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ABSTRACT

OBSERVABILITY IN TRAFFIC MODELING: EULERIAN AND

LAGRANGIAN COORDINATES

by

Sergio Contreras

Monika Neda, Examination Committee Co-chair

Associate Professor of Mathematical Science

University of Nevada, Las Vegas

Pushkin Kachroo, Examination Committee Co-chair

Professor of Electrical and Computer Engineering

University of Nevada, Las Vegas

Traditionally, one of the ways traffic flow has been studied is by using the kine-

matic wave model. This model is studied in the Eulerian framework. Recently, the

kinematic wave model has been transformed into Lagrangian coordinates. This model

of traffic flow together with the concept of observability for linear time invariant dis-

crete time systems is applied to study the observability of four sections of a freeway in

both Eulerian and Lagrangian coordinates. A system with densities in four sections

of a freeway is designed, and the observability of the system is studied with different

situations for sensors. When the system evolves exactly according to the models, the

states of the system could be obtained from measurements from certain situations.
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For both, Eulerian and Lagrangian simulations, as long as the fourth section was mea-

sured, the states of the system could be obtained. To compare different situations of

measurements, the condition number of the observability matrix is used.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Transportation research is a large and varied field. One of the most important

areas in transportation is traffic flow. In order to gain some understanding of traffic

phenomena, mathematical models have been proposed and studied. By studying

traffic, from a mathematical point of view, better decisions can be made about how

to deal with congestion, and how to maximize the flow of traffic. With the limited

construction of new roads because of costs, and a projected increase in miles traveled,

it is important to use the current transportation networks as efficiently as possible.

Sustainability of transportation systems with respect to traffic flow and operations is

an extremely important criteria while evaluating transportation improvements, as in

[1]. Researchers have used dynamic modeling and non-linear techniques in [2] and [3]

to integrate them with policy analysis.

To know which locations or areas need to be addressed in a transportation system,

the system must be observed or measured with sensors. There are a variety of sen-

sors including inductive loop detectors, magnetometers, cameras, probe vehicles, etc.

According to [4], the most widely used sensor in modern traffic control systems, is

by far, the inductive loop detector. These sensors are Eulerian sensors because these

sensors are fixed in position. Tracking vehicles with phones, and using aerial vehicles

are other ways that traffic can be measured. As mentioned in [5], because recently

smartphones have become widespread, smartphones are very useful sensors. When
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using smartphones as sensors, measurements are in Lagrangian coordinates because

the sensors travel with a vehicle.

However, there are limitations with sensors. The number of sensors available to

monitor a traffic transportation system is limited by cost. Other times, sensors can

fail or have problems, and can be considered unreliable.

1.2 Traffic Flow Modeling

One of the most used models to study traffic flow is the kinematic wave model,

which formulates how traffic flows along a road, see [6], [7], and [8]. This model treats

many vehicles together similarly to fluids. This is the model that will be used for

traffic flow in this work. It is one of the simplest models to study while still showing

properties of real vehicle interactions. This model has been recently transformed

into a Lagrangian framework, where vehicles are treated individually as particles,

see [21] and [22]. Both of these frameworks can be used to study observability of

transportation networks.

When using the kinematic wave model, the most important variable in the system

is density. The flux and velocity of a traffic stream are functions of density. In

Lagrangian coordinates, the main variable in the system is the inverse of density,

spacing. The velocity of a vehicle depends specifically on the spacing of the vehicle.

As mentioned, sensors exist to obtain measurements in both kinds of coordinate

systems.

1.3 Sensors in Traffic Systems

Observability in a transportation network modeled with traffic count sensors has

been studied in works such as [9] and [10] to obtain the best locations to put sen-

sors in a network. In [11], a strategy using a switching mode model using the cell

2



transmission model is used to estimate densities in sections of a freeway. In [12], a

particle filtering based estimation/prediction method is used to estimate densities on

a four-cell freeway segment. In [13], GPS equipped probe vehicles are used to measure

spacing data which is used for traffic estimation. Other authors have also studied in

several ways how to incorporate data obtained from vehicles using smartphones for

traffic estimation, see [14], [15], [16], and [17].

Thus both Eulerian sensors, such as loop detectors, and more recently Lagrangian

sensors, such as smartphones, are used as measuring tools for traffic networks. In this

work, a section of a freeway will be divided into four sections, and Eulerian sensors are

placed so that densities in less than the four sections of the freeway can be measured.

What is studied is if the densities in all the sections can be obtained. Similarly, for

Lagrangian sensors, a line of vehicles will be divided into four parts, and cars from

less than the four parts will be sensed. It is determined if all the spacings in the four

parts of the line can be obtained.

1.4 Outline of the Thesis

This thesis is divided into chapters. Chapter 1 presents the motivation, back-

ground and arrangement of the thesis. Chapters 2 and 3 present the traffic flow

model in Eulerian coordinates and Lagrangian coordinates, respectively. In chapter

4, observability in linear systems is presented. In chapters 5 and 6, observability of

densities as states in a system of Eulerian traffic modeling and spacings as states in

a system of Lagrangian traffic modeling are studied, respectively. In chapter 7 and

8, examples of simulations are demonstrated. Chapter 8 concludes this thesis and

presents future work.
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CHAPTER 2

Traffic Modeling In Eulerian Coordinates

2.1 LWR Model in Eulerian Coordinates

One of the most used models for studying traffic is the Lighthill-Whitman-Richards

(LWR) model in [6], [7], [8]. This theory describes one-dimensional wave motion

for the study of traffic flow. In this theory, there is a relationship between flow,

the rate at which vehicles pass some point, and density (the number of vehicles

per unit length of the road), [18]. The relationship between flow and density is

flow = density × velocity.

The following variables will be used:

x is a variable for position in space,

t is a variable for time,

ρ(x, t) is the density at time t at position x,

ρm is maximum density that is possible,

q(x, t) is the flow at time t at position x,

qm is maximum flow that is possible,

v(ρ) is the velocity as a function of density p,

4



vf is free flow velocity,

The velocity of the cars, v, can be written as a function of density and space.

v(x, t) = v(ρ(x, t), x)

V

ρc

vf

0 ρm ρ

Figure 2.1: Velocity vs. Density

A relationship with v as a function of ρ is shown in Figure 2.1. From zero density

until a critical density ρc, vehicles will travel at free flow speed. From ρc until ρm,

the velocity of vehicles will depend on density. As density increases the velocity of

the vehicles will decrease until the velocity becomes 0 at maximum density.

The flow, q, can be written as a function of density and space instead of a function

of space and time.

5



q(x, t) = q∗(ρ(x, t), x)

A relationship with q as a function of ρ is shown in Figure 2.2. From zero density

until a critical density ρc, the flow of vehicles will increase because as free flow speed

stays the same, ρ increases. From ρc until ρm, the velocity of vehicles will depend

on density. As density increases the velocity of the vehicles will decrease until the

velocity becomes 0 at maximum density. Thus flow of vehicles will decrease until flow

is zero at maximum density.

q

ρρm ρρc

qm

0

Figure 2.2: Fundamental Diagram, Flow vs. Density

In a similar manner, the density can be written as a function of flow and space if

the function from q(ρ) is one-to-one, i.e,

6



ρ(x, t) = ρ∗(q(x, t), x) (2.1)

The main result from the LWR theory is used in the partial differential equation

of the conservation of the number of cars, which is

∂ρ

∂t
+
∂q

∂x
= 0. (2.2)

With the substitution of equation (2.1), the above PDE becomes

∂ρ∗(q(x, t), x)

∂t
+
∂q(x, t)

∂x
= 0,

∂ρ∗(q(x, t), t)

∂q
× ∂q(x, t)

∂t
+
∂q(x, t)

∂x
= 0,

i.e.

w(q(x, t), x)
∂q(x, t)

∂t
+
∂q(x, t)

∂x
= 0.

The above is true by defining w(q(x, t), x) =
∂ρ∗(q(x, t), t)

∂q
. This function w

has units of vehicles/distance divided by vehicles/time. That is, the units of w are

time/distance.

The full derivative of q with respect to x is

d

dx
q =

∂q(x, t)

∂x
+
∂q(x, t)

∂t

dt

dx
= 0.

7



Solving the PDE by the method of characteristics,

dt

dx
= w(q(x, t), x).

Therefore, the flow q at some point (x0, t0) will remain constant along the char-

acteristic curve described by

t(x) = t0 +

∫ x

x0

w(q(x0, t0), z)dz.

2.2 Cumulative Flows

Cumulative flows are useful for traffic analysis and we study them next. Let the

function N(x, t) be a cumulative flow function as in [19] and [20]. For this function, an

Eulerian observer will start counting cars at location x starting with some reference

car. The first car that passes the observer would be labeled 1, the second 2, and the

nth car that has passed the observer would be labeled n. The output of the function

N(x, t) will be the number of the last car that passed position x at time t.

In Figure 2.3, two curves are drawn on the same graph, N(x1, t) and N(x2, t) for

two locations x1 and x2. The vertical difference at time t0 is the number of vehicles

between positions x1 and x2. Similarly, the horizontal difference between the curves at

the height j is the time it takes the vehicle labelled j to reach x2 from x1. The partial

derivative of this curve with respect to time has units of number of vehicles/time.

These are units of flow, q.

8



n

t

N(x1,t) N(x2,t)

j

t0

Figure 2.3: Two Cumulative Flow Functions, Car Number vs. Time

In Figure 2.4, two curves are drawn on the same graph, N(x, t1) and N(x, t2) for

two different times t1 and t2. The vertical difference at position x0 is the number

of vehicles that passed position x0 during the time t2 − t1. Similarly, the horizontal

difference between the curves at the height j is the distance the vehicle labelled j

travelled during the time t2 − t1. The partial derivative of this curve with respect to

position has units of number of vehicles/distance. These are units of density, ρ.

The N curves are actually step functions, since counting cars is an increment in

integers. However, for N to have a relationship with flow, q, and density, ρ, the N

curve must be smoothed.

The partial derivative of N(x, t) with respect to x is density, ρ(x, t).

−∂N(x, t)

∂x
= ρ(x, t).
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n

x

N(x,t2)N(x,t1)

j

x0

Figure 2.4: Two Cumulative Flow Functions, Car Number vs. Position

The partial derivative of N(x, t) with respect to t is flow, q(x, t).

∂N(x, t)

∂t
= q(x, t).

Plugging in these new definitions of q and ρ into equation (2.2), one obtains,

∂

∂t

(
−∂N(x, t)

∂x

)
+

∂

∂x

(
∂N(x, t)

∂t

)
= 0.

or

∂2N(x, t)

∂t∂x
=
∂2N(x, t)

∂x∂t
.

This equation is equivalent to equation (2.2) if the second derivatives of N(x, t)

exist. When there is discontinuity in the first derivative of N , a shock wave will form.

The conservation of the number of cars is satisfied as long as N(x, t) is piecewise
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continuous.

When k and q are continuous then the relationship

q(x, t) = q∗(ρ(x, t), x)

or

∂N(x, t)

∂t
= q∗(−∂N(x, t)

∂x
, x) (2.3)

is valid. When there are no shocks, the solution of this equation is found by the

method of characteristics. Knowing what q is determines what ρ is by equation (2.1).

2.3 Hamilton-Jacobi Equation in Eulerian Coordinates

The above theory is further extended in [19] and [20]. The cumulative flow function

N(x, t) satisfies equation (2.3) where q∗ is a differentiable function. It is noted that the

above equation has the form of a Hamilton-Jacobi equation. The above equation is

satisfied everywhere in its solution domain except on shock curves where the function

N(x, t) is not differentiable. Along the shocks, however, the function N must be

continuous. When a kinetic wave problem is well posed, it has a unique solution

with stable shocks. In these extensions, it is further assumed that q∗ is concave with

respect to
−∂N(x, t)

∂x
, or density, ρ.
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CHAPTER 3

Traffic Modeling in Lagrangian Coordinates

3.1 Hamilton-Jacobi Equation in Lagrangian Coordinates

When using the cumulative flow function, N(x, t), defined in the previous chapter,

there is a connection to the Lagrangian framework. When N(x, t) = n, the resulting

curve is the path that car n takes for x and t. This curve is what an observer who is

traveling with the vehicle will record. The coordinate transformation between (x, t)

and (n, t) is made by inverting the cumulative flow function N(x, t).

In the resulting transformation, it will be assumed that density, ρ, will be strictly

positive. If ρ is zero somewhere, then the domain can be made smaller to only regions

where ρ is strictly positive. More on this is found in [21].

Fixing the variable t, N(·, t) will be a decreasing function of x. To solve for x, we

have some function of n and t, i.e.,

x = X(n, t).

Herein, X(n, t) defines the position of the vehicle labeled n at time t. We also

12



have the following relationship:

∂X(n, t)

∂t
= v(n, t) (3.1)

The instantaneous velocity of the vehicle labelled n is its change in position at time

t.

∂X(n, t)

∂n
= −s(n, t) = − 1

ρ(n, t)
(3.2)

The difference in position between vehicles, spacing, or the reciprocal of density, at

time t is defined as the variable s.

To simplify the relationship between flow q and density ρ, velocity v is made a

function of just ρ, i.e.,

q(ρ) = ρv(ρ). (3.3)

Similarly, the relationship between q and v is

v =
q(ρ)

ρ
= q

(
1

s

)
∗ s. (3.4)

From Equations (3.1), (3.4), and (3.2),

∂X(n, t)

∂t
= v = q

(
1

s

)
∗ s = V ∗(s) = V ∗

(
−∂X(n, t)

∂n

)
.

or

∂X(n, t)

∂t
− V ∗

(
−∂X(n, t)

∂n

)
= 0. (3.5)

13



The above equation is the Hamilton-Jacobi equation in Lagrangian coordinates.

In [22], it is shown that if there is a viscosity solution to the Hamilton-Jacobi equa-

tion in Eulerian, N(x, t), then the viscosity solution when the problem is transformed

into Lagrangian coordinates is X(n, t). The vice-versa is also true.

3.2 Conservation Equation in Lagrangian Coordinates

Summarizing the process started in the previous chapter, everything started with

the LWR partial differential equation in Eulerian coordinates. From there, assuming

a relationship between q and ρ, we obtained a Hamilton-Jacobi equation in Eulerian

coordinates. Using the relationship between q, v, and ρ =
1

s
, the Hamilton-Jacobi

equation in Lagrangian coordinates was obtained by using transformations. More

details on the Lagrangian coordinates can be found in [23]. Now the LWR PDE will

be obtained in Lagrangian coordinates.

Starting with the Hamilton-Jacobi equation in Lagrangian coordinates,

∂X(n, t)

∂t
= V ∗(s) = V ∗

(
−∂X(n, t)

∂n

)
,

the partial derivative with respect to n will be taken on both sides,

∂

∂n

(
∂X(n, t)

∂t

)
=

∂

∂n
V ∗(s).

Rearranging the left side of the above equation, when X(n, t) is twice differentiable,

14



one obtains

∂

∂n

(
∂X(n, t)

∂t

)
=

∂

∂t

(
∂X(n, t)

∂n

)
= − ∂

∂t
s.

Finally, plugging the above into the Hamilton-Jacobi equation, one obtains the LWR

PDE in Lagrangian coordinates,

∂

∂t
s+

∂

∂n
V ∗(s) = 0 (3.6)

3.3 LWR Model in Lagrangian Coordinates

As mentioned in the previous section, the LWR PDE in Lagrangian coordinates is

equation (3.6). Similarly to how a fundamental diagram (FD) is needed for Eulerian

coordinates, a fundamental diagram is also needed in Lagrangian coordinates. This

fundamental diagram must relate velocity to spacing. In Eulerian coordinates speed

is a function of density. This diagram is shown in Figure 3.1. The relationship is

then transformed into a velocity spacing relationship. The transformed FD used in

Lagrangian coordinates is shown in Figure 3.2.

The function used for velocity is,

V ∗(s) =


vf

sc − sm
(s− sc) + vf sm ≤ s ≤ sc

vf s > sc

This function, unlike q∗ (used for Eulerian coordinates given in Figure 2.2), only

15



V

ρc

vf

0 ρm ρ

Figure 3.1: Velocity vs. Density

has nonnegative slopes.

d

ds
V ∗(s) =


vf

sc − sm
sm ≤ s < sc

0 s > sc

The function V ∗(s) =
vf

sc − sm
(s− sc) + vf can be made simpler.

vf
sc − sm

(s− sc) + vf =
vf

sc − sm
s− vf

sc − sm
sc +

sc − sm
sc − sm

vf =
vf

sc − sm
s− smvf

sc − sm

Defining the variable w =
smvf
sc − sm

, then

V ∗(s) = wρms− w

Let us take a closer look at the relationship between ρ(x, t) and s(n, t). As distance

16



V

ssm = 1/ρm

vf

0 sc = 1/ρc

Figure 3.2: Velocity vs. Spacing

x increases, the vehicle number n decreases, because it is closer to the lead in the

queue of cars. This is shown in Figure 3.3.

x

vf

0

......
12399100 0

n

Distance

Vehicle number

Figure 3.3: Position and Vehicle Number
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CHAPTER 4

Observability for LTI Systems

In this chapter, the concept of observability for linear time invariant (LTI) systems

from controls theory will be introduced, see [24], [25], and [26].

We will use the following notations:

k is a variable for discrete time,

−−→
x(k) is a vector of n states at discrete time k,

xi(k) is the ith component of
−−→
x(k) at discrete time k,

A is a n by n matrix of real numbers,

−−→
y(k) is a vector of m measurements at discrete time k,

C is a m by n matrix of real numbers.

We will consider a linear, time-invariant, discrete time system,

−−−−−→
x(k + 1) = A

−−→
x(k) (4.1)
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We can obtain measurements of the states like below.

−−→
y(k) = C

−−→
x(k) (4.2)

Equation (4.1) models how our system behaves. Equation (4.2) models how and

which states of the system are measured. Sometimes we do not know all values of the

states in the system. If we obtain measurements of only some states of the system,

with sensors, we want to know if we can obtain the values of all the states in the

system.

4.1 Observability Matrix

Taking n measurements according to (4.2) and substituting with (4.1), we have

the following:

−−→
y(0) = C

−−→
x(0)

−−→
y(1) = C

−−→
x(1) = CA

−−→
x(0)

−−→
y(2) = C

−−→
x(2) = CA

−−→
x(1) = CA2

−−→
x(0)

...

−−−−−→
y(n− 1) = C

−−−−−→
x(n− 1) = CAn−1

−−→
x(0)

In matrix notation we have

19





−−→
y(0)

−−→
y(1)

−−→
y(2)

...

−−−−−→
y(n− 1)


=



C

CA

CA2

...

CAn−1



−−→
x(0)

The matrix on the right hand side of the above system consisting of C and powers

of A is called the observability matrix, O. To solve for all n states of
−−→
x(0) in

the system, it is expected there should be at least n equations in a linear system of

equations. Because
−−→
y(k) is at least one entry long, we can guarantee that there will

be at least n equations by taking n measurements. To obtain the solution
−−→
x(0) in

the above system, the observability matrix must have rank n. Thus, if
−−→
x(0) can be

obtained after a finite amount of discrete time steps, then the system is observable.

Knowing the initial states,
−−→
x(0), and using equation (4.1), we can obtain the states

at all instants of discrete time.

4.2 Observability Index

Observability index, denoted by v, is defined as the smallest natural number

which satisfies,

rank(Ov) = rank(Ov+1),
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where

Ov =



C

CA

CA2

...

CAv−1


.

The observability index, v, can be less than the variable n, which represents the

number of states in the system. The observability matrix determines if a system is

observable or not. It does not give the observability index, which is the minimum

number of discrete time steps needed to obtain all states in the system.
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CHAPTER 5

Observability of Densities in Four Sections

5.1 The Traffic Equations

From conservation of matter, we know that the number of cars, N , in a lane of

length a to b is

N =

∫ b

a

ρ(x, t)dx

where ρ(x, t) is function of density at point x at time t.

The rate of change of the number of cars in the lane is

d

dt
N = q(a, t)− q(b, t)

Here q(x, t) is the flow of cars at point x at time t.

Now using both equations together we have

d

dt

∫ b

a

ρ(x, t)dx = q(a, t)− q(b, t)

5.2 The Setup of the Problem

We will assume we have a stretch of highway that is divided into four different

sections. Section one is from point a to point b and has a constant density ρ1(x, t),
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section two from point b to point c has ρ2(x, t), section three from point c to point d

has ρ3(x, t), and section four from point d to point e has ρ4(x, t).

We will assume that we know the flow coming into section 1, and call it fin. The

flow coming out of section 1 will be q(b, t) = vf · ρ1 ·
(

1− ρ1
ρmax

)
. Flows going into

or out of the four sections will be labelled similarly.

Figure 5.1: Density and Flow of 4 Sections

Since the assumption is that the density of each section is constant, then for

section 1,

d

dt

∫ b

a

ρ(x, t)dx =
d

dt
ρ(t)

∫ b

a

dx =
d

dt
ρ(t)(l) = q(a, t)− q(b, t)

and

d

dt
ρ(t) =

1

l
q(a, t)− 1

l
q(b, t)
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Flow In Flow Out

Section 1 q(a, t) = fin q(b, t) = vf · ρ1 ·
(

1− ρ1
ρmax

)

Section 2 q(b, t) = vf · ρ1 ·
(

1− ρ1
ρmax

)
q(c, t) = vf · ρ2 ·

(
1− ρ2

ρmax

)

Section 3 q(c, t) = vf · ρ2 ·
(

1− ρ2
ρmax

)
q(d, t) = vf · ρ3 ·

(
1− ρ3

ρmax

)

Section 4 q(d, t) = vf · ρ3 ·
(

1− ρ3
ρmax

)
q(e, t) = vf · ρ4 ·

(
1− ρ4

ρmax

)

Table 5.1: Flow In & Flow Out

5.3 The State Space

We are interested in the four densities of the four sections. The four equations

that describe the dynamics are:

ρ̇1 = f1 (ρ1, ρ2, ρ3, ρ4) =
1

l1
fin −

1

l1
vfρ1

(
1− ρ1

ρmax

)
ρ̇2 = f2 (ρ1, ρ2, ρ3, ρ4) =

1

l2
vfρ1

(
1− ρ1

ρmax

)
− 1

l2
vfρ2

(
1− ρ2

ρmax

)
ρ̇3 = f3 (ρ1, ρ2, ρ3, ρ4) =

1

l3
vfρ2

(
1− ρ2

ρmax

)
− 1

l3
vfρ3

(
1− ρ3

ρmax

)
ρ̇4 = f4 (ρ1, ρ2, ρ3, ρ4) =

1

l4
vfρ3

(
1− ρ3

ρmax

)
− 1

l4
vfρ4

(
1− ρ4

ρmax

)

In vector notation:

−̇→ρ = F (−→ρ )
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5.3.1 Finding the Equilibrium Point

This system is clearly nonlinear, since there are terms of density to the second

power. We will find the equilibrium point and then linearize the system about that

equilibrium point. To find the equilibrium point, all functions f1, f2, f3, f4 must equal

zero so that densities ρ1, ρ2, ρ3, ρ4 do not change with respect to time.

0 =
1

l1
fin −

1

l1
vfρ1eq

(
1−

ρ1eq
ρmax

)
0 =

1

l2
vfρ1eq

(
1−

ρ1eq
ρmax

)
− 1

l2
vfρ2eq

(
1−

ρ2eq
ρmax

)
0 =

1

l3
vfρ2eq

(
1−

ρ2eq
ρmax

)
− 1

l3
vfρ3eq

(
1−

ρ3eq
ρmax

)
0 =

1

l4
vfρ3eq

(
1−

ρ3eq
ρmax

)
− 1

l4
vfρ4eq

(
1−

ρ4eq
ρmax

)

We will assume that the section length is the same in all sections. This leads to

fin = vfρ1eq

(
1−

ρ1eq
ρmax

)
vfρ1eq

(
1−

ρ1eq
ρmax

)
= vfρ2eq

(
1−

ρ2eq
ρmax

)
vfρ2eq

(
1−

ρ2eq
ρmax

)
= vfρ3eq

(
1−

ρ3eq
ρmax

)
vfρ3eq

(
1−

ρ3eq
ρmax

)
= vfρ4eq

(
1−

ρ4eq
ρmax

)

If vf and ρmax are the same for all four sections, then

ρ4eq = ρ3eq = ρ2eq = ρ1eq =

ρmax ±

√
ρ2max − 4

ρmaxfin
vf

2
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at steady state.

5.3.2 Linearizing about the Equilibrium Point

The Jacobian matrix, denoted as
∂F

∂ρ
, of the right hand side of the system would

be 

∂f1
∂ρ1

∂f1
∂ρ2

∂f1
∂ρ3

∂f1
∂ρ4

∂f2
∂ρ1

∂f2
∂ρ2

∂f2
∂ρ3

∂f2
∂ρ4

∂f3
∂ρ1

∂f3
∂ρ2

∂f3
∂ρ3

∂f3
∂ρ4

∂f4
∂ρ1

∂f4
∂ρ2

∂f4
∂ρ3

∂f4
∂ρ4


which is



− 1

l1
vf

(
1− 2ρ1

ρmax

)
0 0 0

1

l2
vf

(
1− 2ρ1

ρmax

)
− 1

l2
vf

(
1− 2ρ2

ρmax

)
0 0

0
1

l3
vf

(
1− 2ρ2

ρmax

)
− 1

l3
vf

(
1− 2ρ3

ρmax

)
0

0 0
1

l4
vf

(
1− 2ρ3

ρmax

)
− 1

l4
vf

(
1− 2ρ4

ρmax

)



The full system with first order Taylor series expansion of F about the equilibrium
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point ρeq is



ρ̇1

ρ̇2

ρ̇3

ρ̇4


=



ρ̇eq1

ρ̇eq2

ρ̇eq3

ρ̇eq4


+



∂f1(
−→peq)

∂ρ1

∂f1(
−→peq)

∂ρ2

∂f1(
−→peq)

∂ρ3

∂f1(
−→peq)

∂ρ4

∂f2(
−→peq)

∂ρ1

∂f2(
−→peq)

∂ρ2

∂f2(
−→peq)

∂ρ3

∂f2(
−→peq)

∂ρ4

∂f3(
−→peq)

∂ρ1

∂f3(
−→peq)

∂ρ2

∂f3(
−→peq)

∂ρ3

∂f3(
−→peq)

∂ρ4

∂f4(
−→peq)

∂ρ1

∂f4(
−→peq)

∂ρ2

∂f4(
−→peq)

∂ρ3

∂f4(
−→peq)

∂ρ4





ρ1 − ρeq1

ρ2 − ρeq2

ρ3 − ρeq3

ρ4 − ρeq4



We know that for the equilibrium point, ρeq, that ρ̇eq = 0. We will define a new

variable

zi = pi − ρeqi i = 1, 2, 3, 4.

Then

żi = ṗi i = 1, 2, 3, 4.
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because ṗeqi = 0. These new variables would leave us with



ż1

ż2

ż3

ż4


=



∂f1(
−→peq)

∂ρ1

∂f1(
−→peq)

∂ρ2

∂f1(
−→peq)

∂ρ3

∂f1(
−→peq)

∂ρ4

∂f2(
−→peq)

∂ρ1

∂f2(
−→peq)

∂ρ2

∂f2(
−→peq)

∂ρ3

∂f2(
−→peq)

∂ρ4

∂f3(
−→peq)

∂ρ1

∂f3(
−→peq)

∂ρ2

∂f3(
−→peq)

∂ρ3

∂f3(
−→peq)

∂ρ4

∂f4(
−→peq)

∂ρ1

∂f4(
−→peq)

∂ρ2

∂f4(
−→peq)

∂ρ3

∂f4(
−→peq)

∂ρ4





z1

z2

z3

z4



5.3.3 Discretizing

We will discretize the continuous time equations. The four equations that describe

the dynamics become:



z1(k + 1)− z1(k)

∆t
z2(k + 1)− z2(k)

∆t
z3(k + 1)− z3(k)

∆t
z4(k + 1)− z4(k)

∆t


=



∂f1(
−→peq)

∂ρ1

∂f1(
−→peq)

∂ρ2

∂f1(
−→peq)

∂ρ3

∂f1(
−→peq)

∂ρ4

∂f2(
−→peq)

∂ρ1

∂f2(
−→peq)

∂ρ2

∂f2(
−→peq)

∂ρ3

∂f2(
−→peq)

∂ρ4

∂f3(
−→peq)

∂ρ1

∂f3(
−→peq)

∂ρ2

∂f3(
−→peq)

∂ρ3

∂f3(
−→peq)

∂ρ4

∂f4(
−→peq)

∂ρ1

∂f4(
−→peq)

∂ρ2

∂f4(
−→peq)

∂ρ3

∂f4(
−→peq)

∂ρ4





z1(k)

z2(k)

z3(k)

z4(k)


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which is



z1(k + 1)

z2(k + 1)

z3(k + 1)

z4(k + 1)


=



∂f1(
−→peq)

∂ρ1

∂f1(
−→peq)

∂ρ2

∂f1(
−→peq)

∂ρ3

∂f1(
−→peq)

∂ρ4

∂f2(
−→peq)

∂ρ1

∂f2(
−→peq)

∂ρ2

∂f2(
−→peq)

∂ρ3

∂f2(
−→peq)

∂ρ4

∂f3(
−→peq)

∂ρ1

∂f3(
−→peq)

∂ρ2

∂f3(
−→peq)

∂ρ3

∂f3(
−→peq)

∂ρ4

∂f4(
−→peq)

∂ρ1

∂f4(
−→peq)

∂ρ2

∂f4(
−→peq)

∂ρ3

∂f4(
−→peq)

∂ρ4





z1(k)

z2(k)

z3(k)

z4(k)


∆t+



z1(k)

z2(k)

z3(k)

z4(k)



i.e.,
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

z1(k + 1)

z2(k + 1)

z3(k + 1)

z4(k + 1)


=



∂f1(
−→peq)

∂ρ1
∆t+ 1

∂f1(
−→peq)

∂ρ2
∆t

∂f1(
−→peq)

∂ρ3
∆t

∂f1(
−→peq)

∂ρ4
∆t

∂f2(
−→peq)

∂ρ1
∆t

∂f2(
−→peq)

∂ρ2
∆t+ 1

∂f2(
−→peq)

∂ρ3
∆t

∂f2(
−→peq)

∂ρ4
∆t

∂f3(
−→peq)

∂ρ1
∆t

∂f3(
−→peq)

∂ρ2
∆t

∂f3(
−→peq)

∂ρ3
∆t+ 1

∂f3(
−→peq)

∂ρ4
∆t

∂f4(
−→peq)

∂ρ1
∆t

∂f4(
−→peq)

∂ρ2
∆t

∂f4(
−→peq)

∂ρ3
∆t

∂f4(
−→peq)

∂ρ4
∆t+ 1





z1(k)

z2(k)

z3(k)

z4(k)



Let A denote the matrix on the right hand side of the above system. Thus

−−−−−→
z(k + 1) = A

−−→
z(k) (5.1)

5.4 Observability of the Linearized State Space

Suppose for our system, equation (5.1), we can obtain measurements in the fol-

lowing form,

−−→
y(k) = C

−−→
z(k)
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where
−−→
y(k) ∈ <p, C ∈ <p×n, and

−−→
z(k) ∈ <4. The system

−−−−−→
z(k + 1) = A

−−→
z(k)

−−→
y(k) = C

−−→
z(k)

is observable if the observability matrix



C

CA

CA2

CA3


(5.2)

has rank 4, because −→zk has four variables.

5.4.1 Sensing Density in All Sections

If all the four states (z1(k), z2(k), z3(k), z4(k)) are measured directly, this scenario

is represented by the equation

−−→
y(k) =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





z1(k)

z2(k)

z3(k)

z4(k)


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Here

C =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


= I

Here we only need to check the rank of the observability matrix.

5.4.2 Numerical Example

The following values of the corresponding parameters are used:

• ρmax = 0.14 vehicles/m

• vf = 30 m/s

• l1 = l2 = l3 = l4 = 500 m

• fin = 0.3 vehicles/s, assumed to be constant for different time steps

• ∆t = 15 s, the time interval between two readings of sensors

Then,

ρ4eq = ρ3eq = ρ2eq = ρ1eq =
0.14±

√
0.142 − 4

0.140.3

30
2

= 0.1292, 0.0108.

Using the equilibrium point 0.1292 and the above values,
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A =



1.7606 0 0 0

−0.7606 1.7606 0 0

0 −0.7606 1.7606 0

0 0 −0.7606 1.7606


To determine if the linearized system is observable, we need to check the rank of

the observability matrix given by
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

C

CA

CA2

CA3


=



I

A

A2

A3


=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1.7606 0 0 0

−0.7606 1.7606 0 0

0 −0.7606 1.7606 0

0 0 −0.7606 1.7606

3.0998 0 0 0

−2.6784 3.0998 0 0

0.5786 −2.6784 3.0998 0

0 0.5786 −2.6784 3.0998

5.4577 0 0 0

−7.0736 5.4577 0 0

3.0560 −7.0736 5.4577 0

−0.4401 3.0560 −7.0736 5.4577


Since the rank is 4, and this is obvious since C = I, then the linearized system

with these parameters is observable.
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5.4.3 Sensing Density in Three Sections

We will investigate the scenario when only three of the four states (z1(k), z2(k), z3(k), z4(k))

are observed. Different ways to sense three sections are represented with different in-

stances of the matrix C.

When the section that is not sensed is the first section, then


y2(k)

y3(k)

y4(k)

 = C ×



z1(k)

z2(k)

z3(k)

z4(k)


where

C =


0 1 0 0

0 0 1 0

0 0 0 1


When the section that is not sensed is the second section, then

C =


1 0 0 0

0 0 1 0

0 0 0 1


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When the section that is not sensed is the third section, then

C =


1 0 0 0

0 1 0 0

0 0 0 1


Finally, when the section that is not sensed is the fourth section, then

C =


1 0 0 0

0 1 0 0

0 0 1 0


After checking the rank of the observability matrix, equation (5.2) for these differ-

ent cases, we obtain Table 5.2. The system is observable when sensing three different

sections, as long as section 4 is included.

Sections Sensed Rank

ρ2, ρ3, ρ4 4

ρ1, ρ3, ρ4 4

ρ1, ρ2, ρ4 4

ρ1, ρ2, ρ3 3

Table 5.2: Measuring Density in 3 Sections
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5.4.4 Sensing Density in Two Sections

The scenario when two of the four states (z1(k), z2(k), z3(k), z4(k)) are measured

is analyzed.

We need to check the rank of equation (5.2) for different C matrices representing

which of the two sections are being sensed. Out of the scenarios when the system is

observable, we can investigate the condition numbers of the observability matrix.

Sections Sensed Rank

ρ1, ρ2 2

ρ1, ρ3 3

ρ1, ρ4 4

ρ2, ρ3 3

ρ2, ρ4 4

ρ3, ρ4 4

Table 5.3: Measuring Density in 2 Sections

After checking the rank of the observability matrix for these different cases, we

obtain Table 5.3. We find that we can obtain all four states of the system, while only

measuring 2 states for 3 different cases. Again, the system is observable when sensing

two different sections, as long as section 4 is included.
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5.4.5 Sensing Density in Only One Section

The scenario when only one of the four states (z1(k), z2(k), z3(k), z4(k)) is mea-

sured is now analyzed. This is analyzed in the same way as before, by changing the C

matrix to match the measurement situation, and checking the rank of equation (5.2).

The rank of the observability matrix for different measurements is obtained in Table

5.4.

Sections Measured Rank

ρ1 1

ρ2 2

ρ3 3

ρ4 4

Table 5.4: Measuring Density in 1 Section

We can look at the rank of the observability matrix for these different cases, on

Table 5.4. We find that we can obtain all four states of the system only if we measure

section 4. Once again, the system is observable as long as section 4 is included.
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5.5 Stability Investigations

From the previous sections we found that, in some cases, we can obtain all four

states of the system, while measuring less than all states of the system. The system

is observable as long as section 4 is included. We will investigate the different cases

of measuring states by using the condition number at different time steps. The ob-

servability matrix and its corresponding condition number are computed for different

∆t.

5.5.1 Condition Number of Matrix

The condition number of a matrix, as explained in [27], is some measure of how

much precision is lost when solving a system with the inverse of that matrix. When

the condition number is 1, that means the system can be solved without loss of

precision. When the condition number of a matrix is very large, this situation tends

to go to when a matrix is not invertible and there is a great loss in precision.

Our studies show that the condition number of the matrix is affected by changes in

∆t, l, vf , fin, and pmax. However, the change in condition number caused by changing

∆t greatly outweighs the change caused by other variables. Therefore, the change in

∆t is presented next.

5.5.2 Stability for Measuring Three Sections

When sensing three sections out of four, the system is observable for three different

cases. Fig 5.2 shows the condition number as a function of time intervals for the three
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different cases.
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Figure 5.2: Condition Number vs. Sections Sensed: 3 Sections

From the figure, we can conclude that for the time intervals shown, measuring

sections 1, 2, and 4 always resulted in the best condition numbers. The lowest condi-

tion number for this situation happens when the time interval is around 6.5 seconds.

The second best situation is when measuring sections 1, 3 , and 4. The worst of the

three cases is when measuring 2, 3, and 4. If 10 is taken to be an acceptable condition

number, then all the three cases of measuring can be used.
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5.5.3 Stability for Measuring Two Sections

When sensing two sections out of four, the system is observable for three different

cases. Fig 5.3 shows the condition number as a function of time intervals for the three

different cases.
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Figure 5.3: Condition Number vs. Sections Sensed: 2 Sections

From the figure, we can conclude that for the time intervals shown, measuring

sections 2 and 4 always resulted in the best condition numbers. The other two cases

(measuring sections 1 and 4, and measuring sections 3 and 4) show significantly higher

condition numbers. If 10 is taken to be an acceptable condition number, then only
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the first case of measuring should be used.

Fig 5.4 shows a more detailed graph of the case when measuring sections 2 and 4.
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Figure 5.4: Condition Number vs. Sections Sensed: 2 Sections Detailed

We can conclude that the lowest condition number for this situation happens when

the time interval is around 6 seconds.

5.5.4 Stability for Measuring One Section

Even with only one section being measured, a situation where the system is observ-

able is obtained. Fig 5.5 shows the condition number as a function of time intervals.
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Figure 5.5: Condition Number vs. Sections Sensed: 1 Section

The lowest condition number for this situation happens when the time interval is

around 20 seconds. If 10 is taken to be an acceptable condition number, then this

measurement case should not be used.

5.6 Investigation of Observability Index

The observability matrix (5.2) informs whether a system is observable or not.

It uses n number of discrete steps, where n is the number of states in the system.

However, when the observability index is less than n, the states in the system can

be obtained with less than n discrete steps, and that number is denoted by v herein.
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Next, investigations for different cases are presented.

5.6.1 Observability Index for 3 Sections Case

In this section, the effect of different number of steps for measuring only three

out of four sections is presented. There are three situations for which measuring only

three out of four sections results in an observable system. For those cases, listed

below in Tables 5.5-5.7, different number of discrete steps are used. The time step

∆t that gave the lowest condition number was presented in the table.

The three situations for C have similar total times and condition numbers for

finding all states of the system for different numbers of discrete steps. Though less

discrete steps than n steps can be used for obtaining all states in the system, it takes

more total time than using n steps. Increasing the discrete steps beyond n lowers the

total time by few seconds.

# of Steps Time Step (∆t) Lowest Condition Number Total Time (# * ∆t)

v = 2 18.6 6.6309 37.2

3 10 6.2272 30

n = 4 6.6 6.2147 26.4

5 5 6.2546 25

6 4 6.3003 24

Table 5.5: Case: C=[1 0 0 0; 0 1 0 0; 0 0 0 1]
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# of Steps Time Step (∆t) Lowest Condition Number Total Time (# * ∆t)

v = 2 20 6.3721 40

3 9.8 6.2915 29.4

n = 4 6.4 6.4073 25.6

5 4.6 6.5118 23

6 3.6 6.5950 21.6

Table 5.6: Case: C=[1 0 0 0; 0 0 1 0; 0 0 0 1]

# of Steps Time Step (∆t) Lowest Condition Number Total Time (# * ∆t)

v = 2 20.2 6.6447 40.4

3 9.6 6.7051 28.8

n = 4 6.2 6.8691 24.8

5 4.6 6.9982 23

6 3.6 7.0942 21.6

Table 5.7: Case: C=[0 1 0 0; 0 0 1 0; 0 0 0 1]

5.6.2 Observability Index for 2 Sections Case

In this section the effect of different number of steps for measuring two sections

is presented. There are three situations for which measuring only two out of four
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sections results in an observable system. The results are presented below in Tables

5.8-5.10.

The case on Table 5.9 is clearly better than the other two cases. The total time to

obtain all states in the system and the condition numbers are considerably lower. If

only two sections out of four can be measured, these are the two sections to measure.

In this case, increasing the discrete steps beyond n lowers the total time by few

seconds.

# of Steps Time Step (∆t) Lowest Condition Number Total Time (# * ∆t)

v = 3 19.8 37.9741 59.4

n = 4 12.6 31.7690 50.4

5 9 30.4494 45

6 6.8 30.1839 40.8

Table 5.8: Case: C=[1 0 0 0; 0 0 0 1]
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# of Steps Time Step (∆t) Lowest Condition Number Total Time (# * ∆t)

v = 2 19.8 5.8285 39.6

3 9.4 5.8065 28.2

n = 4 6 5.9186 24

5 4.4 6.0118 22

6 3.6 6.0830 21.6

Table 5.9: Case: C=[0 1 0 0; 0 0 0 1]

# of Steps Time Step (∆t) Lowest Condition Number Total Time (# * ∆t)

v = 3 20.4 44.8649 61.2

n = 4 12.6 38.8827 50.4

5 9 37.9236 45

6 6.8 37.9437 40.8

Table 5.10: Case: C=[0 0 1 0; 0 0 0 1]

5.6.3 Observability Index for 1 Section Case

In this section the effect of different number of steps for measuring only one section

is presented. There is only one situation for which measuring only one section results

in an observable system.
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In this case, using more than n discrete steps decreases the total time, and condi-

tion number. However, this condition number is still too large.

# of Steps Time Step (∆t) Lowest Condition Number Total Time (# * ∆t)

v = n = 4 19.8 279.1717 79.2

5 14 212.5518 70

6 10.4 194.7532 62.4

Table 5.11: Case: C=[0 0 0 1]
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CHAPTER 6

Observability of Spacings in Four Sections

6.1 The Traffic Equations

From conservation of matter, the length L, of a road segment with N number of

cars, each with a spacing of s(n, t) is

L =

∫ N

1

s(n, t)dn

where s(n, t) is a function of spacing for vehicle n at time t.

The rate of change of the length of the road segment is

d

dt
L = v(0, t)− v(N, t)

Here v(n, t) is the velocity of the vehicle n at time t.

Now using both equations together we have

d

dt

∫ N

1

s(n, t)dn = v(0, t)− v(N, t)
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6.2 The Setup of the Problem

We will assume we have a line of vehicles. The line of vehicles is then discretized

and divided into four different sections each with constant spacing. Section one is

from vehicle 1 to vehicle N/4 and has a constant spacing s1(n, t), section two from

vehicle N/4 + 1 to vehicle N/2 has s2(n, t), section three from vehicle N/2 + 1 to

vehicle 3N/4 has s3(n, t), and section four from vehicle 3N/4 + 1 to vehicle N/4 has

s4(n, t).

We will assume that we know the velocity of the vehicle in front of vehicle 1, and

call it v−. The velocity of a vehicle in section 1 will be V (s1, t). Velocities in front of

each section and velocities of each of the four sections will be labelled similarly.

Figure 6.1: Spacing and Velocity of 4 Sections

Since the assumption is that the spacing of each section is constant, then for
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Velocity in Front Velocity of

Section 1 v− V (s1, t)

Section 2 V (s1, t) V (s2, t)

Section 3 V (s2, t) V (s3, t)

Section 4 V (s3, t) V (s4, t)

Table 6.1: Velocity in Front of 4 Sections & Each of the 4 Sections

section 4,

d

dt

∫ N

3N/4

s(n, t)dn =
d

dt
s(t)

∫ N

3N/4

dn =
d

dt
s(t)N/4 = v(s3, t)− v(s4, t)

and

d

dt
s(t) =

4

N
v(s3, t)−

4

N
v(s4, t)

6.3 The State Space

We are interested in the four spacings of the four sections. The four equations

that describe the dynamics are:
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ṡ1 = f1 (s1, s2, s3, s4) = 4
N

(v− − V (s1, t))

ṡ2 = f2 (s1, s2, s3, s4) = 4
N

(V (s1, t)− V (s2, t))

ṡ3 = f3 (s1, s2, s3, s4) = 4
N

(V (s2, t)− V (s3, t))

ṡ4 = f4 (s1, s2, s3, s4) = 4
N

(V (s3, t)− V (s4, t))

From an earlier chapter, V (s, t) = wρms− w where w =
vmsm
sc − sm

. Using this, the

equations are

ṡ1 = 4
N

(v− − (wρm1s1 − w)) = − 4
N
wρm1s1 + ( 4

N
w + 4

N
v−)

ṡ2 = 4
N

((wρm1s1 − w)− (wρm2s2 − w)) = 4
N
wρm1s1 − 4

N
wρm2s2

ṡ3 = 4
N

((wρm2s2 − w)− (wρm3s3 − w)) = 4
N
wρm2s2 − 4

N
wρm3s3

ṡ4 = 4
N

((wρm3s3 − w)− (wρm4s4 − w)) = 4
N
wρm3s3 − 4

N
wρm4s4

In matrix form,



ṡ1

ṡ2

ṡ3

ṡ4


=



− 4

N
wρm1 0 0 0

4

N
wρm1 − 4

N
wρm2 0 0

0
4

N
wρm2 − 4

N
wρm3 0

0 0
4

N
wρm3 − 4

N
wρm4





s1

s2

s3

s4


+



( 4
N
w + 4

N
v−)

0

0

0


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This system can be simplified further so that it can be linear in zi’s.



ż1

ż2

ż3

ż4


=



− 4

N
wρm1 0 0 0

4

N
wρm1 − 4

N
wρm2 0 0

0
4

N
wρm2 − 4

N
wρm3 0

0 0
4

N
wρm3 − 4

N
wρm4





z1

z2

z3

z4



In vector notation:

−̇→z = F−→z (6.1)

where

F =



− 4

N
wρm1 0 0 0

4

N
wρm1 − 4

N
wρm2 0 0

0
4

N
wρm2 − 4

N
wρm3 0

0 0
4

N
wρm3 − 4

N
wρm4


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6.3.1 Equilibrium Point and Linearization

The system for lagrangian coordinates is linear, as opposed to the system derived

in the previous chapter for eulerian coordinates. The equilibrium point for linear

systems is the zero vector since F is invertible. Since this system is already linear,

there is no need to linearize about an equilibrium point.

6.3.2 Discretizing

We will discretize the continuous time equations. The four equations that describe

the dynamics become:



z1(k + 1)− z1(k)

∆t
z2(k + 1)− z2(k)

∆t
z3(k + 1)− z3(k)

∆t
z4(k + 1)− z4(k)

∆t


=



− 4

N
wρm1 0 0 0

4

N
wρm1 − 4

N
wρm2 0 0

0
4

N
wρm2 − 4

N
wρm3 0

0 0
4

N
wρm3 − 4

N
wρm4





z1(k)

z2(k)

z3(k)

z4(k)



which is
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

z1(k + 1)

z2(k + 1)

z3(k + 1)

z4(k + 1)


=



− 4

N
wρm1 0 0 0

4

N
wρm1 − 4

N
wρm2 0 0

0
4

N
wρm2 − 4

N
wρm3 0

0 0
4

N
wρm3 − 4

N
wρm4





z1(k)

z2(k)

z3(k)

z4(k)


∆t+



z1(k)

z2(k)

z3(k)

z4(k)



or
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

z1(k + 1)

z2(k + 1)

z3(k + 1)

z4(k + 1)


=



− 4

N
wρm1∆t+ 1 0 0 0

4

N
wρm1∆t − 4

N
wρm2∆t+ 1 0 0

0
4

N
wρm2∆t − 4

N
wρm3∆t+ 1 0

0 0
4

N
wρm3∆t − 4

N
wρm4∆t+ 1





z1(k)

z2(k)

z3(k)

z4(k)



Let A denote the matrix on the right hand side of the above system. Thus

−−−−−→
z(k + 1) = A

−−→
z(k) (6.2)

6.4 Observability of the State Space

Suppose for our system, equation (6.2), we can obtain measurements in the fol-

lowing form,

−−→
y(k) = C

−−→
z(k)
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where
−−→
y(k) ∈ <p, C ∈ <p×n, and

−−→
z(k) ∈ <4. The system

−−−−−→
z(k + 1) = A

−−→
z(k)

−−→
y(k) = C

−−→
z(k)

is observable if the observability matrix



C

CA

CA2

CA3


(6.3)

has rank 4, because
−−→
z(k) ∈ <4.

6.4.1 Sensing Spacing in All Sections

If all the four states (z1(k), z2(k), z3(k), z4(k)) are measured directly, this scenario

is represented by the equation

−−→
y(k) =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





z1(k)

z2(k)

z3(k)

z4(k)


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Here

C =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


= I

Here we only need to check the rank of



C

CA

CA2

CA3


=



I

A

A2

A3



6.4.2 Numerical Example

The following values of the corresponding parameters are used:

• ρm1 = ρm2 = ρm3 = ρm4 = 0.14 vehicles/m,

• sc = 50 m/vehicle,

• vf = 30 m/s,

• N = 40 vehicles,

• ∆t = 15 s, the time step between two readings of sensors.

Then,
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A =



−0.07 0 0 0

0.07 −0.07 0 0

0 0.07 −0.07 0

0 0 0.07 −0.07


To determine if the system is observable, we need to check the rank of
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

C

CA

CA2

CA3


=



I

A

A2

A3


=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−0.0700 0 0 0

0.0700 −0.0700 0 0

0 0.0700 −0.0700 0

0 0 0.0700 −0.0700

0.0049 0 0 0

−0.0098 0.0049 0 0

0.0049 −0.0098 0.0049 0

0 0.0049 −0.0098 0.0049

−0.0003 0 0 0

0.0010 −0.0003 0 0

−0.0010 0.0010 −0.0003 0

0.0003 −0.0010 0.0010 −0.0003


The system with these parameters is observable since the rank is 4, which is

obvious since C = I.
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6.4.3 Sensing Spacing in Three Sections

We will investigate the scenario when three of the four states (z1(k), z2(k), z3(k), z4(k))

are observed. Different ways to sense three sections are represented with different in-

stances of the matrix C.

After checking the rank of the observability matrix (6.3), for these different cases,

we obtain Table 6.2. The system is observable when sensing three different sections,

as long as section 4 is included.

Sections Sensed Rank

s1, s2, s3 3

s1, s2, s4 4

s1, s3, s4 4

s2, s3, s4 4

Table 6.2: Measuring Spacing in 3 Sections

6.4.4 Sensing Spacing in Two Sections

The scenario when two of the four states (z1(k), z2(k), z3(k), z4(k)) are measured

is analyzed.

We need to check the rank of (6.3), for different C matrices representing which of
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the two sections are being sensed. Out of the scenarios when the system is observable,

we can investigate the condition numbers of the observability matrix.

Sections Sensed Rank of Matrix

s1, s2 2

s1, s3 3

s1, s4 4

s2, s3 3

s2, s4 4

s3, s4 4

Table 6.3: Measuring Spacing in 2 Sections

After checking the rank of the observability matrix for these different cases, we

obtain Table 6.3. We find that we can obtain all four states of the system, while only

measuring 2 states for 3 different cases. Again, the system is observable when sensing

two different sections, as long as section 4 is included.

6.4.5 Sensing Spacing in Only One Section

The scenario when only one of the four states (z1(k), z2(k), z3(k), z4(k)) is mea-

sured is now analyzed. This is analyzed in the same way as before, by changing the
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C matrix to match the measurement situation, and checking the rank of (6.3). The

rank of the observability matrix for different measurements is obtained in Table 6.4.

Sections Measured Rank of Matrix

s1 1

s2 2

s3 3

s4 4

Table 6.4: Measuring Spacing in 1 Section

We can look at the rank of the observability matrix for these different cases on

Table 6.4. We find that we can obtain all four states of the system only if we measure

section 4. Once again, the system is observable as long as section 4 is included.

6.5 Stability Investigations

From the previous sections we found that, in some cases, we can obtain all four

states of the system, while measuring less than all states of the system. The sys-

tem is observable as long as section 4 is included. We will investigate the different

cases of measuring states by using the condition number for different time steps ∆t.

Our studies show that the condition number of the matrix is affected by changes in
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∆t, sc, vf , N , and pmax. However, the change in condition number caused by changing

∆t greatly outweighs the change caused by other variables. Therefore, the change in

∆t is presented exclusively. The observability matrix and its corresponding condition

number are computed for different ∆t.

6.5.1 Stability for Measuring Three Sections

When sensing three sections out of four, the system is observable for three different

cases. Fig 6.2 shows the condition number as a function of time intervals for the three

different cases.
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Figure 6.2: Condition Number vs. Sections Sensed: 3 Sections
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From the figure, we can conclude that for the time steps shown, the three different

cases are very similar. If 10 is taken to be an acceptable condition number, then all the

three cases of measuring can be used for the time steps shown. The lowest condition

number for these situations happen when the time step is around 12 seconds.

6.5.2 Stability for Measuring Two Sections

When sensing two sections out of four, the system is observable for three different

cases. Fig 6.3 shows the condition number as a function of time intervals for the three

different cases.
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Figure 6.3: Condition Number vs. Sections Sensed: 2 Sections

65



From the figure, we can conclude that measuring sections 2 and 4 result in the

best condition numbers for time steps less than 12 seconds. For time steps higher

than 14 seconds, the best situation is to measure sections 1 and 4. If 10 is taken to

be an acceptable condition number, then all cases of measuring can be used.

6.5.3 Stability for Measuring One Section

Even with only one section being measured, a situation where the system is ob-

servable is obtained. Fig 6.4 shows the condition number as a function of time steps.
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Figure 6.4: Condition Number vs. Sections Sensed: 1 Section
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The lowest condition number for this situation happens when the time step is

around 14.5 seconds. If 10 is taken to be an acceptable condition number, then this

measurement case can be used for time intervals of around 10 through 24 seconds.

6.6 Investigation of Observability Index

Herein, we investigate the observability index similarly to what has been done in

Section 5.6.

6.6.1 Observability Index for 3 Sections Case

In this section, the effect of different number of steps for measuring only three

out of four sections is presented. There are three situations for which measuring only

three out of four sections results in an observable system. For those cases, listed

below in Tables 6.5-6.7, different number of discrete steps are used. The time step

∆t that gave the lowest condition number was presented in the table.

The three situations for C have similar total times and condition numbers for

finding all states of the system for different numbers of discrete steps. For all three

cases, using three discrete time steps results in the lowest condition number and lowest

total time to obtain all states in the system.
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# of Steps Time Step (∆t) Condition Number Total Time (# * ∆t)

v = 2 26.8 6.6310 53.6

3 14.2 1.4212 42.6

n = 4 14 1.7310 56

5 14.2 1.7312 71

6 14.2 1.7312 85.2

Table 6.5: Case: C=[1 0 0 0; 0 1 0 0; 0 0 0 1]

# of Steps Time Step (∆t) Condition Number Total Time (# * ∆t)

v = 2 28.8 6.3720 57.6

3 13.4 1.4126 40.2

n = 4 12.2 1.5292 48.8

5 12.2 1.5686 61

6 12.4 1.5726 74.4

Table 6.6: Case: C=[1 0 0 0; 0 0 1 0; 0 0 0 1]
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# of Steps Time Step (∆t) Condition Number Total Time (# * ∆t)

v = 2 29 6.6447 58

3 9.6 1.5891 34.8

n = 4 11.8 1.6865 47.2

5 12.8 1.7029 64

6 13 1.7035 78

Table 6.7: Case: C=[0 1 0 0; 0 0 1 0; 0 0 0 1]

6.6.2 Observability Index for 2 Sections Case

In this section the effect of different number of steps for measuring two sections

is presented. There are three situations for which measuring only two out of four

sections results in an observable system. The obtained results are presented below in

Tables 6.8-6.10.

All three cases are very similar in the condition numbers and time steps. Since

the time steps for the lowest condition number are very similar, it makes sense to use

the least number of discrete steps, which is 3. This gives the least total time.
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# of Steps Time Step (∆t) Condition Number Total Time (# * ∆t)

v = 3 14.2 1.0178 42.6

n = 4 14.2 1.4242 56.8

5 14.2 1.4244 71

6 14.2 1.4244 85.2

Table 6.8: Case: C=[1 0 0 0; 0 0 0 1]

# of Steps Time Step (∆t) Condition Number Total Time (# * ∆t)

v = 2 28.6 5.8284 57.2

3 14.2 1.4161 42.6

n = 4 14.2 1.4213 56.8

5 14.2 1.4214 71

6 14.2 1.4214 85.2

Table 6.9: Case: C=[0 1 0 0; 0 0 0 1]
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# of Steps Time Step (∆t) Condition Number Total Time (# * ∆t)

v = 3 14.2 1.4306 42.6

n = 4 14.2 1.4149 56.8

5 14.2 1.4149 71

6 14.2 1.4149 85.2

Table 6.10: Case: C=[0 0 1 0; 0 0 0 1]

6.6.3 Observability Index for 1 Section Case

In this section the effect of different number of steps for measuring only one section

is presented. There is only one situation for which measuring only one section results

in an observable system.

In this case, n discrete steps should be used to obtain the least total time.

# of Steps Time Step (∆t) Condition Number Total Time (# * ∆t)

v = n = 4 14.2 1.2619 56.8

5 14.2 1.0275 71

6 14.2 1.0275 85.2

Table 6.11: Case: C=[0 0 0 1]
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CHAPTER 7

Eulerian Simulations: Obtaining All States

For real situations, we are interested in cases where sensors can fail, or there are

constraints on sensors because of cost considerations. We will consider cases where

less than all sections available are being measured. In these simulations, ρmax, vf ,

and l will be constant for the 4 sections. We will use the following values.

• ρmax = 0.14 vehicles/m

• vf = 30 m/s

• l1 = l2 = l3 = l4 = 500 m

• fin = 0.3 vehicles/s, assumed to be constant for different time steps

• ∆t = 6.5s (when measuring 1 section) or 20s (when measuring 3 and 2 sections),

the time interval between two readings of sensors

By fixing fin, we also fix ρeq = 0.1292.

For the initial states of the system, we will use 60 cars in section 1, 61 cars

in section 2, 62 cars in section 3, and 64 cars in section 4. In terms of density,

ρ1 = 60/500 = 0.1200, ρ2 = 0.1220, ρ3 = 0.1240, ρ4 = 0.1260.
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7.1 Measuring Density in 3 Sections Close to the Equilibrium Point

From Chapter 3, there are 3 situations where measuring only 3 out of 4 sections

resulted in an observable system. Sensing sections 1, 2, and 4 resulted in the best

precision for obtaining all the states. We will see how all four states of the system

are obtained by only measuring three states of the system.

In cases where measuring 3 out of 4 sections is not observable, a pseudo inverse

to a rank-deficient matrix can be applied.

7.1.1 Sections 1, 2, and 4 Measured

We will simulate the case when sections 1, 2, and 4 are measured. We will use 3

discrete time steps after initialization to obtain all 4 states. The system we have to
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check is 

y1(0)

y2(0)

y4(0)

y1(1)

y2(1)

y4(1)

y1(2)

y2(2)

y4(2)

y1(3)

y2(3)

y4(3)



=



C

CA

CA2

CA3





z1(0)

z2(0)

z3(0)

z4(0)



where

C =


1 0 0 0

0 1 0 0

0 0 0 1


We will take measurements of sections 1, 2, and 4 only during the 3 discrete time

steps. After this, we will solve for
−−→
ρ(0), and see how close the obtained values are to

the actual values.

The values obtained for the densities in the four sections are within 1% of the
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Calculated ρ Actual ρ Relative Error

ρ1 0.1205 0.1200 0.4135 E-03

ρ2 0.1219 0.1220 0.9775 E-04

ρ3 0.1240 0.1240 0.9662 E-05

ρ4 0.1260 0.1260 -0.2212 E-04

Table 7.1: Measuring Density in 3 Sections: Full Rank

actual values.

7.1.2 Sections 1, 2, and 3 Measured

We will simulate the case when sections 1, 2, and 3 are measured. This was a case

that was not observable. We will use least squares to find a solution. We will use 3

discrete time steps after initialization to obtain all 4 states. The system we have to
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check is 

y1(0)

y2(0)

y3(0)

y1(1)

y2(1)

y3(1)

y1(2)

y2(2)

y3(2)

y1(3)

y2(3)

y3(3)



=



C

CA

CA2

CA3





z1(0)

z2(0)

z3(0)

z4(0)



where

C =


1 0 0 0

0 1 0 0

0 0 1 0


We will take measurements of sections 1, 2, and 3 only during the 3 discrete time

steps. After this, we will solve for
−−→
ρ(0), and see how close the obtained values are to

the actual values.

The values obtained for the densities in sections 1, 2, and 3 are within 1% of the
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Calculated ρ Actual ρ Relative Error

ρ1 0.1205 0.1200 0.4162 E-02

ρ2 0.1219 0.1220 -0.8535 E-03

ρ3 0.1239 0.1240 -0.1157 E-02

ρ4 0.1292 0.1260 0.2509 E-01

Table 7.2: Measuring Density in 3 Sections: Rank Deficient

actual values.

7.2 Measuring Density in Two Sections Close to the Equilibrium Point

From Chapter 3, there are 3 situations where measuring only 2 out of 4 sections

resulted in an observable system. The best situation is when sensing sections 2 and

4. We will see how all four states of the system are obtained by only measuring two

states of the system.

In cases where measuring 2 out of 4 sections is not observable, a pseudo inverse

to a rank-deficient matrix can be applied.
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7.2.1 Sections 2 and 4 Measured

We will simulate the case when sections 2 and 4 are measured. The system we

have to check is 

y2(0)

y4(0)

y2(1)

y4(1)

y2(2)

y4(2)

y2(3)

y4(3)



=



C

CA

CA2

CA3





z1(0)

z2(0)

z3(0)

z4(0)



where

C =

 0 1 0 0

0 0 0 1


The values obtained for the densities in the four sections are within 1% of the

actual values.
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Calculated ρ Actual ρ Relative Error

ρ1 0.1210 0.1200 0.8048 E-02

ρ2 0.1221 0.1220 0.1076 E-02

ρ3 0.1241 0.1240 0.4201 E-03

ρ4 0.1260 0.1260 0.1331 E-03

Table 7.3: Measuring Density in 2 Sections: Full Rank

7.2.2 Sections 1 and 3 Measured

We will simulate the case when sections 1 and 3 are measured. This was a case

that was not observable. The system we have to check is



y1(0)

y3(0)

y1(1)

y3(1)

y1(2)

y3(2)

y1(3)

y3(3)



=



C

CA

CA2

CA3





z1(0)

z2(0)

z3(0)

z4(0)



where
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C =

 1 0 0 0

0 0 1 0



Calculated ρ Actual ρ Relative Error

ρ1 0.1205 0.1200 0.3906 E-02

ρ2 0.1221 0.1220 0.9764 E-03

ρ3 0.1240 0.1240 -0.1695 E-03

ρ4 0.1292 0.1260 0.2509 E-01

Table 7.4: Measuring Density in 2 Sections: Rank Deficient

The values obtained for the densities in sections 1, 2, and 3 are within 1% of the

actual values.

7.3 Measuring Density in One Section Close to the Equilibrium Point

From Chapter 3, there is only 1 situation where measuring only 1 out of 4 sections

resulted in an observable system. Sensing only section 4 resulted in an observable

system. Four time steps are required. We will see how all four states of the system

are obtained by only measuring one state of the system.

In cases where measuring 1 out of 4 sections is not observable, a pseudo inverse
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to a rank-deficient matrix can be applied.

7.3.1 Section 4 Measured

We will simulate the case when section 4 only is measured. The system we have

to check is 

y4(0)

y4(1)

y4(2)

y4(3)


=



C

CA

CA2

CA3





z1(0)

z2(0)

z3(0)

z4(0)


where

C =

[
0 0 0 1

]

Calculated ρ Actual ρ Relative Error

ρ1 0.1208 0.1200 0.6573 E-2

ρ2 0.1224 0.1220 0.3344 E-2

ρ3 0.1241 0.1240 0.1134 E-2

ρ4 0.1260 0.1260 0

Table 7.5: Measuring Density in 1 Section: Full Rank
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The values obtained for the densities in the four sections are within 1% of the

actual values.

7.3.2 Section 3 Measured

We will simulate the case when section 3 only is measured. This is a case that is

not observable. The system we have to check is



y3(0)

y3(1)

y3(2)

y3(3)


=



C

CA

CA2

CA3





z1(0)

z2(0)

z3(0)

z4(0)


where

C =

[
0 0 1 0

]

The values obtained for the densities in sections 1, 2, and 3 are within 1% of the

actual values.
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Calculated ρ Actual ρ Relative Error

ρ1 0.1213 0.1200 0.1085 E-1

ρ2 0.1225 0.1220 0.3768 E-2

ρ3 0.1241 0.1240 0.5869 E-3

ρ4 0.1292 0.1260 0.2506 E-1

Table 7.6: Measuring Density in 1 Section: Rank Deficient
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CHAPTER 8

Lagrangian Simulations: Obtaining All States

For real situations, we are interested in cases where sensors can fail, or there are

constraints on sensors because of cost considerations. We will consider cases where

less than all sections available are being measured. In these simulations, ρmax, sc, vf ,

and N will be constant for the 4 sections. We will use the following values.

• sc = 50 m/vehicle

• ρmax = 0.14 vehicles/m

• vf = 30 m/s

• N = 40 vehicles

• ∆t = 15s, the time step between two readings of sensors

For the initial states of the system, we will use the following spacings for the four

sections: s1 = 40, s2 = 28, s3 = 14, s4 = 7.

8.1 Measuring Spacing in 3 Sections

From Chapter 6, there are 3 situations where measuring only 3 out of 4 sections

resulted in an observable system. We will simulate sensing sections 1, 2, and 4 for
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obtaining all the states. We will see how all four states of the system are obtained by

only measuring three states of the system.

8.1.1 Sections 1, 2, and 4 Measured

We will simulate the case when sections 1, 2, and 4 are measured. We will use 3

discrete time steps after initialization to obtain all 4 states. The system we have to

check is 

y1(0)

y2(0)

y4(0)

y1(1)

y2(1)

y4(1)

y1(2)

y2(2)

y4(2)

y1(3)

y2(3)

y4(3)



=



C

CA

CA2

CA3





z1(0)

z2(0)

z3(0)

z4(0)



where
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C =


1 0 0 0

0 1 0 0

0 0 0 1


We will take measurements of sections 1, 2, and 4 only during the 3 discrete time

steps. After this, we will solve for
−−→
s(0), and see how close the obtained values are to

the actual values.

Calculated s Actual s Relative Error

s1 40 40 -0.0178 E-14

s2 28 28 0.0127 E-14

s3 14 14 -0.1015 E-14

s4 7 7 -0.7105 E-14

Table 8.1: Measuring Spacing in 3 Sections: Full Rank

The values obtained for the densities in the four sections are within 1% of the

actual values.
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8.1.2 Sections 1, 2, and 3 Measured

We will simulate the case when sections 1, 2, and 3 are measured. This was a case

that was not observable. We will use least squares to find a solution. We will use 3

discrete time steps after initialization to obtain all 4 states. The system we have to

check is 

y1(0)

y2(0)

y3(0)

y1(1)

y2(1)

y3(1)

y1(2)

y2(2)

y3(2)

y1(3)

y2(3)

y3(3)



=



C

CA

CA2

CA3





z1(0)

z2(0)

z3(0)

z4(0)



where

C =


1 0 0 0

0 1 0 0

0 0 1 0


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We will take measurements of sections 1, 2, and 3 only during the 3 discrete time

steps. After this, we will solve for
−−→
s(0), and see how close the obtained values are to

the actual values.

Calculated s Actual s Relative Error

s1 0.1205 0.1200 0

s2 0.1221 0.1220 0

s3 0.1240 0.1240 0.1 E-15

s4 0.1292 0.1260 6.1429

Table 8.2: Measuring Spacing in 3 Sections: Rank Deficient

The values obtained for the spacings in sections 1, 2, and 3 are within 1% of the

actual values.

8.2 Measuring Spacing in Two Sections

From Chapter 6, there are 3 situations where measuring only 2 out of 4 sections

resulted in an observable system. We will see how all four states of the system are

obtained by only measuring sections 2 and 4.
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8.2.1 Sections 2 and 4 Measured

We will simulate the case when sections 2 and 4 are measured. The system we

have to check is 

y2(0)

y4(0)

y2(1)

y4(1)

y2(2)

y4(2)

y2(3)

y4(3)



=



C

CA

CA2

CA3





z1(0)

z2(0)

z3(0)

z4(0)



where

C =

 0 1 0 0

0 0 0 1


The values obtained for the densities in the four sections are within 1% of the

actual values.
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Calculated s Actual s Relative Error

s1 40 40 -0.0355 E-14

s2 28 28 0.0381 E-14

s3 14 14 -0.2030 E-14

s4 7 7 0.1015 E-14

Table 8.3: Measuring Spacing in 2 Sections: Full Rank

8.2.2 Sections 2 and 3 Measured

We will simulate the case when sections 2 and 3 are measured. This was a case

that was not observable. The system we have to check is



y1(0)

y3(0)

y1(1)

y3(1)

y1(2)

y3(2)

y1(3)

y3(3)



=



C

CA

CA2

CA3





z1(0)

z2(0)

z3(0)

z4(0)



where
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C =

 1 0 0 0

0 0 1 0



Calculated s Actual s Relative Error

s1 0.1205 0.1200 0

s2 0.1221 0.1220 0

s3 0.1240 0.1240 0.1 E-15

s4 0.1292 0.1260 6.1429

Table 8.4: Measuring Spacing in 2 Sections: Rank Deficient

The values obtained for the spacings in sections 1, 2, and 3 are within 1% of the

actual values.

8.3 Measuring Spacing in One Section

From Chapter 6, there is only 1 situation where measuring only 1 out of 4 sections

resulted in an observable system. Sensing only section 4 resulted in an observable

system. Four time steps are required. We will see how all four states of the system

are obtained by only measuring one state of the system.
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8.3.1 Section 4 Measured

We will simulate the case when section 4 only is measured. The system we have

to check is 

y4(0)

y4(1)

y4(2)

y4(3)


=



C

CA

CA2

CA3





z1(0)

z2(0)

z3(0)

z4(0)


where

C =

[
0 0 0 1

]

Calculated s Actual s Relative Error

s1 40 40 -0.1776 E-15

s2 28 28 0.2538 E-15

s3 14 14 0

s4 7 7 0

Table 8.5: Measuring Spacing in 1 Section: Full Rank

The values obtained for the densities in the four sections are within 1% of the

actual values.
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8.3.2 Section 3 Measured

We will simulate the case when section 3 only is measured. This is a case that is

not observable. The system we have to check is



y3(0)

y3(1)

y3(2)

y3(3)


=



C

CA

CA2

CA3





z1(0)

z2(0)

z3(0)

z4(0)


where

C =

[
0 0 1 0

]

Calculated s Actual s Relative Error

s1 0.1205 0.1200 0

s2 0.1221 0.1220 0

s3 0.1240 0.1240 0.1 E-15

s4 0.1292 0.1260 6.1429

Table 8.6: Measuring Density in 1 Section: Rank Deficient

The values obtained for the spacings in sections 1, 2, and 3 are within 1% of the
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actual values.
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CHAPTER 9

Conclusion and Future Work

The concept of observability for linear time invariant discrete time systems was

applied to study the observability of four sections of a freeway. The kinematic wave

model was used for traffic modeling in Eulerian and Lagrangian coordinates. The

Lagrangian framework was introduced, and the transformation from the traditional

Eulerian coordinates was presented. A system with densities in four sections of a

freeway was designed, and the observability of the system was studied with different

situations for sensors.

When the system evolves exactly according to the models, the states of the system

could be obtained from measurements from certain situations. For both, Eulerian and

Lagrangian simulations, as long as the fourth section was measured, the states of the

system could be obtained. Some situations took fewer time steps, and when different

situations took the same number of steps, the condition number of the observability

matrix was used for comparison.

The modeling used for simulations in both coordinates systems can be improved

by a two level or higher level model. The current formulation of the kinematic wave

model assumes that vehicles cannot pass one another. This can be generalized to take

into account that vehicles do pass each other. A mixture of Eulerian and Lagrangian
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data can be utilized in future studies for observability.

The flow into the system was assumed to be constant during the time interval

measurements that were made. This is not always true in real situations. Different

flows into the system can be used to describe the system at different capacities of

densities.
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