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ABSTRACT 
 

Carbapenems are β-lactam antibiotics reserved for the treatment of severe 

microbial infections, especially those targeting the Enterobacteriaceae. Introduced in 

the 1980s, carbapenems have been used successfully in hospitals, and in the 1990s 

resistance was discovered. Carbapenem resistance is conferred through the production 

of carbapenemases. In the U.S., the most common carbapenemase is Klebsiella 

pneumoniae carbapenemase (KPC). In 2012, the National Healthcare Safety Network 

reported a carbapenem resistance rate of 13.0% among Klebsiella pneumoniae 

infections, and indicated that the mortality rate associated with carbapenem resistant 

Enterobacteriaceae (CRE) infections ranged from 48.0-71.9%.  According to the Food 

and Drug Administration (FDA), carbapenem resistance is observed when a pure culture 

has a minimum inhibitory concentration (MIC) ≥ 4 g/ml as determined through 

antibiotic susceptibility testing (AST).In 2012, a lower MIC for carbapenem antibiotics 

was established for KPCs by the Clinical and Laboratory Standards Institute (CLSI) (i.e., 

MICs 1 - 4 g/ml are designated resistant), but these criteria have not been endorsed by 

the FDA. Data are needed to determine the percentage of clinical isolates with 

carbapenem MIC between 1 and 4 g/ml that are truly resistant. Determining the 

presence of the KPC gene is important because the use of carbapenems in patients with 

MIC between 1- 4 g/ml may have poor clinical outcomes. Conversely, if lacking the KPC 

gene, carbapenems may still be indicated. The objectives of this study were to 

determine the presence of the KPC gene, the carbapenem AST profiles of clinical 



isolates, and the resistance rates based on the previous and current CLSI criteria. This 

study involved 56 suspected CRE clinical isolates from Las Vegas, Nevada, which were 

analyzed by culture, AST, and polymerase chain reaction to detect the KPC gene. The 

prevalence of the blaKPC gene in our CRE isolates was 83.3%, and the prevalence was 

94.7% among our Klebsiella pneumoniae isolates. Our data showed no statistically 

significant difference between the previous and the current CLSI criteria in defining 

carbapenem resistance among the Enterobacteriaceae. The results from this study 

helped determine the prevalence of the KPC gene and antimicrobial susceptibility 

profiles among CRE isolates in Las Vegas. These may be useful in improving antibiotic 

stewardship in Nevada. 

  



ACKNOWLEDGEMENTS  

I would like to acknowledge all individuals who helped to make this project a reality. 

Firstly, I would like to acknowledge my committee chair and academic advisor, Dr. Patricia Cruz 

for her guidance throughout the entire project. She was always available to advise and assist me 

when I needed her. Dr. Mark Buttner was also a key resource during this project, and I would 

like to thank him for all of his advices, technical training and support he provided.  

This project would not have been possible without the assistance of Mr. David Woodard 

from Valley Health System and Donna Movery-White from Quest Diagnostics, Las Vegas, who 

provided us with the clinical isolates from healthcare facilities in Las Vegas, Nevada.  

I will like to thank my other committee members Dr. Timothy Bungum and Dr. Danny 

Young for providing me with constructive criticism and support. Additionally, I thank all other 

professors and staff at the UNLV School of Community Health Sciences for helping me achieve 

my goals.  

Other people that helped me throughout this process were my friends and fellow 

graduate assistants Teresa Trice, Aaron Hunt, and Heidi McMaster. We worked and trained 

together in many projects. But despite their individual projects, they provided me with 

laboratory assistance and constructive comments. Also, I want to thank Andrew Li for his 

friendship and supports, right from my first day in UNLV and till now. 

Finally, I owe a bigger thanks to my mom and my family, who have always been there 

for me, giving me more than I needed to succeed. I just cannot thank them enough.  



TABLE OF CONTENTS 
 

ABSTRACT ........................................................................................................................................ ii 

ACKNOWLEDGEMENTS .................................................................................................................. iv 

TABLE OF CONTENTS ....................................................................................................................... v 

LIST OF TABLES .............................................................................................................................. vii 

INTRODUCTION ............................................................................................................................... 1 

Epidemiology of CRE ................................................................................................................... 6 

Detection of CRE .......................................................................................................................... 8 

Relevance to Public Health ....................................................................................................... 12 

RESEARCH QUESTIONS .................................................................................................................. 14 

HYPOTHESES .................................................................................................................................. 15 

MATERIALS AND METHODS .......................................................................................................... 15 

Test Organisms .......................................................................................................................... 15 

DNA Extraction .......................................................................................................................... 17 

Template DNA Concentration ................................................................................................... 17 

Real-Time Polymerase Chain Reaction (PCR) ........................................................................... 17 

Internal Positive Control ........................................................................................................... 19 

Antimicrobial Susceptibility Testing (AST) and Microbial Identification................................. 19 

Statistical Analysis ..................................................................................................................... 20 

RESULTS ......................................................................................................................................... 20 

Test Organisms .......................................................................................................................... 20 

Template DNA Concentration ................................................................................................... 21 

Real- Time Polymerase Chain Reaction (PCR) Analysis ............................................................ 21 

Identification of Isolates ........................................................................................................... 24 

Antibiotic Susceptibility Testing (AST) ...................................................................................... 24 

Ertapenem Susceptibility Testing........................................................................................... 25 

Imipenem Susceptibility Testing ............................................................................................ 26 

Doripenem Susceptibility Testing .......................................................................................... 26 

Meropenem Susceptibility Testing ........................................................................................ 26 

Ertapenem Susceptibility of blaKPC Gene Negative Isolates ................................................. 27 

Imipenem Susceptibility of blaKPC Gene Negative and Positive Isolates .............................. 28 

Doripenem Susceptibility of blaKPC Gene Negative Isolates ................................................. 29 



Meropenem Susceptibility of blaKPC Gene Negative Isolates ............................................... 29 

Carbapenem Susceptibility of blaKPC Gene Positive Isolates ................................................ 29 

Mechanisms of Antibiotic Resistance .................................................................................... 30 

Isolates that Changed from Susceptible to Non-Susceptible Between 2009 and 2012 

Breakpoints ............................................................................................................................ 32 

Susceptibility to other Antibiotics .......................................................................................... 33 

Statistical Analysis ..................................................................................................................... 33 

DISCUSSION ................................................................................................................................... 34 

CONCLUSIONS ............................................................................................................................... 40 

APPENDICES ................................................................................................................................... 42 

Appendix A – Vitek 2 GN69 Card Information.......................................................................... 43 

Appendix B – Vitek 2 GN XN06 Card Information .................................................................... 44 

REFERENCES ................................................................................................................................... 47 

VITA ................................................................................................................................................ 54 

 

  



LIST OF TABLES 
 

Table 1: Performance Standards for Antimicrobial Susceptibility Testing. ...................... 11 

Table 2: Test Organisms Obtained from the American Type Culture Collection (ATCC).. 16 

Table 4: Internal Positive Control (IPC) PCR Results of blaKPC Gene Negative Isolates .. 23 

Table 5: Organisms Identified by Vitek 2 ID Analysis. ....................................................... 24 

Table 6: ATCC blaKPC Positive and Negative Organisms and their AST Results. .............. 25 

Table 7: Individual Carbapenem Susceptibility Among all CRE Isolates Analyzed. .......... 27 

Table 8: Individual Carbapenem Susceptibility Among blaKPC Gene Negative Isolates. . 28 

Table 9: Susceptibility Changes (Susceptible to Non-Susceptible) Between the Previous 

CLSI Criteria and the Current Criteria Among blaKPC Genes (Negative and Positive). .... 28 

Table 10: Individual Carbapenem Non-Susceptibility in blaKPC Gene Positive Isolates (n= 

45). .................................................................................................................................... 30 

Table 11: Carbapenem Resistance Phenotypes Implicated in all Isolates (n=54). ........... 31 

Table 12: Carbapenem Resistance Phenotype Implicated in all blaKPC Negative Isolates.

........................................................................................................................................... 32 

Table 13: List of Isolates that Changed in AST Between the Previous and the Current 

Breakpoints ....................................................................................................................... 33 

Table 3: DNA Concentrations and PCR Results for CRE Isolates. ...................................... 45 



1 
 

INTRODUCTION 

The Enterobacteriaceae is a family of bacteria with many different genera and 

species. Members of this family are gram negative, non-spore forming, and facultative 

anaerobes, which include many opportunistic and pathogenic species.  Most of these 

organisms are present in the intestinal tracts of humans and animals, while some are 

freely living in soil, water and sewage. Opportunistic Enterobacteriaceae cause disease 

when the immunity is low, and are usually in the intestinal and skin flora of humans and 

animals, but can produce serious infection outside their natural habitat.  Clinical isolates 

of Enterobacteriaceae that are commonly seen in acute and long term care centers are  

Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis (Mahon, Manuselis, & 

Lehman, 2010). Other common genera include Shigella spp., Salmonella spp., 

Citrobacter spp., Yersinia, Serratia spp., etc. (Mahon et al., 2010). These organisms are  

notorious for causing mild to severe infections, such as cystitis, pneumonia, meningitis, 

bacteremia, septicemia, and wound infections, when immunity is compromised 

(Schwaber & Carmeli, 2008).  

 Klebsiella pneumoniae is a common opportunistic and nosocomial organism. It is 

an encapsulated non-motile gram negative bacterium found as normal flora of the 

human skin, mouth and the intestines. However, it is capable of causing serious 

infection. The distinct polysaccharide capsule of Klebsiella pneumoniae offers protection 

against phagocytosis and antimicrobial absorption, and contributes to its virulence 

(Mahon, Manuselis, & Lehman, 2000).  The frequent colonization by Klebsiella 

pneumoniae of the respiratory tracts of hospitalized patients makes it a common cause 



of lower respiratory infection, especially among immunocompromised patients, 

newborns and patients on respirators. K. pneumoniae remains the fourth and fifth most 

common cause of acute pneumonia and bacteremia in hospital intensive care units, 

respectively (Centers for Disease Control and Prevention, 2003). It can also cause 

serious infections outside the hospital, and has been estimated to be responsible for 6% 

- 8% of community acquired pneumonia (Jong, Hsiue, Chen, Chang, & Chen, 1995).  

Other community acquired infections caused by K. pneumoniae include wound 

infections, abscesses, and urinary tract infections.  

Cephalosporins and the β-lactams are common antimicrobial agents used 

successfully in the treatment of infections caused by Klebsiella pneumoniae and other 

Enterobacteriaceae. In the past, 3rd and 4th generation cephalosporins were first choice in 

the treatment of Enterobacteriaceae infections. However, resistance of 

Enterobacteriaceae to these antibiotics has been well documented in recent times 

(Paterson et al., 2003; Saurina, Quale, Manikal, Oydna, & Landman, 2000).  

Carbapenems are β-lactamase inhibitor antibiotics. The parent or model compound of 

carbapenems is thienamycin, a compound from Streptomyces cattleya which was first 

reported in 1976 (Ratcliffe & Albers-Schonberg, 1982). Thienamycin has a hydroxyethyl 

side chain, a departure from the conventional structures of penicillin and 

cephalosporins (Papp-Wallace, Endimiani, Taracila, & Bonomo, 2011). This 

stereochemistry and structure are key to their extensive activity and potency.  

Unfortunately, thienamycin is unstable in aqueous solution, highly reactive and very 



sensitive to mild base hydrolysis. This instability stimulated the search for more stable 

thienamycin analogs.   

Carbapenems, such as Ertapenem, Imipenem, Meropenem, and Doripenem are 

analogs of thienamycin, and  unlike thienamycin, they are more stable and less sensitive 

to base hydrolysis (Branch et al., 1998). They possess the widest spectrum of 

antibacterial activities and potency of all the  β-lactam antibiotics and are effective 

against gram negative and gram positive organisms (Bassetti, Nicolini, Esposito, Righi, & 

Viscoli, 2009; Papp-Wallace et al., 2011). Carbapenems are active against the 

chromosomal cephalosporinases and extended-spectrum β-lactamases, both of which 

are found in resistant gram-negative organisms (G. A. Jacoby & Munoz-Price, 2005; 

Queenan & Bush, 2007). Another mechanism of action of carbapenems involves the 

destruction of bacterial membranes through porin proteins leading to permeability.  

Carbapenems form part of a new generation of antibiotics that are reserved for the 

treatment of severe and resistant microbial infections, especially those caused by 

Enterobacteriaceae. Since their discovery in 1985, carbapenems have been remarkably 

effective in the treatment of severe infections, and in some situations, they are 

regarded as the last resort for treatment of infections caused by extended spectrum β-

lactamase (ESBL) organisms (Remington, 1985).  

Carbapenem resistance first appeared sporadically in the mid-1990s, in places 

such as Spain (Corbella et al., 2000). Though the resistance was uncommon, in recent 

years, carbapenem resistant Enterobacteriaceae (CRE) outbreaks have been 

progressively increasing (Queenan & Bush, 2007; Schwaber et al., 2008). Beyond 



Enterobacteriaceae, many non-fermenting gram negatives (e.g., Pseudomonas and 

Acinetobacter species) and some gram positives (e.g., Staphylococcus, Streptococcus, 

Enterococcus, and Nocardia species) are also becoming resistant to carbapenems. This 

pattern represents a major public health threat in our society. In the U.S., CREs were 

first discovered in North Carolina in 2001 (Yigit et al., 2001). Since then, outbreaks have 

been reported throughout the country, especially in the northeast region (Landman et 

al., 2007; Queenan & Bush, 2007).  

 Unlike Methicillin Resistant Staphylococcus aureus (MRSA) resistance, which is 

mediated by a single mechanism in a single bacterial species, the mechanisms of 

carbapenem resistance are complex because they involve a broad range of organisms 

and are mediated by different mechanisms, such as the production of β-lactamases, 

efflux pump and porin mutations. Carbapenemases are β-lactamases with versatile 

hydrolytic capacities and are capable of hydrolyzing the beta-lactam ring of 

carbapenems. They are also capable of hydrolyzing penicillins, monobactams, and 

cephalosporins. Carbapenemases are the most prominent β-lactamases to neutralize 

carbapenems (Nordmann & Poirel, 2002; Queenan & Bush, 2007). 

Carbapenemases are enzymes that catalyze the breakdown of carbapenems.  

They confer resistance to carbapenems and belong to the molecular classes A, B, and D 

of the β-lactamases. Class A and D enzymes have a serine-based hydrolytic mechanism, 

while class B uses zinc in their active site.  Klebsiella pneumoniae carbapenemase (KPC) 

is a class B β-lactamase and is the most common form of carbapenemase implicated in 

CRE outbreaks in the U.S.  Sometimes sporadic outbreaks involve the New Delhi 



Metallo-β-lactamase (NDM-1), a variant of the Metallo- β -lactamases (MBL). Other 

forms of carbapenem resistance, such as the production of AmpC-type enzyme with a 

combination of cephalosporinase and porin loss are increasingly becoming common 

(Bradford et al., 2004; Crowley, Benedi, & Domenech-Sanchez, 2002; Queenan & Bush, 

2007). Other countries with KPC outbreaks include Greece, Israel, Colombia, and Puerto 

Rico (Leavitt, Navon-Venezia, Chmelnitsky, Schwaber, & Carmeli, 2007).  

The genes coding for the KPC are located on plasmids or the mobile units of 

Klebsiella DNA. This property makes the KPC gene easily transmissible. Not surprisingly, 

KPC genes have been successfully isolated from other Enterobacteriaceae, such as 

Escherichia coli, Serratia marcescens, Pseudomonas, and Acinetobacter baumannii 

(Deshpande, Jones, Fritsche, & Sader, 2006; Patel & Bonomo, 2011; Villegas et al., 

2007).  

Klebsiella pneumoniae Sequence Type 258 (ST258), which is a single locus variant 

of Sequence Type 11 (ST11), is the most common clone or strain type of Klebsiella 

implicated in the KPC-producing K. pneumoniae. This strain accounts for over 70% of the 

CDC’s Klebsiella pneumoniae Pulse Field Gel Electrophoresis (PFGE) database (Kitchel et 

al., 2009). ST258 isolates demonstrate great diversity in molecular characteristics and 

epidemiology, and have been identified in KPC-producing isolates from Israel, Finland, 

Poland, Italy, Germany, Greece, Norway and Sweden, supporting possible international 

dissemination (Cuzon, Naas, Demachy, & Nordmann, 2008; Qi et al., 2011; Samuelsen et 

al., 2009).  K. pneumoniae Sequence Type 14 (ST14) has also been identified, but it is 

associated with KPC-producing isolates from the Midwest and Western U.S., (Kitchel et 



al., 2009).  ST11, which is closely related to ST258, is the dominant KPC-producing K. 

pneumoniae in China, and it accounts for greater than 80% of China’s KPC-producing K. 

pneumoniae isolates  (Qi et al., 2011) 

Epidemiology of CRE 

CREs appeared to be uncommon before 1992; however, over the last decades 

CRE infections have become commonly reported (Braykov, Eber, Klein, Morgan, & 

Laxminarayan, 2013). CRE outbreaks have been reported in at least 43 states in the U.S. 

and many other countries such as Brazil, Israel, Greece, and India (Andrade et al., 2011; 

Centers for Disease Control and Prevention, 2012a; Gupta, Limbago, Patel, & Kallen, 

2011; Pournaras et al., 2009). The Centers for Disease Control and Prevention (CDC) 

monitor the true incidence of infections caused by CREs; unfortunately, CRE infections 

are not notifiable in every state. The CDC uses information from two surveillance 

systems; namely, the Emerging Infection Program (EIP) and the National Healthcare 

Safety Network (NHSN), to monitor CRE infection incidences. The NHSN reviews data 

from all facilities performing surveillance for Central-Line-Associated Bloodstream 

Infections (CLABSI) together with data from Catheter Associated Urinary Tract 

Infections (CAUTIs). These infections, mainly caused by Enterobacteriaceae, such as E. 

coli, K. pneumoniae, K. oxytoca, Enterobacter cloacae, and Enterobacter aerogenes 

have showed non-susceptibility to Ertapenem, Imipenem, Doripenem or Meropenem. 

The EIP uses population-based CRE surveillance data from three selected sites in the 

U.S. 



 Data from the National Nosocomial Infection Surveillance (NNIS), (before it was 

replaced by NHSN) reported that between 1986 and 1990, the rate of non-

susceptibility to carbapenem in 1,825 isolates of Enterobacter investigated was 2.3% 

(Gaynes & Culver, 1992). It also reported that the percentage of Enterobacteriaceae 

that were carbapenem resistant rose from 1.2% in 2001 to 4.2%  in 2011 (Jacob et al., 

2013). These rates vary among Enterobacteriaceae and have increased the most in 

Klebsiella species, from 1.6 % to 10.8 %. Data from The Surveillance Network (TSN),  

which represents an electronic repository of susceptibility test results from over 300 

laboratories across the United States, demonstrated an increase from 0% to 1.2% 

among all CREs, and 0% to 5.3% among Klebsiella species (Jacob et al., 2013).  Data 

from the Meropenem Yearly Susceptibility Test Information Collection Program 

(MYSTICP), between 2006 and 2007,  reported that resistance among Klebsiella 

pneumoniae exceeded 8% before falling momentarily to 5.6% in 2008 (Braykov et al., 

2013; Rhomberg & Jones, 2009). The NHSN, in 2004, reported a CRE rate of 10.8% 

among Klebsiella pneumoniae; that stabilized at 13% in 2012 (Hidron et al., 2008; 

Sievert et al., 2013). The Washoe County Health District in Nevada in 2011,  reported 

an incidence rate of 5%, after 15 months of CRE surveillance on 111 clinical isolates 

tested with the Modified Hodge Test at the Nevada State Public Health Laboratory 

(Chen, 2011). Interestingly, the majority of the CRE isolates in Washoe County were 

Enterobacter cloacae, an organism that has shown resistance to carbapenems. 

During the first half of 2012, a surveillance of CAUTIs and CLABSI in acute-care 

hospitals in the U.S. reported that 181 of 3,918 (4.6%) centers surveyed reported 



detecting one or more infections with CREs.  Long-term acute care hospitals (LTACHs) 

have reported a rate of 17.8% in at least one outbreak of CRE infections, while, in short-

term acute care hospitals, rates were 3.9%. The highest percentage of hospitals with 

CREs were in the northeast U.S., where rates were up to 30%.  In the 2012 NHSN report, 

the state of Nevada was included  as one of 43 states with CRE infections in the U.S. 

(Jacob et al., 2013). 

Detection of CRE 

The most often used method for CRE detection is the measurement of Minimal 

Inhibitory Concentration (MIC) through automated susceptibility testing machines. MIC 

is a quantitative measurement of antibiotic activities, and it is defined as the minimum 

concentration of an antibiotic that can inhibit visible microbial growth under normal 

conditions (Mayer, 2010; Sievert et al., 2013). Carbapenem resistance is defined for all 

organisms as an MIC result of Intermediate (I) or Resistant (R) to carbapenems on any 

antibiotic susceptibility test (Sievert et al., 2013). According to the FDA, an organism is 

classified as resistant to carbapenem if the pure culture shows a microbial breakpoint 

with an MIC ≥ 4 g/ml during susceptibility testing (Bulik et al., 2010). Microbial 

breakpoint refers to the MIC at which an organism is described as susceptible or 

resistant to a given antibiotic. It is important that the MIC of antibiotics be lower than 

their breakpoint.  

Carbapenem resistance can also be determined using the disk diffusion method.  

A type of disk diffusion method used is the Modified Hodge Test (MHT), a form of 

susceptibility testing that phenotypically determines the presence of the 



carbapenemase enzyme (Clinical and Laboratory Standards Institute, 2012). The MHT 

has been regarded as the confirmatory test for CRE; however, limitations to this method 

include an inability to differentiate the class of carbapenemase involved, unusable for 

non-fermenting organisms, long duration of testing (up to 36 hours for the results to be 

available), a low positive predictive valve, and variable sensitivity that ranges from 76% 

to 100% (Amjad et al., 2011; Haji Hashemi et al.; Mathers, Carroll, Sifri, & Hazen, 2013; 

Tsakris et al., 2010).    

 The use of boronic acid is another phenotypic test for detecting CREs and has 

demonstrated an excellent ability in detecting KPCs, especially among Klebsiella 

pneumoniae isolates (Doi et al., 2008). Boronic acid alone or in combination with disks 

containing Imipenem, Meropenem or cefepime, showed 100% sensitivity and specificity 

in identifying  KPC producers (Tsakris et al., 2009).  Unfortunately, this method is not 

commercially available, and like the MHT, it requires an additional day before results are 

available.  

Real-time Polymerase Chain Reaction (PCR) is a quick, accurate and effective 

method of CRE detection; it can detect CRE resistance genes, such as the blaKPC, the 

NDM-1, MBL, and the AmpC genes (Endimiani et al., 2010). PCR and other molecular 

tests have the highest specificity in identification and confirmation of the underlying 

carbapenemases (Nordmann et al., 2012).  The sensitivity of real-time PCR in detecting 

the blaKPC gene ranges from 92.9% to 96.4% while the specificity is as high as 99.6% 

(Francis, Wu, Della-Latta, Shi, & Whittier, 2012).  However, the high cost and the 

technical expertise required, in addition to the fact that only the target gene (e.g., 



carbapenemase gene) amplifies, are significant limitations to the use of PCR and other 

molecular tests in CRE detection (Yang & Rothman, 2004). 

    A significant problem in CRE laboratory detection is the fact that some bacterial 

isolates carry the KPC gene, while having susceptible, but  elevated MICs (Clinical and 

Laboratory Standards Institute, 2009). This means that some isolates producing 

carbapenemase may test susceptible to carbapenems. In these situations, CREs will not 

be identified, thus posing an infection control problem. This has caused some 

automated AST methods to fail in detecting low levels of carbapenemase resistance.  

To tackle this problem, the Clinical and Laboratory Standards Institute (CLSI), in 

2009, published a recommendation that carbapenem susceptible Enterobacteriaceae 

with susceptible, but elevated MIC or with a reduced disk diffusion zone, be tested for 

the presence of the carbapenemase enzyme using the Modified Hodge Test. 

Furthermore, in 2010, the CLSI officially changed the carbapenem resistance criteria to 

ensure that KPC-producing organisms were not missed.  This, also, removed the need 

for secondary testing with MHT among isolates with susceptible but elevated MICs. 

Therefore, a lower level of MIC for antibiotic resistance was established for CREs; these 

criteria were further revised in 2012 (Clinical and Laboratory Standards Institute, 2012). 

The previous and the current CLSI criteria are shown in Table 1. 

  



Table 1: Performance Standards for Antimicrobial Susceptibility Testing. 

Agent 

Previous Breakpoints (M100-S19)a  

MIC (g/ml) 

Current Breakpoints (M100-S22)b  

MIC (g/ml) 

S I R S I R 

Doripenem - - - ≤1 2 ≤4 

Ertapenem ≤2 4 ≥8 ≤0.5 1 ≥2 

Imipenem ≤4 8 ≥16 ≤1 2 ≥4 

Meropenem ≤4 8 ≥16 ≤1 2 ≥4 

S = Susceptible; I= Intermediate; R = Resistant; MIC = minimum inhibitory concentration 

a 2009 CLSI criteria 

b 2012 CLSI criteria 

Source:  Twenty Second Informational Supplement (January 2012). CLSI document M100-S22. 

Wayne, Pennsylvania, 2012. 

 

Diagnostic kit manufacturers and clinical laboratories must have their kits FDA-

cleared before they can be used with patient isolates; these recent changes have led to 

confusion (Gupta et al., 2011). As of late 2010, about 80% of clinical laboratories still use 

FDA-cleared AST systems with FDA breakpoints (Paxton, 2010).  An Indiana Sentinel 

Laboratories CRE Testing Capacity Survey that studied the adoption rate of the new CLSI 

criteria noted that only about 37% of laboratories in Indiana used the CLSI M100-S21 

criteria (Jean, 2011). In Rhode Island, a statewide assessment of the impact of the new 

CLSI criteria conducted in 2012 found that 100% of the 11 clinical laboratories 

representing all the state’s acute care centers did not use the new CLSI criteria 

(Alexander, 2013). At the same time, only 27% of these laboratories in Rhode Island 

were interested in conducting the necessary verification studies to implement the 

current CLSI criteria. The majority of laboratories and hospitals preferred to wait until 



the manufacturers update their AST systems when the FDA accepts the new CLSI criteria 

(Alexander, 2013). These are undoubtedly key obstacles to the widespread adoption of 

the new CLSI breakpoints.  However, the FDA has started this ratification process by 

releasing guidance that informs pharmaceutical companies and manufacturers of the 

need to review their drug package information and revise them to meet current drug 

testing criteria (Food and Drug Adminstration, 2009). Unfortunately, this problem may 

persist for some time, because the regulatory system by which the FDA updates or 

modifies drug labels and information can move slowly (Paxton, 2010). Until the FDA 

approves the new CLSI breakpoints for AST system manufacturers, inadequate 

surveillance and control of CRE will continue to pose a problem. In the meantime, it is 

recommended that institutions and clinical laboratories adopt the new CLSI criteria if 

they can conduct an in-house confirmatory susceptibility testing (Paxton, 2010).  

Relevance to Public Health 

CREs and KPCs are particularly important in public health because of the high 

mortality associated with their infections and the tendency to spread beyond health 

centers (Bratu et al., 2005; Patel, Huprikar, Factor, Jenkins, & Calfee, 2008).  In terms of 

cost of treatment, an estimated  $21 billion -  $34 billion are spent annually in the 

treatment of CREs in the U.S. (Spellberg et al., 2011).  

 Some major risk factors for acquiring CRE are exposure in health care facilities, 

erratic use of antibiotics, a history of recent organ transplant (including stem-cell 

transplantation), the use of mechanical ventilation and longer hospital stay. These risks 

are also independently associated with higher mortality due to CREs (Patel et al., 2008). 



Other risk factors associated with higher mortality among patients with CRE infections 

include deteriorating health status, intensive care unit admission, and the use of 

invasive medical instrumentation, etc., (Falagas et al., 2007; Schwaber et al., 2008). A 

mortality rate of 48% has been reported among patients with CRE infections, and a 

crude mortality rate as high as 71.9% has been reported by some researchers (Patel et 

al., 2008).  

There is a high potential for extensive spread of the carbapenem resistance gene 

from one Enterobacteriaceae into another within a health institution or to the 

community through mobile transmissible genetic components on the KPC gene 

(Watanabe, Iyobe, Inoue, & Mitsuhashi, 1991; Yigit et al., 2001). CREs are mainly seen in 

long term acute care (LTAC) centers. This suggests that LTACs could be a potential 

reservoir for CREs (Perez et al., 2010).  Although the focus of CRE prevention has been 

on acute care settings (long and short term), there have been documented cases of 

CREs in non-acute care settings, for example, in long term care facilities, such as nursing 

homes and assisted living facilities (Urban et al., 2008). Therefore, limiting prevention 

and control efforts to acute care centers might be counterproductive.  

 CREs are not a problem limited to individual facilities. They can affect entire 

communities and nations, which highlights the role of public health in this issue. Public 

health organizations have the capacity to reach across all care institutions and to 

improve community situational awareness with regards to CREs and coordination of 

prevention efforts.  For example, in Israel, a centrally coordinated effort  by the Israel 



Carbapenem-Resistant Enterobacteriaceae Working group has been helpful in 

decreasing the incidence of CREs  (Schwaber et al., 2011). 

The implementation of the new CLSI’s MIC guidelines and breakpoints can have a 

significant impact on carbapenem AST reports from clinical diagnostic laboratories, with 

associated alterations in antibiotic prescription by clinicians (MacKenzie et al., 2007). 

Therefore, accurate laboratory information, better knowledge of the patient’s history, 

and current information about CREs are all necessary to avoid uncertainties in 

carbapenem AST reports (Endimiani et al., 2009).  

In Nevada, data are needed to determine the percentage of isolates with 

carbapenem MIC from the current CLSI breakpoints that are truly resistant to 

carbapenems, by the presence of the resistant KPC gene (Endimiani et al., 2009). The 

objectives of this study were to determine the presence of the KPC gene and the 

carbapenem antimicrobial resistance profiles of clinical isolates from health care 

facilities in Nevada for the purpose of determining if there is a difference in the rate of 

resistance between the previous and the current CLSI criteria. 

RESEARCH QUESTIONS 
 

1. What is the percentage of CRE isolates that are positive for the KPC gene using the 

current CLSI criteria for resistance to carbapenems? 

2. What is the mechanism of resistance seen in CRE isolates? 

3. Is there a benefit in adopting the new CLSI carbapenem guidelines?  



HYPOTHESES 
 

Ho1: There is no difference between carbapenem resistance in clinical isolates with the 

previous breakpoints and the current breakpoints. 

HA1: There is a difference between carbapenem resistance in clinical isolates with the 

previous breakpoints and the current breakpoints. 

 

Ho2: There is no difference in carbapenem susceptibility profiles among KPC gene 

positive isolates between the current and the previous CLSI breakpoints. 

HA2: There is a difference in carbapenem susceptibility profiles among KPC gene positive 

isolates between the current and the previous CLSI breakpoints. 

 

MATERIALS AND METHODS 

Test Organisms 

Pure cultures from clinical isolates suspected of being carbapenem-resistant 

Enterobacteriaceae (de-identified of patient data) were obtained from Quest 

Diagnostics in Las Vegas, Nevada, and were transported to the Emerging Diseases 

Laboratory (EDL) at the University of Nevada, Las Vegas, for analysis. Enterobacteriaceae 

strains were obtained from the American Type Culture Collection (ATCC, Manassas, VA), 

and were used as quality control (QC) organisms. Two of these ATCC organisms are 

carbapenem resistant and possess the KPC gene, while four of these strains are 

susceptible to carbapenems and do not possess the KPC gene (Table 2). 



Table 2: Test Organisms Obtained from the American Type Culture Collection (ATCC). 

Test Organism ATCC# blaKPC gene 

Klebsiella pneumoniae 13883 Negative 

Klebsiella pneumoniae 4352 Negative 

Klebsiella pneumoniae 700603 Negative 

Klebsiella pneumoniae BAA 1706 Negative 

Klebsiella pneumoniae BAA 1705 Positive 

Enterobacter hormaechi BAA 2082 Positive 

 

Lyophilized ATCC strains were re-suspended in nuclease-free water (HyClone 

Laboratories, Logan, Utah), vortexed, and cultured on Tryptic Soy Agar (TSA) (Becton 

Dickinson, Sparks, MD).  All clinical isolates were stored at 4°C upon arrival and re-

streaked onto fresh TSA plates (Becton Dickinson) within 48 hours of receipt. QC 

organisms and clinical isolates were incubated at 35°C in ambient air for 24-48 hours.  

Isolated colonies were picked and used to prepare freezer and refrigerator stocks. 

Freezer stocks were prepared by transferring two to three isolated colonies to a 

2 ml cryogenic tube containing 500 l of Tryptic Soy Broth ( Becton Dickinson) and 500 

l of sterile glycerol (MP Biomedicals, Solon, Ohio). The tube was vortexed vigorously 

for 30 seconds or until the colonies were completely re-suspended, followed by 

incubation in a rotary shaker at 35°C for 30 minutes and 175 rpm.  Freezer stocks were 

stored at -70°C. Refrigerator stocks were prepared by re-streaking an isolated colony 

from the 24-48 hours TSA plate onto a TSA slant (Becton Dickinson), incubated 

overnight at 35°C ambient air, and stored at 4°C.   

  Two to three isolated colonies from the 24-48 hours TSA plate were transferred 

to a micro-centrifuge tube containing 400 l of nuclease free water (HyClone 



Laboratories). The suspension was vortexed for 15 – 30 seconds for proper 

homogenization, and stored at -70°C for DNA extraction.  

DNA Extraction 

Bacterial DNA was extracted using the MoBio PowerSoil DNA extraction kit 

(MoBio, Carlsbad, CA) according to the manufacturer’s instructions with one exception; 

200 μl of sample (instead of 0.25g) was used for extraction. The DNA extract was eluted 

in 100 μl of the C6  buffer solution provided, and stored at –70°C until ready for use.  

Template DNA Concentration 

 After DNA extraction, the amount of DNA in each sample extract was measured 

with a Spectronic TM Genesys 10 BIO UV- Visible  spectrophotometer (Thermo Fisher 

Scientific, Madison, WI) using the nanoCell accessory – 0.2mm path length. Briefly, 1.0 

µl of the sample extract was used, after zeroing the spectrophotometer with the C6 

solution from the PowerSoil DNA extraction kit. The absorbance was set at 260/280 nm, 

with 320 nm reference wavelength and 2500 dilution factor. Samples were measured in 

duplicate and DNA concentrations were expressed in ng/µl. All samples with DNA 

concentration of 21 ng/µl and above were diluted using Tris-EDTA (TE) buffer (Teknova, 

Hollister, CA) prior to the PCR assay. This enabled the  DNA in the PCR to maintain a 

concentration between 10 – 100 ng (Life Technologies). 

Real-Time Polymerase Chain Reaction (PCR) 

 The 7900 HT Fast PCR System (Applied Biosystems, Foster City, CA) was used for 

detection and amplification of the blaKPC gene. Primers and a fluorescent probe specific 

for the blaKPC gene were identified from the literature that produced a 246-bp 



amplicon (Hindiyeh et al., 2008; Tenover et al., 2006). The master mix was prepared 

using TaqMan 1X Universal Master Mix (Branchburg, New Jersey),  sterile Nuclease Free 

Water (Promega, Madison, WI), 0.3 µM of  forward primer - 5’-GAT ACC ACG TTC CGT 

CTG G-3’ (Hindiyeh et al., 2008), 0.3 µM of reverse primer - 5’-GCA GGT TCC GGT TTT 

GTC TC-3’ (Tenover et al., 2006), and 0.2 µM of  probe -6-carboxyfluorescein-5’-AGC 

GGC AGC AGT TTG TTG ATT G-3’-6 carboxytetramethylrhodamine (Hindiyeh et al., 

2008).  Primers were obtained from Eurofins MWG Operon (Huntsville, AL), and the 

probe was obtained from Life Technologies. 

All PCR assay reactions were performed in duplicate, using a total volume of 25 

µl, containing 5 µl of template DNA (i.e., 10-100 ng) and 20 µl of the master mix 

solution. Positive and negative controls were included with each PCR assay.  Following 

amplification, the results were analyzed on the PCR computer using the SDS ver. 3.0 

software. Once amplification was completed, the level of amplification was reported by 

the software as the mean Cycle Threshold (CT) value of replicate samples.  CT refers to 

the PCR cycle at which fluorescence (i.e., amplification product) is first detected.  A 

sample was considered positive by real-time PCR and possessed the blaKPC gene, if the 

CT crossed the threshold before the threshold cycle of 40. A  CT value of 40 or 

undetermined represents no target DNA present. Samples that tested undetermined for 

the blaKPC gene were re-analyzed using an Internal Positive Control (IPC) (Life 

Technologies) to determine if there were inhibitors present in the reaction. 

 



Internal Positive Control 

  A commercially available TaqMan exogenous Internal Positive Control (Life 

Technologies) was used to detect PCR inhibition and rule out false negatives.  The kit 

included 10X Exogenous IPC Primer and Probe (VIC™ Probe) mix, 10X Exogenous IPC 

Blocking Reagent, and 50X Exogenous IPC DNA.  The blaKPC PCR assay was run with the 

internal positive control; thus, absence or a decrease in amplification of the IPC DNA in 

each duplex PCR indicated the presence of PCR inhibitors. Several dilutions (i.e., 10-1 to 

10-3) of selected DNA samples were tested, to determine and eliminate potential PCR 

inhibitors. 

Antimicrobial Susceptibility Testing (AST) and Microbial Identification 

All clinical isolates were subjected to carbapenem Antibiotic Susceptibility 

Testing (AST) using gram-negative (GN) AST and identification cards for the Vitek 2 

Compact system (bioMerieux, Durham, NC) following the manufacturer’s protocol. AST-

GN69 and AST- XN06 Vitek 2 Gram negative cards were used for AST, and for microbial 

identification, Vitek 2 GN ID card ref. 21341 was used (Appendices A and B).  Briefly, the 

clinical isolates were sub-cultured (from the refrigerator stocks or from the freezer 

when there was no growth) onto TSA and incubated for 18-24 hours at 35°C in ambient 

air. A cell suspension of each sample with optical density of 0.5 – 0.63 McFarland 

Standard was prepared. The suspension was loaded onto the ID and AST cards in the 

biological safety cabinet, and then transferred to the Vitek 2 Compact machine for 

analysis.  The results of the susceptibility profile were analyzed on the Vitek 2 system 

computer using software version 5.04 (bioMerieux) according to the U.S. Food and Drug 



Administration (FDA) (previous CLSI breakpoints) and the Current CLSI carbapenem 

susceptibility breakpoints (Table 1). Furthermore, the Advanced Expert Analysis (AES) 

was applied to our analysis to determine the phenotype of carbapenem resistance 

implicated in our isolates. AES uses the knowledge base of the Vitek 2 system ver. 5.04 

to determine resistance profile, resistance phenotype, and therapeutic interpretation of 

the results. AES uses all information available rather than MIC values alone to determine 

resistance. In some cases, isolates may have susceptible MIC yet be classified as non-

susceptible by AES. 

Statistical Analysis 

Results were analyzed to determine if there was any significant difference 

between carbapenem susceptibility and non-susceptibility among individual antibiotics 

when using the previous and the current CLSI breakpoint criteria. We also determined if 

there was a statistically significant difference between the carbapenem susceptibility 

profiles among blaKPC gene positive isolates when using the previous and the current 

breakpoints. For our data, a non-parametric analysis (i.e., the Fisher Exact Test) was 

used.  All analyses were conducted using SPSS ver. 22.0 (IBM, Armonk, New York). 

 

RESULTS 

Test Organisms 

Fifty-six isolates were received and sub-cultured on TSA, and incubated for 24-48 

hours.  Of these, one did not grow after various attempts to culture it.  Two additional 



isolates had the same  identification number; therefore, one of these was not analyzed.  

In total, 54 out of 56 isolates received were included in our analysis.  These isolates 

were recovered from urine (catheter, and clean catch; n=27), sputum (n=16), bronchiole 

(n=1), wound (n=5), abscess (n=1), blood (n=2), abdominal fluid (n=1), and unspecified 

location (n=3). 

Template DNA Concentration 

The amount of DNA present in 100 µl of each DNA extract was measured after 

DNA extraction. The mean DNA concentration of all of the isolates from duplicate 

measurements varied from 8.8 ng/l to 131.3 ng/l (Table 3). Subsequently, all DNA 

extracts with a concentration greater than 21 ng/l were diluted. The final DNA 

concentration in 5 µl of sample used for the PCR assay ranged from 10.7 ng to 94.0 ng. 

The UV- Visible spectrophotometer determines the DNA concentration by using 

the ratio of DNA absorption at 260 nm to absorption of RNA at 280 nm. The average 

260/280 absorption ratio measured ranged from 0.033 to 8.188 (Table 3). 

Real- Time Polymerase Chain Reaction (PCR) Analysis 

All isolates with mean CT values <40 were regarded as positive, and thus 

considered to harbor the blaKPC gene. Known KPC gene negative ATCC strains (i.e., K. 

pneumoniae ATCC 13883, K. pneumoniae ATCC 4352, K. pneumoniae ATCC BAA 1706, 

and K. pneumoniae ATCC 700603) all tested PCR negative (undetermined) for the 

presence of the blaKPC gene (Table 3). All known KPC gene positive strains obtained 

from ATCC (i.e., Enterobacter hormaechei ATCC BAA 2082 and Klebsiella pneumoniae 



ATCC BAA 1705) tested positive for the KPC gene with mean CT values of 17.1 and 18.8, 

respectively (Table 3).  

Ten out of 54 isolates produced undetermined (i.e., negative) results with PCR 

and were regarded as negative for the blaKPC gene. Additional PCR analyses performed 

with the Internal Positive Control (IPC) on isolates that were negative showed inhibition 

in several blaKPC gene negative isolates. Subsequently, serial dilution (1:10 and 1:100) 

of the inhibited samples resulted in a positive blaKPC gene by PCR (Table 4). The 

prevalence rate of blaKPC gene among 54 suspected CRE isolates received from Quest 

Diagnostics in Las Vegas was 83.3%, and the prevalence of the blaKPC gene among 

Klebsiella pneumoniae isolates (identified with the Vitek 2 Compact instrument) was 

93.6%. 

 

  



Table 4: Internal Positive Control (IPC) PCR Results of blaKPC Gene Negative Isolates 

     NTC = No Template Control  

 

Sample  Dilution 
blaKPC  

(Mean Ct Value; n=2) 
IPC   

(Mean Ct; n=2) 

NTC N/A undetermined 31.85 

Klebsiella pneumoniae  
ATCC BAA 1705 
  

1:10 18.80 undetermined 

1:100 22.53 undetermined 

1:1000 26.85 32.11 

CRE 004 
  
  

Undiluted undetermined undetermined 

1:10 undetermined 32.68 

1:100 undetermined 32.66 

CRE 021 1:10 undetermined 31.31 

CRE 029 
  
  

Undiluted undetermined undetermined 

1:10 undetermined 32.34 

1:100 undetermined 31.74 

CRE 033 
  

Undiluted undetermined 34.07 

1:10 undetermined 32.20 

CRE 036 1:10 undetermined 30.90 

CRE 039 
  

Undiluted undetermined 33.53 

1:10 undetermined 31.99 

CRE 040 1:10 undetermined 31.12 

CRE 042 
  
  

Undiluted undetermined undetermined 

1:10 22.02 undetermined 

1:100 25.79 35.26 

CRE 050 
  

1:10 undetermined 32.07 

1:100 undetermined 31.84 

CRE 052 1:10 undetermined 31.50 



Identification of Isolates 

 Microbial identification carried out on CRE isolates using the Vitek 2 ID card No. 

21341 identified the following organisms with at least 94% confidence (Table 5): 

Klebsiella pneumonia pneumoniae (n=46), Escherichia coli (n=2), Enterobacter aerogenes 

(n=2), Citrobacter freundii (n=2), Acinetobacter baumannii (n=1), and Proteus mirabilis 

(n=1). 

 

Table 5: Organisms Identified by Vitek 2 ID Analysis. 

Organisms Identified N 

Acinetobacter baumannii 1 

Citrobacter  freundii 2 

Klebsiella pneumoniae 46 

Proteus mirabilis 1 

Enterobacter aerogenes 2 

Escherichia coli 2 
 

 

Antibiotic Susceptibility Testing (AST) 

The Vitek 2 instrument was used for AST of ATCC reference samples and CRE 

isolates, and these were analyzed using the current and the previous CLSI MIC 

breakpoints. Our reference samples included three known KPC negative species from 

ATCC (Klebsiella pneumoniae ATCC 13883, Klebsiella pneumoniae ATCC 4352, and 

Klebsiella pneumoniae ATCC 700603), and two known KPC positive species (Enterobacter 

hormaechei ATCC BAA 2082 and Klebsiella pneumoniae ATCC BAA 1705). Carbapenem 

non-susceptibility (i.e., resistance) was concluded for all samples with intermediate or 

resistant MIC results.  Analysis of the ATCC negative reference samples using both 



criteria (previous and current CLSI breakpoints), showed susceptibility to all 

carbapenems. All KPC positive ATCC controls were non-susceptible to all carbapenems 

(Table 6). 

 

Table 6: ATCC blaKPC Positive and Negative Organisms and their AST Results. 

 
  
Test Organism 

CLSI Criteriaa 

2009 2012 2009 2012  2009  2012 2009 2012  

Ertapenem Imipenem  Doripenem Meropenem 

K. pneumoniae  
ATCC 13883 

S S S S S S S S 

K. pneumoniae  
ATCC 4352 

S S S S S S S S 

K. pneumoniae  
ATCC 700603 

S S S S S S S S 

E. hormaechi  
ATCC BAA 2082 

R R I R nd R R R 

K. pneumoniae  
ATCC BAA 1705 

R R R R nd R R R 

 ATCC- American Type Culture Collection; S = Susceptible; I = Intermediate; R= Resistant; nd = no       

criteria available for 2009. 

a 2009 represents previous criteria and 2012 represents current criteria. 

 

Ertapenem Susceptibility Testing 

According to the Vitek 2, Ertapenem use was not indicated for clinical use in one 

of our 54 CRE isolates. This resulted in 53 isolates that were analyzed with the previous 

and current CLSI criteria for this antibiotic. Using current breakpoints (CLSI M100-S22) 

for susceptibility interpretations, 48 of our 53 isolates (90.6%) showed resistance (i.e., 

non-susceptibility) to Ertapenem, and 5 isolates (9.4%) were susceptible for this 

antibiotic (Table 7). However, when using the previous breakpoints (CLSI M100-S19), 47 

isolates (88.7%) were resistant and 6 isolates (11.3%) were susceptible to Ertapenem. 



Transitioning to the current CLSI criteria for this antibiotic would result in a change in 

resistance rate from 88.7% to 90.6%. 

Imipenem Susceptibility Testing 

Using the current Imipenem breakpoints, 49 of 54 isolates (90.7%) were 

classified as resistant, and five isolates (9.3%) were classified as susceptible (Table 7). In 

terms of the previous breakpoints, Imipenem resistance occurred in 46 of 54 isolates 

(85.2%), with 8 isolates (14.8%) classified as susceptible. Transitioning to the current 

CLSI criteria for Imipenem would result in a change in resistance rate from 85.2% to 

90.7%. 

Doripenem Susceptibility Testing 

According to the Vitek 2, Doripenem was not indicated for clinical use in two of 

our  54 CRE isolates. This resulted in 52 isolates that were analyzed with the previous 

and current CLSI criteria for this antibiotic. Doripenem MIC interpretations with the 

current breakpoints classified 47 of 52 isolates (90.4%) as non-susceptible and 5 isolates 

(9.6%) as resistant (Table 7). Doripenem is a fairly new carbapenem antibiotic; 

therefore, there were no susceptibility interpretations published for it in the previous 

CLSI breakpoints. Thus, we cannot make a comparison between the previous and 

current carbapenem breakpoints.   

Meropenem Susceptibility Testing 

For Meropenem, resistance was reported in 49 of 54 isolates (90.7%) when using 

the current CLSI breakpoints, but with the previous breakpoints Meropenem resistance 

was reported in 47 of 54 (87.0%) isolates, with 7 isolates (13.0%) showing susceptible to 



this antibiotic (Table 7).  Transitioning to the current CLSI criteria for Meropenem would 

result in a change in resistance rates from 87.0% to 90.7%. 

 

Table 7: Individual Carbapenem Susceptibility Among all CRE Isolates Analyzed. 

 

Individual 

carbapenems 

Previous Breakpoints 

(M100-S19) 

Current Breakpoints 

(M100-S22) 

Susceptible Non-susceptible Susceptible 
Non-

susceptible 

N % N % N % N % 

Ertapenema 6 11.3 47 88.7 5 9.4 48 90.6 

Imipenem 8 14.8 46 85.2 5 9.3 49 90.7 

Doripenemb nd nd nd nd 5 9.6 47 90.4 

Meropenem 7 13.0 47 87.0 5 9.3 49 90.7 

aErtapenem use was not indicated for 1 isolate.  bDoripenem use was not indicated for 2 

isolates.  nd = Doripenem interpretation was not defined in the Previous Breakpoints. 

 

Ertapenem Susceptibility of blaKPC Gene Negative Isolates 

Of the nine CRE isolates that were negative for the blaKPC gene, the Vitek 2 

analysis indicated that eight of these should have been treated with Ertapenem (Table 

8). When using the previous breakpoints, six of these isolates were susceptible to 

Ertapenem (i.e., two isolates were non-susceptible or resistant). When the MICs were 

analyzed with the current breakpoints, five were classified as susceptible to Ertapenem 

and three as resistant. Therefore, there was only one blaKPC gene negative isolate 

which reported susceptibility to Ertapenem with the previous criteria, but changed to 

resistant with the current criteria (Table 9). 



Imipenem Susceptibility of blaKPC Gene Negative and Positive Isolates 

All nine of the blaKPC gene negative isolates were indicated for treatment with 

Imipenem.  When analyzed with the previous CLSI criteria, seven isolates were classified 

as susceptible to Imipenem, while two isolates were resistant (Table 8). With the current 

breakpoints, five of the nine isolates were susceptible to Imipenem, while four were 

resistant. Transitioning to the current CLSI criteria would result in two blaKPC gene 

negative isolates previously reported as susceptible for Imipenem that now would be 

reported as resistant with the current breakpoints (Table 9). On the other hand, only 

one blaKPC gene positive that was susceptible to Imipenem when using the previous 

breakpoints changed to resistant with the current breakpoints (Table 9). 

 

Table 8: Individual Carbapenem Susceptibility Among blaKPC Gene Negative Isolates. 

Individual 
carbapenems 
  
  

Previous Breakpoints  
(M100-S19) 

Current Breakpoints  
(M100-S22) 

Susceptible 
Non-

Susceptible 
Susceptible 

Non-
Susceptible 

Ertapenem  6 2 5 3 

Imipenem 7 2 5 4 

Doripenem nd nd 4 3 

Meropenem 7 2 5 4 
    nd = Doripenem interpretation was not defined in the previous breakpoints 

 
 

Table 9: Susceptibility Changes (Susceptible to Non-Susceptible) Between the Previous CLSI 
Criteria and the Current Criteria Among blaKPC Genes (Negative and Positive). 

Individual 
carbapenemsa 

blaKPC Gene 
Negative 

blaKPC Gene 
Positive 

Total number 
of changes 

Ertapenem  1 0 1 

Imipenem 2 1 3 

Meropenem 2 0 2 
a Doripenem susceptibilities were not compared. 



Doripenem Susceptibility of blaKPC Gene Negative Isolates 

For blaKPC gene negative isolates that were indicated for treatment with 

Doripenem (n= 7), analysis with the current CLSI breakpoints reported only four isolates 

as susceptible to Doripenem while three were resistant (Table 8). We cannot make a 

comparison between the previous and current breakpoints for this antibiotic because 

there were no susceptibility interpretations published for it in the previous CLSI 

breakpoints (Table 9). 

Meropenem Susceptibility of blaKPC Gene Negative Isolates 

When using the previous breakpoints, Meropenem susceptibility was seen in 

seven of nine blaKPC gene negative isolates, while two isolates were resistant to this 

antibiotic (Table 8). With the current breakpoints, five isolates were susceptible to 

Meropenem, and four were resistant.  Transitioning to the new CLSI criteria would 

result in two blaKPC gene negative isolates previously reported as susceptible to 

Meropenem that now would be reported as resistant with the current breakpoints 

(Table 9). 

Carbapenem Susceptibility of blaKPC Gene Positive Isolates 

Among blaKPC gene positive isolates, individual carbapenem susceptibility 

profiles did not vary much between the previous criteria and the current CLSI criteria 

(Table 10).  All blaKPC gene positive isolates (n=45) reported resistance to Ertapenem 

and Meropenem across the two criteria. Thus, non-susceptibility rate among blaKPC 

gene positive isolates continued to be the same at 100% for Ertapenem and 

Meropenem, when using the previous and current criteria. However, Imipenem showed 



a change in resistance rate from 97% to 100% when comparing the previous to the 

current CLSI criteria (Table 10).  No data comparisons were possible for Doripenem; 

however, the blaKPC gene positive isolates showed a resistance rate of 98% for this 

antibiotic (with the current criteria) (Table 10). 

 

Table 10: Individual Carbapenem Non-Susceptibility in blaKPC Gene Positive Isolates (n= 45). 

Individual 
carbapenems 
  
  

Previous Breakpoints  
(M100-S19) 

Current Breakpoints  
(M100-S22) 

Susceptible Non-Susceptible Susceptible Non-Susceptible 

Ertapenem  0 45 (100%) 0 45 (100%) 

Imipenem 1 44 (97.8%) 0 45 (100%) 

Doripenem nd nd 1 44 (97.8%) 

Meropenem 0 45 (100%) 0 45 (100%) 
    nd = Doripenem interpretation was  not defined in the previous breakpoints 

 

Mechanisms of Antibiotic Resistance 

Many isolates reported different and more than one resistance phenotype when 

the Expert Analysis (AES) from the Vitek 2 instrument was applied to our AST analysis. 

The resistance phenotypes (or mechanism of resistance) reported for all isolates were 

different depending on the AST card used (Table 8). Analysis with the GN 69 AST card 

reported the following resistance phenotypes for our isolates:  Extended Spectrum Beta-

Lactamase (ESBL), Impermeability (carbapenems and cephamycins), carbapenemase 

(Metallo- or KPC), Penicillinase (acquired or wild type), and High Level AmpC (HL-CASE) 

(Table 11).  

Analysis with the GN XN 06 AST card showed the following resistance 

phenotypes:  ESBL, Impermeability (carbapenems and cephamycins), carbapenemase 



(Metallo- or KPC), Inhibitor Resistant PASE (IRT or OXA), Penicillinase, and High Level 

AmpC (Table 11).  Regardless of the AST card used, the three most common resistance 

mechanisms observed were: ESBL (87%), Impermeability (85.2%), and carbapenemase 

(83.3%). 

 

Table 11: Carbapenem Resistance Phenotypes Implicated in all Isolates (n=54). 

 
 a Most isolates exhibited more than one phenotype. 

 

The nine isolates that were negative for the blaKPC gene were identified (Table 

12). According to the Vitek 2 Advanced Expert Setting Analysis (AES), resistance 

phenotypes for these isolates were ESBL, Impermeability, carbapenemase (Metallo- or 

KPC), Penicillinase (acquired or wild type), High Level-Case (amps), and Inhibitor 

Resistant PASE (IRT or OXA) (Table 12).  

 

 

 

 

 

Carbapenem Resistance Phenotypea 
GN 69 AST Card  
(N; percentage) 

GN XN 06 AST 
Card (N; 
percentage) 

Extended Spectrum Beta- lactamase 47 (87.0%) 47 (87.0%) 

Impermeability (carbapenems and cephamycins) 46 (85.2%) 48 (88.8%) 

Carbapenemase (Metallo- or KPC) 45 (83.3%) 49 (90.7%) 

Penicillinase (acquired or wild type)  2 (3.7%) 1 (1.9%) 

High Level AmpC (HL-CASE)  2 (3.7%) 1 (1.9%) 

Inhibitor Resistant PASE (IRT or OXA)  0 (0%) 1(1.9%) 



Table 12: Carbapenem Resistance Phenotype Implicated in all blaKPC Negative Isolates. 

aHL-Case (AmpC) – High Level AmpC  

 

Isolates that Changed from Susceptible to Non-Susceptible Between 2009 and 2012 

Breakpoints 

Five isolates changed from susceptible to non-susceptible in at least one carbapenem 

when using the current criteria.  Four of these where blaKPC gene negative (Table 13). 

Carbapenemase (Metallo- or KPC) were implicated as the mechanism of resistance in 

four of these. Other resistance mechanisms implicated included ESBL, AmpC, and 

Impermeability. Specifically these isolates included three non-Klebsiella species and two 

Klebsiella pneumoniae. 

  

Organisms ID N Resistance Phenotype (GN 69/XN 06 AST Card) 

Acinetobacter baumannii 1 Impermeability 

Citrobacter freundii 1 carbapenemase (Metallo- or KPC) 

Klebsiella pneumoniae 3 
Penicillinase, Inhibitor Resistant PASE (IRT or OXA), ESBL, 
Impermeability 

Proteus mirabilis 1 ESBL/carbapenemase (Metallo- or KPC) 

Enterobacter aerogenes 2 
ESBL/HL-Case (AmpC)a, Impermeability, carbapenemase 
(Metallo- or KPC) 

Escherichia coli 1 Penicillinase/ Inhibitor Resistant PASE (IRT or OXA) 



Table 13: List of Isolates that Changed in AST Between the Previous and the Current Breakpoints  

Isolates Organism ID 
blaKPC 
status 

Carbapenem 
implicated AES Resistance Phenotypes 

CRE 021 
Citrobacter 
freundii Negative 

Imipenem, 
Meropenem Carbapenemase (Metallo- or KPC) 

CRE 033 
Proteus 
mirabilis Negative Meropenem 

ESBL, Carbapenemase (Metallo-or 
KPC) 

CRE 050 
Enterobacter 
aerogenes Negative Imipenem 

AmpC, Impermeability, 
Carbapenemase (Metallo-or KPC) 

CRE 052 
Klebsiella 
pneumoniae Negative Ertapenem ESBL, Impermeability 

CRE 053 
Klebsiella 
pneumoniae Positive Ertapenem 

ESBL, Impermeability, 
Carbapenemase (Metallo- or KPC) 

 

 

Susceptibility to other Antibiotics 

 In our study, susceptibility of CRE to gentamicin, ceftazoxime and cefepime were 

relatively high at 57%, 44% and 41%, respectively.  

Statistical Analysis 

Results were analyzed to determine if there was any significant difference 

between carbapenem susceptibility and non-susceptibility among individual antibiotics 

when using the previous and the current breakpoint criteria. Statistical analysis using 

Fisher’s Exact Test on AST with the previous and current criteria for Ertapenem, 

Imipenem, and Meropenem were not significantly different (p-values > 0.05). Therefore, 

we failed to reject the null hypothesis (H01) of equal proportion in carbapenem 

resistance between the previous and the current CLSI breakpoint criteria.  

Statistical analysis to determine if there was a significant difference between the 

carbapenem susceptibility profiles among isolates with the blaKPC gene when using the 

previous and the current breakpoints were not significantly different (p-values > 0.05). 



We failed to reject the null hypothesis (Ho2) that there is no difference in carbapenem 

susceptibility profiles among KPC gene positive isolates between the current and the 

previous CLSI breakpoints. 

 

DISCUSSION 
 

 In 2012, the Clinical and Laboratory Standards Institute (CLSI) published updated 

editions of its antimicrobial susceptibility testing (AST) standards.  The updated criteria 

are intended to detect emerging bacterial resistance.  Periodic updates of these 

guidelines are necessary because bacteria acquire resistance to antibiotics over time, 

and using the most current knowledge ensures that infections are treated consistently 

and fosters good antibiotic stewardship. In recent times, automated AST systems have 

become the most common method of conducting susceptibility testing; these 

instruments measure the minimal inhibitory concentration of antibiotics using the CLSI 

guidelines. The FDA considers non-susceptibility to antibiotics as MIC results that are 

intermediate or resistant according to fixed breakpoints; in addition, the agency is 

responsible for approving the use of CLSI criteria with automated AST systems.  The 

lower MIC for carbapenem antibiotics established for KPCs in 2012 by the CLSI have not 

been endorsed by the FDA.  Therefore, data were needed to estimate the percentage of 

clinical isolates that are potentially resistant to carbapenems by determining the 

presence of the KPC gene. Detecting the presence of the KPC gene is important because, 

the use of carbapenems determined by using the current breakpoints for infections may 



have poor clinical outcomes if the gene is present. Conversely, if the KPC gene is absent, 

treatment with carbapenems may still be indicated. The objectives of this study were to 

determine carbapenem AST profiles, resistance rates based on the previous and current 

CLSI criteria, and the presence of the KPC gene in CRE isolates. 

In this study, carbapenem resistance among CRE isolates was mainly seen among 

Klebsiella pneumoniae (87%), followed by E. coli, Enterobacter aerogenes, and 

Citrobacter freundii, each with 3.7%. Acinetobacter baumannii and Proteus mirabillis 

(1.9% each) were also identified in our study as being resistant to carbapenems. Our 

results are similar to other published articles on CREs in which Klebsiella spp. are the 

most commonly reported Enterobacteriaceae with non-susceptibility to carbapenems. 

In a study by Jacob et al. (2013), the most commonly reported organism among 72 CRE 

isolates were Klebsiella species (n=49), with Enterobacter species and E. coli contributing 

14 and 10 isolates, respectively (Jacob et al., 2013).  We also observed that urine 

samples (27 out of 54) were the most common site of CRE isolation, followed closely by 

respiratory isolates (17 out of 54). Jacob et al. also identified CREs in urine samples more 

frequently (89%) than in other sites.  

The prevalence rate of the blaKPC gene was 83.3% among suspected CRE isolates 

from different healthcare centers in Nevada, determined in our study. Isolates identified 

as Klebsiella pneumoniae comprised the majority of our CRE isolates, and 93.6% of these 

had the blaKPC gene. These rates and findings are similar to other studies in the U.S. 

that reported the blaKPC gene as the most commonly implicated gene in carbapenem 

resistance among the Enterobacteriaceae (Deshpande, Rhomberg, Sader, & Jones, 



2006). Also, the prevalence of the blaKPC gene among Klebsiella pneumoniae identified 

in our study was similar to that reported in other studies published in the U.S., and 

abroad (Nordmann, Cuzon, & Naas, 2009). A study (Shanmugam, Meenakshisundaram, 

& Jayaraman, 2013) in India reported a blaKPC gene prevalence rate of 67.4% among 

CREs, and other recent studies have reported a blaKPC gene prevalence between 82% 

and 100% (Mosca et al., 2013; Raghunathan, Samuel, & Tibbetts, 2011; Shanmugam et 

al., 2013). Although CREs have been recently reported in Nevada, to our knowledge, this 

is the first published report of prevalence of KPC-producing Enterobacteriaceae isolated 

from patients in southern Nevada.  

 The CLSI and the Centers for Disease Control and Prevention recommend that 

CRE isolates with antibiotic resistant profiles or elevated, but susceptible profiles, be 

confirmed with the Modified Hodge Test (Clinical and Laboratory Standards Institute, 

2009). While the Modified Hodge Test has deficiencies, it has remained the first step in 

detecting carbapenemase activity in clinical isolates in many facilities for isolates with 

elevated MIC, and thus, it is particularly important as part of an early infection control 

program. In this study, we used a PCR-based assay as an alternative to verify 

carbapenem resistance among CRE isolates.  

 The recently published CLSI standards for carbapenems have been met with 

mixed reception. Some researchers have argued that the change may only increase the 

false positive results in AST analysis, and thus lead to unnecessary and expensive 

treatments (Po-Yu Liu et al., 2014).  In our study, we found no difference between 

carbapenem resistance in clinical isolates with the previous and the current breakpoints. 



Also, there was no difference between susceptibility profiles among blaKPC gene 

positive isolates when using the two criteria. Therefore, we conclude that the current 

CLSI criteria may not offer additional benefit in the fight against CREs. Our results are 

similar to others reported in the literature that showed either no change between the 

two breakpoints or unnecessary increase in the estimation of carbapenem resistance 

(Hombach, Bloemberg, & Bottger, 2012; Metwally, Gomaa, Attallah, & Kamel, 2013).  

 We used the Expert Analysis (AES) available with our automated AST instrument 

to determine the resistance phenotype of isolates that tested negative for the blaKPC 

gene, yet tested non-susceptible (resistant) to carbapenems during our AST analysis. 

The AES reported Impermeability, carbapenemase (metallo- or KPC), ESBL, and HL-Case 

(AmpC), as the commonly involved mechanisms of resistance among blaKPC gene 

negative isolates using both the previous and current criteria. Impermeability is the 

inability of an antibiotic to penetrate the cell wall of the organism.  Carbapenemases 

and Extended Spectrum β-lactamases (ESBL) work by hydrolyzing the β-lactam structure 

of the antibiotic (David L Paterson & Bonomo, 2005). While ESBL do not hydrolyze 

carbapenems and cephamycins, carbapenemases hydrolyze all groups of -lactams. 

High Level Case (HL-Case) AmpC’s mechanism of resistance involves hydrolysis of β-

lactams, especially cephalosporin through a plasmid mediated cephalosporinase 

(George A Jacoby, 2009). Because our PCR assay was designed to detect only the blaKPC 

gene, it is possible that Metallo-beta-lactamase (MBL) may still be involved in isolates 

with carbapenemase (metallo- or KPC) phenotypes. The MBL is a less common 

carbapenem resistance mechanism, but has been increasing in prevalence in recent 



reports (Centers for Disease Control and Prevention, 2010; Rolain, Parola, & Cornaglia, 

2010; Tijet et al., 2011).  

 Other carbapenem resistance phenotypes that we observed were 

Impermeability and HL-Case (AmpC), and these were mainly seen in non-Klebsiella 

pneumoniae organisms. These findings are in agreement with several published reports 

showing that Impermeability and AmpC enzymes are carbapenem resistance 

phenotypes commonly implicated in other Enterobacteriaceae such as Citrobacter spp., 

Enterobacter spp., and Proteus mirabilis (Mainardi et al., 1997; Mammeri, Nordmann, 

Berkani, & Eb, 2008). Our study also supports that ESBL is commonly involved in 

resistance mechanisms of CREs along with carbapenemase (Thomson, 2010). 

 Because the amount of antibiotics used on patients and the development of 

resistance are directly proportional, increased reports of Enterobacteriaceae resistant to 

carbapenems and reduced MIC breakpoints (current CLSI criteria) will increase the 

number of Enterobacteriaceae determined to be resistant to at least one agent in any 

antimicrobial category. Therefore, it is anticipated that clinicians and healthcare workers 

will most likely prescribe increased doses of carbapenems or other antimicrobial classes 

which may lead to more resistance (Magiorakos et al., 2012). 

Infections caused by CREs are difficult to treat, but with early detection in 

combination with prompt implementation of infection prevention and control practices, 

the high morbidity and mortality rate associated with CREs may be reduced (Cohen et 

al., 2011; Kochar et al., 2009). The CDC categorically recommend through their CRE 

toolkit, an aggressive implementation of infection prevention and control strategies 



once CREs are detected  (Centers for Disease Control and Prevention, 2012b). 

Prevention interventions, such as patient isolation, active surveillance cultures, patient 

cohorting, and education, have been effective in decreasing the incidence of CREs 

(Ciobotaro, Oved, Nadir, Bardenstein, & Zimhony, 2011; Debby Ben‐David et al., 2010). 

In terms of chemotherapy, the limited treatment alternatives that exist for 

patients with CRE infections include the use of combination therapies involving 

carbapenems, tigeycline, colistin, amikacin, and polymixin (Castanheira et al., 2009; 

Neuner et al., 2011).  We determined that gentamicin, ceftizoxime and cefepime had 

relatively high susceptibilities among CREs in our study. Whether or not these agents 

demonstrate clinical success, especially in severe CRE infections, remains to be 

determined in vivo (Nayman-Alpat et al., 2010). In-vitro combinations of these antibiotics 

have shown bactericidal and synergistic effects (Bratu et al., 2005; Le, McKee, Srisupha-

Olarn, & Burgess, 2011; Pankey & Ashcraft, 2011; Pournaras et al., 2011). However, 

higher toxicity, side effects, limited efficacy, and concerns of spread of resistance have 

limited their use in patients. Resistance to polymyxins and tigeycline or any known 

alternative have also been reported in some case-series studies, and suggest a fresh 

concern of pan-antibiotic resistance among CREs (Elemam, Rahimian, & Mandell, 2009). 

Our study had several strengths and some limitations. The number of isolates 

included in the study was limited; however, our pilot study did provide data that can be 

utilized in further studies. Molecular detection of the blaKPC gene only detected isolates 

that express the KPC gene and may have underestimated the presence of other 

resistance mechanisms implicated in CREs, such as the MBL, the OXA, and the AmpC 



enzymes in blaKPC gene negative isolates. Because Klebsiella pneumoniae 

carbapenemase is the most implicated carbapenemase in the U.S., in a resource limited 

setting, targeting the KPC gene will be a more efficient way to detect and confirm 

carbapenem resistance. We did not perform the MHT as confirmation for 

carbapenemase activity in our CRE isolates as recommended by the CDC; however, we 

were able to use a PCR-based assay as an alternative to verify the Klebsiella pneumonia 

carbapenemase gene. 

 

CONCLUSIONS 
 

Based on our findings, an understanding of the enzymatic mechanisms and other 

phenotypes of resistance mediated by CREs is important in the prevention of these 

organisms. Infections due to isolates that showed impermeability and concomitant 

production of ESBLs may be managed with carbapenems if their MICs are in the 

susceptible range. Although the implementation of the current CLSI breakpoints for 

carbapenem AST can make results more comparable worldwide, especially if it 

corresponds with the European Committee on Antimicrobial Susceptibility Testing 

(EUCAST) system. However, evidence-based studies should validate these revised 

guideline changes before their general implementation.  It is also important that 

clinicians and laboratories are aware of the implications of the revised antibiotic 

susceptibility testing reports in clinical practice, such as the effects on antibiotic 

prescription and antibiotic stewardship. In addition, to ensure proper detection of 



emerging resistance, species-related zones of inhibition or MIC breakpoints should be 

published as a means to targeted control of CREs. 

The results of this study are expected to provide health care providers and 

infectious disease specialists an informed interpretation of susceptibilities and antibiotic 

recommendations. It also serves as an important step towards developing targeted 

strategies to control the spread of CREs in our communities. These results will help to 

improve antibiotic stewardship in Nevada by determining the prevalence of the KPC 

gene among CRE isolates from different health institutions in Las Vegas.  

In conclusion, timely intervention, such as good infection control practices, rapid 

detection, and prudent use of antibiotics will ensure that the spread of carbapenem 

resistance among organisms is kept under control.  Future studies should include a real-

time PCR assay that is capable of detecting multiple resistance genes to provide rapid 

and accurate detection of carbapenem resistance.  



APPENDICES 

  



Appendix A – Vitek 2 GN69 Card Information 
 

 

 

 
 
 
 
 
 
 
 

Antibiotics tested 

ESBL Confirmation Test 

Ampicillin 

Amoxicillin/ 
Clavulanic Acid 

Ampicillin/Sulbactam 

Piperacillin/Tazobactam 

Cefazolin 

Ceftazidime 

Ceftriaxone 

Cefepime 

Ertapenem 

Imipenem (new formula) 

Gentamicin 

Tobramycin 

Ciprofloxacin 

Levofloxacin 

Nitrofurantoin 

Trimethoprim/Sulfamethoxazole 



Appendix B – Vitek 2 GN XN06 Card Information 
 

 
 

 
 
  

Antibiotics tested 

Ticarcillin/Clavulanic Acid 

Piperacillin 

Cefalotin 

Cefuroxime 

Cefuroxime Axetil 

Cefotetan 

Cefoxitin 

Cefpodoxime 

Cefotaxime 

Ceftizoxime 

Aztreonam 

Doripenem 

Meropenem 

Amikacin 

Nalidixic Acid 

Moxiflaxacin 

Norfloxacin 

Tetracycline 

Tigecycline 



Table 3: DNA Concentrations and PCR Results for CRE Isolates. 

Test Organism/Sample 
Identification  
 

Average   
260/280 

Ratio 
(n=2) 

Average 
DNA Conc. 

(ng/µl; n=2) 

DNA 
Conc. per 
PCR rxn. 

PCR Results  
 

Mean CT 

Value (n=2) 
SD 

Klebsiella pneumoniae 
ATCC 13883 

1.929    33.8 16.9 undetermined N/A 

K. pneumoniae  
ATCC 4352 

1.767 103.8 51.9 undetermined N/A 

K. pneumoniae  
ATCC BAA 1706 

1.779    37.5 18.8 undetermined N/A 

K. pneumoniae  
ATCC 700603 

1.819    61.3 30.6 undetermined N/A 

Enterobacter hormaechei 
ATCC BAA 2082 

1.811 131.3 65.6 17.14 0.89 

K. pneumoniae  
ATCC BAA 1705 

1.750 38.8 19.4 18.80 0.08 

CRE 001 2.434 28.8 14.4 21.19 0.08 

CRE 002 2.000 25.0 12.5 17.52 0.05 

CRE 003 1.500 21.3 10.6 18.41 0.01 

CRE 004 2.750 8.8 43.8 undetermined N/A 

CRE 005 1.734 25.0 12.5 20.48 0.08 

CRE 006 2.042 17.5 87.5 18.99 0.08 

CRE 007 2.665 16.3 81.3 20.22 0.25 

CRE 008 1.500 13.8 68.8 28.00 2.30 

CRE 009 4.500 18.8 93.8 26.41 2.13 

CRE 010 5.000 12.5 62.5 27.23 0.34 

CRE 011 1.500 8.8 43.8 23.48 0.09 

CRE 012 1.625 16.3 81.3 26.37 1.41 

CRE 013 2.355 30.0 15.0 19.97 0.07 

CRE 014 1.500 11.3 56.5 20.97 0.61 

CRE 015 0.625 21.3 10.7 20.71 0.14 

CRE 016 0.834 18.8 94.0 31.70 0.53 

CRE 017a 2.095 25.0 12.5 20.69 0.17 

CRE 018 1.200 17.5 87.5 23.90 1.24 

CRE 019a 2.200 12.5 62.5 25.15 1.30 

CRE 020 2.084 23.8 11.9 19.61 0.15 

CRE 021 8.188 25.0 12.5 undetermined N/A 

CRE 022 5.000 17.5 87.5 25.10 0.38 

CRE 023 1.684 22.5 11.3 20.79 0.20 

CRE 024 3.179 27.5 13.8 20.28 0.00 

CRE 025 1.000 15.0 75.0 24.02 0.21 

CRE 026 1.800 11.3 56.5 23.42 0.11 



Test Organism/Sample 
Identification  
 

Average   
260/280 

Ratio 
(n=2) 

Average 
DNA Conc. 

(ng/µl; n=2) 

DNA 
Conc. per 
PCR rxn. 

PCR Results  
 

Mean CT 

Value (n=2) 
SD 

CRE 027 1.072 17.5 87.5 19.79 0.85 

CRE 028 0.417 3.8 19.0 24.91 0.08 

CRE 029 0.834 15.0 75.0 undetermined N/A 

CRE 030 1.000 20.0 100.0 25.94 0.08 

CRE 031 1.272 18.8 94.0 18.12 0.13 

CRE 032 1.083 16.3 81.5 21.81 0.17 

CRE 033 0.650 7.5 37.5 undetermined N/A 

CRE 034 1.104 21.3 10.7 19.04 0.16 

CRE 035 1.134 21.3 10.7 19.72 0.03 

CRE 036 1.205 21.3 10.7 undetermined N/A 

CRE 037 1.250 25.0 12.5 19.12 0.06 

CRE 038 1.526 36.3 18.2 17.49 0.07 

CRE 039 1.188 20.0 100.0 undetermined N/A 

CRE 040 2.028 47.5 23.8 undetermined N/A 

CRE 041 1.258 31.3 15.7 19.26 0.07 

CRE 042 1.143 17.5 87.5 undetermined N/A 

CRE 043 1.320 35.0 17.5 18.35 0.05 

CRE 044 1.370 32.5 16.3 21.13 0.30 

CRE 045 0.033 2.5 12.5 23.91 0.37 

CRE 046 1.252 37.5 18.8 18.23 0.03 

CRE 047 1.438 23.8 11.9 18.80 0.04 

CRE 048 1.243 37.5 18.8 18.70 0.00 

CRE 050 1.091 33.8 16.9 undetermined N/A 

CRE 051 1.774 28.8 14.3 19.59 0.02 

CRE 052 2.000 30.0 15.0 undetermined N/A 

CRE 053 1.835 42.5 21.3 18.18 0.03 

CRE 054 1.956 36.5 18.3 17.92 0.06 

CRE 055 1.772 40.0 20.0 18.81 0.01 

CRE 056 1.571 27.5 13.8 18.74 0.21 

Conc. = concentration; ATCC = American Type Culture Collection; rxn. = reaction; SD = standard 
deviation.  aCRE 017 and CRE 019 are from the same patient. 
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