction defines the Schmid factor for the 

deformation mechanism. By calculating the preferred compression directions 

using crystallographic orientation data we can only define the local compression 

direction for that orientation which produces a Schmid factor of 0.5 for the 

specific deformation mechanism. By consequence, for any given stress applied 

to polycrystalline material, each grain will have multiple vectors which radiate out 

from the calculated preferred compression direction which could also produce the 
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specific deformation microstructure, thus inducing error into the calculations of 

local compression directions. 

This effect of non-unique preferred compression directions is illustrated for 

calcite in (Fig. 45), which shows the resolved shear stress coefficient of each e-

twin system in calcite (Jamison and Spang, 1976). This figure shows that the 

trigonal symmetry of calcite allows multiple compression vectors to have the 

same amount of shear stress resolved onto multiple twin systems 

simultaneously. Also, this figure shows the error included when using individual 

twinned calcite grains for local stress direction determination. Any compression 

direction within the 0.36 contour will produce a calculated preferred compression 

direction at the location of the 0.5 point as mentioned above, causing an error of 

approximately 20º for each twinned grain. 

 

Figure 45. Resolved shear stress for calcite twins. The c-axis is oriented vertical 
and the red dots are indicative of the three e-poles for the three twin systems 
which are depicted, modified from Jamison and Spang (1976).  
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Similarly to calcite there is an error in compression directions which were 

calculated from kink bands in olivine, but the error is more constrained than in the 

case of mechanical twins. The slip systems that operate in olivine were shown in 

(Fig. 6b), and kink bands form due to the inability for stress to be resolved on any 

of slip planes when compression is parallel to the principal crystallographic axes. 

If the maximum compressive stress begins to deviate away from the direction of 

the principal crystallographic axes, the stress will then be resolved upon a glide 

plane. To the author’s knowledge there is no study which has investigated the 

CRSS of the kinking system in olivine, but due to the relative infrequency of 

kinked grains in deformed samples, the CRSS of kinking can be assumed to be 

relatively high when compared to dislocation glide systems. This arrangement of 

slip planes helps to minimize the inherent error in calculated compression 

directions by limiting the allowable compression directions on a grain that has 

produced a kink band. 

Calculated local stress variations 

Since the CRSS of each deformation mechanism is specific to the each 

material tested in this study, and the stress during constant strain rate 

experiments is also specific to the material, the range of allowed compression 

orientations for the mechanism to initiate is also material specific. This allows for 

the direct comparison of local angular variations in different materials using 

deformation microstructures. Comparison of calculated local compression 

directions from calcite and olivine can be seen in (Fig. 46). 
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Figure 46. Stereonet comparing olivine and calcite data. Olivine grains (red) and 
30 twinned calcite grains (blue) plotted with respect to the macroscopic stress 
applied during deformation of each aggregate. Olivine data has been rotated in a 
way which places the mean vector for all kinked grains at point 000º, 00º on the 
stereonet for an easier comparison. Mean angular variation for all measured 
compression directions in both materials is 23º. The 30 twinned grains are a 
combination from both experimental runs, all 60 are not shown to increase the 
clarity of the graph. 
 

 In (Fig. 46) there is no large difference between the two materials, with the 

maximum angle for calcite being 40º and 35º for olivine. This result argues 

against the working hypothesis that the single crystal anisotropy will determine 

the amount of stress heterogeneity, but two factors must also be considered. 

First, The CRSS for the formation of kink bands in olivine is much larger than that 

which is required to produce twins in calcite. The strain of the olivine experiment 

which produced kinked grains was ≈35% compared to the average of 15% for the 

calcite experiments. From studies utilizing in-situ X-ray diffraction (e.g. Long et 

al., 2011) it can be inferred that as soon as plastic deformation initiates during 

polycrystalline deformation, the stress field will begin to evolve into a more 
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complex state, which could be expected to continue with increased strain. Since 

the final strain was much larger in the olivine experiment one could also conclude 

that the stress field was much more convoluted in the olivine at the time the 

kinked grains formed than the calcite experiment. Second, when these materials 

are described by single crystal anisotropy only the elastic anisotropy is taken into 

account. This disregards the open vs closed yield surface in olivine and calcite 

respectively, also the symmetry of calcite. Elastically, olivine is more isotropic 

than calcite, but the trigonal symmetry of the low CRSS twinning system in 

calcite means that it is much more plastically isotropic than olivine. The effects of 

elastic vs. plastic anisotropy are inseparable in deformation experiments, 

therefore this necessitates the construction of a parameter which includes both 

elastic and plastic anisotropy before both materials can be quantitatively 

compared. 

Comparison to previous studies 

 The stress direction results from the calcite twin analysis appear to be in 

agreement with previous studies using the dynamic analysis technique. To the 

authors knowledge no study exists which exclusively examines the distribution of 

calculated compression directions within deformed aggregate of calcite as a 

function of single crystal properties, but as previously mentioned, many studies 

have used different techniques to determine macroscopic stress at the outcrop 

scale from deformation twins. (Fig. 47) is an example of dynamic stress analysis 

conducted on a deformed limestone from Rowe and Rutter (1990). In the current 

study the macroscopic stress direction was known and local variations were 



 

76 
 

calculated; in the Rowe and Rutter study, the local variations were calculated to 

determine the macroscopic stress direction. When the distributions of calculated 

stress directions are compared, the results appear to be in good agreement with 

an average variation from the macroscopic stress direction of approximately 35-

40º.  

 

 

Figure 47. Pole figure of compression data from deformed limestone. Data uses 
mechanical twins in limestones from the Cantabrian zone of northern Spain to 
calculate macroscopic stress direction, from Rowe and Rutter (1990). 

 

Local stress direction calculations from olivine in this study show similar 

results to the finding of Burnley et al. (2013), which investigated the morphology 

of kink bands formed in deformed magnesium germanate olivine (Mg2GeO4). In 

the Burnely study, 20 kinked germanate grain were analyzed in a similar way to 
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this study, and preferred compression directions in each kinked grain were 

determined to be parallel to the [001] axis. (Fig. 48) shows a pole figure of 20 

kinked germanate grains, and the distribution of [001] are mainly oriented within 

35º of macroscopic compression, and show a similar spatial distribution of 

compression vectors to what is seen in the San Carlos olivine kink bands 

analyzed in this study, as seen in (Fig. 46).  

 

 

Figure 48. Pole figure of 20 kinked Mg2GeO4 grains. The morphology of the kink 
band is the same as in the current study, with the [001] axis indicating the 
maximum compression directions in each kinked grain. Dashed line is indicative 
of the 35º great circle. Compression is horizontal, from Burnley et al. (2013). 
 

Modeled results compared to experimental 

 The finite element models in this study replicate the general trend which 

was observed in Burnley (2013). The Burnley (2013) study showed by increasing 

the anisotropy of constituent structural components within the simple hexagon 

model, the heterogeneity of the stress field will also increase as a function of the 

anisotropy (Fig. 44). The main difference between these two studies is the lower 

observed magnitude of stress direction variations in this study (Fig. 49). The 

original FEMs of Burnley (2013) were constructed with a wide range of elastic 
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anisotropy, some of which are exaggerated beyond values which could be 

expected from a monophase polycrystalline aggregate. By plotting the results 

from the FEMs of this study along with the data from Burnley (2013), a trend can 

be observed that is in agreement with the original hypothesis that angular 

variation in local compression directions are controlled by the anisotropy of the 

single crystal.  

 

 

Fig. 49. Comparison of FEMs to those of Burnley, (2013). Graph shows 
maximum angular deviations in local stress tensor as a function of Y* from 
Burnley et al. (2013) (solid circles) and this study (open circles). Inset is 
representative of area within dashed box.  

 There is an observed agreement in the maximum stress direction 

variations between both the experimentally deformed samples and the FEM 

results in this study. The trend of increasing angular variation with increasing 

constituent single crystal anisotropy is also in support of the original hypothesis, 

as seen in (Fig. 50). However, when all results are plotted together a significant 
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discrepancy is observed between the two techniques. The modeled maximum 

stress variations consistently plot ≈ 20º lower than the experimental results (Fig. 

50). There are two aspects of the finite element models that can explain this 

discrepancy. First, the models are constructed with all hexagons welded together 

at each interface. This is done to ensure the model maintains compatibility during 

deformation but works focusing on deformation mechanisms during 

polycrystalline deformation point to the importance of grain boundary sliding as a 

deformation mechanism (Raj and Ashby, 1971; Jackson et al., 2006; Hansen et 

al., 2011). The addition of a grain boundary sliding component into the FEMs 

would complicate the stress field and in turn increase the angular variation 

observed in each model; but since the mechanics of grain boundaries are not 

fully understood it is impossible to accurately integrate this deformation 

mechanism into the models. Second, the amount of accumulated strain in the 

FEMs is <1%, in comparison to the 15% average in the Solnhofen experiments 

and 35% in the olivine experiment. These values of strain are necessary for each 

of the experimental method respectively; the FEMs are designed to be used for 

small strains, and are neither numerically stable nor particularly reliable at higher 

values of strain. In addition, to form the microstructures in the experimentally 

deformed samples required moderate strains, in the case of calcite twins, and 

large strains in the case of kink bands in olivine. As mentioned above, continued 

plastic deformation can be expected to further complicate the stress field, and 

therefore the measured values of stress modulations. This leads to the 

conclusion that the observed discrepancy in maximum stress direction deviation 
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between the experimental and modeled deformation can also be influenced not 

only by the rheology of grain boundaries, but also by the total strain of each 

experiment. Thus, grain boundaries, single crystal elasticity, single crystal plastic 

and strain must be considered within any attempt to predict stress heterogeneity 

during polycrystalline deformation. 

 

 

Figure 50. Comparison of all modeled and experimental results. Plot shows the 
maximum angular deviation observed in each experimentally (red) and modeled 
deformation (blue), as a function of the single crystal elastic anisotropy. A small 
positive correlation is observed between increasing single crystal elastic 
anisotropy and the maximum variation in local stress direction.  
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CHAPTER 6 

CONCLUSIONS 

 To summarize, the hypothesis that stress and strain heterogeneity is 

induced during polycrystalline deformation by the elastic and plastic anisotropy of 

the single crystal has not been disproven. In the comparison of experimentally 

deformed olivine and calcite, the microstructures show a general trend of 

increasing stress heterogeneity with larger values of single crystal elastic 

anisotropy. In addition, the results of this study have elucidated two deficiencies 

in the experimental method that would need to be resolved before any further 

work is undertaken on the matter. The first being the ability to include plastic 

anisotropy into the calculation of single crystal anisotropy for each material, 

differences between an open and closed yield surface in a single crystal 

constituent will have large effects on stress partitioning during polycrystalline 

deformation. The second deficiency was identified using the local stress direction 

modulation data from the finite element models. These data show a necessity to 

integrate a structural component into the FEMs which can accurately replicate 

the rheology of grain boundaries. The FEMs used in this study were constructed 

without the ability to activate grain boundary sliding as a deformation mechanism, 

and as a result lack the magnitude of maximum variation which is observed in 

experimental data. The addition of a grain boundary sliding component to the 

models will be difficult, the current state of understanding about grain boundary 

mechanics is still very incomplete and many difficulties exists in adding this as a 

structural component to models of polycrystalline deformation. In addition to 
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these experimental deficiencies it appears that total accumulated strain must also 

be considered when making any prediction of stress and strain heterogeneity in a 

deformed polycrystal. The effect of strain is believed to have been partly 

responsible for the difference in maximum local stress deviations between the 

two experimentally deformed samples, and also contribute to the discrepancy 

between the magnitude of stress direction modulations calculated from both the 

experimental and modeled results. 
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Appendix A: Calcite host/twin c-axis analysis 

 (Left) Each twinned grain image is cropped from the appropiate EBSD 
map. (Center) Pole figure shows the [001] axes of the host and twinned portion of 
each grain. (Right) Stereonet produced through the program Stereowin, 
numbered points are the results of the eigenvector analysis of the two c-axes 
with #1 being the pole to the e-plane. The red dot represents the compression 
direction and the blue represent the tension direction.  
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Appendix B: Calcite twin numerical data 

 This section list the C-axis trend and plunge of both host and twin domains 
in each twinned grain that have been calculated using the avergae Euler 
orientation of each respective domain. Froim the C-axis measurements the e-
plane pole is calculated and thusly the preferred compression and tension 
direction which caused the deformation twinning. 

 

SFN_002
Grain # C-axis host C-axis twin e-plane pole Compression directionTension direction

trend plunge trend plunge trend plunge trend plunge trend plunge

1 350.1 16.7 22.7 67 359.4 42.8 165.6 0.5 73.8 75.6

2 288 18.4 343.6 16 316 19.3 2.2 11.7 268.9 15.4

3 202.6 42.2 350.7 0.5 184.2 21.6 340.7 17.1 225.2 54.5

4 306.7 25.2 165.9 11 327.1 7.5 180.4 23.6 288.8 35.8

5 329.1 30.3 191.4 3 351.9 14.6 205.7 15.5 308.6 38.6

6 132.4 52 193.4 26.1 169.2 43.1 206.5 11.7 102.4 49.8

7 190.6 43.7 351.1 4.7 179.3 19.8 344.8 22.9 207.1 60.3

8 26.1 46.6 190.2 5 10.7 21.3 173.8 20.5 43.6 59.8

9 223.6 65 166.9 26 184.2 48.6 158.6 9.1 268.2 64.6

10 201.6 42.3 350.7 0.6 183.8 21.5 341 17.5 224.1 55.1

11 308.9 66.7 18.8 32.8 358 54.4 27.9 15.8 266.7 61.3

12 172.4 66.1 194 15.9 187.6 41.4 17.4 2.7 121.8 79.2

13 324.9 16.3 195.3 0 350.7 9 213.1 6.6 305.4 19.6

14 159.3 62.5 154.5 5.7 156 34.1 333.7 10.8 167.7 78.8

15 147.3 36.1 201.6 14.1 177.1 27.7 216.6 3.1 124.3 37.1

16 27.3 27.2 175.7 12 10.7 7.9 161.9 27.5 45.1 41

17 72.1 55.7 353 31.8 23.1 50.8 342.1 19.4 96.8 49.9

18 296 7.2 350.2 12.8 322.8 11.2 8.8 12.3 278 3.5

19 172.7 70.1 193.4 19.8 187.9 45.3 196.2 0.9 100 81.7

20 97.6 84.8 19.9 34.2 26.9 61.4 19 16.8 181 72.4

21 170.7 58.5 187.3 8.4 181.6 33.7 11 10.4 143.7 74.9

22 25.4 29.6 181.1 15.8 12.6 7.1 170.5 32.7 39.5 45.6

23 5.9 29.3 176.9 23.4 1.3 3 172.9 41.3 10.6 47.3

24 216.5 60.1 173 20.9 187.8 42.4 164 2.7 259.9 65

25 311.3 1.5 182.9 23.6 155.9 12.2 201.1 28 296.4 9.8

26 142.4 62.3 186.6 21.1 172.2 43.6 194.5 3.2 97.1 66.9

27 355.2 34.4 172.1 15.7 353.5 9.4 170.6 35.5 357.5 54.3

28 45.6 26.9 178.9 1.2 20.8 13.9 163.6 11.9 65.7 33.1

29 216.4 43.1 16.8 6 205.1 18.8 10.5 23.9 232 59.4

30 217.8 20.5 161.7 16.9 189.4 21 143.3 11.9 237.1 17.5



 

104 
 

 

  

SFN_004

Grain # C-axis host C-axis twin e-plane pole Compression directionTension direction

trend plunge trend plunge trend plunge trend plunge trend plunge

31 346.6 44.2 188.6 3.5 359.4 20.7 195.5 21.5 328.3 60

32 187.6 59 185.4 6.1 186.2 32.6 5 12.4 191.5 77.5

33 249.9 3.7 198.1 16 224.5 10.9 178.5 17.6 87.8 2

34 310.8 19.8 1.9 3.1 337.2 12.7 199.2 4.1 290.9 22.4

35 46.2 21 355.3 3.1 19.8 13.3 158.2 4.6 66.2 23.9

36 225.2 22.8 174.7 5.7 198.9 15.7 337.2 2.4 246.1 25.2

37 221.5 54.5 176.6 15.3 193.2 36.9 347 1 255.3 60

38 266.2 69.9 348.3 34.1 327 57.9 355.6 18.1 226.7 62.5

39 250 44.7 203.9 7.6 222.9 28 12.7 6.3 275 50.7

40 235.8 33.5 180.6 13.6 205.9 26.2 165.2 3.7 257.7 34

41 191.1 58.7 204.8 8.9 200.1 34 27.9 10.4 166 76.2

42 163.8 63.8 185.7 11.6 178.9 38.1 9.2 5.9 126 77.1

43 160.7 28 18.8 10.5 180.8 9.2 32.3 23.7 142.9 38.9

44 172.2 52.2 195.2 5.9 186.5 29.5 21.6 13.1 145.4 67.4

45 238.6 40.4 189.6 8.4 210.7 26.5 356.8 4.3 262.5 44.9

46 205.4 80.2 358.3 42.4 350.8 70.4 0 25.7 190 63.9

47 256.5 35.9 192.4 31.1 223.5 38 174 22.4 277.3 29.4

48 47.8 22.2 349.5 21.9 18.6 24.9 330.9 17.1 66.5 17.5

49 43 19.1 176.4 5.1 19.1 7.6 159.4 14.1 62.5 25.5

50 248.2 23.6 18 4.8 222 10.4 3.6 13.5 265.9 29.2

51 311.5 45.6 4.6 21.2 342.1 36.3 19.4 6.9 282.3 45.8

52 291.4 45.9 339.3 11 319.7 30.6 171 3.1 264.8 50.7

53 40.9 44.1 359.1 8 16.5 27.6 167.2 7.3 67.8 51.5

54 229.2 59.1 201.4 11.9 210.9 36.2 15.6 6.5 266 71.4

55 251.9 43.1 193.8 19.4 218.8 34.7 179.9 7.4 276.7 42.6

56 24.6 59.9 345.6 16.5 358.8 39.7 158.1 1.1 65.4 67.3

57 58.7 37.7 205.7 7.1 40.3 15.9 195.6 22.1 77 49.7

58 208.8 74 196.7 19 199.4 46.6 195.5 1.7 309.8 85.8

59 212.5 45.5 173.1 5.8 189.2 27 342.4 9.7 238.6 54.2

60 305.2 4.9 175.2 10.9 150 3.3 194.1 15.1 286.9 10.4
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Appendix C: Olivine kink analysis from EBSD orientation maps 

 Image of kinked grains is cropped from the larger EBSD orientation map. 
Also included is the pole figure for each kinked grain which shows the [100], 
[010], and [001] axes.  
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Appendix D: Olivine kink numerical data 

 Conversion of euler oreintation of each kinked grain in sample Ol_412 into 
trend and plunge for use in determing compression direction. Mean vector is the 
the colution to Eigenvector analysis which was used in determing the spread of 
compression directions amongst the kinked grain population. 

 

 

  

Ol_412
Kink e1 e2 e3 c-axis trend plunge

1 170.1 56.7 135.3 east 9.9 33.3

2 157.2 81.3 115.5 east 22.8 8.7

3 166.8 50.5 17.9 east 13.2 39.5

4 143.5 80.6 82 east 36.5 9.4

5 178.3 53.9 157.2 east 1.7 36.1

6 19.9 113.8 38.7 west 340.1 23.8

7 135.5 81.2 96.6 east 44.5 8.8

8 20.5 102.1 116.3 west 339.5 12.1

mean vector trend plunge

11.6 23.1
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Appendix E: Rotation of elastic tensors for finite element models 

 This section will detail each of the 14 elastic tensors used in material 
specific finite element models.The boxed numbers are the three Euler angles 
used in the rotation, followed by the 6x6 elastic stiffnes matrix with the bold 
number representing which of 14 subpopulations the tensor belongs. 

Olivine rotated elastic tensors 

30 0 0 
     255.1188 74.35625 63.075 0 0 -35.9942 

  74.35625 193.2688 66.225 0 0 -17.5695 
  63.075 66.225 213.5 0 0 2.72798 
 

1 

0 0 0 60.875 -6.01888 0 
  0 0 0 -6.01888 67.825 0 
  -35.9942 -17.5695 2.72798 0 0 85.55625 
  

        0 90 -30 
     182.1125 72.7875 59.175 0 0 -4.74149 

  72.7875 199.7125 60.725 0 0 -10.5006 
  59.175 60.725 302 0 0 -1.34234 
 

2 

0 0 0 70.875 -0.73612 0 
  0 0 0 -0.73612 70.025 0 
  -4.74149 -10.5006 -1.34234 0 0 62.3875 
  

        0 90 45 
     189.25 74.45 59.95 0 0 8.8 

  74.45 189.25 59.95 0 0 8.8 
  59.95 59.95 302 0 0 1.55 
 

3 

0 0 0 70.45 0.85 0 
  0 0 0 0.85 70.45 0 
  8.8 8.8 1.55 0 0 64.05 
  

        60 0 0 
     193.2688 74.35625 66.225 0 0 17.56949 

  74.35625 255.1188 63.075 0 0 35.99418 
  66.225 63.075 213.5 0 0 -2.72798 
 

4 

0 0 0 67.825 6.018877 0 
  0 0 0 6.018877 60.875 0 
  17.56949 35.99418 -2.72798 0 0 85.55625 
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0 135 45 
     197.3563 70.35625 75.7125 1.847316 10.47402 13.15625 

  70.35625 197.3563 75.7125 10.47402 1.847316 13.15625 
  75.7125 75.7125 230.925 15.64474 15.64474 12.6125 
 

5 

1.847316 10.47402 15.64474 80.8125 17.3125 9.48407 
  10.47402 1.847316 15.64474 17.3125 80.8125 9.48407 
  13.15625 13.15625 12.6125 9.48407 9.48407 70.75625 
  

        -40 110 -67 
     199.6751 66.31914 67.73017 5.698859 -8.39159 -6.18789 

  66.31914 236.7007 79.14326 -33.6227 -3.91673 1.6543 
  67.73017 79.14326 206.4391 -23.7175 -5.08167 -0.09766 
 

6 

5.698859 -33.6227 -23.7175 89.85689 1.602344 -4.47278 
  -8.39159 -3.91673 -5.08167 1.602344 65.21655 -4.21027 
  -6.18789 1.6543 -0.09766 -4.47278 -4.21027 68.71914 
  

        45 90 -45 
     204.7688 76.06875 72.1625 -4.90555 -14.7343 1.34375 

  76.06875 204.7688 72.1625 -14.7343 -4.90555 1.34375 
  72.1625 72.1625 218.875 -21.8673 -21.8673 7.5125 
 

7 

-4.90555 -14.7343 -21.8673 77.6125 13.2625 -12.0473 
  -14.7343 -4.90555 -21.8673 13.2625 77.6125 -12.0473 
  1.34375 1.34375 7.5125 -12.0473 -12.0473 75.76875 
  

        0 90 60 
     215.5063 81.61875 65.45 0 0 -7.54525 

  81.61875 259.7563 60.75 0 0 -30.7764 
  65.45 60.75 178.3 0 0 4.070319 
 

8 

0 0 0 66.55 -5.28275 0 
  0 0 0 -5.28275 60.45 0 
  -7.54525 -30.7764 4.070319 0 0 91.41875 
  

        45 0 0 
     218.875 79.675 64.65 0 0 30.925 

  79.675 218.875 64.65 0 0 30.925 
  64.65 64.65 213.5 0 0 -3.15 
 

9 

0 0 0 64.35 6.95 0 
  0 0 0 6.95 64.35 0 
  30.925 30.925 -3.15 0 0 90.875 
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0 135 45 
     223.2375 82.3375 67.2 -3.05824 -4.26032 -28.1875 

  82.3375 223.2375 67.2 -4.26032 -3.05824 -28.1875 
  67.2 67.2 189.25 -6.22254 -6.22254 7.25 
 

10 

-3.05824 -4.26032 -6.22254 67.25 -3.2 -2.56326 
  -4.26032 -3.05824 -6.22254 -3.2 67.25 -2.56326 
  -28.1875 -28.1875 7.25 -2.56326 -2.56326 92.8375 
  

        0 90 -45 
     230.925 88.325 63.1 0 0 22.125 

  88.325 230.925 63.1 0 0 22.125 
  63.1 63.1 178.3 0 0 -4.7 
 

11 

0 0 0 63.5 6.1 0 
  0 0 0 6.1 63.5 0 
  22.125 22.125 -4.7 0 0 98.125 
  

        60 45 45 
     239.2483 64.37617 83.0843 0.9755 -30.5686 7.60904 

  64.37617 182.3665 68.07352 2.884301 6.244723 4.015179 
  83.0843 68.07352 216.5172 3.968763 -18.6832 5.288281 
 

12 

0.9755 2.884301 3.968763 65.72605 6.200781 -3.98001 
  -30.5686 6.244723 -18.6832 6.200781 93.10676 -0.50238 
  7.60904 4.015179 5.288281 -3.98001 -0.50238 67.30117 
  

        30 45 45 
     258.703 70.3668 72.31393 10.33754 -20.8984 -22.834 

  70.3668 188.7931 70.33138 7.948384 1.788241 -6.88553 
  72.31393 70.33138 195.6797 10.29623 -3.1434 2.607031 
 

13 

10.33754 7.948384 10.29623 65.45892 -4.05547 -4.86561 
  -20.8984 1.788241 -3.1434 -4.05547 79.8114 12.43054 
  -22.834 -6.88553 2.607031 -4.86561 12.43054 78.3418 
  

        0 0 0 
     302 58.4 61.5 0 0 0 

  58.4 178.3 67.8 0 0 0 
  61.5 67.8 213.5 0 0 0 
 

14 

0 0 0 57.4 0 0 
  0 0 0 0 71.3 0 
  0 0 0 0 0 69.6 
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Calcite rotated elastic tensors 

13 98.8 28.1 
     125.3774 61.9838 64.4217 4.0493 5.9165 -20.3463 

  61.9838 88.0872 44.5698 1.3914 4.7231 -9.6012 
  64.4217 44.5698 144.4848 4.1491 -8.4256 16.0124 
 

1 

4.0493 1.3914 4.1491 24.1355 14.4284 4.9748 
  5.9165 4.7231 -8.4256 14.4284 50.4828 5.1394 
  -20.3463 -9.6012 16.0124 4.9748 5.1394 41.357 
  

        178.5 88 115.3 
     143.9368 52.2785 58.7401 -19.6435 1.358 5.7598 

  52.2785 83.2312 54.5142 1.2415 -1.3986 0.8106 
  58.7401 54.5142 141.6664 20.6718 -0.0189 -4.8689 
 

2 

-19.6435 1.2415 20.6718 33.7192 -4.6755 -1.4053 
  1.358 -1.3986 -0.0189 -4.6755 45.3261 -19.3855 
  5.7598 0.8106 -4.8689 -1.4053 -19.3855 31.4875 
  

        162.6 120 90.6 
     124.1682 68.7006 57.765 -5.8343 15.8718 12.5295 

  68.7006 92.667 49.1736 -2.4782 10.8897 3.8199 
  57.765 49.1736 131.7865 -18.5867 -18.3318 -2.4168 
 

3 

-5.8343 -2.4782 -18.5867 28.8699 -0.8331 11.8479 
  15.8718 10.8897 -18.3318 -0.8331 42.0186 -8.8919 
  12.5295 3.8199 -2.4168 11.8479 -8.8919 49.7506 
  

        171.5 58.8 99.2 
     133.8642 54.8847 65.2106 -0.417 -9.647 19.3778 

  54.8847 98.7977 54.7279 13.918 -13.2569 -10.8496 
  65.2106 54.7279 117.5918 15.028 18.6403 -1.5653 
 

4 

-0.417 13.918 15.028 34.0462 -0.7738 -13.7416 
  -9.647 -13.2569 18.6403 -0.7738 49.7065 2.826 
  19.3778 -10.8496 -1.5653 -13.7416 2.826 36.0705 
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31.4 127.3 17.6 
     138.9275 61.1317 43.7587 2.8429 22.0135 6.7227 

  61.1317 115.8272 48.0294 -1.09 1.0636 -26.3079 
  43.7587 48.0294 139.3058 25.0327 -6.7271 1.2659 
 

5 

2.8429 -1.09 25.0327 28.5005 -0.8164 2.9221 
  22.0135 1.0636 -6.7271 -0.8164 26.3701 5.8876 
  6.7227 -26.3079 1.2659 2.9221 5.8876 43.0491 
  

        154.6 59.5 0.4 
     121.7967 52.846 71.4652 -0.4035 4.8028 20.3784 

  52.846 99.8535 62.8621 15.5378 -11.4519 -7.0588 
  71.4652 62.8621 103.9032 10.5826 -5.5622 5.4072 
 

6 

-0.4035 15.5378 10.5826 43.0729 7.5359 -12.84 
  4.8028 -11.4519 -5.5622 7.5359 55.1482 2.5198 
  20.3784 -7.0588 5.4072 -12.84 2.5198 33.9522 
  

        138.8 47.2 82.5 
     143.0023 53.2898 43.5019 -0.4289 -21.9538 -8.8214 

  53.2898 127.3868 54.4822 -2.9096 -2.7458 26.8932 
  43.5019 54.4822 126.9631 27.7573 3.3224 -0.7021 
 

7 

-0.4289 -2.9096 27.7573 35.4107 1.2724 -5.1758 
  -21.9538 -2.7458 3.3224 1.2724 24.9573 2.3469 
  -8.8214 26.8932 -0.7021 -5.1758 2.3469 35.9059 
  

        53 79.2 95 
     117.3649 57.9475 39.6235 -4.5681 8.2378 -25.4475 

  57.9475 100.1118 74.1906 -5.6663 -3.9725 -7.6015 
  39.6235 74.1906 138.9002 3.0231 -13.835 2.8585 
 

8 

-4.5681 -5.6663 3.0231 57.9447 -0.5733 -5.0603 
  8.2378 -3.9725 -13.835 -0.5733 21.4095 -5.3878 
  -25.4475 -7.6015 2.8585 -5.0603 -5.3878 37.4073 
  

        20.1 40.9 75 
     158.9152 46.3055 46.4834 -1.5834 7.7494 5.8947 

  46.3055 136.8326 47.2504 -11.4279 2.4938 -24.0967 
  46.4834 47.2504 124.0736 -17.2437 -21.315 9.1956 
 

9 

-1.5834 -11.4279 -17.2437 26.8251 8.1718 1.2353 
  7.7494 2.4938 -21.315 8.1718 28.481 -5.0225 
  5.8947 -24.0967 9.1956 1.2353 -5.0225 29.7332 
  

        



 

115 
 

59.3 26.1 90.2 
     112.6459 69.3539 63.6845 -3.6053 -15.621 -7.4102 

  69.3539 139.963 42.3989 -11.9779 10.3119 9.0985 
  63.6845 42.3989 96.4165 2.4522 -16.806 -7.2196 
 

10 

-3.6053 -11.9779 2.4522 22.6578 -7.8483 7.7981 
  -15.621 10.3119 -16.806 -7.8483 43.2578 -5.0979 
  -7.4102 9.0985 -7.2196 7.7981 -5.0979 54.5217 
  

        38.8 22.2 39.4 
     154.8381 55.9473 40.5655 8.0874 2.0916 10.2795 

  55.9473 129.7553 63.6526 -9.4241 -12.3589 -17.3572 
  40.5655 63.6526 94.9758 -16.412 -4.0029 2.5391 
 

11 

8.0874 -9.4241 -16.412 43.2674 2.0232 -13.9811 
  2.0916 -12.3589 -4.0029 2.0232 20.4072 6.0699 
  10.2795 -17.3572 2.5391 -13.9811 6.0699 41.4909 
  

        62.5 17.6 70.8 
     129.0339 59.456 61.8272 -12.6439 -12.9854 -14.3422 

  59.456 151.5858 42.6892 7.9654 10.2176 8.2315 
  61.8272 42.6892 91.3355 -3.9852 -13.875 3.6729 
 

12 

-12.6439 7.9654 -3.9852 22.4215 3.3958 8.3257 
  -12.9854 10.2176 -13.875 3.3958 41.1714 -13.6287 
  -14.3422 8.2315 3.6729 8.3257 -13.6287 45.3794 
  

        118.4 161.6 105.2 
     154.3264 45.8307 49.824 -10.9112 -3.6545 11.0095 

  45.8307 152.9668 54.7351 11.9423 10.3005 2.0168 
  49.824 54.7351 91.8271 -10.305 10.5056 -10.3126 
 

13 

-10.9112 11.9423 -10.305 34.5056 -10.0041 12.2501 
  -3.6545 10.3005 10.5056 -10.0041 29.1908 -11.9654 
  11.0095 2.0168 -10.3126 12.2501 -11.9654 31.6934 
  

        0 0 0 
     144.5 57.1 53.4 -20.5 0 0 

  57.1 144.5 53.4 20.5 0 0 
  53.4 53.4 83.1 0 0 0 
 

14 

-20.5 20.5 0 32.6 0 0 
  0 0 0 0 32.6 -20.5 
  0 0 0 0 -20.5 43.7 
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Quartz rotated eleastic tensors 

13 98.8 28.1 
     76.1951 17.3032 13.657 2.5767 3.0507 -4.5336 

  17.3032 108.8661 3.2811 -0.6709 5.5369 -5.6061 
  13.657 3.2811 89.5565 -5.6474 -9.4514 15.5767 
 

1 

2.5767 -0.6709 -5.6474 47.8905 18.1347 5.1305 
  3.0507 5.5369 -9.4514 18.1347 47.7772 0.8163 
  -4.5336 -5.6061 15.5767 5.1305 0.8163 62.2235 
  

        178.5 88 115.3 
     86.1987 11.5773 8.1414 -17.3727 1.2376 3.3271 

  11.5773 106.1805 13.4939 0.7701 -1.2565 0.4731 
  8.1414 13.4939 84.2957 15.7169 0.042 -4.4641 
 

2 

-17.3727 0.7701 15.7169 58.6857 -4.7764 -1.2456 
  1.2376 -1.2565 0.042 -4.7764 41.4141 -17.7893 
  3.3271 0.4731 -4.4641 -1.2456 -17.7893 56.7628 
  

        162.6 120 90.6 
     77.2938 21.0714 9.2384 -2.8348 5.9634 -2.0421 

  21.0714 103.3085 -1.1335 8.7065 13.1714 -2.3073 
  9.2384 -1.1335 104.1451 4.6235 -22.4238 -1.0866 
 

3 

-2.8348 8.7065 4.6235 43.2651 -3.6441 11.624 
  5.9634 13.1714 -22.4238 -3.6441 46.2774 2.1029 
  -2.0421 -2.3073 -1.0866 11.624 2.1029 63.2839 
  

        171.5 58.8 99.2 
     79.3997 10.8104 16.0959 -3.9677 -4.2369 10.0655 

  10.8104 110.2928 2.9747 1.3628 -13.5091 -12.0374 
  16.0959 2.9747 93.6456 -8.5263 19.4096 -0.7448 
 

4 

-3.9677 1.3628 -8.5263 47.9836 -2.0229 -12.7265 
  -4.2369 -13.5091 19.4096 -2.0229 52.7437 -9.2046 
  10.0655 -12.0374 -0.7448 -12.7265 -9.2046 52.8036 
  

        31.4 127.3 17.6 
     102.1448 11.5828 -3.4648 2.6318 5.4065 21.1959 

  11.5828 109.0281 -3.0013 -16.8142 5.0451 -11.9906 
  -3.4648 -3.0013 121.6935 3.7315 -16.8309 -2.0576 
 

5 

2.6318 -16.8142 3.7315 40.146 1.3051 2.0439 
  5.4065 5.0451 -16.8309 1.3051 36.2262 -2.285 
  21.1959 -11.9906 -2.0576 2.0439 -2.285 52.3945 
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154.6 59.5 0.4 
     83.3619 5.1902 20.8173 -0.9628 14.7734 1.4339 

  5.1902 105.1661 10.9313 1.4237 -14.5257 -14.9167 
  20.8173 10.9313 80.6943 -10.4948 4.5168 6.1762 
 

6 

-0.9628 1.4237 -10.4948 54.499 2.7386 -12.2842 
  14.7734 -14.5257 4.5168 2.7386 58.7778 -5.6835 
  1.4339 -14.9167 6.1762 -12.2842 -5.6835 47.3119 
  

        138.8 47.2 82.5 
     112.2185 4.3561 -4.7417 1.0602 -2.2637 -21.309 

  4.3561 105.6639 3.6214 -20.2365 -4.9328 10.7535 
  -4.7417 3.6214 118.746 9.6488 15.5372 3.7784 
 

7 

1.0602 -20.2365 9.6488 46.0301 0.5899 -1.0087 
  -2.2637 -4.9328 15.5372 0.5899 36.8161 -3.4222 
  -21.309 10.7535 3.7784 -1.0087 -3.4222 44.0395 
  

        53 79.2 95 
     120.9533 4.3214 -3.7429 -6.7313 11.5652 -8.1757 

  4.3214 86.0902 24.3648 0.036 -4.9538 14.1485 
  -3.7429 24.3648 86.17 9.5088 -2.8776 5.8065 
 

8 

-6.7313 0.036 9.5088 62.2105 11.3484 -3.1972 
  11.5652 -4.9538 -2.8776 11.3484 37.281 -5.4075 
  -8.1757 14.1485 5.8065 -3.1972 -5.4075 49.1018 
  

        20.1 40.9 75 
     105.4641 0.174 1.5478 1.5576 17.1518 13.5971 

  0.174 120.4878 -5.1591 10.1347 0.1554 -14.9522 
  1.5478 -5.1591 124.0226 0.1123 -12.9874 4.8691 
 

9 

1.5576 10.1347 0.1123 39.4359 6.5224 2.1878 
  17.1518 0.1554 -12.9874 6.5224 42.2301 7.1113 
  13.5971 -14.9522 4.8691 2.1878 7.1113 38.5468 
  

        59.3 26.1 90.2 
     76.1496 18.7041 14.6811 -2.8904 5.5166 -1.662 

  18.7041 88.986 -0.5087 1.9633 11.1006 13.1082 
  14.6811 -0.5087 112.2115 6.0504 -7.9886 -9.2881 
 

10 

-2.8904 1.9633 6.0504 42.9813 -8.2727 15.1601 
  5.5166 11.1006 -7.9886 -8.2727 59.2782 -0.48 
  -1.662 13.1082 -9.2881 15.1601 -0.48 54.2669 
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38.8 22.2 39.4 
     102.5873 6.731 -1.9946 8.6606 15.1844 13.1773 

  6.731 84.4953 16.8762 7.9813 -9.7859 -10.9377 
  -1.9946 16.8762 112.7922 -9.7169 0.1693 -0.4688 
 

11 

8.6606 7.9813 -9.7169 61.4063 0.3643 -7.1664 
  15.1844 -9.7859 0.1693 0.3643 42.1692 11.9186 
  13.1773 -10.9377 -0.4688 -7.1664 11.9186 41.687 
  

        62.5 17.6 70.8 
     82.1048 9.5012 16.1212 -10.2958 4.091 -10.2025 

  9.5012 95.2301 1.6638 15.3018 10.9256 9.5069 
  16.1212 1.6638 111.1927 -1.6256 -8.5231 1.6468 
 

12 

-10.2958 15.3018 -1.6256 46.0042 2.0943 13.9806 
  4.091 10.9256 -8.5231 2.0943 61.0882 -8.7055 
  -10.2025 9.5069 1.6468 13.9806 -8.7055 43.8437 
  

        118.4 161.6 105.2 
     104.685 -2.2733 5.4465 -8.784 -18.9338 7.0659 

  -2.2733 96.8126 11.9332 19.3215 6.8717 -0.8684 
  5.4465 11.9332 111.3895 -6.9191 5.3701 -7.2563 
 

13 

-8.784 19.3215 -6.9191 56.2119 -7.7544 3.7233 
  -18.9338 6.8717 5.3701 -7.7544 50.3772 -7.0817 
  7.0659 -0.8684 -7.2563 3.7233 -7.0817 32.1673 
  

        0 0 0 
     86.6 6.7 12.6 -17.8 0 0 

  6.7 86.6 12.6 17.8 0 0 
  12.6 12.6 106.1 0 0 0 
 

14 

-17.8 17.8 0 57.8 0 0 
  0 0 0 0 57.8 -17.8 
  0 0 0 0 -17.8 39.95 
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