
UNLV Theses, Dissertations, Professional Papers, and Capstones 

5-1-2014 

Physics of Gamma-ray Bursts and Multi-messenger Signals from Physics of Gamma-ray Bursts and Multi-messenger Signals from 

Double Neutron Star Mergers Double Neutron Star Mergers 

He Gao 
University of Nevada, Las Vegas 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Cosmology, Relativity, and Gravity Commons, and the Physics Commons 

Repository Citation Repository Citation 
Gao, He, "Physics of Gamma-ray Bursts and Multi-messenger Signals from Double Neutron Star Mergers" 
(2014). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2083. 
http://dx.doi.org/10.34917/5836102 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital 
Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that 
is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to 
obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons 
license in the record and/or on the work itself. 
 
This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and 
Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/129?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2083&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/5836102
mailto:digitalscholarship@unlv.edu


PHYSICS OF GAMMA-RAY BURSTS AND MULTI-MESSENGER SIGNALS

FROM DOUBLE NEUTRON STAR MERGERS

by

He Gao

Bachelor of Science
Beijing Normal University

2007

Master of Science
Beijing Normal University

2010

A dissertation submitted in partial fulfillment
of the requirements for the

Doctor of Philosophy - Astronomy

Department of Physics and Astronomy
College of Science

The Graduate College

University of Nevada, Las Vegas
May 2014



Copyright by He Gao 2014
All Rights Reserved



ii!
!

  
 
THE GRADUATE COLLEGE 

 

We recommend the dissertation prepared under our supervision by  

He Gao 

entitled  

Physics of Gamma-Ray Bursts and Multi-messenger Signals from Double Neutrons 
Star Mergers 

is approved in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy - Astronomy 
Department of Physics and Astronomy  

 
 
Bing Zhang, Ph.D., Committee Chair 

Daniel Proga, Ph.D., Committee Member 

Kentaro Nagamine, Ph.D., Committee Member 

Amei Amei, Ph.D., Graduate College Representative 

Kathryn Hausbeck Korgan, Ph.D., Interim Dean of the Graduate College 

 

May 2014 

 



ABSTRACT

Physics of Gamma-ray Bursts and Multi-messenger Signals from Double
Neutron Star Mergers

by

He Gao

Dr. Bing Zhang, Examination Committee Chair
Professor of Physics

University of Nevada, Las Vegas

My dissertation includes two parts:

Physics of Gamma-Ray Bursts (GRBs): Gamma-ray bursts are multi-wavelength

transients, with both prompt γ-ray emission and late time afterglow emission observed

by telescopes in different wavelengths. I have carried out three investigations to un-

derstand GRB prompt emission and afterglow. Chapter 2 develops a new method,

namely, “Stepwise Filter Correlation” method, to decompose the variability compo-

nents in a light curve. After proving its reliability through simulations, we apply

this method to 266 bright GRBs and find that the majority of the bursts have clear

evidence of superposition of fast and slow variability components. Chapter 3 gives a

complete presentation of the analytical approximations for synchrotron self-compton

emission for all possible orders of the characteristic synchrotron spectral breaks (νa,

νm, and νc). We identify a “strong absorption” regime when νa > νc, and derive the

critical condition for this regime. The external shock theory is an elegant theory to

model GRB afterglows. It invokes a limit number of model parameters, and has well

predicted spectral and temporal properties. Chapter 4 gives a complete reference of

all the analytical synchrotron external shock afterglow models by deriving the tem-

poral and spectral indices of all the models in all spectral regimes. This complete

reference will serve as a useful tool for afterglow observers to quickly identify relevant

models to interpret their data and identify new physics when the models fail.
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Milti-messenger signals from double neutron star merger : As the multi-messenger

era of astronomy ushers in, the second part of the dissertation studies the possi-

ble electromagnetic (EM) and neutrino emission counterparts of double neutron star

mergers. Chapter 6 suggests that if double neutron star mergers leave behind a mas-

sive magnetar rather than a black hole, the magnetar wind could push the ejecta

launched during the merger process, and under certain conditions, accelerates it to

a relativistic speed. Such a magnetar-powered ejecta, when interacting with the am-

bient medium, would develop a bright broad-band afterglow due to external shock

synchrotron radiation. We study this physical scenario in detail, and present the

predicted X-ray, optical and radio light curves for a range of magnetar and ejecta

parameters. Chapter 7 applies the model to interpret one optical transient discov-

ered recently. In chapter 8, we show that protons accelerated in the external shock

would interact with photons generated in the dissipating magnetar wind and emit

high energy neutrinos and photons. We find that ∼PeV neutrinos could be emitted

from the shock front as long as the ejecta could be accelerated to a relativistic speed.

These events would contribute to the diffuse Pev neutrino background and sub-Tev

gamma-ray background.
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Li-Paczyński Nova/macro-nova/kilo-nova . . . . . . . . . . . . . . . . . . . . . . . 187
Long lasting radio afterglow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Dissipated early x-ray afterglow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Merger-nova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Double neutron star merger afterglow . . . . . . . . . . . . . . . . . . . . . . . . . 190

Possible High-Energy Neutrino and Photon Signals . . . . . . . . . . . . . . . . . . . 191

CHAPTER 6 BRIGHT BROD-BANDAFTERGLOWS OFGRAVITATIONAL
WAVE BRSTS OF BINARY NEUTRON STARS . . . . . . . . . . . . . . . . . . . . 192
The Double Neutron Star Merger Afterglow Model . . . . . . . . . . . . . . . . . . . 192
Detectability and Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

CHAPTER 7 A DOUBLE NEUTRON STAR MERGER ORIGIN FOR THE
COSMOLOGICAL RELATIVISTIC FADING SOURCE PTF11AGG? . . . . 206
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Observations of PTF11agg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Applying DNS Merger Afterglow Model to PTF11agg . . . . . . . . . . . . . . . . . 208
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

viii



CHAPTER 8 POSSIBLE HIGH-ENERGYNEUTRINO AND PHOTON SIG-
NALS FROM GRAVITATIONAL WAVE BURSTS DUE TO DOUBLE
NEUTRON STAR MERGERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
General Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Neutrino Energy and Fluence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Detection Prospect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
High Energy Photon Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

ix



LIST OF TABLES

Table 1 Characteristic timescales identified in BATSE bright Gamma-Ray
Bursts, part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 2 Characteristic timescales identified in BATSE bright Gamma-Ray
Bursts, part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 3 Characteristic timescales identified in BATSE bright Gamma-Ray
Bursts, part III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 4 Characteristic timescales identified in BATSE bright Gamma-Ray
Bursts, part IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 5 The temporal decay index α and spectral index β in thin shell forward
shock model with νa < min(νm, νc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Table 6 The temporal decay index α and spectral index β in thin shell forward
shock model in the νm < νa < νc regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Table 7 Temporal decay index α and spectral index β in the thin shell reverse
shock model during the reverse shock crossing phase in the νa < min(νm, νc)
spectral regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Table 8 Temporal decay index α and spectral index β in the thin shell reverse
shock model during the reverse shock crossing phase in the νm < νa < νc
spectral regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 9 Temporal decay index α and spectral index β in thin shell reverse
shock model after reverse shock crossing in the νa < min(νm, νcut) spectral
regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 10 Temporal decay index α and spectral index β in thin shell reverse
shock model after reverse shock crossing in the νm < νa < νcut spectral regime. 96

Table 11 The temporal decay index α and spectral index β of the thick shell
forward shock model in the νa < min(νm, νc) spectral regime. . . . . . . . . . . . 99

Table 12 The temporal decay index α and spectral index β of the thick shell
forward shock model in the νm < νa < νc spectral regime. . . . . . . . . . . . . . . 99

Table 13 The temporal decay index α and spectral index β of the thick shell
reverse shock model during the shock crossing phase in the νa < min(νm, νc)
spectral regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table 14 The temporal decay index α and spectral index β for the thick shell
reverse shock model during the reverse shock crossing phase in the νm <
νa < νc spectral regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table 15 The temporal decay index α and spectral index β of the thick shell re-
verse shock model in the post-shock crossing phase in the νa < min(νm, νcut)
spectral regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table 16 The temporal decay index α and spectral index β of the thick shell
reverse shock model in the post-shock crossing phase in the νm < νa < νcut
spectral regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table 17 The temporal decay index α and spectral index β in relativistic,
isotropic, self-similar deceleration phase for νa < min(νm, νc) and p > 2. . . . 111

Table 18 The temporal decay index α and spectral index β in relativistic,
isotropic, self-similar deceleration phase for νm < νa < νc and p > 2. . . . . . . 112

x



Table 19 The temporal decay index α and spectral index β in relativistic,
isotropic, self-similar deceleration phase for νa < min(νm, νc) and 1 < p < 2. 112

Table 20 The temporal decay index α and spectral index β in relativistic,
isotropic, self-similar deceleration phase for νm < νa < νc and 1 < p < 2. . . 113

Table 21 Collection of jet break time and temporal indices changes∆α = α2−α1

for different regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 22 The temporal decay index α and spectral index β after jet break for

νa < min(νm, νc), considering edge effect only. . . . . . . . . . . . . . . . . . . . . . . . 115
Table 23 The temporal decay index α and spectral index β after jet break for

νm < νa < νc, considering edge effect only. . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 24 The temporal decay index α and spectral index β in the Newtonian

phase for νa < min(νm, νc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 25 The temporal decay index α and spectral index β in the Newtonian

phase for νm < νa < νc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 26 Collection of figure numbers corresponding to different dynamical

models and initial spectra regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 27 List of observed double neutron star binaries. . . . . . . . . . . . . . . . . . . . 180
Table 28 Expression of the Lorentz factor and radius as a function of model

parameters in different temporal regimes for all dynamical cases. . . . . . . . . . 201
Table 29 Temporal scaling indices of various parameters in different temporal

regimes for all dynamical cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Table 30 Adopt parameters for fitting the optical and radio data of PTF11agg

for different redshift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

xi



LIST OF FIGURES

Figure 1 The geometric configuration among the GRB central engine, rela-
tivistic emitting shells and the observer, taken from Zhang and Mészáros
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BURSTS
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CHAPTER 1

INTRODUCTION OF PART I

Gamma-Ray Bursts (GRBs) are the most extreme explosive events in the universe.

The fascinating GRB story started in the late 1960s, when they were first detected

by the Vela satellites (Klebesadel et al., 1973). The name “Gamma-Ray Bursts”

was first proposed in Klebesadel et al. (1973), since they were found to be short,

intense, and non-repeating flashes of ∼ MeV γ-rays at that time. Later on, people

found that the initial burst is usually followed by a longer-lived broad band emission

(X-ray, ultraviolet, optical, infrared, microwave and radio), inferring that GRBs are

actually multi-wavelength transients instead of simple bursts in γ-rays. The initial

γ-ray emission is then often called “prompt emission” and the longer wavelength

emission is often called “afterglow emission”. Thanks to the detection of afterglow

emission, the cosmological origin of GRBs was confirmed. The isotropic-equivalent

energy released in one individual GRB could be 1049 ∼ 1055 ergs, and the luminosity

of prompt phase could be 1047 ∼ 1053erg s−1 (Zhang and Mészáros, 2004a), a million

times larger than the peak electromagnetic luminosity of a supernova, people thus

title GRBs as the most luminous explosions in the universe. Hereafter the convention

Qs = Q/10s is adopted in cgs units throughout the dissertation.

Thanks to the smooth handover of several space-borne high energy telescope mis-

sions: Compton Gamma Ray Observation (CGRO); BeppoSAX mission; NASA mis-

sions Swift and Fermi, the field of GRBs has rapidly advanced. Every time when a

new mission unveiled a new temporal or spectral window, a rich trove of new phe-

nomenology could be uncovered. While solving some old problems, new questions

and challenges are raised, keeping the GRBs field remain active and relatively young.

The statistical analysis of certain samples of observational data, or the study of some

specific bursts have triggered a lot of hot topics in the GRB field, such as classifica-

tion, progenitor, central engine, ejecta composition, energy dissipation and particle
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acceleration mechanism, radiation mechanism, long term engine activity, external

shock afterglow physics, origin of high energy emission, cosmological setting and so

on (Zhang, 2011b).

In the literature, there are several expert reviews about GRBs (Mészáros, 2002;

Zhang and Mészáros, 2004a; Piran, 2004; Zhang, 2007b; Gehrels & Razzaque, 2013;

Zhang, 2014), one can refer to those papers for the details of GRBs. Here I would give

a general picture of “physics of GRBs” by answering a couple of simple physical ques-

tions: (1) Where does the huge amount of energy come from? Such energy released

in short variability timescale (down to milliseconds) would lead to the “compactness

problem” (Ruderman, 1975), requiring relativistic motion for the GRBs ejecta to

solve the problem. (2) What is the relativistic effect then? (3) How could the ejecta

get acceleration to ultra-relativistic regime? (4) How could this energy be converted

into the observed radiation?

I want to acknowledge that the general framework and some derivations of the

following discussion is based on the lecture notes of “Gamma-Ray Bursts”, taught by

Prof. Bing Zhang in UNLV. For equations that taken from the notes, I will cite as

“GRBs notes”.

Where does the Huge Amount of Energy Come From?

Two scenarios are usually invoked as the central engine to power the GRBs: hyper-

accreting black holes (BH) (Paczynski, 1998; Mészáros and Rees, 1997a) or rapidly

spinning magnetars (Usov, 1992).

Hyper-accreting black holes

If GRBs are powered by accretion onto the BH, to achieve the required luminosity

for GRBs, the accretion rate should be (GRBs note)
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Ṁacc =
Lγ

ηc2
= 0.56 M"s

−1 η−2Lγ,52. (1.1)

Due to high accretion rate, the accretion flow is extremely hot, the disk becomes

dense and hot enough in the inner region, with neutrino-dominated cooling. On the

other hand, the accreting BH could carry large angular momentum, since the BH is

likely formed in a rapidly rotating core and it could also be spin-up by the accretion

disk. For such a fast spinning BH with hyper-accretion disk, energy can be extracted

to power GRBs by (1) neutrino annihilation process from the hot disk or by (2)

large-scale magnetic field from the rotating BH.

(1) Neutrino annihilation Model

Under the hyper-accretion situation, the gas photo opacities are so high that

radiation would be trapped (Katz, 1977; Begelman, 1978; Abramowicz et al., 1988).

But neutrinos could still escape and tap the thermal energy of the disk produced by

viscous dissipation. Nevertheless, neutrino annihilation along the spin axis can drive

a hot jet in regions of low baryon density, and the jet power is defined by the neutrino

annihilation power Ėνν̄ .

One popular method for numerically calculating Ėνν̄ is proposed by Popham et

al. (1999): the disk is modeled as a grid of cells in the equatorial plane. A cell k

has its neutrino mean energy εkνi and luminosity lkνi, and the height above (or below)

the disk is dk. Neutrinos from cell k would encounter antineutrinos from another cell

k′ at angle θkk′. Then the summation over all pairs of cells could give the neutrino

annihilation power at that point,

Ėνν̄ = A1

∑

k

lkνi
d2k

∑

k′

lkνi
d2k′

(εkνi + εk
′

ν̄i)(1− cosθkk′)
2 +
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A2

∑

k

lkνi
d2k

∑

k′

lkνi
d2k′

εkνi + εk
′

ν̄i

εkνiε
k′
ν̄i

(1− cosθkk′), (1.2)

where A1 ≈ 1.7 × 10−44 cm · erg−2 · s−1 and A2 ≈ 1.6 × 10−56 cm · erg−2 · s−1. The

total neutrino annihilation power is obtained by integrating over the whole space

outside the BH and the disk.

Recently, Zalamea & Beloborodov (2011) obtained a power-law fit for numerical

results of Ėνν̄ as

Ėνν̄ % 1.1× 1052( r
rms

)−4.8( M•

3M"
)−3/2

×















0 ṁ < ṁign

ṁ9/4 ṁign < ṁ < ṁtrap

ṁ9/4
trap ṁ > ṁtrap















erg s−1, (1.3)

where ṁign and ṁtrap are two critical accretion rates. If ṁ < ṁign, the disk temper-

ature is not high enough to ignite the neutrino emitting reactions. If ṁ > ṁtrap ,

the emitted neutrinos become trapped in the disk and advected into the black hole

Zalamea & Beloborodov (2011) .

(2) Magnetic Model

Blandford & Znajek (1977) proposed that the BH horizon and the remote astro-

physical load are connected by the open magnetic field lines, so that energy and angu-

lar momentum could be transported from the spinning BH to the remote load. Such

energy extracting mechanism is usually referred as BZ process, which could power

GRBs when the magnetic field of BH is strong enough (Paczynski, 1998; Mészáros

and Rees, 1997a; Lee et al., 2000). Here I present the main results of this model.

The rotational energy of a BH with angular momentum J is a fraction of the BH
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rest energy M•c2,

Erot = 1.8× 1054frot(a•)
M•

M"
erg, (1.4)

frot(a•) = 1−
√

(1 + q)/2, (1.5)

where q =
√

1− a2•, and a• = J•c/GM2
• is the BH spin parameter. For a maximally

rotating BH (a• = 1), f(1) = 0.29.

The BZ jet power is (Lee et al., 2000)

ĖB = 1.7× 1050a2•(M•/M")
2(B•/10

15G)2F (a•) erg s−1, (1.6)

where

F (a•) = [(1 + q2)/q2][(q + 1/q) arctan q − 1], (1.7)

q = a•/(1+
√

1− a2•), and 2/3 ≤ F (a•) ≤ π−2 for 0 ≤ a• ≤ 1. It apparently depends

on M•, B•, and a• and strong magnetic field of ∼ 1015G is required to produce the

high luminosity of GRBs (Lee et al., 2000).

Since the magnetic field on the BH is supported by the surrounding disk, one can

estimate its value by assuming the balance between the pressure of the magnetic field

on the horizon and the ram pressure of the innermost parts of an accretion flow (e.g.

Moderski et al. (1997)),

B2
•

8π
= Pram ∼ ρc2 ∼ Ṁaccc

4πr2•
. (1.8)
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We can then rewrite the magnetic power as a function of mass accretion rate as

ĖB = 9.3× 1053a2•
Ṁ

M"s−1
X(a•) erg s−1, (1.9)

where

X(a•) = F (a•)/(1 +
√

1− a2•)
2. (1.10)

It is found that X(0) = 1/6, and X(1) = π − 2. In general, a faster BH spin is

more favorable for GRB production, as revealed also by recent GRMHD numerical

simulations (Nagataki, 2009, 2011).

Millisecond magnetar

Besides hyper-accreting black holes, rapidly rotating neutron stars with surface

magnetic fields of order ∼ 1015 G ( and higher), often called “millisecond magnetars”,

also be able to satisfy the essential conditions for a GRB central engine, e.g., energy,

duration, variability, baryon loading, birth rate, etc(Usov, 1992; Zhang and Mészáros,

2004a). Here we only discuss the total energy and luminosity. The total spin energy

for a millisecond magnetar is (GRBs note)

Erot = (1/2)IΩ2
0 % 2× 1052 erg I45P

−2
0,−3, (1.11)

where P0 ms is the initial spin period of the proto-magnetar. Notice that this is the

maximum energy of the magnetar model, namely if the total energy of a GRB turns

to be larger than this, the magnetar model can not be applied.

The simplest dipolar spindown formula gives the evolution of the spindown lumi-

nosity as (Zhang and Mészáros, 2001a)
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L(t) = Lsd,0/(1 + t/Tsd)
2 =









Lsd,0, t ' Tsd;

Lsd,0(t/Tsd)−2, t ( Tsd,
(1.12)

where

Tsd =
3c3I

B2
pR

6Ω2
0

= 2.05× 103 s (I45B
−2
p,15P

2
0,−3R

−6
6 ) (1.13)

is the characteristic spindown time scale, and

Lsd,0 =
IΩ2

0

2Tsd
= 1.0× 1049 erg s−1 (I45B

2
p,15P

−4
0,−3R

−6
6 ) (1.14)

is the characteristic spindown luminosity. Here Bp is the polar-cap dipole magnetic

field strength and R is the neutron star radius. We can see that for a slightly stronger

Bp and a slightly shorter P0, Lsd,0 can be boosted to the typical GRB luminosity, and

Tsd can be reduced to typical GRB duration.

What is the Relativistic Effect?

Compactness problem

The variability time scale of GRBs, δt, could be as small as millisecond (Bhat et

al., 1992), indicating that GRBs are related to stellar scale scenario, with emission

region size as

R ∼ 107 cm (δt/0.33ms). (1.15)

The total isotropic energy of GRBs in γ-ray band could be Eγ,iso ∼ 1051 − 1055 ergs

(Zhang and Mészáros, 2004a). Such huge amount of γ-ray photons releasing in a

relatively small region, the pair production (γγ → e±) optical depth τγγ must be very
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large. Here we make a simple estimation for τγγ : for a fireball with pure photons, its

total energy could be derived with blackbody formula

Eγ,iso =
4π

3
R3aT 4

0 , (1.16)

where a = 7.56×10−15erg cm−3 K−4 is radiation density constant. The typical photon

energy is

kT0 = 11.5E1/4
γ,iso,52R

−3/4
7 Mev ( 0.511Mev. (1.17)

In this case, the pair production optical depth could be roughly estimated as

τγγ % aT 4
0

kT0
σTR = 3.9× 1017E2/3

γ,iso,52R
−5/4
7 . (1.18)

Here we use Thomson cross section σT to replace the pair production cross section,

which should be fine for estimation to order of magnitude, since the pair production

cross section is close to the Thomson cross section near threshold. Nevertheless, we

also assume all the photons are with typical photon energy and thus all satisfy the

pair production condition. In reality, only a fraction f of photons are above the

threshold. Obviously, even taking such f factor into account, the pair production

optical depth should be still much larger than unity, which raises the so-called “Com-

pactness problem” (Ruderman, 1975) : the high energy photons of GRBs should be

in principle converted to electron-positron pairs, and cannot escape due to the large

pair production optical depths, but the fact is we do observe these photons.

The only way to solve this problem is invoking relativistic motion for the GRBs

ejecta (fireball). The reason includes two folds: (1) due to the Doppler de-boosting

effect, photon energy in comoving frame is significantly reduced (see later part of this
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section for detail), which essentially makes f factor much lower; (2) in the comoving

frame, the emission region size is larger by a factor of Γ (where Γ is the bulk Lorentz

factor for ejecta moving). From Eq. 1.18, this effect would make a correction of Γ−2

for the pair production optical depth. For typical observational properties of GRBs,

the optical depth drops to below unity when Γ is above several hundreds.

Although most theoretical contents about GRBs, including the so called “standard

fireball model”, are still debated, the fact that GRBs must move relatively towards

earth is one robust inference from GRB data. All GRB physics theory should be

under the framework of special relativity. Here I will give some basic relativistic

effects and their applications for GRB physics.

Doppler effects

A typical GRB problem involves three major physical elements (Fig. 1): a central

engine, a relativistically moving shell (ejected by the central engine) which produces

the GRB emission, and an observer (Zhang and Mészáros, 2004a). Each element

should have their own rest frame: (Ref I) rest frame of the central engine; (Ref

II) rest frame of the relativistic ejecta; (Ref III) rest frame of the observer. Ref I

and III share the same inertial frame, the difference between these two rest frame is

from the cosmological redshift effect (which is small compared to special relativistic

effects). Ref II, also called comoving frame of the relativistic shell, corresponds to

another inertial frame. The physical quantities as viewed in the two inertial frames

are different, and are related through special relativistic Lorentz transformations.

For example, there are two sets of clocks attached in both inertia frames, so that

dt′ = dt̂/Γ, where dt̂ and dt′ are the time intervals elapsed for the same pair of events

in the central engine/observer frame and the comoving frame, respectively.

The transformations between Ref II quantities and the Ref III quantities would

suffer the Doppler effect, which is the combination of both relativistic effect and

10



propagation effect. We will also take the time transformation as an example. In

general, we can consider a point emitter moving with a dimensionless speed β = v/c,

at an angle θ with respect to the line of sight of the observer (Fig. 1). In rest frame

of the central engine/observer, the shell emits a first photon towards the observer at

the time t̂1 at the location A (the radius r, corresponding to t′1 in Ref II), and emits

a second photon towards the observer at time t̂2 at the location B (the radius r+ dr,

corresponding to t′2 in Ref II), as recorded by clocks precisely adjusted in this inertia

frame. The first photon arrives at the observer at t1 = t̂1 + L/c, while the second

photon arrives at the observer at t2 = t̂2 + (L/c − βµdt̂) where µ = cos θ, L is the

distance between the observer and the location A. The time interval for the observer

to receive the two adjacent photon signals is simply

t2 − t1 = (1− βµ)(t̂2 − t̂2). (1.19)

We thus have

dt = D−1dt′, (1.20)

where D = 1
Γ(1−βcosθ) is known as the Doppler factor.

Similarly, one could got other useful transformations (Begelman et al., 1984), such

as

dν = Ddν ′;

dr = Ddr′;

dV = DdV ′;

dΩ = D−2dΩ′;
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Figure 1 The geometric configuration among the GRB central engine, relativistic
emitting shells and the observer, taken from Zhang and Mészáros (2004a)

Iν(ν) = DI ′ν′(ν
′);

jν(ν) = Dj′ν′(ν
′);

αν(ν) = Dα′
ν′(ν

′), (1.21)

where Iν is radiation intensity, jν is emission emissivity and αν is absorption coeffi-

cient.

Specifically, the observed flux from an optically thin source could be given by

Fν =

∫

jνdV/D
2
L

=

∫

D3j′ν′dV
′/D2

L, (1.22)

where DL is the luminosity distance.

Particularly, for a point source moving to a direction θ, the Doppler factor is fixed,

so that one would have (Granot et al., 2002)

Fν = D3

∫

j′ν′dV
′/D2

L. (1.23)
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Equal arrival time surface and curvature effect

Other than solving the compactness problem, there are another two important

implications for the relativistic effects: equal arrival time surface and curvature effect.

(1) Equal arrival time surface

Due to the propagation effect, for given observational time tobs, detected photons

are not emitted simultaneously in the lab frame, but comes from different radius

R for different θ (Waxman, 1997c; Sari, 1998b; Panaitescu and Meszaros, 1998b),

such surface that confines the volume constituting the locus of points from which

photons reach the detector simultaneously is usually called the equal-arrival-time

surface (EATS).

For specific dynamics of the ejecta, numerical calculation is required to solve the

EATS. For the most simple case, i.e., a shell moving with a constant velocity βc, one

can easily derived

R(θ) =
βctobs
1− βµ

, (1.24)

which describes an ellipsoid.

(2) Curvature effect

Supposing when the emitting region of GRBs expand to certain radius Rs, some-

how the emission stops everywhere abruptly in the lab frame. In this case, the ob-

served flux would not stop accordingly, since the high-latitude emission comes later

with a delayed time and lower Doppler boost. This is called “curvature effect” (Fen-

imore et al., 1996; Kumar and Panaitescu, 2000a; Dermer, 2004; Dyks et al., 2005;

Qin, 2008). Same as the EATS, numerical calculating is required for precise flux

value. However, under some simple assumptions, a rough estimation could be also

achievable: (1) considering one thin shell with half opening angle θj (2) the shell is

moving with constant velocity βc; (2) the radiation is isotropic in comoving frame
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and the emission power per particle is just a function of ν ′ as p′ν′ = P ′
ν′/n

′ ∝ (ν ′)−α;

Under these assumptions, the Eq. 1.23 reads

Fν(t) =

∫

D3+αdV np′ν/(4πD
2
L), (1.25)

where the integration volume should be under the EATS corresponding to t but with

R <= Rs, namely

Fν(t) ∝
∫ µ2

µ1

(1− βµ)−(3+α)dµ, (1.26)

where µ1 = cosθj and µ2 = [1− (t/t0)(1− β)]/β. We thus have

Fν(t) % Fν(t0)(t/t0)
−(β+2), (1.27)

where t0 is the time when the emission from R = Rs, θ = 0 reaches the observer.

How could the Ejecta Get Acceleration to Ultra-relativistic Regime?

To give GRBs, the ejecta must be ultra-relativistic. In the following, we will

present how to convert the initial energy into kinetic energy of baryons. In general,

a GRB jet launched from the central engine may have two components, one “hot”

component due to neutrino heating from the accretion disk or the proto neutron

star, and a “cold” component related to a magnetic Poynting flux launched from the

black hole or the neutron star. The dynamics of the flow could be governed by the

ideal MHD equations for the conservation of energy, momentum and mass. For the

relativistic treatment the equations are formally best written in tensorial form (e.g.
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Weinberg, 1973):

T µν
;ν = 0 , (1.28)

(ρuµ);µ = 0, (1.29)

where

T µν = wuµuν + pgµν
︸ ︷︷ ︸

matter part

+
1

4π

[(

uµuν +
1

2
gµν

)

bαb
α − bµbν

]

︸ ︷︷ ︸

electromagnetic part

(1.30)

is the energy-momentum tensor for ideal MHD (Drenkhahn & Spruit, 2002a). Here,

ρ, w and p are the mass density, the enthalpy density and the pressure in the proper

frame of the fluid, which is moving with a 4-velocity uµ = (Γ, /u). bµ = ∗F µνuν is the

4-vector of the magnetic field where ∗F µν is the dual electromagnetic field strength

tensor.

The dynamic solution sensitively depends on the composition of the initial ejecta,

namely whether the “hot” component is dominated or the “cold” component is dom-

inated. Initial composition is usually characterized by a parameter σ0 (Zhang, 2014),

which could be the ratio between Poynting flux and matter flux, or ratio between

comoving magnetic energy density and rest mass energy density. Here we adopt

σ0 ≡
Lc

Lh
=

LP

ηṀc2
. (1.31)

The dynamic solution for system with comparable thermal energy and magnetic

energy at the central engine is very complicated, and has not been studied carefully
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in the literature. People usually discuss the dynamics for two extreme regimes: a

thermally driven fireball (σ0 ' 1) or a magnetically-driven jet (σ0 ( 1). Note

that the prompt emission lightcurve may contain some information to diagnose the

ejecta composition, we will discuss this in detail in Chapter 2.

Thermal energy dominated jet

For σ0 ' 1 case, the electromagnetic part in Eq. 1.30 could be neglected. Piran

et al. (1993) rewrote the Eq. 1.28 - 1.30 as

∂

∂t
(nΓ) +

1

r2
∂

∂r
(r2nu) = 0, (1.32)

∂

∂t
(e3/4Γ) +

1

r2
∂

∂r
(r2e3/4u) = 0, (1.33)

∂

∂t

[(

n +
4

3
e

)

Γu

]

+
1

r2
∂

∂r

[

r2
(

n +
4

3
e

)

u2

]

= −1

3

∂e

∂r
. (1.34)

Change variables from r, t to r, s = t− r. Equations 1.32-1.34 then become

1

r2
∂

∂r
(r2nu) = − ∂

∂s

(
n

Γ+ u

)

, (1.35)

1

r2
∂

∂r
(r2e3/4u) = − ∂

∂s

(
e3/4

Γ+ u

)

, (1.36)

1

r2
∂

∂r

[

r2
(

n+
4

3
e

)

u2

]

= − ∂

∂s

[(

n +
4

3
e

)
u

Γ+ u

]

+
1

3

[
∂e

∂s
− ∂e

∂r

]

. (1.37)

For a relativistic fireball, one has γ ( 1 and γ ∼ u, so the right hand side of all
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three equations would be ∼0. This gives simplified conservation laws as

r2nΓ = constant, r2e3/4Γ = constant, r2
(

n+
4

3
e

)

Γ2 = constant. (1.38)

Two regimes of behavior are then immediately apparent. In the radiation-dominated

phase (e ( n), we have

Γ ∝ r, n ∝ r−3, e ∝ r−4, Tobs ∼ constant. (1.39)

In the alternate matter-dominated regime (e ' n), we obtain

Γ → constant, n ∝ r−2, e ∝ r−8/3, Tobs ∝ r−2/3. (1.40)

Therefore, the Γ evolution for a thermally driven fireball is like this: initially the

Lorentz factor Γ increases linearly with r until reaching the maximum Lorentz factor

η % Lh

Ṁc2
at coasting radius Rc ∼ R0η, where R0 is the radius where the fireball is

launched. The Lorentz factor then “coasts” with the maximum value, reduces through

later dissipation, such as the internal shocks (due to loss of radiation energy), and

finally decreases smoothly as a power law beyond the deceleration radius (we will

discuss these dissipation in detail later).

Magnetic energy dominated jet

For σ0 ( 1 case, Drenkhahn (2002b) expanded Eq. 1.28 and 1.29 in coordinate

form under stationarity. He assumed that the flow is spherically symmetric and the

field dominated by its toroidal component. In this case /u ⊥ /B and the components

of the magnetic four vector are simply bµ = (0,− /B/Γ) and bµbµ = B2
co = B2/Γ2. The
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conservation laws for energy, momentum and mass are then

0 = ∂rr
2

(

wΓu+
βB2

4π

)

, (1.41)

0 = ∂rr
2

(

wu2 +
(

1 + β2
) B2

8π

)

+ r2∂rp , (1.42)

0 = ∂rr
2ρu, (1.43)

where β = u/Γ.

In this case, the Γ evolution history for the magnetically-driven jet is like this: the

jet would first undergo a rapid acceleration until reaching R = RA, where Γ(RA) =

σ1/3
0 and σ(RA) = σ2/3

0 , and then go through a very slow acceleration process as

Γ ∝ R1/3. Ideally, the jet could reach maximum Lorentz factor Γ = σ0 at the

saturation radius Rsat = RAσ2
0. After that, similar with the fireball jet scenario, Γ

reduces through later dissipation. We note that the jet may start to decelerate before

reaching the saturation radius if σ0 is large enough so that Rsat > Rdec. Also magnetic

dissipation can reduce the final coasting Γ, since energy is released as prompt emission

(Zhang, 2014).

A jet with comparable thermal energy and magnetic energy

For a jet with comparable thermal energy and magnetic energy, since thermal ac-

celeration proceeds more rapidly, it would be reasonable to assume that the thermal

energy gets converted to kinetic energy first, after which additional acceleration pro-

ceeds magnetically if σ0 is large enough. Based on this assumption, the Γ resolution

for this hybird system could be roughly approximated as
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Γ(R) =













R
R0
, R0 < R < ηR0;

η2/3
(

R
R0

)1/3

, ηR0 < R < ηR0σ3
0 ;

η(1 + σ0), R > ηR0σ3
0 .

Note that above approximation is only applicable when η > σ3
0 ( 1, namely

the maximum Lorentz factor from thermal acceleration is larger than Alfvern speed

of the initial Poynting flux. Otherwise, the dynamic should approach the magnetic

dominated regime.

How could These Energy Be Converted into the Observed Radiation?

After the acceleration, the initial energy has been converted into there parts (or

two parts beyond the photosphere radius): the energy of trapped photons within the

ejecta, the kinetic energy of baryons and the magnetic energy. The photon energy

will be naturally released when the ejecta reaches the photosphere radius. For the

other two parts, certain dissipation process would be invoked, we call them kinetic

dissipation and magnetic dissipation respectively. The kinetic dissipation could hap-

pen via shocks, either by internal shocks or external shocks (see details in the later

part of this section). The magnetic dissipation could happen directly beyond certain

radius, if the outflow is magnetically dominated at small radii and the field configura-

tion is striped-wind-like (McKinney & Uzdensky, 2012). But if the field configuration

is helical, enough repetitive collisions would be required to induce rapid magnetic

dissipation (Zhang & Yan, 2011a).

Note that both kinetic dissipation and magnetic dissipation could happen under

or beyond the photosphere radius, leading to different prompt emission models (see

Zhang (2014) and reference therein). For example, if dissipation is not significant (e.g.

no substantial amount of non-thermal particles), a quasi-thermal photon spectrum
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is emitted from the photosphere, and later dissipation process will give the observed

non-thermal emission. Otherwise, if dissipation is significant under the photosphere

radius, non-thermal electrons accelerated from the dissipative photosphere would up-

scatter the seed thermal photons to make it non-thermal, many authors intend to

explain the observed GRB Band spectrum with this model (see Zhang (2014) and

reference therein).

Here, I give a brief introduction to two important concepts under the “standard

theoretical framework of GRBs”: internal shock and external shock.

Internal shock dissipation

The mass (or energy) flow generate from GRBs central engine is very like unsteady

with a distribution of Lorentz factors [Γ ∈ (Γmin,Γmax)]. Approximating the outflow as

a series of “mini-shells”, one would expect a series of collisions due to the interactions

between the late, fast shells and the early, slow shells. These collisions are supersonic,

resulting in internal shocks from which particles are accelerated, this is usually called

internal shock dissipation. For two shells with parameters (Γs,∆s) and (Γf ,∆f)

separated by d = cδt (with the fast shell lagging behind the slow shell), the internal

shock radius is (noticing β = (1− Γ−2)1/2)

RIS =
d

βf − βs
% 2Γ2

scδt = 6× 1014 cm Γ2
s,2.5δt−1 , (1.44)

where Γs,2.5 = Γs/102.5. And suppose the collision is full inelastic, with energy

conservation, Γ1m1 + Γ2m2 = Γm(m1 + m2 + U ′/c2), and momentum conservation,

Γ1β1m1 + Γ2β2m2 = Γmβm(m1 + m2 + U ′/c2), one can derive the Lorentz factor of

the merged shell

Γm =

(
Γ1m1 + Γ2m2

m1/Γ1 +m2/Γ2

)1/2

. (1.45)
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where U ′ is internal energy generated through the collision. The energy dissipation

efficiency (which is the upper limit of the radiation efficiency when the “fast cooling”

condition is satisfied) of the collision is

ηIS =
ΓmU ′

Γ1m1c2 + Γ2m2c2

= 1− m1 +m2
√

m2
1 +m2

2 +m1m2

(
Γ2
Γ1

+ Γ1
Γ2

)
. (1.46)

Kinetic energy could be converted into radiation with such efficiency, and the

leading radiation mechanisms for internal shock dissipation include synchrotron (or

jitter) radiation and synchrotron self-Compton (SSC). This is because they are the

most natural non-thermal emission mechanism, especially considering that the GRB

central engine is likely magnetized and internal shocks can also generate magnetic

fields through plasma instabilities (for detailed discussion of synchrotron and SSC,

see Chapter 3).

External shock dissipation

The ejecta would always be decelerated through interaction with the ambient

medium, which is known as external shock dissipation. During the initial interaction,

a pair of shocks (forward and reverse) propagate into the ambient medium and the

ejecta, respectively. After the reverse shock crosses the shell, the blastwave enters a

self-similar phase described by the Blandford-McKee self-similar solution (Blandford

and McKee, 1976). Finally, the blastwave would enter the Newtonian phase when the

velocity is much smaller than speed of light. The dynamics is then described by the

well-known Sedov solution widely used to study supernova remnants. The electrons

accelerated in these shocks radiate synchrotron emission to power the broad-band

afterglow of GRBs. In chapter 4, we give a detailed review for a complete reference

of all the analytical synchrotron external shock afterglow models.
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CHAPTER 2

STEPWISE FILTER CORRELATION METHOD AND EVIDENCE OF
SUPERPOSED VARIABILITY COMPONENTS IN GRB PROMPT EMISSION

LIGHTCURVES

This chapter is part of the following published paper :

Gao H., Zhang B.-B., Zhang B., 2012, Astrophysics Journal 748,134

The temporal structure of Gamma-Ray Bursts (GRBs) exhibits diverse morpholo-

gies (Fishman & Meegan, 1995). They can vary from a single smooth pulse to ex-

tremely complex lightcurves with many erratic pulses with different durations, am-

plitudes, and fine structures. Based on temporal information, it has been difficult to

categorize GRBs.

Physically, several mechanisms have been invoked to interpret GRB temporal

variability. The leading scenario is to attribute the lightcurve variability to the ir-

regularity of the central engine1. For the commonly discussed internal shock scenario

(Rees and Mészáros, 1994; Sari, 1997; Daigne & Mochkovitch, 2003; Maxham and

Zhang, 2009), the observed time sequence tracks that of the central engine very well

(Kobayashi et al., 1997; Maxham and Zhang, 2009). Alternatively, if the emission

is from the central engine photosphere, then the observed lightcurve time history

tracks that of the central engine directly (e.g. Lazzati et al., 2009). Within such a

scenario, the observed lightcurves can be directly connected to the behavior of the

central engine (e.g. Lei et al., 2007; Lu et al., 2008). A second scenario takes the op-

posite view: The observed variability originates in the emission region, which is not

directly related to the history of central engine activity. Since the GRB outflow is

relativistic, this requires that the emission region is not uniform. Rather, it contains

locally Lorentz boosted emission regions, such as mini-jets (Lyutikov & Blandford,

2003) or relativistic turbulence (Narayan & Kumar, 2009; Kumar & Narayan, 2009a).

1The central engine in general sense refers to the central compact object (e.g. an accreting black
hole or a spinning down neutron star) as well as the stellar envelope (if any) that regulates the time
history of the outflow.
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A third scenario discussed in the literature invoked a clumpy circumburst medium to

interpret variability within the external shock model of GRB prompt emission (e.g.

Dermer & Mitman, 1999). Swift observations of early X-ray afterglows of GRBs re-

vealed a steep decay phase connected to the prompt emission lightcurve (Tagliaferri

et al., 2005; Barthelmy et al., 2005a). This suggests that the GRB prompt emission

region is detached from the afterglow region, and therefore prompt emission should

be of an “internal” origin (Zhang et al., 2006). This disfavors this third model of

GRB variability.

Recently, Zhang & Yan (2011a) proposed a new model of GRB prompt emission in

the Poynting-flux-dominated regime, namely, the Internal-Collisioninduced MAgnetic

Reconnection and Turbulence (ICMART) model. This model invokes a central en-

gine powered, magnetically dominated outflow, which self-interacts and triggers fast

magnetic turbulent reconnection to power the observed GRBs. An important predic-

tion of the ICMART model is that it has two variability components: a broad (slow)

component related to the central engine activity, and a narrow (fast) component as-

sociated with relativistic magnetic turbulence. Zhang & Yan (2011a) conjectured

that the visually apparent broad pulses in GRB lightcurves are related to the time

history of the central engine (with each broad pulse corresponding to an ICMART

event), while the much faster variabilities superposed on the broad pulses are related

to relativistic, magnetic turbulence.

Alternatively, Morsony et al. (2010) simulated jet propagation from a massive star,

and suggest that the broad pulses of several seconds duration are due to interaction

of the jet with the progenitor, while the shorter scale variability in the millisecond

range is related to that of the base of the inner engine (e.g. the black hole or the

millisecond pulsar).

It would be essential to use rigorous mathematical methods to study GRB lightcurves

to investigate whether the time sequence demands superposition of multiple variabil-
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ity components. Power density spectrum (PDS) is the most commonly used tool to

study the temporal behavior of astronomical objects. Beloborodov et al. (1998, 2000)

found that although the PDS of individual GRBs are diverse, the average PDS of a

stack of GRBs is in accord with a power law with index -5/3 over 2 orders of mag-

nitude in frequency. By locating the PDS peaks, Shen & Song (2003) revealed the

typical variability time scales of some GRBs. In general, this method is not powerful

to address whether a GRB lightcurve has superposed variability components. This is

because it is insensitive to the lower frequency component (if it exists) since the GRB

durations are typically not much longer than the broad pulses themselves. In the time

domain, several methods have been developed to study temporal properties of GRBs.

For example, lightcurves were decomposed into individual pulses using some param-

eterized empirical pulse functions (Norris et al., 1996) or a peak-finding algorithm

(Li & Fenimore, 1996; McBreen et al., 2001; Nakar& Piran, 2002), and the temporal

properties of the resulting pulses were analyzed. When performing the empirical pulse

modeling, Norris et al. (1996) noted that some bursts are too complex to fit, possibly

indicating pulse superposition. However, their matrix inversion algorithm failed to

handle the problem. The peak finding selection method can decompose a lightcurve

into many individual peaks. However, the method is not developed to reveal the

superposed variability components.

Nonetheless, the possibility of superposition was suggested from other observa-

tional evidence. From a frequency-dependent analysis of prompt X-ray lightcurves of

a sample of BeppoSAX GRBs, Vetere et al. (2006) discovered that the lightcurve tends

to become smoother in softer energy bands. They then speculated that there might

be a slow component superposed on a fast component. It is therefore of great interest

to develop a rigorous mathematical method to identify such a superposition effect, if

any, in gamma-ray lightcurves alone without the assistance of multi-wavelength data.

Hereafter, we define a slow component as an underlying broad pulse component, while
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a fast component as the component of rapid variability that overlaps on top of the

slow component.

In this chapter, we develop a mathematical method to process GRB lightcurves

as an effort of identifying the superpostion effect. This method, known as the step-

wise filter correlation (SFC) method, is presented in detail first. Then we delineate

its mathematical basis, and justify its robustness in identifying the superposed slow

component through simulations. We apply this method to a sample of bright BATSE

GRBs, and indeed identify the superposition effect in the majority of them. The prop-

erties of the identified slow components are studied statistically. The data analysis

results and their physical implications are presented in later section.

Stepwise Filter Correlation Method

The method

In signal processing, a filter is a device or process that removes some unwanted

component or feature from a time sequence signal. Our method is based on a low-

pass filter named Butterworth filter. For a certain cutoff frequency, this filter passes

low-frequency signals below this frequency but attenuates signals above (see the final

section in this chapter for mathematical details). Our method is based on the follow-

ing concept. Suppose that one specific time series (lightcurve) can be decomposed

into the summation of N pulses, either horizontally (pulses are laid out side by side)

or vertically (superposition). One may denote the time scales (durations) of these

pulses as tj, j=1...N. The corresponding frequency for each pulse is therefore fj = 1/tj.

If one applies a stepwise filter in the frequency space, one would get a series of resid-

ual lightcurves (RLCs). If there is no pulse falling into the range between the cutoff

frequencies fc,i and fc,i+1, then the two RLCs should be identical. If there are some

pulses whose frequencies fall into this range, the RLC with the lower cutoff frequency

(RLCi) should be smoother than the one with the higher cutoff frequency (RLCi+1),
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since these pulses are screened after performing the low-pass filter at fc,i. The more

pulses falling into this frequency range or the highger the amplitudes of these pulses,

the more different the two RLCs look like. One can quantify the difference between

the two RLCs using a statistical correlation method. A cluster of many pulses or a

high amplitude of pulses within a frequency range would result in a correlation coeffi-

cient Ri (defined between RLCi and RLCi+1) to be more less than unity. By plotting

Ri against fc,i, a “dip” in the curve would reveal such a clustering, and hence, would

lead to the identification of a variability component around a particular frequency.

We realize such a concept based on the following procedure:

(1) For a time series, define a frequency range (fmin, fmax) to be searched from.

We then divide this frequency range into many discrete frequency bins uniformly

in logarithmic scale. For all the GRBs, our frequency step is uniformly chosen as

log(∆f) = 0.05. This gives a sequence of the cutoff frequencies fc,i(i = 1, ...M),

where M is the total number of frequency bins. The low-pass filter to the original

time series is then performed with each cutoff frequency fc,i in turn. The RLC for

each cutoff frequency, e.g. RLCi corresponding to fc,i, is recorded.

(2) Perform a correlation analysis between each pair of adjunct RLCs (e.g. RLCi

vs. RLCi+1). Record the Pearson’s correlation coefficient Ri for each pair.

(3) Plot Ri against fc,i, and identify apparent dips in the curve.

Simulation tests

To prove the validity of the method, we perform some simulations. We start with a

simple two-component lightcurve as shown in Fig.2 top row left panel. We superpose

two periodic signals, both with the function form A| sin(πt/T )|, where the periods of

the two components are Ts = 100π s for the slow component and Tf = 10π s for the fast

component, and the amplitude ratio between the two components is As : Af = 2 : 1.

The middle panel of the top row shows the PDS of the lightcurve, which clearly shows
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the two components. The right panel of top row is the Ri − fc,i figure of our SFC

method. Two dips that correspond to the two frequencies (fs = 1/100π s−1 and

ff = 1/10π s−1 are clearly identified. We also add some white noise to the mock

lightcurve. We find that even when the amplitude of the white noise is comparable

to the signal, the dip in the lower frequency still shows up. This suggests that this

method is powerful in identifying the low frequency component in the superposition.

Next, we simulate a more realistic lightcurve (middle row of Fig.2). The lightcurve

(left panel of the middle row) is now a superposition of a slow component with pulse

widths randomly distributed in the range of Ts = (10−20) s and a fast component with

pulse widths randomly distributed in the range of Tf = (1−3) s. The amplitudes of the

two components are randomly chosen in the range of As = (0.5−3) and Af = (0.5−1),

respectively. Since there is no strict periodicity and since the duration of the time

series is not much longer than the slow component time scale, the PDS method

(middle panel of the middle row) fails to identify the two frequency components. On

the other hand, our SFC method (right panel of the middle row) clearly identifies a

dip around 1/17 s−1, which is right within the frequency range of the slow component.

This simulation suggests that the SFC method is much more powerful in identifying

the superposed components than the PDS method.

We note that the absolute value of the correlation coefficient R depends on the

step length of the cutoff frequency. A smaller frequency bin means smaller differences

between consecutive RLCs, so that R would be closer to 1. In any case, the global

shape of the SFC Ri − fc,i curve (e.g. the location of the dips) does not depend on

the size of the frequency bin, as long as it is small enough.

In order to further understand the SFC algorithm, we have performed a series

of additional simulation tests (see final section for details). These tests suggest that

the SFC method is sensitive to significant clustering structures of a lightcurve in the

frequency domain. A significant clustering structure is a cluster of frequencies that
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is separated from other frequency clusters, and that has a large enough amplitude.

If a frequency cluster is too wide, or is too close to another frequency cluster, the

corresponding dip is diminished. Similarly, if the amplitude of a frequency cluster

component is too small, the corresponding dip would be too shallow or disappear

completely. An interesting finding is that the quiescent gaps that separate pulses in

GRB lightcurves (Ramirez-Ruiz et al., 2001) would complicate the analysis. Only

when the gaps are removed manually, can one identify the corresponding frequencies

of the slow pulse components (see final section for details). Another finding is that

if the slow component has only one pulse, the long tail of pulse tends to extend the

duration, so that the identified duration can be much longer than the full width at

half maximum.

Application to GRB Data

We now apply the SFC method to real GRBs. In this work, our aim is to demon-

strate the validity of the SFC method and to investigate whether the superposition

effect exists in GRBs. So we do not pursue sample completeness. Rather, we only

focus on some bright GRBs that have clear temporal structures.

We select 266 bright GRBs detected by Burst and Transient Source Experiment

(BATSE) (Kaneko et al., 2006), whose lightcurve data and T90 values are publically

available from the online database http://heasarc.gsfc.nasa.gov/docs/cgro/batse/. In

our analysis, we use light curves with 64 ms resolution obtained by BATSE in the four

Large Area Detector energy channels, 20−300 keV. The background is subtracted in

each channel using linear fits to the 1024 ms data. The SFC method is then applied to

these bursts. For all the analyses, we adopt a fixed maximum frequency of fmax = 5,

which is based on the consideration of having at least 3 time bins for a 64 ms time

resolution. The minimum frequency varies from burst to burst, but is related to a

duration at least (sometimes larger than) T90, in order to catch the slowest variability
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component. After fixing the frequency range, the frequency step is chosen evenly in

the logarithmic space with log(∆f) = 0.05.

In order to quantitatively delineate the significance and confidence level of each

dip, we define two parameters. The significance parameter, s, delineates the deep-

ness/shallowness of a dip in the SFC Ri − fc,i curve. A dip is typically asymmetric,

we apply the shallower wing of the dip to define its shallowness. We first identify

the local minimum point at the bottom of the dip, e.g. for the n-th dip the co-

ordinate (fn, Rn) in the SFC curve. Next, we find out the inflection points (where

the second derivatives change sign), or the turning points (where the first derivatives

change sign) if an inflection point does not exist, in the left and right wings of the

dip, respectively. These two points, i.e. (fn,left, Rn,left) and (fn,right, Rn,right), could be

defined as “boundaries” of the dip. One can then define

Sn = Min{ Rn,left − Rn

log(fn)− log(fn,left)
,

Rn,right −Rn

log(fn,right)− log(fn)
} (2.1)

for each dip. A larger Sn means a more significant dip. To reduce the bin-size effect,

we normalize Sn to the most significant one, Smax
n (which is usually the slowest one

S1), i.e. we define sn = Sn/Smax
n for each dip.This s parameter (which is s ≤ 1) is

then the significance parameter.

Next, we define a confidence level parameter, c, based on Monte-Carlo simulations.

For each time bin with a particular observed count rate, we can generate a mock count

rate based on the observed count rate C by randomly generating the data based on

a normal distribution with (C,
√
C). We then generate 1000 mock lightcurves by

collecting these randomly generated count rates for each time bin. We apply the

SFC method to each mock lightcurve, and identify the frequencies of the dips in

each realization. For each dip in the original lightcurve, we define c as the fraction

that the simulations reproduce. We regard a component with high confidence level if
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c ≥ 0.9, i.e., more than 900 simulations have revealed the component. We note that

even though in general high-significance dips have a high confidence level, the two

parameters are not always correlated. Some high “s” dips turn out to have a low “c”.

We therefore evaluate both parameters for every dip measured in the SFC Ri − fc,i

curves.

We take GRB930331A as an example (bottom row of Fig.2). The left panel shows

the original lightcurve, and the middle and right panels show the PDS and SFC anal-

ysis results, respectively. Although the PDS does not show any interesting feature,

the SFC curve indeed shows a prominent dip around 1/38 s−1 (both significance and

confidence level parameters equal unity, i.e. s = 1, c = 1). Checking back in the

lightcurve, one indeed sees one broad pulse with a time scale of 38 s and another

with the pulse width slightly shorter. Rapid spikes overlap on top of these two broad

pulses. To verify whether the 38s component truly exists, we apply the SFC method

to a portion of the lightcurve, from the trigger time T0 to a certain time T , with T

stepwisely increasing in the range of 0 < T − T0 < T90. We found that once T − T0

is longer than 38s, the dip at 1/38s−1 persists in all SFC curves, indicating that the

38s component is a real slow component.

Applying this method to our entire GRB sample, we find the following interesting

facts.

(1) The total 266 bursts could be grouped into four categories based on both their

lightcurves and SFC curves: (I) Good sample: 117/266 (44.0%) of the bursts can

be included in this sample. They clearly show at least one dip in the SFC curve.

Checking back the lightcurves, one can usually find one or more pulses with the

identified characteristic frequencies. Superposed on the identified slow component,

there are always more rapid variability features. This clearly suggests a superposition

of at least two variability components in the lightcurves. (II) Gap/long tail sample:

88/266(33.1%) of the bursts have quiescent periods in the lightcurve whose durations
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are comparable to the broad pulses, or have one FRED-like pulse with extended tail.

For these cases, dips in the SFC curve are affected by the quiescent periods (gaps)

and the tails. For the gap case, the real slow component can be revealed by manually

removing the gaps in the lightcurves (see examples in final section). These bursts

also clearly show the superposition effect as seen in the sample (I). However, since

the identified frequencies do not well match the pulse durations, we have excluded

these bursts in the statistical study presented below; (III) Irregular (noisy) sample:

24/266 (9%) of the bursts show dips in the SFC curve. However, their lightcurves are

too noisy to identify the corresponding components (see examples in final section). To

be cautious, we do not include these bursts in the statistical analysis. (IV) Short/low

temporal resolution sample: Finally, 37/266 (13.9%) of the bursts are short bursts

or long bursts whose lightcurves have a poor temporal resolution (see example in

final section). These bursts have too narrow a frequency range to perform the SFC

analysis. All the lightcurves and their corresponding SFC curves for the samples I-III

are presented at the UNLV GRB group website http://grb.physics.unlv.edu/sfc. An

example to each of the groups II, III and IV is presented in final section.

(2) Within Sample I (good sample), 30/117 (25.6%) bursts show just one dip in

the low frequency regime. Due to space limitation, we only present some examples in

Fig.3. All the other cases are disseminated at the group website. The identified slow

component time scales, as well as the s and c parameters for each dip are presented

in Table 2-2. Since there is no strict periodicity in the lightcurves, the time scales of

all the components we have identified are rough values, and we have rounded them

to the nearest 0.5.

(3) The rest 87/117 bursts (74.4%) in Sample I show more than one dips. For each

dip we try to identify the corresponding component in the lightcurve. Some examples

are presented in Fig.4. Others are presented in the group website. We present the

time scales of all the identified components Ti and their relevant s and c parameters
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also in Table 2, with increasing frequencies for ascending number i. Only dips with

c ≥ 0.9 are selected.

Inspecting the lightcurves with multiple dips in the SFC curve, we find that it

is not always straightforward to relate dips with pulses in the lightcurves. In some

cases (e.g. GRB 910430 and GRB 940414B), the low-frequency dip corresponds to a

broad pulse with overlapping fast variability whose frequency corresponds to the high-

frequency dips. In these cases, it is straightforward to identify the underlying broad

pulses as the slow component, while to identify the overlapping narrow pulses as the

fast component. In more complicated cases (e.g. GRB 940228A), besides identifying

some slow components (e.g. 8s and 4s) that correspond to individual broad pulses,

one also identifies a very slow (21s) component. This is due to clustering of multiple

pulses to make a 21s “cluster”. In general, we caution that the SFC method, although

sensitive to identify variability components not easy to unveil using the PDS method,

may be over-sensitive to pick up variability components. We therefore caution that

one should always go back to the lightcurves to clarify the physical nature of the

frequency components identified in the SFC curves.

To understand the results better, we perform a statistical analysis on the time

scales identified using the SFC technique. Figure 5 presents the identified variability

timescales Ti vs. the duration T90 of the bursts, histogram of Ti, and histogram of

T90/Ti. First we focus on the one-dip only sample. The characteristic time scales T1 of

this sample are marked in red in Fig.5. The following trends can be observed: first, it

seems that there is a very rough positive correlation between T1 and T90 (Fig.5a). This

suggests that one tends to find longer slow components in longer bursts. Since there

is a wide distribution in T90, T1 distributes from 2 s to 108 s (Fig.5b). On the other

hand, the scatter of correlation is large. The ratio T90/T1 spans in at least one decade

for this one-dip only sample. In some bursts, T1 as small as 1/10 of T90 can be found

(Fig.5c). Next, we include all the identified components (Ti) in the multi-dip sample
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(black circles in Fig.5a, and dashed histograms in Figs.5b and 5c). It is found that all

the distributions are much wider. The overall histograms including all Ti in the entire

sample (solid histogram in Fig.5b and Fig.5c) cover 2 orders of magnitude in both Ti

and T90/Ti. The spreading is mostly caused by the fast components identified in the

multi-dip sample, but the long clusters (such as the 21s component identified in GRB

940228A) also contribute to the scatter. Since our frequency interval log∆f = 0.05

is uniform for all the bursts regardless of their T90, our result does not suffer from the

possible selection effect caused by different T90. Inspecting the one-dip only sample,

one usually also see the overlaping fast component, but with a lower amplitude than

the multiple-dip ones. So these bursts are intrinsically similar to the multiple dip

sample. The fast-component dips only show up when the high-frequency component

amplitudes are large enough.

Another way to look at the distribution is to isolate the slowest component T1

from other higher frequency ones. Figure 6 shows such a separation: T1 in red and

Ti (i > 1) in black. It can be seen that the Ti − T90 correlation is more prominent

for T1. This may be because the longer the burst, the more probable that a long

cluster (e.g. 21s cluster in GRB 940228A) would show up. The correlation between

Ti (i > 1) is much weaker. In particular, variability time scales as short as seconds

can appear in very long GRBs (e.g. T90 ∼ 250 s). This suggests that the fastest

variability component essentially does not depend on the duration of the burst.

Conclusions and Discussion

We have developed a new method (Stepwise Filter Correlation) to decompose vari-

ability components in a time series. Through Monte Carlo simulations, we demon-

strate that this method can identify significant clustering structures of a lightcurve

in the frequency domain, and is more powerful than the traditional methods (e.g.

PDS) to identify superposed variability components, especially the slow variability
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component with duration comparable to the duration of the time series.

We then apply this method to GRB lightcurves as an effort to investigate whether

the lightcurve is a superposition of multiple variability components. Our findings can

be summarized as follows:

(1) We have applied this method to 266 BATSE bright GRBs, which may be

grouped into 4 categories. In general, most bursts show a clear dip in the low fre-

quency range, suggesting a slow component. By checking back to the lightcurves,

we were able to identify the corresponding pulses with the relevant dip frequency in

most of bursts. We found that such a slow component usually has superposed rapid

variability components. We therefore conclude that GRB lightcurves are typically

the superposition of multiple variability components.

(2) We selected 117 bursts as the good sample, and carried out a statistical sta-

tistical analysis sample. Among them, 30 show only one dip in the correlation curve.

The other 87 GRBs have more than one dips. For the one-dip only sample in which

the dip corresponds to a slow component, the distribution of this time scale T1 spreads

from several seconds to ∼ 100s, with no typical time scales, and T90/T1 spreads in

one order of magnitude (from ∼ 1 to ∼ 10). There is a rough trend of correlation

between T1 and T90. Including all the variability components, the distributions of Ti

and T90/Ti spread in two orders of magnitude, without a characteristic value. The

fastest time scale of order ∼ 1s can be found in bursts with a wide range of durations.

The identification of the variability superposition effect (i.e. the existence of

a slow component with overlapping faster variabilities) suggests that the causes of

GRB lightcurve variabilities may be diverse. There might be more than one physical

mechanisms that define the observed variability. This is in align with the prediction of

the ICMART model (Zhang & Yan, 2011a) and the jet propagation model (Morsony

et al., 2010). The common aspect of these two suggestions is that the slow component

(duration of seconds to 10s of seconds) is attributed to the engine that defines the
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jet variability. The difference between the two scenarios is the origin of the fast

component. While the envelope model (Morsony et al., 2010) attributes it to the

intrinsic variability at the base of the inner engine, i.e. the central black hole or

magnetar, the ICMART model (Zhang & Yan, 2011a) attributes it to relativistic

magnetic turbulence in the emission region. These two scenarios may be further

differentiated through testing more detailed predictions in both models. For example,

in the jet-star interaction model, the inner engine powered variability shows up only

if the input PDS is hard enough, e.g. E(k) ∝ k0, or essentially the same power per

decade. It is not known whether this can be achieved in the inner engine, and such

a hard PDS is not observed in the high frequency regime of GRBs. On the other

hand, the fast variability in the ICMART model arises from locally Lorentz-boosted

mini-jets due to relativistic turbulent reconnection. Simulations suggest that the it

can reproduce the observed PDS (Zhang & Zhang , 2014). In any case, neither model

predicts a characteristic time scale for the fast component. It is therefore still a

theoretical challenge to account for the typical fast component time scales identified

in some bursts.

Finally, we’d like to justify the Butterworth low-pass filter we have adopted. In

principle, one can use low-pass, high-pass, or band-pass filters. First, a band-pass

filter only passes signals in a certain frequency band, which is disfavored by the SFC

method. This is because a good correlation between two adjacent frequency bins may

simply reflect that the changes between the two frequency bins are similar. One may

not get a “dip” even though the changes are significant. Second, the purpose of this

work is to find out whether superposition exists in GRB lightcurves. We therefore care

more about the underlying slow component. We therefore choose a low-pass filter,

which is more sensitive to the slow component. A high-pass filter, on the other hand,

would be more sensitive to fast components. As for specific digital low-pass filters,

we have done simulation tests for several types, including the Butterworth filter, the
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Chebyshev filter, and the Gaussian filter. We find that different choices of filter would

not change the results significantly. Among them, the Butterworth filter is designed

to have as flat a frequency response as possible in the unscreened bandpass, which

is beneficial to retain information of the slow component. We therefore adopt it in

this work. We have also tried the wavelet transform method. It is a useful tool to

unveil multiple variability components in the lightcurves (see e.g. Vetere et al. 2006).

However, we did not find an easy way to quantify the results. We therefore do not

apply the wavelet transform in this work.
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GRB T90 Ta
1 (s/c) T b

2 (s/c) T c
3 (s/c) T d

4 (s/c)
910627 15.2 5 (1/1) 0 0 0
910807 59.6 12 (1/1) 0 0 0
911031A 90.0 23 (1/1) 0 0 0
911118A 19.2 22.5 (1/1) 0 0 0
920218C 122.5 55 (1/1) 0 0 0
920511A 48.5 3 (1/1) 0 0 0
920524 66.1 7.5 (1/1) 0 0 0
920622B 36.0 7 (1/1) 0 0 0
930331A 119.1 38 (1/1) 0 0 0
930425A 29.2 30 (1/1) 0 0 0
930916B 74.3 4 (1/1) 0 0 0
931106 152.1 108 (1/1) 0 0 0
931221A 57.9 29 (1/1) 0 0 0
940306 42.6 47 (1/1) 0 0 0
940520 32.8 2.5 (1/1) 0 0 0
940529D 37.6 42.5 (1/1) 0 0 0
941020B 56 28 (1/1) 0 0 0
950111B 46.3 48 (1/1) 0 0 0
950403A 14 12 (1/1) 0 0 0
950425 59.1 42.5 (1/1) 0 0 0
951202 28.5 34 (1/1) 0 0 0
960114 36.5 32.5 (1/1) 0 0 0
960807 12.7 6 (1/1) 0 0 0
961102 71.4 85 (1/1) 0 0 0
970202 26.7 34 (1/1) 0 0 0
970223 16.3 16 (1/1) 0 0 0
970807B 37.6 7 (1/1) 0 0 0
970912B 65.6 37 (1/1) 0 0 0
971029A 89.9 23 (1/1) 0 0 0
971220A 13.6 15 (1/1) 0 0 0
980124A 45.1 32 (1/1) 0 0 0
980225 127.7 81 (1/1) 0 0 0
980329A 18.5 20 (1/1) 0 0 0
991121 112.2 71 (1/1) 0 0 0
000302A 22.7 28.5 (1/1) 0 0 0

Table 1 Characteristic timescales identified in BATSE bright Gamma-Ray Bursts,
part I
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GRB T90 Ta
1 (s/c) T b

2 (s/c) T c
3 (s/c) T d

4 (s/c)
910425 90.2 106 (1/1) 9.5 (0.65/1) 4 (0.41/1) 0
910430 62.0 35 (1/1) 6 (0.11/1) 0 0
910601 28.5 20 (1/1) 4.5 (0.36/1) 0 0
910614 146.9 83 (0.65/1) 33 (1/1) 2.5 (0.02/0.98) 0
910619 106.1 67 (1/1) 11 (0.06/1) 2 (0.05/1) 0
910814A 77.8 62 (1/1) 10 (0.3/1) 0 0
910905 81.5 58 (1/1) 18 (0.64/0.96) 9 (0.77/1) 0
911127A 18.8 18 (1/1) 2 (0.046/1) 0 0
911202A 20.1 22 (1/1) 7 (0.2/0.99) 0 0
920110A 318.6 225.5 (1/1) 56.5 (0.33/1) 11.5 (0.1/1) 3 (0.027/1)
920210B 51.8 60 (1/1) 15 (0.25/0.97) 0 0
920308A 51.1 11 (1/1) 5 (0.53/1) 1 (0.15/1) 0.5 (0.03/0.99)
920513 88.6 70 (1/1) 4 (0.74/1) 2 (0.42/1) 0
920525B 16.1 8 (1/1) 4 (0.67/1) 0 0
920617B 67.7 34 (0.03/1) 27 (1/1) 0 0
920627B 52.8 26.5 (1/1) 4 (0.11/1) 3 (0.1/1) 1 (0.17/1)
921015 272.4 108 (0.6/1) 48 (1/1) 0 0
921118 174.7 78 (1/1) 10 (0.18/1) 0 0
921206B 53.8 21 (1/1) 3 (0.46/1) 0 0
921209B 38.1 9.5 (1/1) 3 (0.76/1) 0 0
921230A 18.8 16 (1/1) 2 (0.17/0.9) 0 0
930309A 90.1 72 (0.83/1) 7 (1/1) 1 (0.8/1) 0
930506B 22.1 22 (1/1) 5.5 (0.03/1) 2 (0.15/1) 0
930720A 45.9 26 (0.7/1) 5 (0.5/1) 2.5 (1/1) 0
930910C 83.1 52 (1/1) 4 (0.03/1) 3 (0.07/1) 1 (0.11/1)
931026 134.7 142 (1/1) 6.5 (0.04/1) 0 0
940128B 45.2 18 (1/1) 7 (0.2/1) 0 0
940210 30.7 12 (1/1) 1.5 (0.16/1) 1 (0.28/1) 0
940228A 33.3 21 (0.3/1) 8 (1/0.93) 4 (0.65/1) 2 (0.4/1)
940301 42.5 42.5 (1/1) 2 (0.05/1) 0 0
940302 119.9 67 (0.82/1) 12 (0.59/1) 2 (0.21/1) 0
940319 75.9 60 (1/1) 10 (0.3/1) 2.5 (0.08/1) 1 (0.11/1)
910321 51.6 16 (1/1) 3 (0.2/1) 0.5 (0.15/1) 0
940323 60.7 6 (1/1) 2.5 (0.19/1) 0 0
940414B 42.8 13.5 (1/1) 4 (0.2/1) 1 (0.16/1) 0
940619 88.4 56 (0.34/1) 31.5 (0.67/1) 20 (1/0.98) 5 (0.35/1)
940703A 34.9 30 (1/1) 15 (0.4/1) 3.5 (0.12/1) 0.5 (0.03/1)
940806D 10.2 3.5 (0.5/1) 0.5 (1/1) 0 0
940817 32.2 34 (0.62/1) 19 (1/1) 8.5 (0.5/1) 2.5 (0.7/1)

Table 2 Characteristic timescales identified in BATSE bright Gamma-Ray Bursts,
part II
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GRB T90 Ta
1 (s/c) T b

2 (s/c) T c
3 (s/c) T d

4 (s/c)
941014A 45.4 23 (1/1) 11 (0.65/1) 6 (0.15/1) 4 (0.25/1)
941017A 77.1 85 (1/1) 7 (0.05/1) 4 (0.03/1) 1.5 (0.09/1)
941023A 34.9 22 (1/1) 11 (0.2/1) 5.5 (0.34/1) 0
941119 33.4 24 (1/1) 5 (0.06/1) 2.5 (0.09/1) 0
941126E 36.1 13 (1/1) 1 (0.03/0.99) 0 0
950208 58.6 18.5 (1/1) 7 (0.24/1) 1 (0.21/1) 0
950211B 54.3 34 (0.43/1) 14 (1/1) 3 (0.43/1) 0
950608 142.0 101 (0.77/1) 45 (1/1) 2.5 (0.15/0.97) 0
950701B 10.6 7 (0.95/1) 4 (1/1) 0 0
950706 68.9 27 (1/1) 14 (0.38/1) 0 0
950909 65.7 21 (1/1) 7 (0.2/1) 0 0
951011 31.5 28 (1/1) 4 (0.55/1) 2.5 (0.75/0.98) 0
951219 58.8 21 (1/1) 4 (0.8/1) 1.5 (0.15/1) 0
960322A 22.8 25 (1/1) 2.5 (0.14/1) 0 0
960524C 80.6 64 (0.84/1) 23 (1/1) 3.5 (0.28/0.93) 1 (0.3/1)
960607B 140.5 112 (0.11/1) 88.5 (1/1) 14 (0.69/1) 2 (0.11/0.91)
960824 229.9 82 (1/1) 6.5 (0.05/1) 2.5 (0.07/0.9) 0
961228C 60.0 34 (0.54/1) 12 (0.4/1) 4 (1/1) 0
970111 31.5 13 (0.07/1) 9 (1/1) 0 0
970306 122.5 34.5 (0.52/1) 14 (0.18/1) 6 (1/1) 0
970315B 16.8 6.5 (0.98/1) 3.5 (0.1/1) 2 (1/1) 1 (0.76/1)
970411 58.9 53.5 (1/1) 3.5 (0.06/1) 0 0
970420 10.5 8 (1/1) 2 (0.81/1) 1 (0.5/1) 0
970612B 37.6 24 (0.07/1) 13 (1/1) 2.5 (0.4/1) 0
970816 6.5 5 (1/1) 1.5 (0.36/1) 0 0
970831 114.5 126 (1/1) 28 (0.34/0.94) 10 (0.11/1) 0
971110 195.2 123 (1/1) 55 (0.21/1) 28 (0.95/1) 9 (0.53/1)
971207C 48.3 38 (0.74/1) 5.5 (1/1) 0 0
980105 36.8 10 (0.42/1) 6.5 (1/1) 1 (0.24/1) 0
980203B 23.0 6 (1/1) 2 (0.42/1) 1.5 (0.9/1) 0.5 (0.42/1)
980208B 31.2 12 (1/1) 6.5 (0.42/0.96) 1.5 (0.16/1) 0
980315B 105.0 74 (0.93/1) 23.5 (1/1) 2 (0.13/0.96) 0
980703B 108.4 77 (1/1) 17 (0.25/1) 0 0
980803 19.8 21 (0.03/1) 7.5 (1/1) 1.5 (0.1/1) 0.5 (0.29/1)
980923 33.0 15 (1/1) 5 (0.44/1) 2 (0.39/1) 1 (0.15/1)
990108 145.7 58 (0.04/0.98) 36 (1/1) 3 (0.05/0.99) 0
990111A 15.0 14 (1/1) 1.5 (0.12/1) 0 0
990123A 63.4 56 (1/1) 16 (0.74/1) 0 0
990316B 100.5 89 (1/1) 18 (0.14/1) 2 (0.05/1) 1 (0.05/1)

Table 3 Characteristic timescales identified in BATSE bright Gamma-Ray Bursts,
part III

GRB T90 Ta
1 (s/c) T b

2 (s/c) T c
3 (s/c) T d

4 (s/c)
990323C 49.5 17.5 (1/1) 5 (0.18/1) 2 (0.46/1) 0
990728 42.8 15 (1/1) 3 (0.39/1) 0 0
990803 19.4 1 (1/1) 0.5 (0.45/0.99) 0 0
991004D 77.4 39 (0.69/1) 9.5 (1/1) 0.5 (0.22/1) 0
991009 131.6 83 (1/1) 23.5 (0.29/1) 6 (0.11/1) 0
991113 61.4 13 (1/1) 3 (0.76/1) 0 0
991127 52.7 8 (1/1) 1.5 (0.39/1) 0 0
991216 15.2 16 (1/1) 3 (0.55/1) 1 (0.11/1) 0.5 (0.1/1)
000101 51.8 33 (0.8/1) 7 (1/1) 0 0
000103 67.4 21 (0.79/1) 10 (1/1) 0 0
000201A 95.0 42 (1/1) 13.5 (0.19/1) 6 (0.08/1) 0
000221 26.2 12 (1/1) 0.5 (0.05/1) 0 0
000511A 115.0 73 (1/1) 14.5 (0.1/1) 0 0

Table 4 Characteristic timescales identified in BATSE bright Gamma-Ray Bursts,
part IV
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Figure 2 Examples that prove the validity of the SFC method. Top panel: The first
simulation test; Middle panel: the second simulation test; Lower panel: a real GRB
930331A). In all three panels, the left figure is the simulated or real lightcurve, the
middle figure is power density spectrum, and the right figure is the correlation curve,
i.e. the correlation coefficient Ri versus the cutoff frequency fc,i.
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Figure 3 Examples for the one-dip only bursts. The left panel are the lightcurves,
and the right panel are the correlation curves. The pulses that correspond to the
identified frequencies are marked in the lightcurves. The time scales are rounded to
the nearest 0.5.
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Figure 4 Examples for the multi-dip bursts. The left panel are the lightcurves, and the
right panel are the correlation curves. The pulses that correspond to the identified
frequencies are marked in different colors in the lightcurves. The time scales are
rounded to the nearest 0.5.
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Figure 5 Statistical results of the identified characteristic frequencies I. (a) The Ti −
T90 distribution; (b) histogram of Ti; and (c) histogram of T90/Ti. The time scales
identified in the one-dip sample are marked in red. In (a) the black circles denote the
time scales identified in multi-dip GRBs. In (b) and (c), the dashed histograms are
for the multi-dip sample, and the final solid histograms are for the entire sample.

43



0 100 200 300 400
0

50

100

150

200

250

300

350

T90
T i

Ti=T90

10−1 100 101 102
0

5

10

15

20

25

Ti

Co
un

ts

10−1 100 101 102
0

5

10

15

20

25

T90/Ti

Co
un

ts

Figure 6 Statistical results of the identified characteristic frequencies II. The red color
denotes the slowest time scale in all bursts, and black denotes the rest.
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Theoretical Derivation and Monte Carlo Simulation Test for SFC

Method

Butterworth low-pass filter

For a time series signal S(t) passing an ideal low-pass filter with cutoff angular

frequency ωc = 2πfc, the residual signal would read (Oppenheim et al., 1998)

S(τ,ωc) =
1

π

∫ ∞

−∞

S(t) sin[ωc(τ − t)]

τ − t
dt. (2.2)

For example, if S(t) = sin(At), then one has

S(τ,ωc) =
sin(Aτ)

2
× [Sign(1− A

ωc
) + Sign(1 +

A

ωc
)] , (2.3)

where “Sign” is the sign symbol of the expression. This formula can be translated to

S(τ,ωc) =















0, ωc < A

sin(Aτ)
2 , ωc = A

sin(Aτ), ωc > A

(2.4)

which shows that the high-frequency signal is attenuated.

For a signal as the sum of two periodic components, e.g., S(t) = sin(At)+sin(Bt)

with A < B, one can derive

S(τ,ωc) =

























0, ωc < A

sin(Aτ)
2 , ωc = A

sin(Aτ), A < ωc < B

sin(Aτ) + sin(Bτ)
2 , ωc = B

sin(Aτ) + sinBτ , ωc > B

(2.5)

It is obvious to see how the two signals are screened when a progressively lower
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angular cutoff frequency is applied. If one chooses two angular cutoff frequencies that

satisfy ωc,i−ωc,i−1 < B−A, one would get a correlation coefficient between two RLCs

to be Ri = 1 if A&B ! (ωc,i ∼ ωc,i−1), or Ri ' 1 if A|B ! (ωc,i ∼ ωc,i−1).

Similar results can be obtained if one sets S(t) = cos(At) or S(t) = cos(At) +

cos(Bt) with A < B.

For a more complicated time series, one can always decompose it into the summa-

tion of many Sine or Cosine functions through Fourier transforms. For any angular

cutoff frequency ωc,i (and the corresponding cutoff frequency fc,i = ωc,i/2π), the low-

pass filter then attenuates the signal above this frequency.

Simulation tests of the SFC algorithm

In order to better understand the SFC algorithm, we perform a set of additional

simulations.

1) Pulse profiles: We test four different pulse profile functions, A| sin(πt/T )| (sine)

function, Gaussian function, and two “FRED” profiles proposed by Kocevski et al.

(2003) and Norris et al. (1996). First, we generate multiple pulses lying side-by-side

with a fast component superposed on the slow component. For all four different pulse

functions, the pulse durations of the slow and fast components are fixed to 100π

and 10π, respectively, with the amplitude ratio between the two components fixed

as As : Af = 2 : 1. As shown in Fig.7(a-h), we can see that SFC is not sensitive

to the pulse profile function in the multi-pulse case. In the rest of the simulation

tests invoking multi-pulse lightcurves, we adopt the sine function as examples, and

use Fig.7(a,b) as our nominal test to be compared with others (see tests 2-6 below).

Since the SFC method can catch a frequency component even if only one pulse exists

(test 3 below) and since some GRBs indeed only have one broad pulse, next we test the

four pulse profile functions for one pulse only. We fix the full width at half maximum

(FWHM) to ∼ 200 s, and vary the function shapes. To our surprise, it is found that
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the identified typical durations from the SFC curve dip frequencies are very different

for the four functions (Fig.7(i-p)): ∼ 470 s for the sine shape, ∼ 500 for the Gaussian

shape, ∼ 676 s for the Norris’ shape, and ∼ 708 s for the Kocevski’s shape. A closer

investigation suggests that the longer durations for the FRED shapes are mostly due

to the extended tails for these profile functions (Norris et al., 1996; Kocevski et al.,

2003). This explains the identified long durations for some FRED-like lightcurves in

Sample II (gaps and long tails), which can be longer than T90 in some cases.

2) Amplitude of pulses: The amplitude of a frequency components is an impor-

tant factor. For our superposition tests, the relative depths of the dips depend on

the amplitude ratio of the slow and fast components. This can be seen from the

comparison of Fig.7(a,b) for As : Af = 2 : 1 and Fig.8(a,b) for As : Af = 1 : 1 (with

the nominal parameters Ts = 100π s, and Tf = 10π s). For this set of parameters,

the fast component dip disappears when As : Af > 15 : 1, while the slow component

dip disappears when As : Af < 1 : 25. The asymmetry is understandable since a low

pass filter favors the slow component.

3) Number of pulses: Similar with 2), we change the number of pulses rather than

the amplitude ratio, and also fix other parameters. Fixing the nominal parameters

but increasing the number of pulses, we find that the corresponding dips in the SFC

Ri − fc,i curve become deeper. See Fig.8(c,d) as compared with Fig.7(a,b). On the

other hand, the slow component can be detected even with one single broad pulse, as

long as its amplitude is large enough. See Fig.7(i-p).

4) Pulse duration spread: Similar to the mock light curve shown in the middle

panel of Fig.2, we generate a set of light curves whose slow component duration range

is fixed in Ts = (50 − 100) s and the amplitude ratio is fixed to As : Af = 2 : 1. We

gradually spread the fast component duration range. We find that the significance

of the relevant dip of the fast component in the SFC Ri − fc,i curve diminishes and

eventually disappears as the frequency spread is wide enough (Fig.8(e-h)). and then
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disappear (see Fig.7(m)∼ 7(p)). We propose that the pulse duration spread is another

important properties the SFC sensitive to.

5) Separation between two components: Back to the two-frequency case, we fix the

amplitude ratio as As : Af = 1 : 1 and the slow component duration as Ts = 100, and

then gradually brings the fast component duration closer and closer to the slow one.

We find that the significance of the relevant dip of fast component in the SFC Ri−fc,i

curve diminishes, and merges with the slow frequency component when ff−fs
fs

≤ 0.5

is satisfied (Fig.8(i-n)). Fig.7(o)∼ Fig.7(t)).

6) Gaps between pulses: Here we still test the simple two-frequency case. We

fix the pulse duration of slow component as 100π, fast component as 10π, and the

amplitude ratio between the two components as As : Af = 1 : 1. We then add gaps in

the lightcurve between the slow component pulses. The gap duration is fixed to 100π

(Fig.8(o,p)), Fig.7(u)∼ Fig.7(v)) or is randomly distributed in the range 0 − 100π

(Fig.8(q,r)). We find that the SFC curve still shows two components. However, the

corresponding period for slow component is larger than 100π, indicating that part of

the gap duration is added to the pulse. We therefore draw the conclusion that one

should be careful to perform SFC analysis when substantial gaps exist in a lightcurve.

Indeed, only when the gap is manually removed, can the original pulse width restored

(see final section for a case study).

Case studies of GRBs not belonging to the good sample

We take GRB 930120 as an example in Group II (gaps/long tails). As shown

in Fig.9(a), the burst has two brief activities with durations ∼ 10 s, followed by the

main emission episode. The three episodes are separated by two gaps. The SFC curve

(Fig.9(b)) shows only one dip, which corresponds to the main pulse with duration

around 34.5 s.

The puzzling fact is that the ∼ 10 s feature and the high-frequency spikes overlap-
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Figure 7 Mock catalog of lightcurves with different pulse profile and their relevant
correlation curves I.
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Figure 8 Mock catalog of lightcurves with different pulse properties and their relevant
correlation curves II.
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ping the main pulse are not captured. The missing high-frequency spiky component

is due to the low amplitude of this component. The lack of the ∼ 10 s component

may be understood in two ways. (1) The amplitudes of those two pulses are too small

compared with the main pulse; (2) The existence of the gaps modified the durations

of those pulses from ∼ 10 s to ∼ 30 s, which is close to the duration of the main pulse

so that the two dips merge to one. To test these possibilities, we perform several

tests. First, we manually remove the quiescent periods (the gaps) in the lightcurve.

The SFC curve still does not show the ∼ 10 s component (Fig.9(c,d)). Next, we man-

ually increase the amplitudes of the two pulses to be comparable to that of the main

pulse, the ∼ 10 s component then shows up in the SFC curve (Fig.9(e,f)). Finally,

we increase the amplitude of the two pulses but do not remove the gaps. The ∼ 10 s

dip in the SFC curve disappears again (Fig.9(g,h)). This suggests that both reasons

(low amplitude and influence of gaps) play a role in missing the ∼ 10 s component in

the original lightcurve.

In the irregular group (III) we chose GRB 910522 as an example. The lightcurve

is very noisy (Fig.9(i)), and the SFC curve is irregular (Fig.9(j)).

Finally, the group IV includes bursts with short durations or poor temporal reso-

lution. The SFC method is no longer applicable to these bursts. An example (GRB

920718B) is presented in Fig.9(k,l).
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Figure 9 Original and synthetic lightcurve for GRB930120. The top and middle panel
are original and synthetic lightcurve for GRB930120. The pulses that correspond to
the identified frequencies are marked in different colors in the lightcurves. The time
scales are rounded to the nearest 0.5. The bottom panel is lightcurve and SFC curve
for GRB910522 and GRB920718B.

52



CHAPTER 3

COMPTON SCATTERING OF SELF-ABSORBED SYNCHRONTRON
EMISSION

This chapter is part of the following published paper :

Gao H., Lei W.-H., Wu, X.-F., Zhang B., 2013, Monthly Notices of the Royal

Astronomical Society, 435,2520

Astrophysical sources powered by synchrotron radiation should have a synchrotron

self-Compton (SSC) scattering component. The same electrons that radiate syn-

chrotron photons would scatter these synchrotron seed photons to high energies,

forming a distinct spectral component. The SSC mechanism has been invoked to

account for the observed high energy emission in many astrophysical sources, such as

gamma-ray bursts (GRBs) (e.g. Mészáros et al., 1994; Wei and Lu, 1998; Dermer et

al., 2000a; Panaitescu & Kumar, 2000; Sari and Esin, 2001; Wang et al., 2001a; Wu

et al., 2004) and active galactic nuclei (AGNs) (e.g. Ghisellini et al., 1998b; Chiang

& Böttcher, 2002; Zhang et al., 2012).

SSC is a complex process. The flux at each observed frequency includes the con-

tributions from electrons in a wide range of energies, which scatter seed photons in

a wide range of frequencies. Therefore, a precise description of the SSC spectrum

invokes a complex convolution of the seed photon spectrum and electron energy dis-

tribution, which requires numerical calculations. However, for a synchrotron source

with shock-accelerated electrons, the injected electron spectrum is usually assumed

to be a simple power-law function, the corresponding electron energy distribution

and seed synchrotron spectrum thus have simple patterns. Some analytical approx-

imations for the SSC spectrum can be then made if Compton scattering is in the

Thomson regime.

Besides the injected electron spectrum, two other factors are essential to define

the shape of the final electron energy distribution in a synchrotron source: radia-
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tion cooling and self-absorption heating. There are three characteristic synchrotron

frequencies in the spectrum: the minimum injection frequency (νm), the cooling fre-

quency (νc), and the self-absorption frequency (νa). When νa < νc, the heating effect

due to self-absorption is not important in modifying the electron energy spectrum.

For a continuous injection of a power-law electron spectrum, the final electron energy

distribution is a broken power law. The seed synchrotron spectrum for SSC is charac-

terized by a multi-segment broken power law, separated by νm, νc, and νa. Different

ordering of the three characteristic frequencies leads to different shapes of the seed

synchrotron spectrum. In the literature, usually νa < min(νm, νc) is assumed. Sari

and Esin (2001) have derived the approximated expressions of the SSC spectrum in

the νa < νm < νc and νa < νc < νm regimes, respectively1.

When νa > νc, synchrotron self-absorption becomes an important heating source

for the low-energy electrons. Consequently, the electrons are dominated by a quasi-

thermal component until a “transition” Lorentz factor γt, above which the electrons

are no longer affected by the self-absorption heating and keep the normal power law

distribution (Ghisellini et al., 1988, 1991, 1998a). For these strong absorption cases,

a thermal peak due to pile-up electrons would appear around νa in the synchrotron

spectrum (Kobayashi et al., 2004), which would also result in some new features in

the SSC spectrum.

In this work, we extend the analysis of Sari and Esin (2001) and present the full

analytical approximated expressions of the SSC spectrum in all six possible cases

of νa, νm, νc ordering. Firstly, three weak synchrotron self-absorption cases (νa <

νc) are discussed. Then we focus on the strong synchrotron self-absorption regime

(νa > νc), where synchrotron self-absorption significantly affects the electron energy

distribution. By adopting a simplified prescription of the pile-up electron distribution,

we derive the expressions of both synchrotron and SSC spectral components. All the

1Assuming weak self-absorption, Gou et al. (2007) derived analytical approximations of the SSC
component for several other spectral regimes.
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expressions in this work are valid in the Thomson regime, so that the Klein-Nishina

correction effect (e.g. Rees, 1967; Nakar et al., 2009) is not important in the first order

SSC component. We also limit our treatment to the first-order SSC, and assume that

the higher-order SSC components (e.g. Kobayashi et al., 2007; Piran et al., 2009)

are suppressed by the Klein-Nishina effect. Such an assumption is usually valid for

most problems. In order to make a simple analytical treatment, we have applied a

simplified approximation for the synchrotron spectra, and adopted the simplification

that the inverse Compton scattering of mono-energetic electrons off mono-energetic

seed photons is also mono-energetic (Sari and Esin, 2001). This would not significantly

deteriorate precision of the analysis, while making it much simpler.

Weak Synchrotron Self-Absorption Cases

In the single scattering regime, the inverse Compton volume emissivity for a power-

law distribution of electrons is (Rybicki and Lightman, 1979; Sari and Esin, 2001)

jICν = 3σT

∫ ∞

γm

dγN(γ)

∫ 1

0

dx g(x)f̃νs(x), (3.1)

where x ≡ ν/4γ2νs (an angle-dependent parameter), f̃νs is the incident specific flux in

the shock front, σT is Thomson scattering cross section, and g(x) = 1+x+2x ln x−2x2

takes care of the angular dependence of the scattering cross section in the limit of

γ ( 1 (Blumenthal & Gould, 1970). One can approximate g(x) = 1 for 0 < x < x0

to simplify the integration, which would yield a correct behavior for x ' 1 (Sari &

Esin 2001). With such a simplification, the SSC spectrum is given by (Sari & Esin

2001),

f IC
ν = RσT

∫ ∞

γm

dγN(γ)

∫ x0

0

dx fνs(x), (3.2)
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where fνs(x) is the synchrotron flux, R is the co-moving size of the emission region, and

the value of the parameter x0 is set by ensuring energy conservation, i.e.
∫ 1
0 x g(x)dx =

∫ x0

0 x dx.

When νa < νc, in the slow cooling regime (γm < γc), the electron energy distribu-

tion is

N(γ) =









n(p− 1)γp−1
m γ−p, γm ≤ γ ≤ γc,

n(p− 1)γp−1
m γcγ−p−1, γ > γc.

(3.3)

Here γm is the minimum Lorentz factor of the injected electrons, and p is electron

spectral index. Cooling is efficient for electrons with Lorentz factor above the critical

value γc. Notice that Eq.3.3 is only valid for p > 1.

In the fast cooling regime (γc < γm), the electron energy distribution is2

N(γ) =









nγcγ−2, γc ≤ γ ≤ γm,

nγp−1
m γcγ−p−1, γ > γm.

(3.4)

In this regime, all the injected electrons are able to cool on the dynamical timescale.

Therefore, there is a population of electrons with Lorentz factor below the injection

minimum Lorentz factor γm.

The seed synchrotron spectrum fνs has spectral beaks at νa, νm and νc, where

νa is the self-absorption frequency, below which the system becomes optically thick,

and νm and νc are the characteristic synchrotron frequencies for the electrons with

Lorentz factors γm and γc, respectively.

As shown in Sari and Esin (2001), the critical frequencies in the SSC component

are defined by different combination of γa, γm, γc and νa, νm, νc. For convenience, we

2This is valid only in the deep fast cooling regime. For a non-steady state with not too deep fast
cooling, the electron spectrum can be harder than -2 (Uhm and Zhang, 2013b).
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use a new notation in this work

νIC
ij = 4γ2

i νjx0, i, j = a, c,m. (3.5)

The physical meaning is the characteristic upscattered frequency for mono-energetic

electrons with Lorentz factor γi scattering off mono-energetic photons with frequency

νj .

Case I: νa < νm < νc

This case has been studied by Sari and Esin (2001). The synchrotron spectrum

reads3

fν =





















fmax

(
νa
νm

) 1
3
(

ν
νa

)2
, ν ≤ νa;

fmax

(
ν
νm

) 1
3
, νa < ν ≤ νm;

fmax

(
ν
νm

) 1−p
2

, νm < ν ≤ νc;

fmax

(
νc
νm

) 1−p
2

(
ν
νc

)− p
2
, ν > νc,

(3.6)

where fmax = fν(νm) is the peak flux density of the synchrotron component, which is

taken as a constant. Substituting this seed photon spectrum into equation (3.2), the

inner integral reads (Sari and Esin, 2001)

I =





















I1 % 5
2fmaxx0

(
νa
νm

) 1
3
(

ν
4γ2νax0

)

, ν < 4γ2νax0

I2 % 3
2fmaxx0

(
ν

4γ2νmx0

) 1
3
, 4γ2νax0 < ν < 4γ2νmx0

I3 % 2
(p+1)fmaxx0

(
ν

4γ2νmx0

) 1−p
2

, 4γ2νmx0 < ν < 4γ2νcx0

I4 % 2
(p+2)fmaxx0

(
νc
νm

) 1−p
2

(
ν

4γ2νcx0

)− p
2
, ν > 4γ2νcx0.

(3.7)

3Hereafter, the synchrotron spectra are denoted as fν(ν) for simple presentation. Notice that
when they are taken as seed spectrum, one should consider them as fνs(νs) and apply equation (3.2)
to calculate the SSC spectra.
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Similar to Sari and Esin (2001), only the leading order of ν and zeroth order of νa/νm

and νm/νc are shown. However, we note that higher order small terms are needed

to derive the following SSC spectrum (3.8) through integrating the outer integral of

equation (3.2).

After integration, f IC
ν is very complex. Keeping only the dominant terms, one

gets the analytical approximation

f IC
ν % RσTnfmaxx0 (3.8)

×



























5
2
(p−1)
(p+1)

(
νa
νm

) 1
3
(

ν
νICma

)

, ν < νICma;

3
2

(p−1)
(p−1/3)

(
ν

νICmm

) 1
3
, νIC

ma < ν < νIC
mm;

(p−1)
(p+1)

(
ν

νICmm

) 1−p
2

[
4(p+1/3)

(p+1)(p−1/3) + ln
(

ν
νICmm

)]

, νIC
mm < ν < νIC

mc;

(p−1)
(p+1)

(
ν

νICmm

) 1−p
2

[
2(2p+3)
(p+2) − 2

(p+1)(p+2) + ln
(

νICcc
ν

)]

, νIC
mc < ν < νIC

cc ;

(p−1)
(p+1)

(
ν

νICmm

)− p
2
(

νc
νm

) [
2(2p+3)
(p+2) − 2

(p+2)2 +
(p+1)
(p+2) ln

(
ν

νICcc

)]

, ν > νIC
cc .

Notice that Sari and Esin (2001) presented an opposite sign for the term 2
(p+2)2 in the

last segment, which might be a typo in that paper.

The normalized synchrotron + SSC spectra for this and other two weak self-

absorption cases are presented in Figure 10. We note that these analytical expressions

are not continuous around the breaks because of dropping the small order terms (see

also Sari & Esin 2001), but the mis-match is small. When plotting the SSC curve in

Figure 10, we have used the analytical approximations, but added back some smaller

order terms to remove the discontinuity.

58



Case II: νm < νa < νc

The synchrotron photons spectrum reads

fν =





















fmax

(
νm
νa

)p+4
2

(
ν
νm

)2
, ν ≤ νm;

fmax

(
νa
νm

) 1−p
2

(
ν
νa

) 5
2
, νm < ν ≤ νa;

fmax

(
ν
νm

) 1−p
2

, νa < ν ≤ νc;

fmax

(
νc
νm

) 1−p
2

(
ν
νc

)− p
2
, ν > νc;

(3.9)

Evaluating the inner integral in equation (3.2), we obtain

I =
















I1 % 2(p+4)
3(p+1)fmaxx0

(
νm
νa

)p+1
2 ν

4γ2νmx0
, ν < 4γ2νax0

I2 % 2
p+1fmaxx0

(
ν

4γ2νmx0

) 1−p
2

, 4γ2νax0 < ν < 4γ2νcx0

I3 % 2
(p+2)fmaxx0

(
νc
νm

) 1
2
(

ν
4γ2νmx0

)− p
2
, ν > 4γ2νcx0

(3.10)

An interesting feature of this result is that I1 is linear with ν all the way to

ν = 4γ2νax0, indicating that a break corresponding to the break in the synchrotron

spectrum at νm does not show up in the SSC spectrum for monoenergetic electron

scattering. When ν > 4γ2νax0, the SSC spectrum follows the same frequency depen-

dence as the corresponding seed synchrotron spectrum.

After second integration, we get the analytical approximation in this regime:

f IC
ν % RσTnfmaxx0 (3.11)

×





























2(p+4)(p−1)
3(p+1)2

(
νm
νa

) p+1
2

(
ν

νICmm

)

, ν < νIC
ma;

(p−1)
(p+1)

(
ν

νICmm

) 1−p
2

[
2(2p+5)

(p+1)(p+4) + ln
(

ν
νICma

)]

, νIC
ma < ν < νIC

mc;

(p−1)
(p+1)

(
ν

νICmm

) 1−p
2

[

2 + 2
p+4 + ln

(
νc
νa

)]

, νIC
mc < ν < νIC

ca ;

(p−1)
(p+1)

(
ν

νICmm

) 1−p
2

[
2(2p+1)
(p+1) + ln

(
νICcc
ν

)]

, νIC
ca < ν < νIC

cc ;

(p−1)
(p+2)

(
νc
νm

)(
ν

νICmm

)− p
2
[
2(2p+5)
(p+2) + ln

(
ν

νICcc

)]

, ν > νIC
cc .
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Similar to the I result, there is no spectral break around νIC
mm. Another comment

is that the logarithmic terms make the SSC spectrum harder than the simple broken

power-law approximation above the νFν peak frequency. At high frequencies, the

simple broken power-law approximation may not be adequate to represent the true

SSC spectrum.

Case III: νa < νc < νm

This case was also studied by Sari and Esin (2001). The seed synchrotron spectrum

reads

fν =





















fmax

(
νa
νc

) 1
3
(

ν
νa

)2
, ν ≤ νa;

fmax

(
ν
νc

) 1
3
, νa < ν ≤ νc;

fmax

(
ν
νc

)− 1
2
, νc < ν ≤ νm;

fmax

(
νc
νm

) 1
2
(

ν
νm

)− p
2
, ν > νm;

(3.12)

This gives

I =





















I1 % 5
2fmaxx0

(
νa
νc

) 1
3
(

ν
4γ2νax0

)

, ν < 4γ2νax0

I2 % 3
2fmaxx0

(
ν

4γ2νcx0

) 1
3
, 4γ2νax0 < ν < 4γ2νcx0

I3 % 2
3fmaxx0

(
ν

4γ2νcx0

)− 1
2
, 4γ2νcx0 < ν < 4γ2νmx0

I4 % 2
(p+2)fmaxx0

(
νc
νm

) 1
2
(

ν
4γ2νmx0

)− p
2
, ν > 4γ2νmx0

(3.13)

and the final SSC spectrum

f IC
ν % RσTnfmaxx0 (3.14)
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×



























5
6

(
νa
νc

) 1
3
(

ν
νICca

)

, ν < νIC
ca ;

9
10

(
ν

νICcc

) 1
3
, νIC

ca < ν < νIC
cc ;

1
3

(
ν

νICcc

)− 1
2
[
28
15 + ln

(
ν

νICcc

)]

, νIC
cc < ν < νIC

cm;

1
3

(
ν

νICcc

)− 1
2
[

2(p+5)
(p+2)(p−1) −

2(p−1)
3(p+2) + ln

(
νICmm
ν

)]

, νIC
cm < ν < νIC

mm;

1
(p+2)

(
νc
νm

)(
ν

νICmm

)− p
2
[
2
3
(p+5)
(p−1) −

2
3
(p−1)
(p+2) + ln

(
ν

νICmm

)]

, ν > νIC
mm.

We note that Sari and Esin (2001) has an opposite sign in the term ln
(

ν
νICcc

)

in the

third segment, which might be another typo in that paper.

We define ratio between the SSC luminosity and the synchrotron luminosity as

the X parameter similar to Sari & Esin (2001), i.e.,

X ≡ LIC

Lsyn
=

Uph

UB
, (3.15)

where Uph and UB are the synchrotron photon energy density and magnetic field

energy density, respectively.

For νa < νm < νc (case I) and νm < νa < νc (case II), the νfν peaks of the

synchrotron and the SSC components are at νc and νIC
cc , respectively (see Figure 10).

One can estimate

X =
LIC

Lsyn
∼ νIC

cc f
IC
ν (νIC

cc )

νcfν(νc)

∼
νIC
cc RσTnfmaxx0

(
νICcc
νICmm

) 1−p
2

νcfmax

(
νc
νm

) 1−p
2

∼ 4x2
0σTnRγ2

c

(
γc
γm

)1−p

, (3.16)

which is consistent with Sari & Esin (2001). Note that when calculating X , we did

not include the coefficients in the analytical approximations of the SSC component,
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Figure 10 Total synchrotron + SSC spectra for weak synchrotron reabsorption cases
(νa < νc). The top panel is for νa < νm < νc case; the middle panel is for νm < νa < νc
case; and the bottom panel is for νa < νc < νm case. The thin solid line is synchrotron
component. The thick solid line in the SSC component is drawn using the analytical
approximations, while the dashed lines are the broken power-law approximation for
comparison. In all the cases, the νFν peaks for both the synchrotron and the SSC
components are normalized to unity.
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which is of order unity.

For νa < νc < νm (case III), the νfν peaks of the synchrotron and SSC components

are at νm, and νIC
mm, respectively. One therefore has

X =
LIC

Lsyn
∼ νIC

mmf
IC
ν (νIC

mm)

νmfν(νm)

∼
νIC
mmRσTnfmaxx0

(
νICmm
νICcc

)− 1
2

νmfmax

(
νm
νc

)− 1
2

∼ 4x2
0σTnRγcγm, (3.17)

which is also consistent with Sari & Esin (2001).

Strong Synchrotron Self-Absorption Cases

When νa > νc, synchrotron/SSC cooling and self-absorption heating would reach

a balance around a specific electron energy under certain conditions (see details in

the last section of this chapter). For such cases, the electron energy distribution

and the photon spectrum are coupled, a numerical iterative procedure is needed to

obtain the self-consistent solution. Ghisellini et al. (1988) solved the kinetic equation

and found that the electron energy distribution would include two components: a

thermal component shaped by synchrotron self-absorption heating, and a non-thermal

power-law component. Based on their results (Ghisellini et al., 1988), the electron

distribution is close but not strictly Maxwellian. Strictly, one needs to use equation

(3.2) to calculate the SSC spectral component numerically. In the following, we make

an approximation to derive analytical results. For the quasi-thermal component, we

take N(γ) ∝ γ2 for γ < γa to denote the thermal component, and take a sharp cutoff

at γa. Above this energy, the electron energy distribution is taken as the standard

(broken) power law distribution.
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In particular, for νc < νa < νm, the electron distribution becomes

N(γ) =













n3γ2

γ3
a
, γ ≤ γa,

nγcγ−2, γa < γ ≤ γm.

nγp−1
m γcγ−p−1, γ > γm.

(3.18)

For νm < νc < νa, one has

N(γ) =








n3γ2

γ3
a
, γ ≤ γa,

n(p− 1)γp−1
m γcγ−p−1, γ > γa.

(3.19)

For νc < νm < νa, one has

N(γ) =









n3γ2

γ3
a
, γ ≤ γa,

nγp−1
m γcγ−p−1, γ > γa.

(3.20)

Following these new shapes of the electron distribution, the synchrotron photon

spectra can be calculated, which also contain a thermal component and a (broken)

power-law component. Still applying equation (3.2), one can analytically calculate

the SSC spectral component for another three cases in this regime. We note that

due to the simple approximation to the complicated electron pile-up process, the

analytical results presented below are not as precise as those in the weak absorption

cases.

Case IV: νc < νa < νm

In this case, the synchrotron photon spectrum reads

fν =













fmax

(
ν
νa

)2
, ν ≤ νa;

fmaxR
(

ν
νa

)− 1
2
, νa < ν ≤ νm;

fmaxR
(

νm
νa

)− 1
2
(

ν
νm

)− p
2
, ν > νm;

(3.21)
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where R is the discontinuity ratio in the electron distribution at γa,

R =
γc
3γa

. (3.22)

One can then derive

I =















I1 % fmaxx0

(
1
2R+ 1

)
(

ν
4γ2νax0

)

, ν < 4γ2νax0

I2 % 1
2fmaxx0R

(
ν

4γ2νax0

)− 1
2
, 4γ2νax0 < ν < 4γ2νmx0

I3 % 3
2(p+2)fmaxx0R

(
νa
νm

) 1
2
(

ν
4γ2νmx0

)− p
2
, ν > 4γ2νmx0

(3.23)

and

f IC
ν % RσTnfmaxx0 (3.24)

×





















(
1
2R+ 1

)

(R+ 4)
(

ν
νICaa

)

, ν < νIC
aa ;

R
(

ν
νICaa

)− 1
2
[
1
6R+ 9

10 +
1
4R ln

(
ν

νICaa

)]

, νIC
aa < ν < νIC

am;

R2
(

ν
νICaa

)− 1
2
[

3
p−1 −

1
2 +

3
4 ln

(
νICmm
ν

)]

, νIC
am < ν < νIC

mm;

9R2

2(p+2)

(
νa
νm

)(
ν

νICmm

)− p
2

[

4
p+3

(
γa
γm

)p−1
γa
γc

+ 3(p+1)
(p−1)(p+2) +

1
2 ln

ν
νICmm

]

, ν > νIC
mm.

In this case, there are two peaks in the νFν spectrum for the synchrotron and SSC

components, respectively. For the synchrotron component, the thermal peak is at

(25/9)νa % 2.8νa, and the non-thermal peak is at νm. For the SSC component, the

thermal peak at νIC
aa , and the non-thermal peak at νIC

mm. The relative importance

of the two peaks depend on the relative location of νa with respect to νc and νm.

More specifically, the spectrum is non-thermal-dominated when νa <
√
νmνc, and is

thermal-dominated when νa >
√
νmνc.

In Figure 11, we compare the above simplified analytical approximation (solid)

with a simplest power law prescription (dashed) of the SSC component. The non-

thermal-dominated and the thermal-dominated cases are presented in Figures 11a

and 11b, respectively. Below νIC
mm, similar to the weak self-absorption regime (cases
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I-III), the logarithmic terms make the analytical spectrum harder than the simple

broken power-law approximation above the non-thermal νFν peak frequency. At high

frequencies, the simple broken power-law approximation is not adequate to represent

the true SSC spectrum.

Case V and VI: νa > max(νm, νc)

For these two cases (νm < νc < νa and νc < νm < νa), the treatments and results

are rather similar to each other. we take νm < νc < νa as an example. In this case,

the synchrotron spectrum reads

fν =









fmax

(
ν
νa

)2
, ν ≤ νa;

fmaxR
(

ν
νa

)− p
2
, ν > νa;

(3.25)

where

R = (p− 1)
γc
3γa

(
γm
γa

)p−1

. (3.26)

Applying equation (3.2), the inner integral I can be then approximated as

I =









I1 % fmaxx0

(
3R

2(p+2) + 1
)(

ν
4γ2νax0

)

, ν < 4γ2νax0

I2 % 3
2(p+2)fmaxx0R

(
ν

4γ2νax0

)− p
2
, ν > 4γ2νax0.

(3.27)

Integrating over the outer integral, one gets

f IC
ν % RσTnfmaxx0 (3.28)

×









(
3R

2(p+2) + 1
)(

3R

p+2 + 4
)(

ν
νICaa

)

, ν < νICaa ;

1
p+2

[
6R
p+3 +R

(
9R

2(p+2) + 1
)

+ 9R2

4 ln
(

ν
νICaa

)](
ν

νICaa

)− p
2
, ν > νIC

aa ;

The case of νc < νm < νa is almost identical to the above νm < νc < νa. The only
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difference is that the expression of R is modified to

R =
γc
3γa

(
γm
γa

)p−1

. (3.29)

This is reasonable, since in the fast cooling case, the electron energy spectral index is

p = 2, so that the factor (p−1) can be reduced to 1. The analytical results and simple

broken power-law approximation in this regime is identical to Figure 11c. We note

again that full numerical calculations are needed to obtain more accurate results.

Finally, we investigate the X parameter in the strong synchrotron self-absorption

regime.

For νc < νa < νm (case IV), if the spectrum is non-thermal-dominated, the syn-

chrotron and SSC emission components peak at νm and νIC
mm, respectively. One thus

has

X =
LIC

Lsyn
∼ νIC

mmf
IC
ν (νIC

mm)

νmfν(νm)

∼
νIC
mmRσTnfmaxx0R

2
(

νICmm
νICaa

)− 1
2

νmRfmax

(
νm
νa

)− 1
2

∼ 4x2
0σTnRγcγm. (3.30)

If the spectrum is thermal-dominated, the synchrotron and SSC emission components

peak at νa and νIC
aa , respectively. One has

X =
LIC

Lsyn
∼ νIC

aa f
IC
ν (νIC

aa )

νafν(νa)

∼ νIC
aaRσTnfmaxx0

νafmax

∼ 4x2
0σTnRγ2

a . (3.31)

In general, the X parameter for νc < νa < νm (case IV) is 4x2
0σTnR ·max(γ2

a , γcγm).
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Figure 11 Same as Figure 10, but for strong synchrotron reabsorption cases . The top
panel is for νc < νa < νm and νa <

√
νmνc case; the middle panel is for νc < νa < νm

and νa >
√
νmνc case; and the bottom panel is for νa > max(νm, νc) case. All the

solid lines are analytical approximations and the dashed lines are broken power-law
approximations.
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For νm < νc < νa (case V) and νc < νm < νa (case VI), the synchrotron and SSC

emission components peak at νa and νIC
aa , respectively. In this case, one has

X =
LIC

Lsyn
∼ νIC

aa f
IC
ν (νIC

aa )

νafν(νa)

∼ νIC
aaRσTnfmaxx0

νafmax

∼ 4x2
0σTnRγ2

a . (3.32)

which is same as the thermal-dominated case for νc < νa < νm (case IV). So in general

the expression of X is equation (3.32) only if the spectrum is thermal-dominated.

Conclusion and Discussion

We have extended the analysis of Sari and Esin (2001) and derived the analytical

approximations of the SSC spectra of all possible orders of the three synchrotron

characteristic frequencies νa, νm, and νc. Based on the relative order between νa and

νc, we divide the six possible orders into two regimes.

In the weak self-absorption regime νa < νc, self-absorption does not affect the

electron energy distribution. Two cases in this regime have been studied by Sari and

Esin (2001). Our results are consistent with theirs (except the two typos in their

paper). For the other regime νm < νa < νc, we find that the SSC spectrum is linear

to ν all the way to νIC
ma, and there is no break corresponding to νIC

mm.

In the strong self-absorption νa > νc regime, synchrotron self-absorption heating

balances synchrotron/SSC cooling, leading to pile-up of electrons at a certain energy,

so that the electron energy distribution is significantly altered, with an additional

thermal component besides the non-thermal power law component. Both the syn-

chrotron and the SSC spectral components become two-hump shaped. To get an

analytical approximation of the SSC spectrum, we simplified the quasi-thermal elec-

tron energy distribution as a power law with a sharp cutoff above the piling up energy,
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and derived the analytical approximation results of the synchrotron and SSC spectral

components. We suggest that for the thermal-dominated cases, i.e. νa >
√
νmνc in

the νc < νa < νm regime or the νa > max(νm, νc) regime, full numerical calculations

are needed to get accurate results.

In general, the SSC component roughly tracks the shape of the seed synchrotron

component, but is smoother and harder at high energies. For all the cases, we compare

our analytical approximation results of SSC component with the simplest broken

power-law prescription. We find that in general the presence of the logarithmic terms

in the high energy range makes the SSC spectrum harder than the broken power-law

approximation. One should consider these terms when studying high energy emission.

The only exceptions are the νa > max(νm, νc) regimes. However, in these regimes the

analytical approximations may be no longer good, and one should appeal to full

numerical calculations.

Our newly derived spectral regimes may find applications in astrophysical objects

with high “compactness” (i.e. high luminosity, and small size). In these cases, νa can

be higher than νc or νm, or even both (see last section in this chapter for the critical

condition). For example, in the early afterglow phase of GRBs, slow cooling may be

relevant, and the radio afterglow is self-absorbed with νa above νm (e.g. Chandra and

Frail, 2012). In the prompt emission phase when fast cooling is more relevant, the

self-absorption frequency can be above νc (e.g. Shen and Zhang, 2009).

An example of the extreme case νa > max(νm, νc) can be identified for a GRB

problem. For a dense circumburst medium with a wind-like (n ∝ r−2) structure, in the

reverse shock region, the condition νa > max(νm, νc) can be satisfied (e.g. Kobayashi

et al., 2004). For a GRB with isotropic energy E = 1052E52, initial Lorentz factor

Γ0 = 100Γ0,2, initial shell width ∆ = 1012∆12 running into stellar wind with density

ρ = (5 × 1011g cm−1)A∗r−2, one can derive following parameters at the shock cross-

ing radius r×: The blastwave Lorentz factor Γ× = 25.8A−1/4
∗ ∆−1/4

12 E1/4
52 , νm = 3.1 ×
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1014 Hz [g(p)/g(2.3)]A∗∆
−1/2
12 E−1/2

52 ε2e,−1ε
1/2
B,−2Γ

2
0,2, νc = 1.2×1012 HzA−2

∗ ∆1/2
12 E1/2

52 ε−3/2
B,−2,

νa = 4.6×1014 Hz A3/5
∗ ∆−11/10

12 E1/10
52 ε3/10B.−2Γ

−2/5
0,2 . Here εe = 0.1εe,−1 and εB = 0.01εB,−2

are microphysics shock parameters for the internal energy fraction that goes to elec-

trons and magnetic fields, p is the electron spectral index, and g(p) = (p−2)/(p−1).

We can see that for typical parameters, νa > max(νc, νm) is satisfied. In this

regime, one should check whether the “Razin” plasma effect is important. At shock

crossing time, the comoving number density of the shocked ejecta region is n′ =

2.3 × 108 cm−3 A5/4
∗ ∆−7/4

12 E−1/4
52 Γ−1

0,1. Noticing that the comoving plasma angular

frequency is ω′
p = 5.63 × 104 s−1n′1/2, one can write the plasma frequency in the

observer frame as νp = 1.4 × 1011 Hz A3/8
∗ ∆−9/8

12 E1/8
52 Γ−1/2

0,2 . Multiplying by γa =

102A1/20
∗ ∆−1/20

12 E1/20
52 ε−1/10

B.−2 Γ
−1/5
0,2 , one gets γaνp = 1.4×1013 Hz A17/40

∗ ∆−47/40
12 E7/40

52 ε−1/10
B,−2

Γ−7/10
0,2 , which is much smaller than νa. This suggests that the Razin effect is not im-

portant (Rybicki and Lightman, 1979), and the dominant mechanism to suppress

synchrotron emission at low energies is synchrotron self-absorption. Notice that for

this particular problem, the second order Comptonization may not be suppressed

by the Klein-Nishina effect, and one has to introduce it for a fully self-consistent

treatment.

Condition of electron pile-up and strong absorption

By applying the Einstein coefficients and their relations to a system with three

energy levels, Ghisellini et al. (1991) have derived one useful analytical expression of

the cross section for synchrotron self-absorption:

σS(γ, ν) =









22/3
√
3πΓ2(4/3)
5

σT
αf

Bcr
B

(
γν
3νL

)−5/3

, νL
γ < ν ' 3

2γ
2νL,

√
3
2 π2 σT

αf

Bcr
B

1
γ3

(
νL
ν

)

exp
(

−2ν
3γ2νL

)

, ν ( 3
2γ

2νL.
(3.33)

where γ is the relevant electron Lorentz factor, ν is photon frequency being absorbed,

αf is the fine structure constant, Bcr = αf(mec2/r3e)
1/2 ≈ 4.4 × 1013G is the critical
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magnetic field strength, re is the classical electron radius, and νL = eB/2πmec is the

electron cyclotron frequency. All the parameters introduced in this section are in the

comoving frame.

For a simple derivation of the electron pile-up condition, we take an approximate

form

σS(γ, ν) =









22/3
√
3πΓ2(4/3)
5

σT
αf

Bcr
B

(
γν
3νL

)−5/3

, νL
γ < ν ≤ 3

2γ
2νL,

0, ν > 3
2γ

2νL.
(3.34)

For electrons with Lorenz factor γ, the heating rate due to synchrotron self-

absorption can be estimated as

γ̇+(γ) =

∫ ∞

0

c · nν · hν · σS(γ, ν) · dν (3.35)

where nν is the specific photon number density at frequency ν contributed by all the

electrons.

The cooling rate for electrons with Lorentz factor of γ is

γ̇−(γ) = (1 + Y ) · Psyn

= (1 + Y )× 4

3
σTcγ

2B
2

8π
, (3.36)

where Y ≡ Pssc
Psyn

is the Compton parameter.

By balancing the heating and cooing rate, one can easily obtain the critical electron

Lorentz factor γcr, which satisfies

γ̇+(γcr) = γ̇−(γcr) (3.37)

Initially, the photon spectrum has not been revised through self-absorption, i.e., nν ∝
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ν1/3. One therefore has

γcr = 2.1× 104B−3/5F3/10
ν,maxγ

−1/5
c (1 + Y )−3/10 (3.38)

The electron pile-up (strong absorption) condition can be expressed as

γcr > γc =
6πmec

σTB2t(1 + Y )
. (3.39)

With equations 3.34 - 3.39, the pile-up condition can be expressed as

(
B

100G

)2

×
(

t

100s

)4/3

× F1/3
ν,max ×

(
1 + Y

2

)

> 1 (3.40)

where

Fν,max =
fmax

Γ(1 + z)

(
dL
R

)2

= 1 erg cm−2 s−1 Hz−1 fmax,mJy

Γ2(1 + z)

(
dL,28
R14

)2

(3.41)

is the synchrotron peak flux in the emission region. Here dL is the luminosity distance

of the source, and R is the distance of the emission region from the central engine.

One can immediately see that this condition is very difficult to satisfy. It requires

a strong magnetic field, long dynamical time scale and high synchrotron flux. In

the GRB afterglow problem, for forward shock emission, B decreases with t rapidly,

and there is essentially no parameter space to satisfy the condition. This condition

may be realized in extreme conditions, e.g. the reverse shock emission during shock

crossing phase for a wind medium, as discussed in the main text.

One interesting note is that SSC cooling only enhances the pile-up condition. Once

the pile-up condition is satisfied for synchrotron cooling only, adding SSC cooling only

makes the condition more easily satisfied (as shown in equation 3.40).

Once the electron pile-up process is triggered, both electron distribution and pho-
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ton spectrum would be modified, so that the value of γcr is modified correspondingly.

According to the numerical calculation results (Ghisellini et al., 1988, 1991, 1998a),

the electron distribution is dominated by a quasi-thermal component until a “transi-

tion” Lorentz factor γt, above which the electrons go back to the optically-thin normal

power law. In this case, γcr should be around the thermal peak, and γa should be

around the “transition” Lorentz factor γt, which is slightly larger than γcr. Conse-

quently, one would roughly have γa ∼ γcr ∼ γt, so that the assumption of a sharp

cutoff in the electron distribution around this energy is justified. In the main text, we

did not differentiate the three Lorentz factors, and only adopt γa in the expressions.
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CHAPTER 4

A COMPETE REFERENCE OF THE ANALYTICAL SYNCHROTRON
EXTERNAL SHOCK MODELS OF GAMMA-RAY BURSTS

This chapter is part of the following published paper :

Gao H., Lei W.-H., Wu, X.-F., Zou, Y.-C., Zhang B., 2013, New Astronomy

Review 57, 141

Although the nature of the progenitor and central engine as well as the detailed

physics of γ-ray emission are still rather uncertain (for reviews, see e.g. Zhang and

Mészáros, 2004a; Piran, 2004; Mészáros, 2006; Zhang, 2007b; Kumar and Zhang,

2013), a generic synchrotron external shock model has been well established to in-

terpret the prompt emission and the broad-band afterglow data (Rees and Mészáros,

1992, 1994; Mészáros and Rees, 1993, 1997a; Sari et al., 1998a; Chevalier and Li,

2000). This model delineates the interaction between the relativistic GRB jet and a

circumburst medium. During the initial interaction, a pair of shocks (forward and

reverse) propagate into the ambient medium and the ejecta, respectively. After the

reverse shock crosses the shell, the blastwave enters a self-similar phase described

by the Blandford-McKee self-similar solution (Blandford and McKee, 1976). In this

phase, the dynamics of the blastwave is solely determined by a few parameters (e.g.

the total energy of the system, the ambient density and its profile).

Electrons are accelerated in both forward and reverse shocks, which radiate syn-

chrotron emission in the magnetic fields behind the shocks that are believed to be

generated in situ due to plasma instabilities (e.g. Medvedev and Loeb, 1999). Intro-

ducing several notations to parameterize micro-scopic processes, i.e. the fractions of

shock energy that go to electrons and magnetic fields (εe and εB), and the electron

spectral index p, one can then calculate the instantaneous synchrotron spectrum at

a given epoch, as well as the flux evolution with time (the lightcurve) for a given

observed frequency.
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Since the simplest external shock theory does not invoke details of a burst, and

invokes only a limit number of model parameters, it is an elegant theory with falsi-

fiable predictions. It turned out that the predicted power-law decay of lightcurves

and broken power law instantaneous spectra are well consistent with many late time

afterglow data in the pre-Swift era (e.g. Wijers et al., 1997; Waxman, 1997a; Wijers

and Galama, 1999; Huang et al., 1999, 2000; Panaitescu and Kumar, 2001, 2002; Yost

et al., 2003), suggesting that most of the observed multi-wavelength afterglows indeed

originate from jet-medium interaction, and that synchrotron radiation is indeed the

right radiation mechanism to power the observed emission. Later observations showed

more complicated afterglow behaviors (e.g. Akerlof et al., 1999; Harrison et al., 1999;

Berger et al., 2003; Fox et al., 2003; Li et al., 2003), which demand more complicated

models (Mészáros et al., 1998) that invoke joint forward shock and reverse shock emis-

sion (Mészáros and Rees, 1997a; Mészáros and Rees, 1999; Sari and Piran, 1999a,b;

Kobayashi and Zhang, 2003b; Zhang et al., 2003), non-uniform density medium (Dai

and Lu, 1998b; Chevalier and Li, 1999, 2000), continuous energy injection into the

blastwave (Dai and Lu, 1998a; Rees and Mészáros, 1998; Zhang and Mészáros, 2001a),

collimation of the jet (Rhoads, 1999; Sari et al., 1999c; Zhang and Mészáros, 2002a;

Rossi et al., 2002), hard electron injection spectrum (Dai and Cheng, 2001a), etc.

Nonetheless, these more complicated models, by introducing one or more additional

assumptions/parameters, still have clear testable predictions regarding the afterglow

decaying index α, the spectral index β, and the relation between them (the so-called

“closure relations”) (e.g. Zhang and Mészáros, 2004a; Zhang et al., 2006, for a col-

lection of these models). The Swift mission (Gehrels et al., 2004) made it possible

to systematically detect the early phase of the GRB X-ray afterglow, which shows

some un-predicted features (Tagliaferri et al., 2005; Burrows et al., 2005a; Nousek

et al., 2006; O’Brien et al., 2006; Evans et al., 2009) that demand multiple physical

processes that shape the observed lightcurves (Zhang et al., 2006). Systematic data
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analyses (Zhang et al., 2007a; Liang et al., 2007b, 2008, 2009; Butler and Kocevski,

2007; Kocevski et al., 2007; Chincarini et al., 2007, 2010; Margutti et al., 2010) sug-

gest that the X-ray afterglow is a superposition of the conventional external shock

component and a radiation component that is related to the late central engine ac-

tivity (e.g. Zhang, 2007b, 2011b; Zou et al., 2013). Nonetheless, the data indicate

that the low-energy (optical and radio) afterglows (Kann et al., 2010, 2011; Chandra

and Frail, 2012) and the late-time X-ray afterglow is more likely of the external shock

origin. Recent Fermi observations suggest that the GeV afterglow after the prompt

emission phase is also dominated by the emission from the external shock (Kumar

and Barniol Duran, 2010; Ghisellini et al., 2010; He et al., 2011; Liu and Wang, 2011;

Maxham et al., 2011). Observations with EVLA and ALMA start to reveal the early

phase of GRB afterglow in the radio and sub-mm regime, during which reverse shock

and self-absorption effects are important. These are the regimes not fully covered by

the already published materials. With new data flooding in, it is essential to system-

atically survey a complete list of external shock models in all possible temporal and

spectral regimes.

This chapter aims at providing a complete reference to the analytical synchrotron

external shock afterglow models. It includes all the published models and spectral

regimes, but also includes new derivations in the previously not well-studied models

or spectral regimes. All the models are surveyed systematically, with typical model

parameters calculated, temporal and spectral indices and their closure relations sum-

marized in tables. It is designated as a complete reference tool for GRB afterglow

observers to quickly identify the relevant models to interpret their broad-band data.

In the second 2, we provide a general description of the synchrotron external shock

models, which lay the foundation to derive any model discussed later. The third sec-

tion summarizes all the models in four different phases: the reverse and forward shock

models during the reverse shock crossing phase, the forward shock models during the
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isotropic self-similar deceleration phase, the forward shock models in the post-jet

break phase, and the forward shock models in the non-relativistic phase. For each

model, the expressions of key parameters, including the three characteristic frequen-

cies νa (self-absorption frequency), νm (the characteristic synchrotron frequency of

the electrons at the minimum injection energy), and νc (the cooling frequency), and

the peak synchrotron flux density Fν,max, are presented. The spectral index β and

the temporal index α (with the convention Fν ∝ ν−βt−α, as well as their closure rela-

tions are presented in Tables 5-25. Next, we describe how to make use of the models

to calculate lightcurves, and derive all possible lightcurves (Fig.12-55) by allowing a

wide range of parameters. We also draw typical lightcurves in the radio, optical and

X-ray bands by adopting typical values of model parameters. Finally, we discuss the

limitations of these simple analytical models.

General Description of the Synchrotron External Shock Models of

GRBs

The synchrotron external shock models (Rees and Mészáros, 1992; Mészáros and

Rees, 1993, 1997a; Sari et al., 1998a) describe the interaction between the GRB out-

flow and the circum-burst hydrogen medium (CBM). The physical parameters that

enter the problem to determine the dynamics of blastwave deceleration include the

“isotropic” energy E (the total energy assuming that the outflow is isotropic), the

initial Lorentz factor Γ0, and the CBM density and its profile n(R) ∝ R−k, 0 ≤ k < 4

(Blandford and McKee, 1976) (and see Sari (2006) for a discussion for the cases with

k ≥ 4), where R is the radius from the central engine. As a result, these models are

very generic, not depending on the details of the central engine activity and prompt

γ-ray emission. There is another parameter, i.e. the magnetization of the outflow σ,

that would slightly affect the dynamics of the system during the early phase of evolu-

tion (e.g. Zhang and Kobayashi, 2005; Mimica et al., 2009). In this chapter, we limit
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ourselves to the regime of zero (or very low) magnetization. These matter-dominated

ejecta are also called “fireballs”.

Assuming that a jet with opening angle θj is launched from the central engine,

which lasts a duration T with constant Lorentz factor Γ0, the evolution of the a

fireball jet includes four phases1. The first phase is when a pair of shocks (forward

and reverse) propagating into the CBM and the shell (with initial width ∆0 = cT ),

respectively (Sari and Piran, 1995). After the reverse shock crosses the shell, the

blastwave quickly enters a self-similar deceleration phase described by the Blandford-

McKee solution (Blandford and McKee, 1976). This is the second phase. Later, as the

blastwave is decelerated enough, the 1/Γ cone becomes larger than the geometric cone

defined by θj , the afterglow enters the post-jet-break phase. Finally, the blastwave

enters the Newtonian phase when the velocity is much smaller than speed of light.

The dynamics is then described by the well-known Sedov solution widely used to

study supernova remnants.

During all the phases, particles are believed to be accelerated from the forward

shock front via the 1st-order Fermi acceleration mechanism. For the reverse shock,

particle acceleration occurs only during the shock crossing phase. No new particles

are accelerated in the reverse-shocked region after the reverse shock crosses the ejecta

shell. Assume a power-law distribution of the electrons N(γe)dγe ∝ γ−p
e dγe (for

γm ≤ γe ≤ γM) and consider radiative cooling of electrons and continuous injection

of new electrons from the shock front, one can obtain a broken power-law electron

spectrum, which leads to a multi-segment broken power-law photon spectrum at any

epoch (Sari et al., 1998a; Mészáros et al., 1998).

Assuming that a constant fraction εe of the shock energy is distributed to electrons,

1These simplified assumptions are certainly not the case in reality, but may be a good approxi-
mation after the prompt emission phase when the ejecta irregularities are smoothed out after energy
dissipation through internal shocks (Rees and Mészáros, 1994; Kobayashi et al., 1997; Kumar and
Piran, 2000b; Maxham and Zhang, 2009).
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one can derive the minimum injected electron Lorentz factor

γm = g(p)εe(Γ− 1)
mp

me
, (4.1)

where Γ is the relative Lorentz factor between the unshocked region and the shocked

region, which is the Lorentz factor of the blastwave for the forward shock, mp is

proton mass, me is electron mass, and the function g(p) takes the form

g(p) %









p−2
p−1 , p > 2;

ln−1(γM/γm), p = 2;
(4.2)

Here γM is the maximum electron Lorentz factor, which may be estimated by balanc-

ing the acceleration time scale and the dynamical time scale, i.e.

γM ∼ ΓtqeB

ζmpc
, (4.3)

where ζ is a parameter of order unity that describes the details of acceleration, t is

the observational time, qe is the electron charge, and B is the comoving magnetic

field strength. We also assume that the magnetic energy density behind the shock is

a constant fraction εB of the shock energy density. This gives

B = (8πeεB)
1/2, (4.4)

where e is the energy density in the shocked region. If the electron energy has a harder

spectral index 1 < p < 2, the minimum electron Lorentz factor would be derived as

(Dai and Cheng, 2001a; Bhattacharya, 2001)

γm =

(
2− p

p− 1

mp

me
εe(Γ− 1)γp−2

M

)1/(p−1)

(4.5)
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For synchrotron radiation, the observed radiation power and the characteristic

frequency of an electron with Lorentz factor γe are given by (Rybicki and Lightman,

1979)

P (γe) %
4

3
σT cΓ

2γ2
e

B2

8π
, (4.6)

ν(γe) % Γγ2
e

qeB

2πmec
, (4.7)

where the factors of Γ2 and Γ are introduced to transform the values from the rest

frame of the shocked fluid to the frame of the observer.

The spectral power of individual electron, Pν (power per unit frequency, in unit

of erg Hz−1 s−1), varies as ν1/3 for ν < ν(γe), and cuts off exponentially for ν > ν(γe)

(Rybicki and Lightman, 1979). The peak power occurs at ν(γe), where it has the

approximate value

Pν,max ≈ P (γe)

ν(γe)
=

mec2σT

3qe
ΓB . (4.8)

Note that Pν,max does not depend on γe.

The life time of a relativistic electron with Lorentz factor γe in the observer frame

can be estimated as

τ(γe) =
Γγemec2

4
3σT cΓ2γ2

e
B2

8π

=
6πmec

ΓγeσTB2
. (4.9)

One can define a critical electron Lorentz factor γc by setting τ(γe) = t, i.e.,

γc =
6πmec

ΓσTB2t
, (4.10)

where t refers to the time in the observer frame. Above γc, cooling by synchrotron
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radiation becomes significant, so that the electron distribution shape is modified in

the γe > γc regime.

The electron Lorentz factors γm and γc defines two characteristic emission fre-

quencies νm and νc in the synchrotron spectrum. A third characteristic frequency

νa, is defined by synchrotron self-absorption, below which the synchrotron photons

are self-absorbed. There are two methods to calculate this frequency. The first one

is to define νa by the condition that the photon optical depth for self-absorption is

unity (Rybicki and Lightman, 1979). A more convenient method (e.g. Sari and Piran,

1999b; Kobayashi and Zhang, 2003b) is to define νa by equating the synchrotron flux

and the flux of a blackbody, i.e.

Isynν (νa) = Ibbν (νa) % 2kT · ν
2
a

c2
, (4.11)

where the blackbody temperature is

kT = max[γa,min(γc, γm)]mec
2, (4.12)

and γa is the corresponding electron Lorentz factor of νa for synchrotron radiation, i.e.

γa = (2πmecνa/ΓqeB)1/2 (derived from Eq. 4.7). One can prove (Shen and Zhang,

2009) that the two methods are equivalent to each other, even though the coefficient

may slightly differ within a factor of two.

In the afterglow phase, νa is usually the smallest among the three frequencies. The

broad-band synchrotron spectrum therefore falls into two broad categories depending

on the order of γm and γc, namely the fast cooling regime (γm > γc) or the slow

cooling regime γm < γc (Sari et al., 1998a).
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In the slow cooling regime, the electron energy distribution is

N(γe) =









C1(p− 1)γp−1
m γ−p

e , γm ≤ γe ≤ γc,

C1(p− 1)γp−1
m γcγ−p−1

e , γe > γc.
(4.13)

In the fast cooling regime, usually one has the approximation

N(γ) =









C2γcγ−2
e , γc ≤ γe ≤ γm,

C2γp−1
m γcγ−p−1

e , γe > γm.
(4.14)

where C1 and C2 are normalization factors2.

For such an electron energy distribution, the observed synchrotron radiation flux

density Fν can be expressed as

I. νa < νm < νc:

Fν = Fν,max




















(
νa
νm

)1/3 (
ν
νa

)2

, ν < νa;
(

ν
νm

)1/3
, νa < ν < νm;

(
ν
νm

)−(p−1)/2
, νm < ν < νc;

(
νc
νm

)−(p−1)/2 (
ν
νc

)−p/2
, ν > νc;

(4.15)

II. νa < νc < νm:

Fν = Fν,max




















(
νa
νc

)1/3 (
ν
νa

)2
, ν < νa;

(
ν
νc

)1/3
, νa < ν < νc;

(
ν
νc

)−1/2

, νc < ν < νm;
(

νm
νc

)−1/2 (
ν
νm

)−p/2
, ν > νm.

(4.16)

2It is realized that the fast-cooling spectrum below injection can be harder than -2 in a decaying
magnetic field, which is the case for GRB afterglow emission (Uhm and Zhang, 2013b,a). We will
discuss this more in the fifth Section.
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In general, there are six different orders among νa, νm and νc. Under extreme

conditions they might be all possible. When νa > νc, the electron energy distribution

may be significantly modified (Gao et al., 2013a), so that analytical models are no

longer good approximations. Those cases are rare but not impossible, and we will

leave out from this chapter. A detailed analysis can be found in Kobayashi et al.

(2004) and Gao et al. (2013a).

For the νa < νc regime, there is one more case, i.e.

III. νm < νa < νc:

Fν = Fν,max



















(
νm
νa

)(p+4)/2 (
ν
νm

)2
, ν < νm;

(
νa
νm

)−(p−1)/2 (
ν
νa

)5/2
, νm < ν < νa;

(
ν
νm

)−(p−1)/2

, νa < ν < νc;
(

νc
νm

)−(p−1)/2 (
ν
νc

)−p/2
, ν > νc.

(4.17)

In all the above expressions, Fν,max is the observed peak flux at luminosity distance

D from the source, which can be estimated as (Sari et al., 1998a):

Fν,max ≡ NePν,max/4πD
2, (4.18)

where Ne is the total number of electrons in the emission region. For the forward

shock emission, it is usually calculated as Ne ∼
∫ R
R0

4πn(r)r2dr, where R0 is the

central engine radius and R is the radius from the center of central engine.

The instantaneous spectra described above do not depend on the hydrodynamical

evolution of the shocks. However, in order to calculate the light curve at a given

frequency, we need to know the temporal evolution of various quantities, such as the

break frequencies νa, νm and νc and the peak flux density Fν,max, which depend on

the dynamics of the system. For the forward shock, the emission essentially depends
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on the temporal evolution of three quantities Γ, R and B (or the energy density e if

εB is assumed to be constant). In the next section, we will derive how Γ, R and e

evolve as a function of t for various systems and dynamical phases, and quantify the

evolutions of the break frequencies νm, νc, νa, as well as the peak flux density Fν,max.

We will then present the spectral and temporal indices (β and α) for all the spectral

regimes of all the models, as well as the closure relations between α and β.

Analytical Synchrotron External Shock Models

There are many variations of the external shock synchrotron models. First, dur-

ing the reverse shock crossing phase, the dynamics of the blastwave is complicated,

and there are rich features in the reverse shock and forward shock lightcurves. Sec-

ond, even after reverse shock crossing and when the blastwave is in the self-similar

deceleration phase, variations in the energy content of the blastwave (e.g. radiative

loss or energy injection) or in the profile of the CBM (e.g. constant density ISM, a

stratified wind, or a more general profile) would give very different lightcurves. Next,

the collimation effect becomes important when the blastwave is decelerated enough

so that the relativistic beaming 1/Γ cone is large enough to enclose a solid angle in

which the anisotropic effect becomes significant. Finally, the blastwave eventually

enters the Newtonian phase, when a different self-similar solution is reached. For

each dynamical model, there could be many possible lightcurves in view of a range of

initial spectral regime of the observing frequency, and the complicated evolutions of

three characteristic frequencies and their relative orders.

In the following, we will discuss all these models based on the four dynamical

phases outlined above: Phase 1: reverse shock crossing phase; Phase 2: relativistic,

pre-jet-break self-similar deceleration phase; Phase 3: post-jet-break phase; Phase 4:

Newtonian phase.
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Phase 1: reverse shock crossing phase

We consider a uniform and cold relativistic shell with isotropic energy E, lab-

frame width ∆0 = cT , coasting with an initial Lorentz factor Γ0. This shell sweeps

into a circumburst hydrogen medium (CBM) with a proton number density profile

n = AR−k (0 ≤ k < 4). A pair of shocks are developed: a forward shock propagating

into the CBM and a reverse shock propagating into the shell. The two shocks and the

contact discontinuity separate the system into four regions: (1) the unshocked CBM

(called Region 1 hereafter), (2) the shocked CBM (Region 2), (3) the shocked shell

(Region 3), and (4) the unshocked shell (Region 4). Using the relativistic shock jump

conditions (Blandford and McKee, 1976) and assuming equal pressure and velocity

in the blastwave region (Regions 2 and 3)3, i.e., e2 = e3 and γ2 = γ3, the values of the

bulk Lorentz factor Γ, the radius R, and the energy density e in the shocked regions

can be estimated as functions of n1, n4, and Γ0 = γ4, where ni, ei and γi are the

comoving number densities, energy density and Lorentz factors for Region i.

Analytical results can be obtained in both relativistic and Newtonian reverse shock

limits. These two cases are defined by comparing a parameter f ≡ n4/n1 (ratio of

the number densities between the unshocked shell and the unshocked CBM) and γ2
4

(Sari and Piran, 1995). If f ( γ2
4 , the reverse shock is Newtonian (NRS, thin shell

case), and if f ' γ2
4 , the reverse shock is relativistic (RRS, thick shell case). The

strength of the reverse shock depends on the relative Lorentz factor between Region

3 and Region 4, i.e.

γ̄34 = γ3γ4(1−
√

1− 1/γ2
3

√

1− 1/γ2
4). (4.19)

For γ2, γ4 ( 1 and assuming γ2 = γ3, γ̄34 can be expressed as γ̄34 % 1√
2
γ1/2
4 f−1/4 for

3Strictly speaking, such a situation cannot be achieved since it violates energy conservation (Uhm,
2011; Uhm et al., 2012). Nonetheless, for a short-lived reverse shock (finite width ∆0 with constant
Γ0), such an approximation is good enough to delineate the dynamical evolution of the system.
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a RRS, while γ̄34 − 1 % 4
7γ

2
4f

−1 for a NRS.

The Phase 1 ends at the reverse shock crossing time

t× = max(tdec, T ), (4.20)

where T is the duration of the burst, and

tdec =

[
(3− k)E

24−kπAmpΓ
8−2k
0 c5−k

] 1
3−k

(4.21)

is the deceleration time of the ejecta for an impulsive injection of fireball with energy

E and initial Lorentz factor Γ0, which corresponds to the time when the mass collected

from the CBM is about 1/Γ of the rest mass entrained in the ejecta. For thin shells,

one has t× = tdec, while for thick shells, one has t× = T (Kobayashi et al., 1999).

In the following, we discuss the synchrotron emission properties for four models:

thin shell forward shock model, thin shell reverse shock model, thick shell forward

shock model, and thick shell reverse shock model.

Thin Shell Forward Shock Model

In the thin shell models, the reverse shock is Newtonian, so that γ2 % γ4 = Γ0.

We consider the dynamics of Region 2, i.e.

γ2 = Γ0, R2 = 2cΓ2
0t.

In general, the expressions for an arbitrary density profile index k can be derived.

The two most commonly used models are the constant density interstellar medium

(ISM) model (k = 0) and the free stratified wind model (k = 2). Hereafter we will

explicitly derive the expressions for these two density profiles.

For the constant density case (n1 = n0) with electron energy spectral index p > 2,
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one has

νm = 3.1× 1016 Hz ẑ−1 G(p)

G(2.3)
Γ4
0,2n

1/2
0,0 ε

2
e,−1ε

1/2
B,−2,

νc = 4.1× 1016 Hz ẑΓ−4
0,2n

−3/2
0,0 ε−3/2

B,−2t
−2
2 ,

Fν,max = 1.1× 104 µJy ẑ−2Γ8
0,2n

3/2
0,0 ε

1/2
B,−2D

−2
28 t

3
2,

νa = 5.7× 109 Hz ẑ−8/5 gI(p)

gI(2.3)
Γ8/5
0,2 n

4/5
0,0 ε

−1
e,−1ε

1/5
B,−2t

3/5
2 , νa < νm < νc

νa = 8.3× 1012 Hz ẑ−
p+6
p+4

gII(p)

gII(2.3)
Γ

4(p+2)
p+4

0,2 n
p+6

2(p+4)

0,0 ε
2(p−1)
p+4

e,−1 ε
p+2

2(p+4)

B,−2 t
2

p+4

2 , νm < νa < νc

νa = 4.9× 109 Hz ẑ−13/5 gIII(p)

gIII(2.3)
Γ28/5
0,2 n9/5

0,0 ε
6/5
B,−2t

8/5
2 , νa < νc < νm

(4.22)

where G(p) and gi(p) are numerical constants related to p, and ẑ = (1 + z)/2 is the

redshift correction factor. The explicit expressions of G(p) and gi(p) are complicated,

and we present them (along with the p-dependent coefficients in all other models) in

last section of this chapter.

When 1 < p < 2, expressions of νc and Fν,max remain the same as the p > 2

case (also apply to other models discussed later). Other expressions are modified as

follows

νm = 3.2× 1014 Hz ẑ−1 gIV (p)

gIV (1.8)
Γ

p+2
p−1

0,2 n
1

2(p−1)

0,0 ζ
2−p
p−1

0 ε
2

p−1

e,−1ε
1

2(p−1)

B,−2 ,

νa = 4.6× 1010 Hz ẑ−8/5 gV (p)

gV (1.8)
Γ

46−31p
10(1−p)

0,2 n
26−21p
20(1−p)

0,0 ζ
p−2

2(p−1)

0 ε
1

1−p

e,−1ε
14−9p
20(1−p)

B,−2 t3/52 , νa < νm < νc

νa = 2.0× 1010 Hz ẑ−
p+6
p+4

gV I(p)

gV I(1.8)
Γ

p+14
p+4

0,2 n
4

p+4

0,0 ζ
2−p
p+4

0 ε
2

p+4

e,−1ε
2

p+4

B,−2t
2

p+4

2 , νm < νa < νc

νa = 4.0× 109 Hz ẑ−13/5 gV II(p)

gV II(1.8)
Γ28/5
0,2 n9/5

0,0 ε
6/5
B,−2t

8/5
2 , νa < νc < νm

(4.23)

For the wind model (k = 2), one can express the density profile as n1 = AR−2,
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with A = Ṁ/4πmpvw = 3×1035A∗cm−1, A∗ = (Ṁ/10−5 M" yr−1)(vw/103 km s−1)−1

(Dai and Lu, 1998b; Chevalier and Li, 1999, 2000). For p > 2, one has

νm = 8.7× 1016 Hz
G(p)

G(2.3)
A1/2

∗,−1Γ
2
0,2ε

2
e,−1ε

1/2
B,−2t

−1
2 ,

νc = 1.8× 1015 Hz ẑ−2Γ2
0,2A

−3/2
∗,−1 ε

−3/2
B,−2t2

Fν,max = 7.5× 105 µJy ẑA3/2
∗,−1Γ

2
0,2ε

1/2
B,−2D

−2
28 ,

νa = 5.9× 1010 Hz
gV III(p)

gV III(2.3)
Γ
− 8

5
0,2A

4
5
∗,−1ε

−1
e,−1ε

1
5
B,−2t

−1
2 , νa < νm < νc

νa = 4.7× 1013 Hz
gIX(p)

gIX(2.3)
Γ

2(p−2)
p+4

0,2 A
p+6

2(p+4)

∗,−1 ε
2(p−1)
p+4

e,−1 ε
p+2

2(p+4)

B,−2 t−1
2 , νa < νm < νc

νa = 4.1× 1011 Hz ẑ
gX(p)

gX(2.3)
Γ−8/5
0,2 A9/5

∗,−1ε
6/5
B,−2t

−2
2 , νa < νc < νm

(4.24)

For 1 < p < 2, one has

νm = 1.2× 1015 Hz ẑ
2−p
p−1

gXI(p)

gXI(1.8)
A

1
2(p−1)

∗,−1 Γ
p

p−1

0,2 ζ
2−p
p−1

0 ε
2

p−1

e,−1ε
1

2(p−1)

B,−2 t
1

1−p

2 ,

νa = 4.2× 1011 Hz ẑ
p−2

2(p−1)
gXII(p)

gXII(1.8)
Γ

11p−6
10(1−p)

0,2 A
26−21p
20(1−p)

∗,−1 ζ
p−2

2(p−1)

0 ε
1

1−p

e,−1ε
14−9p
20(1−p)

B,−2 t
4−3p
2(p−1)

2 ,

νa < νm < νc

νa = 1.2× 1013 Hz ẑ
2−p
p+4

gXIII(p)

gXIII(1.8)
Γ

p−2
p+4

0,2 A
4

p+4

∗,−1ζ
2−p
p+4

0 ε
2

p+4

e,−1ε
2

p+4

B,−2t
− 6

p+4

2 , νm < νa < νm

νa = 3.4× 1011 Hz ẑ
gXIV (p)

gXIV (1.8)
Γ−8/5
0,2 A9/5

∗,−1ε
6/5
B,−2t

−2
2 , νa < νc < νm

(4.25)

The α and β values and their closure relations of the models described in this

section (with convention Fν ∝ t−αν−β) are collected in Tables 5 and 6.

We note that the temporal evolution of the characteristic frequencies and the peak

flux density are important to judge the relevant models. Hereafter at the end of each

subsection, we summarize these dependences for easy identification.
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p > 2 1 < p < 2
β α α(β) α α(β)

ISM slow cooling
ν < νa −2 −2 α = β −2 α = β
νa < ν < νm − 1

3 −3 α = 3β −3 α = 3β

νm < ν < νc
p−1
2 −3 −− −3 −−

ν > νc
p
2

−2 −− −2 −−
ISM fast cooling

ν < νa −2 −1 α = β
2 −1 α = β

2
νa < ν < νc − 1

3 − 11
3 α = 11β − 11

3 α = 11β
νc < ν < νm 1

2 −2 α = −4β −2 α = −4β
ν > νm

p
2 −2 −− −2 −−

Wind slow cooling

ν < νa −2 -2 α = β 5p−6
2(1−p) −−

νa < ν < νm − 1
3

− 1
3

α = β − 1
3(p−1)

−−
νm < ν < νc

p−1
2

p−1
2 α = β 1

2 −−
ν > νc

p
2

p−2
2 α = β − 1 0 −−

Wind fast cooling

ν < νa −2 −3 α = 3β
2 −3 α = 3β

2
νa < ν < νc − 1

3
1
3 α = −β 1

3 α = −β
νc < ν < νm 1

2 − 1
2 α = −β − 1

2 α = −β

ν > νm
p
2

p−2
2 α = β − 1 0 −−

Table 5 The temporal decay index α and spectral index β in thin shell forward shock
model with νa < min(νm, νc).

For this regime (thin-shell forward shock model during shock crossing) and for

p > 2, νm ∝ t0 (t−1), νc ∝ t−2 (t1), Fν,max ∝ t3 (t0) for the ISM (wind) models,

respectively. The temporal evolution of νa depends on the relative orders between νa,

νm and νc. For 1 < p < 2, νc and Fν,max evolutions are the same as p > 2 cases, while

νm ∝ t0 (t
1

1−p ) for the ISM (wind) models, respectively.

p > 2 1 < p < 2
β α α(β) α α(β)

ISM slow cooling
ν < νm −2 −2 α = β −2 α = β

νm < ν < νa − 5
2 −2 α = 4β

5 −2 α = 4β
5

νa < ν < νc
p−1
2 −3 −− −3 −−

ν > νc
p
2 −2 −− −2 −−

Wind slow cooling

ν < νm −2 -2 α = β 6−5p
2(p−1) −−

νm < ν < νa − 5
2 − 5

2 α = β − 5
2 α = β

νa < ν < νc
p−1
2

p−1
2 α = β 1

2 −−
ν > νc

p
2

p−2
2 α = β − 1 0 −−

Table 6 The temporal decay index α and spectral index β in thin shell forward shock
model in the νm < νa < νc regime.
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Thin Shell Reverse Shock Model

The scalings of this regime have been derived by Kobayashi (2000b). During the

reverse shock crossing phase, the blastwave dynamics is same as the thin-shell forward

shock case. However, the emission properties of the reverse shock depend on γ̄34 and

n4, while those of the forward shock depend on γ2 and n1. Following the similar

procedure described above, one can derive the expressions of various parameters of

this model. For the ISM model (k = 0) and p > 2, one has

νm = 1.9× 1012 Hz ẑ−7 G(p)

G(2.3)
E−2

52 Γ
18
0,2n

5/2
0,0 ε

2
e,−1ε

1/2
B,−2t

6
2,

νc = 4.1× 1016 Hz ẑΓ−4
0,2n

−3/2
0,0 ε−3/2

B,−2t
−2
2

Fν,max = 9.1× 105 µJy ẑ−1/2E1/2
52 Γ5

0,2n0,0ε
1/2
B,−2D

−2
28 t

3/2
2 ,

νa = 1.0× 1013 Hz ẑ23/10
gI(p)

gI(2.3)
E13/10

52 Γ−36/5
0,2 n−1/2

0,0 ε−1
e,−1ε

1/5
B,−2t

−33/10
2 , νa < νm < νc

νa = 4.7× 1012 Hz ẑ
3−7p
p+4

gII(p)

gII(2.3)
E

3−2p
p+4

52 Γ
18p−12
p+4

0 n
5p

2(p+4)

0,0 ε
2(p−1)
p+4

e,−1 ε
p+2

2(p+4)

B,−2 t
6p−7
p+4

2 , νm < νa < νc

νa = 7.0× 1010 Hz ẑ−17/10 gIII(p)

gIII(2.3)
E3/10

52 Γ19/5
0,2 n3/2

0,0 ε
6/5
B,−2t

7/10
2 . νa < νc < νm

(4.26)

For 1 < p < 2, one has

νm = 1.8× 109 Hz ẑ
p+5
1−p

gIV (p)

gIV (1.8)
E

− 2
p−1

52 n
5

2(p−1)

0,0 Γ
p+16
p−1

0,2 ζ
2−p
p−1

0 ε
2

p−1

e,−1ε
1

2(p−1)

B,−2 t
6

p−1

2 ,

νa = 2.7× 1014 Hz ẑ
37−7p
10(p−1)

gV (p)

gV (1.8)
E

3p+7
10(p−1)

52 Γ
98−13p
10(1−p)

0,2 n
8−3p
4(1−p)

0,0 ζ
p−2

2(p−1)

0 ε
1

1−p

e,−1ε
14−9p
20(1−p)

B,−2 t
− 3(p+9)

10(p−1)

2 ,

νa < νm < νc

νa = 1.7× 1012 Hz ẑ−
p+9
p+4

gV I(p)

gV I(1.8)
E

− 1
p+4

52 Γ
p+22
p+4

0,2 n
5

p+4

0,0 ζ
2−p
p+4

0 ε
2

p+4

e,−1ε
2

p+4

B,−2t
5

p+4

2 , νm < νa < νc

νa = 5.8× 1010 Hz ẑ−17/10 gV II(p)

gV II(1.8)
E3/10

52 Γ19/5
0,2 n3/2

0,0 ε
6/5
B,−2t

7/10
2 , νa < νc < νm

(4.27)
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For the wind model (k = 2) and p > 2, one has

νm = 3.3× 1015 Hz ẑ−2 G(p)

G(2.3)
E−2

52 A
5/2
∗,−1Γ

8
0,2ε

2
e,−1ε

1/2
B,−2t2,

νc = 1.8× 1015 Hz ẑ−2Γ2
0,2A

−3/2
∗,−1 ε

−3/2
B,−2t2

Fν,max = 1.3× 107 µJy ẑ3/2E1/2
52 A∗,−1Γ0,2ε

1/2
B,−2D

−2
28 t

−1/2
2 ,

νa = 1.7× 1012 Hz ẑ13/10
gV III(p)

gV III(2.3)
E13/10

52 Γ−26/5
0,2 A−1/2

∗,−1 ε
−1
e,−1ε

1/5
B,−2t

−23/10
2 , νa < νm < νc

νa = 5.9× 1013 Hz ẑ
3−2p
p+4

gIX(p)

gIX(2.3)
E

3−2p
p+4

52 Γ
8p−12
p+4

0,2 A
5p

2(p+4)

∗,−1 ε
2(p−1)
p+4

e,−1 ε
p+2

2(p+4)

B,−2 t
p−7
p+4

2 , νm < νa < νc

νa = 2.3× 1012 Hz ẑ13/10
gX(p)

gX(2.3)
E3/10

52 Γ−11/5
0,2 A3/2

∗,−1ε
6/5
B,−2t

−23/10
2 , νa < νc < νm

(4.28)

For 1 < p < 2, one has

νm = 2.0× 1013 Hz ẑ
p

1−p
gXI(p)

gXI(1.8)
E

− 2
p−1

52 A
5

2(p−1)

∗,−1 Γ
p+6
p−1

0,2 ζ
2−p
p−1

0 ε
2

p−1

e,−1ε
1

2(p−1)

B,−2 t
1

p−1

2 ,

νa = 1.8× 1013 Hz ẑ
8p−3

10(p−1)
gXII(p)

gXII(1.8)
E

3p+7
10(p−1)

52 Γ
17p+18
10(1−p)

0,2 A
8−3p
4(1−p)

∗,−1 ζ
p−2

2(p−1)

0 ε
1

1−p

e,−1ε
14−9p
20(1−p)

B,−2 t
13−18p
10(p−1)

2 ,

νa < νm < νc

νa = 1.9× 1013 Hz ẑ
1−p
p+4

gXIII(p)

gXIII(1.8)
E

− 1
p+4

52 Γ
p+2
p+4

0,2 A
5

p+4

∗,−1ζ
2−p
p+4

0 ε
2

p+4

e,−1ε
2

p+4

B,−2t
− 5

p+4

2 , νm < νa < νc

νa = 1.9× 1012 Hz ẑ13/10
gXIV (p)

gXIV (1.8)
E3/10

52 Γ−11/5
0,2 A3/2

∗,−1ε
6/5
B,−2t

−23/10
2 , νa < νc < νm

(4.29)

After the NRS crosses the shell, the Lorentz factor of the shocked shell may be

assumed to have a general power-law decay behavior γ3 ∝ r−g (Mészáros and Rees,

1999; Kobayashi and Sari, 2000a). The dynamical behavior in Region 3 could be

expressed with some scaling-laws:

γ3 ∝ t−g/(1+2g), n3 ∝ t−6(3+g)/7(1+2g),
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e3 ∝ t−8(3+g)/7(1+2g), r ∝ t1/(1+2g), Ne,3 ∝ t0, (4.30)

For the ISM case (k = 0), one may adopt g % 2 (Kobayashi, 2000b; Zou et al.,

2005). For p > 2, one has

νm = 8.5× 1011 Hz ẑ19/35
G(p)

G(2.3)
E18/35

52 Γ−74/35
0,2 n−1/70

0,0 ε2e,−1ε
1/2
B,−2t

−54/35
2 ,

νcut = 4.3× 1016 Hz ẑ19/35E−16/105
52 Γ−292/105

0,2 n−283/210
0,0 ε−3/2

B,−2t
−54/35
2

Fν,max = 7.0× 105 µJy ẑ69/35E139/105
52 Γ−167/105

0,2 n37/210
0,0 ε1/2B,−2D

−2
28 t

−34/35
2 ,

νa = 1.4× 1013 Hz ẑ−73/175 gXV (p)

gXV (2.3)
E69/175

52 Γ8/175
0,2 n71/175

0,0 ε−1
e,−1ε

1/5
B,−2t

−102/175
2 ,

νa < νm < νc

νa = 3.7× 1012 Hz ẑ
19p−36
35(p+4)

gXV I(p)

gXV I(2.3)
E

2(9p+29)
35(p+4)

52 Γ
−74p−44
35(p+4)

0,2 n
94−p

70(p+4)

0,0 ε
2(p−1)
p+4

e,−1 ε
p+2

2(p+4)

B,−2 t
− 54p+104

35(p+4)

2 ,

νm < νa < νc

(4.31)

Here νcut is the cut-off frequency of the synchrotron spectrum, which is different

from the traditional νc. After reverse shock crossing, no new electrons are accelerated.

The maximum electron energy is defined by νcut, which is calculated by νc at the shock

crossing time with correction due to adiabatic expansion (Kobayashi, 2000b). In this

case, fast cooling is not relevant, so there are only two regimes, i.e., νa < νm < νcut

and νm < νa < νcut.

For 1 < p < 2, again the expressions of νcut and Fν,max remain the same, and other

parameters are

νm = 6.8× 1011 Hz ẑ19/35
gXV II(p)

gXV II(1.8)
E

18
35
52 Γ

109p−144
35(1−p)

0,2 n
71−36p
70(p−1)

0,0 ζ
2−p
p−1

0 ε
2

p−1

e,−1ε
1

2(p−1)

B,−2 t
− 54

35
2 ,

νa = 1.3× 1013 Hz ẑ−73/175 gXV III(p)

gXV III(1.8)
E

69
175
52 Γ

191p−366
350(p−1)

0,2 n
459p−634
700(p−1)

0,0 ζ
p−2

2(p−1)

0 ε
1

1−p

e,−1

ε
14−9p
20(1−p)

B,−2 t
− 102

175
2 , νa < νm < νcut
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νa = 3.7× 1012 Hz ẑ
19p−36
35(p+4)

gXIX(p)

gXIX(1.8)
E

2(9p+29)
35(p+4)

52 Γ
26−109p
35(p+4)

0,2 n
− 2(9p−41)

35(p+4)

0,0 ζ
2−p
p+4

0 ε
2

p+4

e,−1

,

ε
2

p+4

B,−2t
− 54p+104

35(p+4)

2 , νm < νa < νcut

(4.32)

For the wind model (k = 2), one could adopt g % 1 (Zou et al., 2005). For p > 2,

one has

νm = 1.4× 1011 Hz ẑ6/7
G(p)

G(2.3)
E6/7

52 A−5/14
∗,−1 Γ−24/7

0,2 ε2e,−1ε
1/2
B,−2t

−13/7
2 ,

νcut = 7.4× 1010 Hz ẑ6/7E20/7
52 Γ−66/7

0,2 A−61/14
∗,−1 ε−3/2

B,−2t
−13/7
2

Fν,max = 1.6× 106 µJy ẑ44/21E23/21
52 A17/42

∗,−1 Γ−29/21
0,2 ε1/2B,−2D

−2
28 t

−23/21
2 ,

νa = 5.5× 1014 Hz ẑ−8/35 gXX(p)

gXX(2.3)
E−12/35

52 Γ48/35
0,2 A8/7

∗,−1ε
−1
e,−1ε

1/5
B,−2t

−23/35
2 ,

νa < νm < νcut

νa = 5.5× 1014 Hz ẑ
6p−4
7(p+4)

gXXI(p)

gXXI(2.3)
E

6p−4
7(p+4)

52 Γ
16−24p
7(p+4)

0,2 A
50−5p
14(p+4)

∗,−1 ε
2(p−1)
p+4

e,−1 ε
p+2

2(p+4)

B,−2 t
− 13p+24

7(p+4)

2 ,

νm < νa < νcut

(4.33)

For 1 < p < 2, νcut and Fν,max remain the same, and

νm = 3.5× 1011 Hz ẑ6/7
gXXII(p)

gXXII(1.8)
E

13p−20
7(p−1)

52 Γ
45p−66
7(1−p)

0,2 A
47−26p
14(p−1)

∗,−1 ζ
2−p
p−1

0 ε
2

p−1

e,−1ε
1

2(p−1)

B,−2 t
− 13

7
2 ,

νa = 2.8× 1014 Hz ẑ−8/35 gXXIII(p)

gXXIII(1.8)
E

94−59p
70(p−1)

52 Γ
3(67p−102)
70(p−1)

0,2 A
74−53p
28(1−p)

∗,−1 ζ
p−2

2(p−1)

0 ε
1

1−p

e,−1

ε
14−9p
20(1−p)

B,−2 t
− 23

35
2 , νa < νm < νcut

νa = 1.6× 1013 Hz ẑ
6p−4
7(p+4)

gXXIV (p)

gXXIV (1.8)
E

13p−18
7(p+4)

52 Γ
58−45p
7p+28

0,2 A
46−13p
7p+28

∗,−1 ζ
2−p
p+4

0 ε
2

p+4

e,−1ε
2

p+4

B,−2t
− 13p+24

7(p+4)

2 ,

νm < νa < νcut

(4.34)
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p > 2 1 < p < 2
β α α(β) α α(β)

ISM slow cooling

ν < νa −2 −5 α = 5β
2 − 2p+1

p−1 −−
νa < ν < νm − 1

3
1
2 α = 3β

2 − 3p−7
2(p−1) −−

νm < ν < νc
p−1
2 − 6p−3

2 α = − 3(4β+1)
2 − 9

2 −−
ν > νc

p
2

− 6p−5
2

− 11β+1
2

− 7
2

−−
ISM fast cooling

ν < νa −2 −1 α = β
2 −1 α = β

2
νa < ν < νc − 1

3 − 13
6 α = 13β

2 − 13
6 α = 13β

2
νc < ν < νm 1

2 − 1
2 α = −β − 1

2 α = −β

ν > νm
p
2 − 6p−5

2 − 12β−5
2 − 7

2 −−
Wind slow cooling

ν < νa −2 -3 α = 3β
2 − 5p−4

2(p−1) −−

νa < ν < νm − 1
3

5
6 α = 5β

2
3p−1
6(p−1) −−

νm < ν < νc
p−1
2 − p−2

2 α = 1−2β
2 0 −−

ν > νc
p
2 − p−1

2 α = 1−2β
2 − 1

2 −−
Wind fast cooling

ν < νa −2 −3 α = 3β
2 −3 α = 3β

2
νa < ν < νc − 1

3
5
6 α = − 5β

2
5
6 α = − 5β

2
νc < ν < νm 1

2 0 −− 0 −−
ν > νm

p
2 − p−1

2 α = 1−2β
2 − 1

2 −−

Table 7 Temporal decay index α and spectral index β in the thin shell reverse shock
model during the reverse shock crossing phase in the νa < min(νm, νc) spectral regime.

The α and β values and their closure relations for the thin shell reverse shock

models are presented in Tables 7 and 8 (for pre-shock-crossing), and Tables 9 and 10

(for post-shock-crossing).

For this regime (thin-shell reverse shock model during shock crossing), for p > 2,

one has νm ∝ t6 (t1), νc ∝ t−2 (t1), Fν,max ∝ t3/2 (t−1/2) for the ISM (wind) models,

respectively. For 1 < p < 2, νc and Fν,max evolutions are the same as p > 2 cases,

while νm ∝ t
6

p−1 (t
1

p−1 ) for the ISM (wind) models, respectively.

After shock crossing, νm ∝ νcut ∝ t−54/35 (t−13/7), Fν,max ∝ t−34/35 (t−23/21) for the

ISM (wind) models, respectively.

Thick Shell Forward Shock Model

For the thick shell case, the reverse shock becomes relativistic early on during

shock crossing. In this relativistic shock crossing phase, the blastwave dynamics can
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p > 2 1 < p < 2
β α α(β) α α(β)

ISM slow cooling

ν < νm −2 −5 α = 5β
2 − 2p+1

p−1 −−
νm < ν < νa − 5

2 −2 α = 4β
5 −2 α = 4β

5

νa < ν < νc
p−1
2 − 6p−3

2 α = − 3(4β+1)
2 − 9

2 −−
ν > νc

p
2 − 6p−5

2 − 12β−5
2 − 7

2 −−
Wind slow cooling

ν < νm −2 -3 α = 3β
2 − 5p−4

2(p−1) −−
νm < ν < νa − 5

2 − 5
2 α = β − 5

2 α = β

νa < ν < νc
p−1
2 − p−2

2 α = 1−2β
2 0 −−

ν > νc
p
2 − p−1

2 α = 1−2β
2 − 1

2 −−

Table 8 Temporal decay index α and spectral index β in the thin shell reverse shock
model during the reverse shock crossing phase in the νm < νa < νc spectral regime.

p > 2 1 < p < 2
β α α(β) α α(β)

ISM slow cooling

ν < νa −2 − 18
35 α = 9β

35 − 18
35 α = 9β

35
νa < ν < νm − 1

3
16
35 α = − 16β

105
16
35 α = − 16β

105
νm < ν < νcut

p−1
2

27p+7
35 α = 54β+34

35
27p+7

35 α = 54β+34
35

Wind slow cooling

ν < νa −2 − 13
21 α = 13β

42 − 13
21 α = 13β

42
νa < ν < νm − 1

3
10
21 α = 10β

7
10
21 α = 10β

7
νm < ν < νcut

p−1
2

39p+7
42 α = 78β+46

2
39p+7

42 α = 78β+46
2

Table 9 Temporal decay index α and spectral index β in thin shell reverse shock
model after reverse shock crossing in the νa < min(νm, νcut) spectral regime.

p > 2 1 < p < 2
β α α(β) α α(β)

ISM slow cooling

ν < νm −2 − 18
35 α = 9β

35 − 18
35 α = 9β

35
νm < ν < νa − 5

2
− 9

7
α = 18β

35
− 9

7
α = 18β

35
νa < ν < νcut

p−1
2

27p+7
35 α = 54β+34

35
27p+7

35 α = 54β+34
35

Wind slow cooling

ν < νm −2 − 13
21 α = 13β

42 − 13
21 α = 13β

42
νm < ν < νa − 5

2 − 65
42 α = 13β

24 − 65
42 α = 13β

24
νa < ν < νcut

p−1
2

39p+7
42 α = 78β+46

2
39p+7

42 α = 78β+46
2

Table 10 Temporal decay index α and spectral index β in thin shell reverse shock
model after reverse shock crossing in the νm < νa < νcut spectral regime.
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be characterized as

γ2 = γ3 =
1√
2

(
l3−k

∆0

) 1
2(4−k)

(
t

T

) k−2
2(k−4)

∆
k−2

2(k−4)

0 , R = 2cγ2
2t

(4.35)

where l =
(

(3−k)E
4πAmpc2

) 1
3−k

is the Sedov length, and T = ∆0
c is the shock crossing time

(Yi et al., 2013).

For the ISM model and when p > 2, the forward shock emission can be charac-

terized by

νm = 1.0× 1016 Hz
G(p)

G(2.3)
E1/2

52 ∆−1/2
0,13 ε2e,−1ε

1/2
B,−2t

−1
2 ,

νc = 1.2× 1017 HzE−1/2
52 ∆1/2

0,13n
−1
0,0ε

−3/2
B,−2t

−1
2

Fν,max = 1.2× 103 µJy ẑE52∆
−1
0,13n

1/2
0,0 ε

1/2
B,−2D

−2
28 ,

νa = 3.6× 109 Hz ẑ−6/5 gI(p)

gI(2.3)
E1/5

52 ∆−1/5
0,13 n3/5

0,0 ε
−1
e,−1ε

1/5
B,−2t

1/5
2 , νa < νm < νc

νa = 3.9× 1012 Hz ẑ−
4

p+4
gII(p)

gII(2.3)
E

p+2
2(p+4)

52 ∆
− p+2

2(p+4)

0,13 n
2

p+4

0,0 ε
2(p−1)
p+4

e,−1 ε
p+2

2(p+4)

B,−2 t
− p

p+4

2 ,

νm < νa < νc

νa = 1.0× 109 Hz ẑ−6/5 gIII(p)

gIII(2.3)
E7/10

52 ∆−7/10
0,13 n11/10

0,0 ε6/5B,−2t
1/5
2 , νa < νc < νm

(4.36)

For 1 < p < 2, one has (νc and Fν,max remain the same)

νm = 8.6× 1013 Hz ẑ
6−3p
4(p−1)

gIV (p)

gIV (1.8)
E

p+2
8(p−1)

52 n
2−p

8(p−1)

0,0 ∆
p+2

8(1−p)

0,13 ζ
2−p
p−1

0 ε
2

p−1

e,−1ε
1

2(p−1)

B,−2 t
p+2

4(1−p)

2 ,

νa = 3.2× 1010 Hz
gV (p)

gV (1.8)
ẑ

18−33p
40(p−1)E

46−31p
80(1−p)

52 ∆
46−31p
80(p−1)

0,13 n
58−53p
80(1−p)

0,0 ζ
p−2

2(p−1)

0 ε
1

1−p

e,−1ε
14−9p
20(1−p)

B,−2 t
22−7p
40(p−1)

2 ,

νa < νm < νc

νa = 9.3× 1011 Hz ẑ−
3p+10
4(p+4)

gV I(p)

gV I(1.8)
E

p+14
8(p+4)

52 ∆
− p+14

8(p+4)

0,13 n
18−p
8(p+4)

0,0 ζ
2−p
p+4

0 ε
2

p+4

e,−1ε
2

p+4

B,−2t
− p+6

4(p+4)

2 ,

νm < νa < νc
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νa = 8.5× 108 Hz ẑ−6/5 gV II(p)

gV II(1.8)
E7/10

52 ∆−7/10
0,13 n11/10

0,0 ε6/5B,−2t
1/5
2 , νa < νc < νm

(4.37)

For the wind model and p > 2, one has

νm = 5.8× 1015 Hz
G(p)

G(2.3)
E1/2

52 ∆−1/2
0,13 ε2e,−1ε

1/2
B,−2t

−1
2 ,

νc = 1.2× 1014 Hz ẑ−2E1/2
52 ∆−1/2

0,13 A−2
∗,−1ε

−3/2
B,−2t2

Fν,max = 5.0× 104 µJy ẑE1/2
52 ∆−1/2

0,13 A∗,−1ε
1/2
B,−2D

−2
28 ,

νa = 5.1× 1011 Hz
gV III(p)

gV III(2.3)
E−2/5

52 ∆2/5
0,13A

6/5
∗,−1ε

−1
e,−1ε

1/5
B,−2t

−1
2 , νa < νm < νc

νa = 4.2× 1013 Hz
gIX(p)

gIX(2.3)
E

p−2
2(p+4)

52 ∆
2−p

2(p+4)

0,13 A
4

p+4

∗,−1ε
2(p−1)
p+4

e,−1 ε
p+2

2(p+4)

B,−2 t−1
2 , νm < νa < νc

νa = 3.6× 1012 Hz ẑ
gX(p)

gX(2.3)
E−2/5

52 ∆2/5
0,13A

11/5
∗,−1ε

6/5
B,−2t

−2
2 , νa < νc < νm

(4.38)

For 1 < p < 2, one has (νc and Fν,max remain the same)

νm = 5.6× 1013 Hzẑ
2−p
p−1

gXI(p)

gXI(1.8)
E

p
4(p−1)

52 A
2−p

4(p−1)
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p

4(1−p)

0,13 ζ
2−p
p−1

0 ε
2

p−1

e,−1ε
1

2(p−1)

B,−2 t
1

1−p

2 ,

νa = 4.3× 1012 Hz ẑ
p−2

2(p−1)
gXII(p)

gXII(1.8)
E

6−11p
40(p−1)

52 ∆
11−6p
40(p−1)

0,13 A
58−53p
40(1−p)

∗,−1 ζ
p−2

2(p−1)

0 ε
1

1−p

e,−1ε
14−9p
20(1−p)

B,−2 t
4−3p
2(p−1)

2 ,

νa < νm < νc

νa = 1.3× 1013 Hz ẑ
2−p
p+4

gXIII(p)

gXIII(1.8)
E

p−2
4(p+4)

52 ∆
2−p

4(p+4)

0,13 A
18−p
4(p+4)

∗,−1 ζ
2−p
p+4

0 ε
2

p+4

e,−1ε
2

p+4

B,−2t
− 6

p+4

2 ,

νm < νa < νc

νa = 3.0× 1012 Hz ẑ
gXIV (p)

gXIV (1.8)
E−2/5

52 ∆2/5
0,13A

11/5
∗,−1ε

6/5
B,−2t

−2
2 , νa < νc < νm

(4.39)

The α and β values and their closure relations for the thick shell forward shock

models are presented in Tables 11 and 12.
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p > 2 1 < p < 2
β α α(β) α α(β)

ISM slow cooling

ν < νa −2 −1 α = β
2

11p−14
8(1−p) −−

νa < ν < νm − 1
3 − 4

3 α = 4β 13p−10
12(1−p) −−

νm < ν < νc
p−1
2

p−3
2 α = β − 1 p−6

8 α = 2β−5
8

ν > νc
p
2

p−2
2 α = β − 1 p−2

8 α = β−1
4

ISM fast cooling

ν < νa −2 −1 α = β
2 −1 α = β

2
νa < ν < νc − 1

3 − 4
3 α = 4β − 4

3 α = 4β
νc < ν < νm 1

2 − 1
2 α = −β − 1

2 α = −β

ν > νm
p
2

p−2
2 α = β − 1 0 −−

Wind slow cooling

ν < νa −2 −2 α = β 5p−6
2(1−p) −−

νa < ν < νm − 1
3 − 1

3 α = β − 1
3(p−1) −−

νm < ν < νc
p−1
2

p−1
2 α = β 1

2 −−
ν > νc

p
2

p−2
2 α = β − 1 0 −−

Wind fast cooling

ν < νa −2 −3 α = 3β
2 −3 α = 3β

2
νa < ν < νc − 1

3
1
3 α = −β 1

3 α = −β
νc < ν < νm 1

2 − 1
2 α = −β − 1

2 α = −β

ν > νm
p
2

p−2
2 α = β − 1 0 −−

Table 11 The temporal decay index α and spectral index β of the thick shell forward
shock model in the νa < min(νm, νc) spectral regime.

For this regime (thick-shell forward shock model during shock crossing), for p > 2,

one has νm ∝ t−1 (t−1), νc ∝ t−1 (t1), Fν,max ∝ t0 (t0) for the ISM (wind) models,

respectively. For 1 < p < 2, νc and Fν,max evolutions are the same as p > 2 cases,

while νm ∝ t
p+2

4(1−p) (t
1

1−p ) for the ISM (wind) models, respectively.

p > 2 1 < p < 2
β α α(β) α α(β)

ISM slow cooling

ν < νa −2 −1 α = β
2

11p−14
8(1−p) −−

νa < ν < νm − 1
3 − 3

2 α = 9β
2 − 3

2 α = 9β
2

νm < ν < νc
p−1
2

p−3
2 α = β − 1 p−6

8 α = 2β−5
8

ν > νc
p
2

p−2
2 α = β − 1 p−2

8 α = β−1
4

Wind slow cooling

ν < νa −2 −2 α = β 5p−6
2(1−p) −−

νa < ν < νm − 1
3 − 5

2 α = 15β
2 − 5

2 α = 15β
2

νm < ν < νc
p−1
2

p−1
2 α = β 1

2 −−
ν > νc

p
2

p−2
2 α = β − 1 0 −−

Table 12 The temporal decay index α and spectral index β of the thick shell forward
shock model in the νm < νa < νc spectral regime.
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Thick Shell Reverse Shock Model

Using the same dynamics in Eq.(4.35), one can characterize the reverse shock

emission during the shock crossing phase.

For the ISM model and p > 2, the reverse shock emission can be characterized by

νm = 7.6× 1011 Hz ẑ−1 G(p)

G(2.3)
Γ2
0,2n

1/2
0,0 ε

2
e,−1ε

1/2
B,−2,

νc = 1.2× 1017 HzE−1/2
52 ∆1/2

0,13n
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0,0ε

−3/2
B,−2t

−1
2

Fν,max = 1.3× 105 µJy ẑ1/2E5/4
52 ∆−5/4

0,13 Γ−1
0,2n

1/4
0,0 ε
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B,−2D
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28 t

1/2
2 ,
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0,13 n1/5
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−3/5
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gII(2.3)
E

2
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52 Γ
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2 ,
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52 Γ−3/5
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0,13 n19/20
0,0 ε6/5B,−2t

−1/10
2 ,

νa < νc < νm

(4.40)

For 1 < p < 2, one has (νc and Fν,max remain the same)

νm = 6.1× 108 Hz ẑ
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gIV (p)
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2 ,
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E
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52 Γ−3/5
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(4.41)
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For the wind model and p > 2, one has

νm = 3.3× 1013 Hz
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(4.42)

For 1 < p < 2, one has (νc and Fν,max remain the same)
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2−p
p+4

gXIII(p)

gXIII(1.8)
E

p−2
4(p+4)

52 ∆
2−p

4(p+4)

0,13 A
18−p
4(p+4)

∗,−1 ζ
2−p
p+4

1 ε
2

p+4

e,−1ε
2

p+4

B,−2t
− 6

p+4

2 ,

νm < νa < νc

νa = 1.4× 1013 Hz ẑ
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(4.43)

After the reverse shock crosses the shell, the shocked shell can be roughly described

by the BM solution (Kobayashi and Sari, 2000a; Wu et al., 2003; Kobayashi and

Zhang, 2003a; Kobayashi et al., 2004),

γ3 ∝ t(2k−7)/4(4−k), e3 ∝ t(2k−13)/3(4−k), r ∝ t1/(8−2k), Ne,3 ∝ t0, (4.44)
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For the ISM case, one has

γ = γ3,×

(

t

T

)− 7
16

, R = R×

(

t

T

) 1
8

where γ3,× and R× are the Lorentz factor and radius of Region 3 at the shock crossing

time.

For p > 2, one has

νm = 4.8× 1012 Hz ẑ25/48
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(4.45)

For 1 < p < 2, one has (νc and Fν,max remain the same)
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(4.46)
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For the wind model and p > 2, one has
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(4.47)

For 1 < p < 2, one has (νc and Fν,max remain the same)
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(4.48)

The α and β values and their closure relations for the thick shell reverse shock

models are presented in Tables 13 and 14 (for pre-shock-crossing), and Tables 15 and

16 (for post-shock-crossing).

For this regime (thick-shell reverse shock model during shock crossing), for p > 2,

one has νm ∝ t0 (t−1), νc ∝ t−1 (t1), Fν,max ∝ t1/2 (t0) for the ISM (wind) models,

respectively. For 1 < p < 2, νc and Fν,max evolutions are the same as p > 2 cases,
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p > 2 1 < p < 2
β α α(β) α α(β)

ISM slow cooling

ν < νa −2 − 3
2 α = 3β

4
11p−10
8(1−p) −−

νa < ν < νm − 1
3 − 1

2 α = 3β
2

7p−8
12(1−p) −−

νm < ν < νc
p−1
2 − 1

2 −− p−6
8 α = 2β−5

8
ν > νc

p
2 0 −− p−2

8
β−1
4

ISM fast cooling

ν < νa −2 −1 α = β
2 −1 α = β

2
νa < ν < νc − 1

3 − 5
6 α = 5β

2 − 5
6 α = 5β

2
νc < ν < νm 1

2 0 −− 0 −−
ν > νm

p
2 0 −− p−2

8 α = β−1
4

Wind slow cooling

ν < νa −2 −2 α = β 5p−6
2(1−p) −−

νa < ν < νm − 1
3 − 1

3 α = β − 1
3(p−1) −−

νm < ν < νc
p−1
2

p−1
2 α = β 1

2 −−
ν > νc

p
2

p−2
2 α = β − 1 0 −−

Wind fast cooling

ν < νa −2 −3 α = 3β
2 −3 α = 3β

2
νa < ν < νc − 1

3
1
3

α = −β 1
3

α = −β
νc < ν < νm 1

2 − 1
2 α = −β − 1

2 α = −β

ν > νm
p
2

p−2
2 α = β − 1 0 −−

Table 13 The temporal decay index α and spectral index β of the thick shell reverse
shock model during the shock crossing phase in the νa < min(νm, νc) spectral regime.

while νm ∝ t
2−p

4(p−1) (t
1

1−p ) for the ISM (wind) models, respectively.

After shock crossing, νm ∝ νcut ∝ t−73/48 (t−15/8), Fν,max ∝ t−47/48 (t−9/8) for the

ISM (wind) models, respectively.

Notice that in the above treatment, a relativistic reverse shock has been assumed.

In reality, there is a brief epoch before the reverse shock becomes relativistic. There

should be an additional dynamical change at RN (the transition radius from Newto-

nian to relativistic reverse shock), which is much smaller than R× (Sari and Piran,

1995). The light curves may show an additional break at this epoch, before which

the thin shell scalings apply.

Phase 2: relativistic, pre-jet-break, self-similar deceleration phase

After reverse shock crosses the shell, the blastwave would quickly adjusts itself

to a self-similar deceleration phase (Blandford and McKee, 1976)4. Early on, the

4This is the case for the idealized situation. In reality, there might be irregulatities in the
system (e.g. ambient density fluctuations or non-power-law energy injection). The blastwave is no
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p > 2 1 < p < 2
β α α(β) α α(β)

ISM slow cooling

ν < νm −2 − 3
2 α = 3β

4
11p−10
8(1−p) −−

νm < ν < νa − 5
2 − 3

2 α = 3β
5 − 3

2 α = 3β
5

νa < ν < νc
p−1
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8
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p
2 0 −− p−2

8
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4

Wind slow cooling

ν < νm −2 −2 α = β 6−5p
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2 − 5

2 α = β − 5
2 α = β

νa < ν < νc
p−1
2

p−1
2 α = β 1

2 −−
ν > νc

p
2

p−2
2 α = β − 1 0 −−

Table 14 The temporal decay index α and spectral index β for the thick shell reverse
shock model during the reverse shock crossing phase in the νm < νa < νc spectral
regime.

p > 2 1 < p < 2
β α α(β) α α(β)

ISM slow cooling

ν < νa −2 − 5
12 α = 5β

24 − 5
12 α = 5β

24
νa < ν < νm − 1

3
17
36 −α = 17β

12
17
36 −α = 17β

12
νm < ν < νcut

p−1
2

73p+21
96 α = 73β+47

48
73p+21

96 α = 73β+47
48

Wind slow cooling

ν < νa −2 − 1
2 α = β

4 − 1
2 α = β

4
νa < ν < νm − 1

3
1
2 α = − 3β

2
1
2 α = − 3β

2

νm < ν < νcut
p−1
2

3(5p+1)
16 α = 3(5β+3)

8
3(5p+1)

16 α = 3(5β+3)
8

Table 15 The temporal decay index α and spectral index β of the thick shell re-
verse shock model in the post-shock crossing phase in the νa < min(νm, νcut) spectral
regime.

p > 2 1 < p < 2
β α α(β) α α(β)

ISM slow cooling

ν < νm −2 − 5
12 α = 5β

24 − 5
12 α = 5β

24
νm < ν < νa − 5

2 − 113
96 α = 226β

480 − 113
96 α = 226β

480
νa < ν < νcut

p−1
2

73p+21
96 α = 73β+47

48
73p+21

96 α = 73β+47
48

Wind slow cooling

ν < νm −2 − 1
2 α = β

4 − 1
2 α = β

4
νm < ν < νa − 5

2 − 23
16 α = 23β

40 − 23
16 α = 23β

40

νa < ν < νcut
p−1
2

3(5p+1)
16 α = 3(5β+3)

8
3(5p+1)

16 α = 3(5β+3)
8

Table 16 The temporal decay index α and spectral index β of the thick shell reverse
shock model in the post-shock crossing phase in the νm < νa < νcut spectral regime.
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blastwave is ultra-relativistic with 1/Γ ' θj . The closure relations in this phase have

been reviewed previously (e.g. Zhang and Mészáros, 2004a; Zhang et al., 2006).

Adiabatic deceleration without energy injection

The simplest model invokes a constant energy in the blastwave. This requires that

the blastwave is adiabatic (no radiative loss), and that there is no energy injection into

the blastwave. The adiabatic approximation usually gives a reasonable description

to the blastwave evolution. This is because the radiative loss fraction is at most εe

(for fast cooling), which is constrained to be around 0.1 and lower (Panaitescu and

Kumar, 2001, 2002; Yost et al., 2003)5.

For an arbitrary k density profile, the dynamics of the blast wave in the constant

energy regime can be described as

γ =

(
(17− 4k)E

45−k(4− k)3−kπAmpc5−kt3−k

) 1
2(4−k)

, R =

(
(17− 4k)(4− k)Et

4πAmpc

) 1
4−k

,

For the ISM model (k = 0) and p > 2, one has
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1/2
0,0 ε

1/2
B,−2D

−2
28 ,

νa = 5.7× 109 Hz ẑ−1 gI(p)

gI(2.3)
E1/5

52 n3/5
0,0 ε

−1
e,−1ε

1/5
B,−2, νa < νm < νc

νa = 1.5× 1010 Hz ẑ
p−6

2(p+4)
gII(p)

gII(2.3)
E

p+2
2(p+4)

52 n
2

p+4

0,0 ε
2(p−1)
p+4

e,−1 ε
p+2

2(p+4)

B,−2 t
− 3p+2

2(p+4)

5 , νm < νa < νc

νa = 6.9× 106 Hz ẑ−1/2 gIII(p)

gIII(2.3)
E7/10

52 n11/10
0,0 ε6/5B,−2t

−1/2
5 , νa < νc < νm

longer self-similar. We limit ourselves to the self-similar assumption and derive the scalings in this
subsection, and discuss more complicated simulations in the fifth section.

5Note that since the blast-wave energy is given again and again to newly heated material, the
radiative energy loss may become important after several orders of magnitude of deceleration time
(Sari, 1997).
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(4.49)

For 1 < p < 2, one has (νc and Fν.max remain the same)

νm = 3.6× 107 Hz ẑ
14−5p
8(p−1)

gIV (p)

gIV (1.8)
E

p+2
8(p−1)

52 n
2−p

8(p−1)

0,0 ζ
2−p
p−1

0 ε
2

p−1

e,−1ε
1

2(p−1)

B,−2 t
3p+6

8(1−p)

5 ,

νa = 1.6× 1011 Hz ẑ−
7p+2

16(p−1)
gV (p)

gV (1.8)
E

46−31p
80(1−p)

52 n
58−53p
80(1−p)

0,0 ζ
p−2

2(p−1)

0 ε
1

1−p

e,−1ε
14−9p
20(1−p)

B,−2 t
− 9(p−2)

16(p−1)

5 ,

νa < νm < νc

νa = 4.5× 109 Hz ẑ−
5p+6
8(p+4)

gV I(p)

gV I(1.8)
E

p+14
8(p+4)

52 n
18−p
8(p+4) ζ

2−p
p+4 ε

2
p+4
e ε

2
p+4

B t
− 3p+26

8(p+4)

d ,

νm < νa < νc

νa = 5.7× 106 Hz ẑ−1/2 gV II(p)

gV II(1.8)
E7/10

52 n11/10
0,0 ε6/5B,−2t

−1/2
5 , νa < νc < νm

(4.50)

For the wind model (k = 2) and p > 2, one has

νm = 2.2× 1010 Hz ẑ1/2
G(p)

G(2.3)
E1/2

52 ε2e,−1ε
1/2
B,−2t

−3/2
5 ,

νc = 1.8× 1018 Hz ẑ−3/2E1/2
52 A−2

∗,−1ε
−3/2
B,−2t

1/2
5

Fν,max = 1.5× 103 µJy ẑ3/2E1/2
52 A∗,−1ε

1/2
B,−2D

−2
28 t

−1/2
5 ,

νa = 1.0× 109 Hz ẑ−2/5 gV III(p)

gV III(2.3)
E−2/5

52 A6/5
∗,−1ε

−1
e,−1ε

1/5
B,−2t

−3/5
5 , νa < νm < νc

νa = 4.4× 109 Hz ẑ
p−2

2(p+4)
gIX(p)

gIX(2.3)
E

p−2
2(p+4)

52 A
4

p+4

∗,−1ε
2(p−1)
p+4

e,−1 ε
p+2

2(p+4)

B,−2 t
− 3(p+2)

2(p+4)

5 , νm < νa < νc

νa = 1.2× 105 Hz ẑ3/5
gX(p)

gX(2.3)
E−2/5

52 A11/5
∗,−1ε

6/5
B,−2t

−8/5
5 , νa < νc < νm

(4.51)

For 1 < p < 2, one has (νc and Fν.max remain the same)

νm = 1.5× 107 Hzẑ
8−3p
4(p−1)

gXI(p)

gXI(1.8)
E

p
4(p−1)

52 A
2−p

4(p−1)

∗,−1 ζ
2−p
p−1

0 ε
2

p−1

e,−1ε
1

2(p−1)

B,−2 t
p+4

4(1−p)

5 ,
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νa = 3.3× 1010 Hz ẑ
9p−34
40(p−1)

gXII(p)

gXII(1.8)
E

6−11p
40(p−1)

52 A
58−53p
40(1−p)

∗,−1 ζ
p−2

2(p−1)

0 ε
1

1−p

e,−1ε
14−9p
20(1−p)

B,−2 t
74−49p
40(p−1)

5 ,

νa < νm < νc

νa = 1.3× 109 Hz ẑ
6−3p
4(p+4)

gXIII(p)

gXIII(1.8)
E

p−2
4(p+4)

52 A
18−p
4(p+4)

∗,−1 ζ
2−p
p+4

0 ε
2

p+4

e,−1ε
2

p+4

B,−2t
− 22+p

4(p+4)

5 ,

νm < νa < νc

νa = 9.5× 104 Hz ẑ3/5
gXIV (p)

gXIV (1.8)
E−2/5

52 A11/5
∗,−1ε

6/5
B,−2t

−8/5
5 , νa < νc < νm

(4.52)

The α and β values and their closure relations of these models are presented in

Tables 17 to 20.

For this model (adiabatic deceleration without energy injection), for p > 2, one

has νm ∝ t−3/2 (t−3/2), νc ∝ t−1/2 (t1/2), Fν,max ∝ t0 (t−1/2) for the ISM (wind) models,

respectively. For 1 < p < 2, νc and Fν,max evolutions are the same as p > 2 cases,

while νm ∝ t
3p+6
8(1−p) (t

p+4
4(1−p) ) for the ISM (wind) models, respectively.

Adiabatic deceleration with energy injection

In some central engines models, such as the millisecond magnetar model (Dai

and Lu, 1998c; Zhang and Mészáros, 2001a), significant energy injection into the

blastwave is possible. Assume that the central engine has a power-law luminosity

history L(t) = L0

(
t
t0

)−q
, the injected energy is Einj = L0t

q
0

1−q t
1−q. If the injected

energy is in the form of a Poynting flux so that a reverse shock does not exist or is

weak, one can approximately treat the blastwave as a system with continuous energy

increase. The energy injection effect becomes significant when Einj > Eimp, where

Eimp is the impulsively injected energy during the prompt emission phase (Zhang and

Mészáros, 2001a). The dynamics of the system can be described by

γ =

(
(17− 4k)E

45−k(4− k)3−kπAmpc5−ktq+2−k

) 1
2(4−k)

, R =

(
(17− 4k)(4− k)Et2−q

4πAmpc

) 1
4−k

.
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There is an alternative type of energy injection, which does not invoke a long

lasting central engine, but rather invokes a Lorentz factor stratification of the ejecta

(Rees and Mészáros, 1998; Sari and Mészáros, 2000), e.g.

M(> γ) ∝ γ−s (4.53)

As the blastwave decelerates, ejecta with lower γ gradually piles up onto the blastwave

so that the energy of the blastwave is increased. Since energy is injected when Γ ∼ γ,

the reverse shock is very weak, one can treat the blastwave as a system with continuous

energy injection.

The two energy injection mechanisms can be considered equivalent when bridging

the two injection parameter s and q, i.e.,

s =
10− 3k − 7q + 2kq

2 + q − k
, q =

10− 2s− 3k + ks

7 + s− 2k
(4.54)

for general density profile n1 = AR−k. For the ISM model and wind model, it becomes

s = 10−7q
2+q , q = 10−2s

7+s and s = 4−3q
q , q = 4

3+s respectively (Zhang et al., 2006).

In the following, we derive all the expressions using the parameter q. For the ISM

model (k = 0) and p > 2, one has

νm = 1.37× 1018 Hz ẑq/2E1/2
52 ε2e,−1ε

1/2
B,−2t

−1−q/2,

νc = 9.2× 1018 Hz ẑ−q/2E−1/2
52 n−1

0,0ε
−3/2
B,−2t

−1+q/2,

Fν,max = 1.1× 104 µJy ẑqE52n
1/2
0,0 ε

1/2
B,−2D

−2
28 t

1−q,

νa = 5.7× 109 Hz ẑ
q−6
5

gI(p)

gI(2.3)
E1/5

52 n3/5
0,0 ε

−1
e,−1ε

1/5
B,−2t

1−q
5 , νa < νm < νc

νa = 5.0× 1013 Hz ẑ
(p+2)q−8
2(p+4)

gII(p)

gII(2.3)
E

p+2
2(p+4)

52 n
2

p+4

0,0 ε
2(p−1)
p+4

e,−1 ε
p+2

2(p+4)

B,−2 t−
2p+(p+2)q

2(p+4) , νm < νa < νc

νa = 2.2× 109 Hz ẑ
7q−12

10
gIII(p)

gIII(2.3)
E7/10

52 n11/10
0,0 ε6/5B,−2t

− 7q−2
10 , νa < νc < νm

(4.55)
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For 1 < p < 2, one has (νc and Fν.max remain the same)

νm = 2.9× 1016 Hz ẑ
pq−6p+2q+12

8(p−1)
gIV (p)

gIV (1.8)
E

p+2
8(p−1)

52 n
2−p

8(p−1)

0,0 ζ
2−p
p−1

0 ε
2

p−1

e,−1ε
1

2(p−1)

B,−2 t−
(q+2)(p+2)

8(p−1) ,

νa = 3.2× 1010 Hz ẑ
31pq−66p−46q+36

8(p−1)
gV (p)

gV (1.8)
E

46−31p
80(1−p)

52 n
58−53p
80(1−p)

0,0 ζ
p−2

2(p−1)

0 ε
1

1−p

e,−1ε
14−9p
20(1−p)

B,−2 ,

t
44−14p+46q−31pq

80(p−1) , νa < νm < νc

νa = 1.1× 1013 Hz ẑ
pq−6p+14q−20

8(p+4)
gV I(p)

gV I(1.8)
E

p+14
8(p+4)

52 n
18−p
8(p+4)

0,0 ζ
2−p
p+4

0 ε
2

p+4

e,−1ε
2

p+4

B,−2t
− p(q+2)+2(7q+6)

8(p+4) ,

νm < νa < νc

νa = 1.8× 109 Hz ẑ
7q−12

10
gV II(p)

gV II(1.8)
E7/10

52 n11/10
0,0 ε6/5B,−2t

− 7q−2
10 , νa < νc < νm

(4.56)

For the wind model (k = 2) and p > 2, one has

νm = 7.0× 1017 Hz ẑq/2E1/2
52 ε2e,−1ε

1/2
B,−2t

−1−q/2,

νc = 5.8× 1015 Hz ẑq/2−2E1/2
52 A−2

∗,−1ε
−3/2
B,−2t

1−q/2

Fν,max = 4.9× 105 µJy ẑ
q+2
2 E1/2

52 A∗,−1ε
1/2
B,−2D

−2
28 t

−q/2,

νa = 1.0× 1012 Hz ẑ−
2q
5

gV III(p)

gV III(2.3)
E−2/5

52 A6/5
∗,−1ε

−1
e,−1ε

1/5
B,−2t

−1+2q/5, νa < νm < νc

νa = 5.8× 1014 Hz ẑ
(p−2)q
2(p+4)

gIX(p)

gIX(2.3)
E

p−2
2(p+4)

52 A
4

p+4

∗,−1ε
2(p−1)
p+4

e,−1 ε
p+2

2(p+4)

B,−2 t−1− (p−2)q
2(p+4) , νm < νa < νc

νa = 1.2× 1013 Hz ẑ
5−2q

5
gX(p)

gX(2.3)
E−2/5

52 A11/5
∗,−1ε

6/5
B,−2t

2q/5−2, νa < νc < νm

(4.57)

For 1 < p < 2, one has (νc and Fν.max remain the same)

νm = 1.7× 1016 Hz ẑ
pq−4p+8
4(p−1)

gXI(p)

gXI(1.8)
E

p
4(p−1)

52 A
2−p

4(p−1)

∗,−1 ζ
2−p
p−1

0 ε
2

p−1

e,−1ε
1

2(p−1)

B,−2 t
4+pq

4(1−p) ,

νa = 5.5× 1012 Hz ẑ
120−100p−6q+11pq

40(p−1)
gXII(p)

gXII(1.8)
E

6−11p
40(p−1)

52 A
58−53p
40(1−p)

∗,−1 ζ
p−2

2(p−1)

0 ε
1

1−p

e,−1ε
14−9p
20(1−p)

B,−2 ,

t
20p−40+6q−11pq

40(p−1) , νa < νm < νc
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no injection injection
β α α(β) α α(β)

ISM slow cooling

ν < νa −2 − 1
2 α = β

4
q
2 − 1 −−

νa < ν < νm − 1
3 − 1

2 α = 3β
2

5q−8
6 −−

νm < ν < νc
p−1
2

3(p−1)
4 α = 3β

2
(2p−6)+(p+3)q

4 α = (q − 1) + (2+q)β
2

ν > νc
p
2

3p−2
4 α = 3β−1

2
(2p−4)+(p+2)q

4 α = q−2
2 + (2+q)β

2
ISM fast cooling

ν < νa −2 −1 α = β
2 −1 α = β

2
νa < ν < νc − 1

3 − 1
6 α = β

2
7q−8

6 −−
νc < ν < νm

1
2

1
4 α = β

2
3q−2

4 −−
ν > νm

p
2

3p−2
4 α = 3β−1

2
(2p−4)+(p+2)q

4 α = q−2
2 + (2+q)β

2
Wind slow cooling

ν < νa −2 -1 α = β
2

q − 2 −−
νa < ν < νm − 1

3 0 0 −− −−
νm < ν < νc

p−1
2

3p−1
4 α = 3β+1

2
(2p−2)+(p+1)q

4 α = q
2 + (2+q)β

2

ν > νc
p
2

3p−2
4 α = 3β−1

2
(2p−4)+(p+2)q

4 α = q−2
2 + (2+q)β

2
Wind fast cooling
ν < νa −2 −2 α = β q − 3 −−
νa < ν < νc − 1

3
2
3 α = −2β (1+q)

3 −−
νc < ν < νm 1

2
1
4 α = β

2
3q−2

4 −−
ν > νm

p
2

3p−2
4 α = 3β−1

2
(2p−4)+(p+2)q

4 α = q−2
2 + (2+q)β

2

Table 17 The temporal decay index α and spectral index β in relativistic, isotropic,
self-similar deceleration phase for νa < min(νm, νc) and p > 2.

νa = 1.7× 1014 Hz ẑ
(p−2)q−4p+8

4(p+4)
gXIII(p)

gXIII(1.8)
E

p−2
4(p+4)

52 A
18−p
4(p+4)

∗,−1 ζ
2−p
p+4

0 ε
2

p+4

e,−1ε
2

p+4

B,−2t
− (p−2)q+24

4(p+4) ,

νm < νa < νc

νa = 9.5× 1012 Hz ẑ
5−2q

5
gXIV (p)

gXIV (1.8)
E−2/5

52 A11/5
∗,−1ε

6/5
B,−2t

2q/5−2, νa < νc < νm

(4.58)

The α and β values and their closure relations for these models are also presented

in Tables 17 to 20.

For this model (adiabatic deceleration without energy injection), for p > 2, one

has νm ∝ t−1−q/2 (t−1−q/2), νc ∝ t−1+q/2 (t1−q/2), Fν,max ∝ t1−q (t−q/2) for the ISM

(wind) models, respectively. For 1 < p < 2, νc and Fν,max evolutions are the same as

p > 2 cases, while νm ∝ t
(q+2)(p+2)

8(1−p) (t
4+pq

4(1−p) ) for the ISM (wind) models, respectively.
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no injection injection
β α α(β) α α(β)

ISM slow cooling

ν < νm −2 − 1
2 α = β

4
q
2 − 1 −−

νm < ν < νa − 5
2 − 5

4 α = β
2

q−6
4 −−

νa < ν < νc
p−1
2

3(p−1)
4 α = 3β

2
(2p−6)+(p+3)q

4 α = (q − 1) + (2+q)β
2

ν > νc
p
2

3p−2
4 α = 3β−1

2
(2p−4)+(p+2)q

4 α = q−2
2 + (2+q)β

2
Wind slow cooling

ν < νm −2 -1 α = β
2

q − 2 −−
νm < ν < νa − 5

2 − 7
4 α = 7β

10
3q−10

4 −−
νa < ν < νc

p−1
2

3p−1
4 α = 3β+1

2
(2p−2)+(p+1)q

4 α = q
2 + (2+q)β

2

ν > νc
p
2

3p−2
4 α = 3β−1

2
(2p−4)+(p+2)q

4 α = q−2
2 + (2+q)β

2

Table 18 The temporal decay index α and spectral index β in relativistic, isotropic,
self-similar deceleration phase for νm < νa < νc and p > 2.

no injection injection
β α α(β) α α(β)

ISM slow cooling

ν < νa −2 26−17p
16(p−1) −− 28−22p−2q+5pq

16(p−1) −−
νa < ν < νm − 1

3 − p+2
8(p−1) −− 20−26p−26q+23pq

24(p−1) −−

νm < ν < νc
p−1
2

3(p+2)
16 α = 6β+9

16 − 12−18q−p(q+2)
16 α = 19q−10

16 + (2+q)β
8

ν > νc
p
2

3p+10
16 α = 3β+5

8
14q+p(q+2)−4

16 α = 7q−2
8 + (2+q)β

8
ISM fast cooling

ν < νa −2 −1 α = β
2 −1 α = β

2
νa < ν < νc − 1

3 − 1
6 α = β

2
7q−8

6 −−
νc < ν < νm 1

2
1
4 α = β

2
3q−2

4 −−
ν > νm

p
2

3p+10
16 α = 3β+5

8
14q+p(q+2)−4

16 α = 7q−2
8 + (2+q)β

8
Wind slow cooling

ν < νa −2 13p−18
8(1−p) −− 20p+6q−7pq−24

8(1−p) −−

νa < ν < νm − 1
3

5(p−2)
12(p−1) −− 4+6q−5pq

12(1−p) −−

νm < ν < νc
p−1
2

p+8
8 α = 2β+9

8
4+(p+4)q

8 α = 5q+4
8 + βq

4

ν > νc
p
2

p+6
8 α = 2β+7

8
(6+p)q

8 α = (β+3)q
4

Wind fast cooling
ν < νa −2 −2 α = β q − 3 −−
νa < ν < νc − 1

3
2
3 α = −2β 1+q

3 −−
νc < ν < νm 1

2
1
4 α = β

2
3q−2

4 −−
ν > νm

p
2

p+6
8 α = 2β+7

8
(6+p)q

8 α = (β+3)q
4

Table 19 The temporal decay index α and spectral index β in relativistic, isotropic,
self-similar deceleration phase for νa < min(νm, νc) and 1 < p < 2.
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no injection injection
β α α(β) α α(β)

ISM slow cooling

ν < νm −2 26−17p
16(p−1) −− 28−22p−2q+5pq

16(p−1) −−

νm < ν < νa − 5
2 − 5

4 α = β
2

q−6
4 −−

νa < ν < νc
p−1
2

3(p+2)
16 α = 6β+9

16
18q+p(q+2)−12

16 α = 19q−10
16 + (2+q)β

8

ν > νc
p
2

3p+10
16 α = 3β+5

8
14q+p(q+2)−4

16 α = 7q−2
8 + (2+q)β

8
Wind slow cooling

ν < νm −2 13p−18
8(1−p) −− 20p+6q−7pq−24

8(1−p) −

νm < ν < νa − 5
2 − 7

4 α = 7β
10

3q−10
4 −−

νa < ν < νc
p−1
2

p+8
8 α = 2β+9

8
4+(p+4)q

8 α = 5q+4
8 + βq

4

ν > νc
p
2

6+p
8 α = 2β+7

8
(6+p)q

8 α = (β+3)q
4

Table 20 The temporal decay index α and spectral index β in relativistic, isotropic,
self-similar deceleration phase for νm < νa < νc and 1 < p < 2.

Phase 3: post jet break phase

The above calculations are based on the assumption of a spherical expansion.

However, achromatic breaks seen in many afterglow lightcurves suggest that GRB

outflows are collimated. For a simplified conical jet model with an opening angle θj ,

the jet effect becomes important when 1/Γ > θj . The lightcurve shows a steepening

break around this time.

In the literature, two effects have been discussed to steepen the lightcurve. The

first is the pure edge effect (e.g. Panaitescu et al., 1998a). Since an observer sees

emission within the 1/Γ cone for a blastwave moving with bulk Lorentz factor Γ,

he/she would feel the deficit of flux outside the θj cone when 1/Γ > θj is satisfied.

Assuming that the dynamics does not change, the flux reduction factor would be

θ2j/(1/Γ)
2 = Γ2θ2j . This defines the degree of steepening at the jet break.

The second effect discussed in the literature is the sideway expansion effect. Ac-

cording to (Rhoads, 1999; Sari et al., 1999c), when Γ ∼ θ−1
j is satisfied, sound waves in

the jet would cross the jet in the transverse direction and lead to its sideways expan-

sion. This leads to a exponentially deceleration of the jet. However, later numerical

simulations, and more sophisticated analytical treatments suggest that sideways ex-

pansion is not important until Γ drops below a few (Kumar and Panaitescu, 2003a;

Cannizzo et al., 2004; Zhang and MacFadyen, 2009; Granot and Piran, 2012). We
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therefore do not discuss this effect.

For the edge effect only, in the post-jet-break phase the expressions of the break

frequencies νa, νm and νc and the peak flux density Fν,max all remain the same as the

isotropic phase. The temporal decay indices are changed with the extra steepening

correction factor. In rare cases, continuous energy injection may extend to the post-

jet-break phase. For completeness, we also discuss these cases. After shock crossing,

the reverse shocked region decelerates with a different dynamics from the forward

shocked region. Given a same jet opening angle, it corresponds to an earlier jet break

time. In Table 21, we present the expressions of jet break time and the temporal

indices changes (∆α defined as post-jet-break α2 minus pre-jet-break α1) for all the

models in different regimes.

In Tables 22 and 23, we present α and β values and their closure relations for the

jet model. Since the reverse shock jet break is usually undetectable, only forward

shock models are presented.

tjet ∆α

ThinRSpost (ISM) 2.8× 104 s ẑE1/3
52 θ5/2j,−1n

−1/3
0 Γ−1/6

0,2 4/5

ThinRSpost (wind) 2.9× 103 s ẑE52θ
3
j,−1A

−1
∗,−1Γ

−1
0,2 2/3

ThickRSpost (ISM) 1.2× 104 s ẑE2/7
52 θ16/7j,−1n

−2/7
0 ∆1/7

0,12 7/8

ThickRSpost (Wind) 1.9× 103 s ẑE2/3
52 θ8/3j,−1A

−2/3
∗,−1 ∆

1/3
0,12 3/4

FS (ISM, no injection) 5.8× 103 s ẑE
1/3
52 θ

8/3
j,−1n

−1/3
0 3/4

FS (wind, no injection) 1.7× 104 s ẑE52θ4j,−1A
−1
∗,−1 1/2

FS (ISM, injection) 2.0× 10
11

2+q s ẑE
1

2+q

52 θ
8

2+q

j,−1n
− 1

2+q

0 (2 + q)/4

FS (wind, injection) 1.7× 10
4
q s ẑE

1
q

52θ
4
q

j,−1A
− 1

q

∗,−1 q/2

Table 21 Collection of jet break time and temporal indices changes ∆α = α2 −α1 for
different regimes.

Phase 4: newtonian phase

The blastwave eventually enters the Newtonian phase when it has swept up a CBM

mass comparable to the initial mass entrained in the ejecta. In the deep Newtonian
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p > 2 1 < p < 2
β α α(β) α α(β)

ISM no injection

ν < νa −2 1
4

α = β
8

14−5p
16(p−1)

−−

νa < ν < νm − 1
3

1
4 α = 3β

4
5p−8
8(p−1) −−

νm < ν < νc
p−1
2

3p
4 α = 6β+3

4
3(p+6)

16 α = 3(2β+7)
16

ν > νc
p
2

3p+1
4 α = 6β+1

4
3p+22

16 α = 3β+11
8

Wind no injection

ν < νa −2 − 1
2 α = β

4
14−9p
8(p−1) −−

νa < ν < νm − 5
2

1
2 α = β

5
11p−16
12(p−1) −−

νm < ν < νc
p−1
2

3p+1
4 α = 3β+2

2
p+12

8 α = 2β+13
8

ν > νc
p
2

3p
4 α = 3β

2
p+10

8 α = β+5
4

ISM injection

ν < νa −2 3q−2
4 −− 20−14p−6q+9pq

16(p−1) −−
νa < ν < νm − 1

3
13q−10

12 −− 8−14p−32q+29pq
24(p−1) −−

νm < ν < νc
p−1
2

p(q+2)−4(1−q)
4 α = 5q−2

4 + (2+q)β
2

22q−4+p(q+2)
16 α = 11q−2

8 + (2+q)β
8

ν > νc
p
2

3q−2+p(q+2)
4 α = 3q−2+2β(q+2)

4
18q+4+p(q+2)

16 α = 9q+2+β(q+2)
8

Wind injection

ν < νa −2 3q−4
2 −− 24−20p−10q+11pq

8(p−1) −−
νa < ν < νm − 5

2
5q−2

6 −− 11pq−12q−4
12(p−1) −−

νm < ν < νc
p−1
2

3q−2+p(q+2)
4 α = q + (2+q)β

2
pq+8q+4

8 α = 1
2 + 2β+9

8

ν > νc
p
2

p(q+2)−4(1−q)
4 α = β(q+2)−2(1−q)

2
(p+10)q

8 α = (β+5)q
4

Table 22 The temporal decay index α and spectral index β after jet break for νa <
min(νm, νc), considering edge effect only.

p > 2 1 < p < 2
β α α(β) α α(β)

ISM no injection

ν < νm −2 1
4 α = β

8
14−5p
16(p−1) −−

νm < ν < νa − 1
3 − 1

2 α = 3β
2 − 1

2 α = 3β
2

νa < ν < νc
p−1
2

3p
4

α = 6β+3
4

3(p+6)
16

α = 3(2β+7)
16

ν > νc
p
2

3p+1
4 α = 6β+1

4
3p+22

16 α = 3β+11
8

Wind no injection

ν < νm −2 − 1
2 α = β

4
14−9p
8(p−1) −−

νm < ν < νa − 5
2 − 5

4 α = β
2 − 5

4 α = β
2

νa < ν < νc
p−1
2

3p+1
4 α = 3β+2

2
p+12

8 α = 2β+13
8

ν > νc
p
2

3p
4 α = 3β

2
p+10

8 α = β+5
4

ISM injection

ν < νm −2 3q−2
4 −− 20−14p−6q+9pq

16(p−1) −−
νm < ν < νa − 1

3
q−2
2 −− q−2

2 −−
νa < ν < νc

p−1
2

p(q+2)−4(1−q)
4 α = 5q−2

4 + (2+q)β
2

22q−4+p(q+2)
16 α = 11q−2

8 + (2+q)β
8

ν > νc
p
2

3q−2+p(q+2)
4 α = 3q−2+2β(q+2)

4
18q+4+p(q+2)

16 α = 9q+2+β(q+2)
8

Wind injection

ν < νm −2 3q−4
2 −− 24−20p−10q+11pq

8(p−1) −−

νm < ν < νa − 5
2

5(q−2)
4 −− 5(q−2)

4 −−
νa < ν < νc

p−1
2

3q−2+p(q+2)
4 α = q + (2+q)β

2
pq+8q+4

8 α = 1
2 + 2β+9

8

ν > νc
p
2

p(q+2)−4(1−q)
4 α = β(q+2)−2(1−q)

2
(p+10)q

8 α = (β+5)q
4

Table 23 The temporal decay index α and spectral index β after jet break for νm <
νa < νc, considering edge effect only.
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phase, the dynamics is described by the well known Sedov-Taylor solution:

R =

(

5− k

2

) 2
5−k

[

(3− k)E

2πAmp

] 1
5−k

t
2

5−k , v =

(

5− k

2

)k−3
5−k

[

(3− k)E

2πAmp

] 1
5−k

t
k−3
5−k(4.59)

This phase has been studied extensively in the literature (Wijers et al., 1997; Dai and

Lu, 1999a; Huang et al., 1999, 2000; Livio and Waxman, 2000; Huang and Cheng,

2003).

In this phase, for an ISM medium and p > 2, one has

νm = 2.0× 1014 Hz ẑ2
G(p)

G(2.3)
E52n

−1/2
0,0 ε2e,−1ε

1/2
B,−2t

−3
5 ,

νc = 7.0× 1015 Hz ẑ−4/5E−3/5
52 n−9/10

0,0 ε−3/2
B,−2t

−1/5
5

Fν,max = 2.3× 102 µJy ẑ2/5E4/5
52 n7/10

0,0 ε1/2B,−2D
−2
28 t

3/5
5 ,

νa = 1.4× 107 Hz ẑ−11/5 gI(p)

gI(2.3)
E−1/5

52 n0,0ε
−1
e,−1ε

1/5
B,−2t

6/5
5 , νa < νm < νc

νa = 3.3× 1010 Hz ẑ
2p−6
p+4

gII(p)

gII(2.3)
E

p
p+4

52 n
6−p

2(p+4)

0,0 ε
2(p−1)
p+4

e,−1 ε
p+2

2(p+4)

B,−2 t
− 3p−2

p+4

5 , νm < νa < νc

(4.60)

For 1 < p < 2, one has (νc and Fν.max remain the same)

νm = 1.9× 1012 Hz ẑ
4−p
p−1

gIII(p)

gIII(1.8)
E

1
p−1

52 n
1

2(1−p)

0,0 ζ
2−p
p−1

0 ε
2

p−1

e,−1ε
1

2(p−1)

B,−2 t
− 3

p−1

5 ,

νa = 1.2× 108 Hz
gIV (p)

gIV (1.8)
ẑ

7p+8
10(p−1)E

8−3p
10(1−p)

52 n
2−3p
4(1−p)

0,0 ζ
p−2

2(p−1)

0 ε
1

1−p

e,−1ε
14−9p
20(1−p)

B,−2 t
− 3(p−6)

10(p−1)

5 ,

νa < νm < νc

νa = 7.4× 109 Hz ẑ−
p

p+4
gV (p)

gV (1.8)
E

2
p+4

52 n
2

p+4

0,0 ζ
2−p
p+4

0 ε
2

p+4

e,−1ε
2

p+4

B,−2t
− 4

p+4

5 , νm < νa < νc

(4.61)
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For the wind model and p > 2, one has

νm = 1.6× 1014 Hz ẑ4/3
G(p)

G(2.3)
E4/3

52 A−5/6
∗,−1 ε

2
e,−1ε

1/2
B,−2t

−7/3
5 ,

νc = 1.7× 1015 Hz ẑ−2A−3/2
∗,1 ε−3/2

B,−2t5

Fν,max = 5.3× 102 µJy ẑ4/3E1/3
52 A7/6

∗,−1ε
1/2
B,−2D

−2
28 t

−1/3
5 ,

νa = 6.9× 107 Hz ẑ−13/15 gV I(p)

gV I(2.3)
E−13/15

52 A5/3
∗,−1ε

−1
e,−1ε

1/5
B,−2t

−2/15
5 , νa < νm < νc

νa = 6.9× 1010 Hz ẑ
4p−6
3(p+4)

gV II(p)

gV II(2.3)
E

2(2p−3)
3(p+4)

52 A
5(6−p)
6(p+4)

∗,−1 ε
2(p−1)
p+4

e,−1 ε
p+2

2(p+4)

B,−2 t
− 7p+6

3(p+4)

5 , νm < νa < νc

(4.62)

For 1 < p < 2, one has (νc and Fν.max remain the same)

νm = 1.4× 1012 Hz ẑ
10−3p
3(p−1)

gV III(p)

gV III(1.8)
E

4
3(p−1)

52 A
5

6(1−p)

∗,−1 ζ
2−p
p−1

0 ε
2

p−1

e,−1ε
1

2(p−1)

B,−2 t
− 7

3(p−1)

5 ,

νa = 6.0× 108 Hz ẑ
9p−44
30(p−1)

gIX(p)

gIX(1.8)
E

3p+7
15(1−p)

52 A
5(3p−2)
12(p−1)

∗,−1 ζ
p−2

2(p−1)

0 ε
1

1−p

e,−1ε
14−9p
20(1−p)

B,−2 t
74−39p
30(p−1)

5 ,

νa < νm < νc

νa = 1.6× 1010 Hz ẑ
8−3p
3p+4

gX(p)

gX(1.8)
E

2
3(p+4)

52 A
10

3(p+4)

∗,−1 ζ
2−p
p+4

0 ε
2

p+4

e,−1ε
2

p+4

B,−2t
− 20

3(p+4)

5 , νm < νa < νc

(4.63)

The α and β values and their closure relations in this phase are presented in Tables

24 and 25.

For this model (newtonian Phase), for p > 2, one has νm ∝ t−3 (t−7/3), νc ∝

t−1/5 (t1), Fν,max ∝ t3/5 (t−1/3) for the ISM (wind) models, respectively. For 1 < p < 2,

νc and Fν,max evolutions are the same as p > 2 cases, while νm ∝ t
3

1−p (t
7

3(1−p) ) for the

ISM (wind) models, respectively.
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no injection injection
β α α(β) α α(β)

ISM slow cooling

ν < νa −2 2
5 α = β

5
26−11p
10(p−1) −−

νa < ν < νm − 1
3 − 8

5 α = 24β
5 − 3p+2

5(p−1) −−

νm < ν < νc
p−1
2

3(5p−7)
10 α = 3(5β−1)

5
9
10 −−

ν > νc
p
2

3p−4
2 α = 3β − 2 1 −−

Wind slow cooling

ν < νa −2 − 2
3 α = β

3
18−11p
6(p−1) −−

νa < ν < νm − 1
3 − 4

9 α = 4β
3

3p−10
9(p−1) −−

νm < ν < νc
p−1
2

7p−5
6 α = 7β+1

3
3
2 −−

ν > νc
p
2

7p−8
6 α = 7β−4

3 1 −−

Table 24 The temporal decay index α and spectral index β in the Newtonian phase
for νa < min(νm, νc).

no injection injection
β α α(β) α α(β)

ISM slow cooling

ν < νm −2 2
5 α = β

5
26−11p
10(p−1) −−

νm < ν < νa − 5
2 − 11

10 α = 11β
25 − 11

10 α = 33β
10

νa < ν < νc
p−1
2

3(5p−7)
10 α = 3(5β−1)

5
9
10 −−

ν > νc
p
2

3p−4
2

α = 3β − 2 1 −−
Wind slow cooling

ν < νm −2 − 2
3 α = β

3
18−11p
6(p−1) −−

νm < ν < νa − 5
2 − 11

6 α = 11β
15 − 11

6 α = 11β
2

νa < ν < νc
p−1
2

7p−5
6 α = 7β+1

3
3
2 −−

ν > νc
p
2

7p−8
6 α = 7β−4

3 1 −−

Table 25 The temporal decay index α and spectral index β in the Newtonian phase
for νm < νa < νc.
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Applications of the Models

The third section gives a complete reference of all the possible analytical syn-

chrotron external shock models. There are two opposite ways of applying this refer-

ence tool. First, one can fit the observational data to get both temporal decay index

α and spectral index β, and then identify which spectral regime the observational

frequency lies in. One can then constrain related afterglow parameters. To fully de-

termine the parameters, one needs multi-wavelength, multi-epoch observational data.

In any case, for the relativistic deceleration phase before the jet break, from which

most data are collected, usually a closure relation study could give a quick judgement

about the possible spectral regime and medium type. Alternatively, one can start

to assign reasonable ranges of a set of model parameters, and apply the models to

draw predicted light curves. By varying parameters, one can use the model to fit the

observational data.

Since the three characteristic frequencies νa, νm, and νc all evolve with time, the

order among them may change during the evolution. The characteristic frequencies

may also pass the observed band, so that the observational spectral regime may also

change. These factors introduce complications in drawing theoretical lightcurves.

First, one needs to estimate how spectral regimes evolve with time, using the related

expressions of the characteristic frequencies; Second, one needs to use the closure

relation tables to find out the temporal decay index for each segment of the light

curve, and then connect all the segments. Lightcurves can differ for different dynam-

ical models, different initial ordering of the characteristic frequencies, and different

spectral regimes.

In order to make readers more conveniently use this reference tool, we plot all

the possible lightcurve shapes that can be derived analytically6, and present spectral

6The only spectral regimes that are not included are all the spectral orders that invoke νa > νc.
For such combinations, the power-law description of electron energy distribution is no longer valid,
and pile up of electrons near γa is expected (Kobayashi et al., 2004). Since the exact shape of
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and temporal indices for each temporal segment for all the phases discussed in the

third section. These are presented in Figures 12 to 55. Some of these lightcurves

may demand extreme afterglow parameters. However, since we aim at a complete

reference of the models and keep a wide open range of the observational frequency

and model parameters, we have included all the possible frequency regime transitions

for all the phases. In reality, one could use the observational data to narrow down the

possibilities to identify the most relevant lightcurve segments. For easy identification,

Table 4 summarizes the corresponding figure numbers for different dynamical models

and spectral regimes.

It is worth emphasizing that a critical time to separate Phase 1 (reverse shock

crossing phase) and Phase 2 (self-similar deceleration phase) is the shock crossing time

t× (Eq.4.20). At t×, the ratios of the forward and reverse shock quantities Fν,max, νm,

νc etc. can be coasted into some simple forms (Zhang et al., 2003). Practically, one can

derive the forward shock scaling first (which is easier), and extrapolate to t×. Then

applying the reverse-to-forward shock ratios of critical parameters (Zhang et al., 2003;

Harrison and Kobayashi, 2013), one can derive the reverse shock parameters at t×.

One can then apply the reverse shock scaling laws to derive reverse shock quantities.

By comparing the reverse-to-forward shock flux ratio at t×, one can determine which

component dominates for a specific frequency, see Figure 56 for example.

The numerous possible lightcurves in each phase make it impossible to draw all

possible overall lightcurves. We therefore only draw a set of example lightcurves

based on a standard set of parameters. In Figure 56, we present the “standard”

afterglow light curves in radio (109 Hz), optical (1015 Hz) and X-ray (1017 Hz) bands,

by adopting a set of typical parameter values: the total energy E ∼ 1052 erg, initial

Lorentz factor Γ0 = 100, width of ejecta ∆0 = 1012 cm, jet opening angle θj = 0.1,

electron distribution cannot be obtained analytically, we do not include these cases in the figures.
Such electron pile-up condition is usually not satisfied in most models reviewed in this work. The
only relevant model is the reverse shock model during the shock crossing phase for a wind medium,
when A∗ is large enough (Kobayashi et al., 2004; Gao et al., 2013a).
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microphysics shock parameters εe = 0.1, εB = 0.01 and electron index p = 2.3 for

both forward and reverse shocks. For the ISM model, we take n0 = 1 cm−3, so that

the reverse shock is non-relativistic and the system is in the thin-shell approximation.

For the wind model, we take A∗ = 0.1, the reverse shock is relativistic and the system

is in the thick-shell approximation. More detailed studies on the standard models

can be found in the literature (e.g. Sari et al., 1998a; Chevalier and Li, 2000; Granot

and Sari, 2002; Wu et al., 2003; Kobayashi and Zhang, 2003a; Zou et al., 2005).

Several remarks regarding Fig.45 are worth addressing. 1. Only external shock af-

terglow light curves are plotted. If one includes the internal-origin “prompt” emission

also, one would expect another component before t×. There has been no observations

in the radio band in this time frame. In the optical and X-ray band, this component is

usually brighter than the external shock component, and hence, would mask the early

phase of the lightcurves. After the cessation of the prompt emission, the lightcurve

usually transits to the afterglow emission through a “steep decay” likely due to the

high-latitude emission (e.g. as observed in the early X-ray afterglow detected with

Swift, Tagliaferri et al., 2005; Zhang et al., 2006, 2007a). 2. The lightcurves are

plotted with identical microphysics parameters εe and εB in the forward and reverse

shocks. For the particular set of parameters adopted, the reverse shock flux is usually

lower than that of forward shock in both radio and X-ray band, and it only dominates

the forward shock emission in the optical band early on for a brief time. Observatinal

data, on the other hand, require different microphysics parameters in the two shocks,

in particular, a more magnetized reverse shock than the forward shock (Fan et al.,

2002; Zhang et al., 2003; Kumar and Panaitescu, 2003a; Harrison and Kobayashi,

2013). This corresponds to the ISM models with enhanced reverse shock peaks in

the optical and radio bands. Specifically, in the radio lightcurve (top-left panel), the

reverse shock flux at ta+ is much brighter than the forward shock flux; in the optical

band (mid-left panel), the reverse shock flux at t× way exceeds the forward shock
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flux, and even at tm+ the reverse shock flux is higher than that of forward shock, so

that the optical flux shows a “flattening” behavior (Zhang et al., 2003). These are the

“radio flares” and “optical flashes” as observed in some GRBs, such as GRB 990123

(Akerlof et al., 1999; Kulkarni et al., 1999; Kobayashi and Sari, 2000a). 3. Combining

lightcurve features and spectral properties is essential to diagnose the physical origins

of the afterglow emission. For example, the peaks of the light curves could be due to

a hydro-dynamical origin (shock crossing or jet break) or crossing of a spectral break

(νm or νa). The former should not be accompanied by a color change while the latter

should. Taking spectral observations before and after a certain break time is there-

fore crucial to identify the correct model to interpret the data. The hydrodynamical

breaks are also expected to be “achromatic”, i.e. occuring in all wavelengths, while

the frequency crossing breaks should be chromatic. So simultaneous observations in

all wavelengths are also important to diagnose the physics of afterglow emission. 4.

Some light curve properties can be quickly applied to diagonose the properties of

the ambient medium. For example, in the pre-jet-break phase, the wind model has

a steeper slope than the ISM model. In the optical band, a fast-rising optical flash

would point towards an ISM origin. In the radio band, a forward shock peak due to

jet break (achromatic break with other bands such as optical) would point towards

an ISM origin.

Limitations of the Analytical Models

Despite their great success, the analytical synchrotron external shock models are

known to have certain limitations that hinder a precise description of GRB afterglows.

In many situations, numerical calculations are needed. In this section we itemize all

the limitations of the analytical approach, which serve as a caution to readers to

apply the analytical models reviewed in this work.

• Swift observations suggest that X-ray flares observed in the afterglow phase can
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be best modeled as internal emission of late central engine activities (Burrows

et al., 2005a; Zhang et al., 2006; Fan and Wei, 2005a; Ioka et al., 2005; Lazzati

and Perna, 2007; Maxham and Zhang, 2009). It is likely that some X-ray

plateaus followed by steep decays (internal plateaus) are also caused by late

central engine activities (Troja et al., 2007; Liang et al., 2007b; Lyons et al.,

2010). A more extreme view interprets all the X-ray afterglow as emission from

the central engine (Ghisellini et al., 2007; Kumar et al., 2008b,a). Therefore the

external shock model discussed in this chapter is not relevant to interpret X-ray

flares and internal X-ray plateaus, and possibly even the entire X-ray emission.

• A relativistic ejecta moving towards the observer has a complicated equal ar-

rival time effect (Waxman, 1997c; Sari, 1998b; Panaitescu and Meszaros, 1998b;

Granot et al., 1999), which smooths the spectral and temporal breaks (Granot

and Sari, 2002). The sharp transition in the blastwave dynamics adopted in an-

alytical models is also an approximation. As a result, the sharp breaks predicted

in the analytical models usually do not exist.

• Since the strength of the shock is continuously decreasing as the blastwave

decelerates, the magnetic field strengths continuously decay in the shocked re-

gion. Electrons therefore cool in a varying magnetic field, which leads to a very

smooth or non-existence of νc (Uhm and Zhang, 2013b), see also van Eerten and

Wijers (2009). In the fast cooling regime, exactly the same effect makes the fast

cooling spectrum harder (Uhm and Zhang, 2013a) than Fν ∝ ν−1/2 proposed by

Sari et al. (1998a). In view of this, a sharp temporal or spectral break observed

in GRB afterglow lightcurve or spectrum must not be associated with electron

cooling (Uhm and Zhang, 2013b).

• All the analytical models reviewed in this article consider synchrotron radia-

tion only. Synchrotron self-Compton (SSC) effect may be important in the
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afterglow phase (Wei and Lu, 1998; Dermer et al., 2000b; Zhang and Mészáros,

2001b). Invoking synchrotron self-Compton (SSC) would complicate the mat-

ter. In particular, it would enhance cooling by a factor of (1 + Y ), where

Y = LIC/Lsyn = Uph/UB, LIC and Lsyn are the luminosities of the SSC and syn-

chrotron components, respectively, and Uph and UB are the energy densities of

the synchrotron photons and magnetic fields, respectively. The detailed treat-

ments of the SSC effect can be found in Sari and Esin (2001) and Gao et al.

(2013a). During the reverse shock crossing phase, besides SSC in the reverse

shock and forward shock regions, scattering of photons from the other shock by

electrons from both shocked regions can be also important, which make more

complicated spectra and lightcurves (Wang et al., 2001a,b).

• Only adiabatic models are reviewed in this work. In the literature, radiative

models have been also discussed (e.g. Sari, 1997; Böttcher and Dermer, 2000).

However, since εe is usually small, a GRB blastwave cannot be fully radiative

even if electrons are in the fast cooling regime. A partially radiative fireball

and its dynamical evolution have been discussed by various authors (e.g. Huang

et al., 1999, 2000; Pe’er, 2012; Nava et al., 2012) and the detailed lightcurves of

these cases have been calculated by Wu et al. (2005).

• Numerical simulations are needed to well describe the transitions among various

phases. For example, the analytical models in Phase 1 (reverse shock crossing

phase) and Phase 2 (self-similar phase) do not match exactly. After reverse

shock crossing, how the blastwave self-adjusts itself to the Blandford-McKee

profile can be only addressed by numerical simulations (e.g. Kobayashi and

Sari, 2000a). Sideway expansion after the “jet break” phase and the transition

from the ultra-relativistic phase to deep Newtonian phase all need numerical

simulations to resolve the details (Cannizzo et al., 2004; Zhang and MacFadyen,
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2009; van Eerten and MacFadyen, 2012).

• The lightcurves involving collimated jets are complicated and usually require

numerical treatments. Even for a uniform jet, the shape of the jet break may

depend on the viewing angle from the jet axis (Granot et al., 2002; van Eerten

and MacFadyen, 2012). If the viewing angle is outside the jet cone, one expects

a variety of lightcurves for the so-called “orphan afterglows”, which cannot be

properly addressed analytically. More complicated jets invoke angular struc-

ture with decreasing luminosity and Lorentz factor with respect to the jet axis

(Mészáros et al., 1998). The commonly discussed the jet structures include

power law (Mészáros et al., 1998), Gaussian (Zhang et al., 2004b), and two-

component conical jets (Berger et al., 2003; Racusin et al., 2008). An on-axis

observer would see a steeper lightcurve than the isotropic case (Mészáros et al.,

1998; Dai and Gou, 2001b; Panaitescu, 2005). For an off-axis observer (Rossi

et al., 2002; Zhang and Mészáros, 2002a), the lightcurve may show a jet-break-

like feature as the jet axis enters the field of view, but the exact shape of the

break depends on the angular structure of the jet and the viewing angle (Kumar

and Granot, 2003b; Granot and Kumar, 2003). The two-component jets can

show more complicated lightcurve behaviors (Huang et al., 2004; Peng et al.,

2005).

• It is possible that due to continuous energy injection or ejecta Lorentz factor

stratification, a long-lived reverse shock may continue to exist, and the blastwave

never enters the Blandford-McKee phase. The long-lasting reverse shock can

show rich afterglow lightcurve features (Uhm et al., 2012), which may show up

above the forward shock contribution if the reverse shock emission is enhanced.

A more extreme view is that the entire observed afterglow is of a reverse shock

origin (Uhm and Beloborodov, 2007; Genet et al., 2007).
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• Analyses of early afterglow data (Fan et al., 2002; Zhang et al., 2003; Kumar

and Panaitescu, 2003a) and theoretical considerations (Usov, 1992; Mészáros

and Rees, 1997b; Metzger et al., 2011; Lei et al., 2013) suggest that the GRB

central engine is likely magnetized. The GRB ejecta therefore likely carries

a certain degree of magnetization. The reverse shock models presented here

apply to low-magnetization cases. For moderate to high magnetization, the

shock jump conditions and the strength of reverse shock are modified (Zhang

and Kobayashi, 2005; Fan et al., 2004), and numerical simulations are needed to

achieve precise results (Mimica et al., 2009). Also numerical simulations (Sironi

and Spitkovisky, 2009) suggest that electron acceleration becomes suppressed in

a magnetized shock, which would also affect the predicted synchrotron radiation

flux.

• All the models invoke constant microphysics parameters εe and εB. In principle,

these parameters may evolve with time also, and some authors have considered

such more complicated models (e.g. Ioka et al., 2006; Fan and Piran, 2006a).

• More complicated afterglow models invoke density bumps (Dai and Lu, 2002;

Dai and Wu, 2003; Nakar and Granot, 2007), violent energy injection into

the blastwave via collision from a fast shell ejected at late times (Zhang and

Mészáros, 2002b; Geng et al., 2013), and patchy jets (Kumar and Piran, 2000b;

Ioka et al., 2005).

• Finally, in the early afterglow phase, additional physical processes may modify

the blastwave dynamics. These include pair loading effect caused by inter-

action between radiation front and ambient medium (Madau and Thompson,

2000; Mészáros et al., 2001; Beloborodov, 2002) and neutron decay effect from a

neutron-rich ejecta (Derishev et al., 2001; Beloborodov, 2003; Fan et al., 2005b).
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Phase 1

Initial characteristic Thin shell Thick shell Phase 2 Phase 4

frequency order FS RSpre RSpost FS RSpre RSpost

νa < νm < νc (ISM) 1− 2 5 8 10 13 16 18 22

νa < νc < νm (ISM) 3 6 −− 11 14 −− 19− 20 −−

νm < νa < νc (ISM) 4 7 9 12 15 17 21 23

νa < νm < νc (Wind) 24 27 30 32 35 38 40 43

νa < νc < νm (Wind) 25 28 −− 33 36 −− 41 −−

νm < νa < νc (Wind) 26 29 31 34 37 39 42 44

Table 26 Collection of figure numbers corresponding to different dynamical models

and initial spectra regimes.
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Figure 12 All possible forward shock lightcurves during Phase 1 (reverse shock crossing
phase), for thin shell ISM model and the initial characteristic frequency order νa <
νm < νc. The notations ti+, i = a,m, c denote frequency regime change from νi > ν
to νi < ν; ti−, i = a,m, c denote frequency regime change from νi < ν to νi > ν;
tij , {i, j} = a,m, c denote frequency regime change from νi > νj to νi < νj . The title
for each sub-figure is the initial spectral regime of the observed frequency ν.
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Figure 13 Figure 12 continued.
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Figure 14 Same as Fig. 12, but with the initial characteristic frequency order νa <
νc < νm.
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Figure 15 Same as Fig. 12, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 16 All possible reverse shock lightcurves during Phase 1 (reverse shock crossing
phase), for thin shell ISM model and the initial characteristic frequency order νa <
νm < νc.
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Figure 17 Same as Fig. 16, but with the initial characteristic frequency order νa <
νc < νm.
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Figure 18 Same as Fig. 16, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 19 All possible reverse shock lightcurves after reverse shock crossing the shell,
for thin shell ISM model and the initial characteristic frequency order νa < νm < νc.
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Figure 20 Same as Fig. 19, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 21 All possible forward shock lightcurves during Phase 1 (reverse shock crossing
phase), for thick shell ISM model and the initial characteristic frequency order νa <
νm < νc.
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Figure 22 Same as Fig. 21, but with the initial characteristic frequency order νa <
νc < νm.
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Figure 23 Same as Fig. 21, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 24 All possible reverse shock lightcurves during Phase 1 (reverse shock crossing
phase), for thick shell ISM model and the initial characteristic frequency order νa <
νm < νc.
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Figure 25 Same as Fig. 24, but with the initial characteristic frequency order νa <
νc < νm.
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Figure 26 Same as Fig. 24, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 27 All possible reverse shock lightcurves after reverse shock crosses the shell,
for thick shell ISM model and the initial characteristic frequency order νa < νm < νc.
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Figure 28 Same as Fig. 27, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 29 All possible forward shock lightcurves during Phase 2 (relativistic, isotropic,
self-similar deceleration phase), with an ISM medium and initial characteristic fre-
quency order νa < νm < νc.
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Figure 30 Same as Fig. 29, but with the initial characteristic frequency order νa <
νc < νm.
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Figure 31 Figure 30 continued.
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Figure 32 Same as Fig. 29, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 33 All possible forward shock lightcurves during Phase 4 (Newtonian phase),
with an ISM medium and initial characteristic frequency order νa < νm < νc.
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Figure 34 Same as Fig. 33, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 35 All possible forward shock lightcurves during Phase 1 (reverse shock crossing
phase), for thin shell wind model and the initial characteristic frequency order νa <
νm < νc.
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Figure 36 Same as Fig. 35, but with the initial characteristic frequency order νa <
νc < νm.
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Figure 37 Same as Fig. 35, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 38 All possible reverse shock lightcurves during Phase 1 (reverse shock crossing
phase), for thin shell wind model and the initial characteristic frequency order νa <
νm < νc.
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Figure 39 Same as Fig. 38, but with the initial characteristic frequency order νa <
νc < νm.
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Figure 40 Same as Fig. 38, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 41 All possible reverse shock lightcurves after reverse shock crossing, for thin
shell wind model and the initial characteristic frequency order νa < νm < νc.
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Figure 42 Same as Fig. 41, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 43 All possible forward shock lightcurves during Phase 1 (reverse shock crossing
phase), for thick shell wind model and the initial characteristic frequency order νa <
νm < νc.
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Figure 44 Same as Fig. 43, but with the initial characteristic frequency order νa <
νc < νm.
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Figure 45 Same as Fig. 43, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 46 All possible reverse shock lightcurves during Phase 1 (reverse shock crossing
phase), for thick shell wind model and the initial characteristic frequency order νa <
νm < νc.

162



Time

Fl
ux

ν<νa<νc<νm

ν2t3

ν1/3t−1/3 ν1/3t1/3

ν(1−p)/2t−(p−1)/2

ta+ tmc
tm+

Time

Fl
ux

ν<νa<νc<νm

ν2t3

ν2t2

ν1/3t1/3

ν(1−p)/2t−(p−1)/2

tmc

ta+
tm+

Time

Fl
ux

νa<ν<νc<νm

ν1/3t−1/3
ν1/3t1/3

ν(1−p)/2t−(p−1)/2

tmc

tm+

Time

Fl
ux

νa<νc<ν<νm

ν−1/2t1/2 ν1/3t−1/3

ν1/3t1/3

ν(1−p)/2t−(p−1)/2

tc−

tmc

tm+

Time

Fl
ux

νa<νc<ν<νm

ν−1/2t1/2
ν−p/2t−(p−2)/2

ν−p/2t−(p−2)/2

ν(1−p)/2t−(p−1)/2

tm+ tmc tc−

Time

Fl
ux

νa<νc<νm<ν

ν−p/2t−(p−2)/2

ν−p/2t−(p−2)/2

ν(1−p)/2t−(p−1)/2

tmc tc−

Figure 47 Same as Fig. 46, but with the initial characteristic frequency order νa <
νc < νm.
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Figure 48 Same as Fig. 46, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 49 All possible reverse shock lightcurves after reverse shock crossing, for thick
shell wind model and the initial characteristic frequency order νa < νm < νc.
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Figure 50 Same as Fig. 49, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 51 All possible forward shock lightcurves during Phase 2 (relativistic, isotropic,
self-similar deceleration phase), for a wind medium and the initial characteristic fre-
quency order νa < νm < νc.
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Figure 52 Same as Fig. 51, but with the initial characteristic frequency order νa <
νc < νm.
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Figure 53 Same as Fig. 51, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 54 All possible forward shock lightcurves during Phase 4 (Newtonian phase),
for a wind medium and the initial characteristic frequency order νa < νm < νc.
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Figure 55 Same as Fig. 54, but with the initial characteristic frequency order νm <
νa < νc.
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Figure 56 Example light curves in the radio, optical and X-ray bands for a set of
typical parameter values (see text). The left and right panels are for the ISM and
wind medium, respectively. In each panel, from top to bottom are the lightcurves
in the radio, optical and X-ray band, respectively. Notations are the same with
other Figures. The parameters Tcut+,t× Tj and TN denote νcut crossing time, the
shock crossing time, jet break time, and the transition time to the Newtonian phase,
respectively. The solid and dashed lightcurves denote contributions from the forward
and reverse shock, respectively. The 4 different phases of forward shock emission are
marked with 4 different colors. Notice that the reverse shock light curves have a
sharp ending, which corresponds to time beyond which no on-axis electron radiation
contributes to the band (i.e. after shock crossing and ν > νcut. In reality, there should
be emission from high latitudes during these phases, so in these regimes there should
be a steeply-decaying lightcurve with slope −(2 + β), where β is the flux density
spectra index in the band (Kumar and Panaitescu, 2000a).
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p-dependent Coefficients in Analytical Solutions
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Adiabatic Deceleration With(or Without) Energy Injection
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Newtonian Phase
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CHAPTER 5

INTRODUCTION OF PART II

The next generation gravitational-wave (GW) detectors, such as Advanced LIGO

(Abbott et al., 2009), Advanced VIRGO (Acernese et al., 2008) and KAGRA (Kuroda

et al., 2010) interferometers, are expected to detect GW signals from mergers of two

compact objects. The primary sources for such ground-based gravitational-wave de-

tectors are coalescence of neutron-star (NS) binaries. The detection of GW signals

would represent a great breakthrough for both fundamental physics and astrophysics.

However, due to the faint nature of GWs, an associated electromagnetic (EM) emis-

sion signal in coincidence with a GW in both trigger time and direction becomes es-

sential for its identification. As the new generation GW detectors are coming online,

the study of double neutron star (DNS) system becomes more and more attractive to

astrophysics. In this part of my dissertation, I will firstly give a general introduction

to DNS merger scenario and then present some of my study work that contribute to

this exciting field.

General Introduction for Neutron-Star Binary System

The first observed DNS binary was PSR B1913+16 (Hulse & Taylor, 1975). The

measurement of its orbit decay provided strong indirect evidence for Einstein’s general

theory of relativity (GR; see, e.g., Taylor & Weisberg (1989); Weisberg et al. (2010)),

leading to the 1993 Nobel Prize in physics for Hulse and Taylor. After a few decades

accumulating, totally ten DNS binary systems have been observed, as collected in

Table 27.
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Object Mass (M") References Object Mass (M") References

J1829+2456 1.25+0.11
−0.35 Champion et al. (2005) Companion 1.34+0.37

−0.10 Champion et al. (2005)

J1811-1736 1.53+0.22
−0.63 Corongiu et al. (2007) Companion 1.04+0.73

−0.12 Corongiu et al. (2007)

J1906+0746 1.248+0.018
−0.018 Kasian (2008) Companion 1.365+0.018

−0.018 Kasian (2008)

J1518+4904 1.23+0.00
−0.33 Janssen et al. (2008) Companion 1.49+0.33

−0.00 Janssen et al. (2008)

B1534+12 1.3332+0.0010
−0.0010 Stairs et al. (2002) Companion 1.3452+0.0010

−0.0010 Stairs et al. (2002)

B1913+16 1.4398+0.0002
−0.0002 Weisberg et al. (2010) Companion 1.3886+0.0002

−0.0002 Weisberg et al. (2010)

B2127+11C 1.358+0.010
−0.010 Jacoby et al. (2006) Companion 1.354+0.010

−0.010 Jacoby et al. (2006)

J0737-3039A 1.3381+0.0007
−0.0007 Kramer et al. (2006) J0737-3039B 1.2489+0.0007

−0.0007 Kramer et al. (2006)

J1756-2251 1.312+0.017
−0.017 Ferdman et al. (2008) Companion 1.258+0.017

−0.017 Ferdman et al. (2008)

J1807-2500B 1.3655+0.0020
−0.0020 Lynch et al. (2012) Companion ? 1.2064+0.0020

−0.0020 Lynch et al. (2012)

Table 27 List of observed double neutron star binaries.

In the standard channel, the progenitor of DNS system is a high-mass binary,

where both stars are with mass M " 8 − 10M", ensuring that a pair of supernova

explosion could happen (Bhattacharya & van den Heuvel, 1991). Over a few million

years, the primary star (the one with higher mass) would pass through its giant phase,

and undergoes a Type Ib, Ic, or II supernova, leaving behind the more massive NS in

the final binary. Later, when the secondary star also evolves off the main sequence to

giant phase, the binary would enter the common-envelope phase. Dynamical friction

shrinks the binary separation dramatically, until sufficient energy is released to expel

the envelope. The exposed Helium-rich core of the secondary would then go through

another supernova, giving birth to the other NS. If the second supernova kick is not

large enough to unbind the system, a tight DNS binary system is formed. Figure 57

is an illustration for this process (Faber & Rasio, 2012).

The newly formed tight DNS binary could maintain a stable stage, i.e., inspiral

phase, for tens of Myr to much longer than a Hubble time (e.g., Burgay et al. (2003);

Champion et al. (2004)), until the point where the gravitational radiation timescale

becomes comparable to the dynamical timescale. During inspiral phase, the orbital

separation decays over long timescales through GW emission. The binary separation
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Figure 57 Cartoon showing standard formation channels for close NS–NS binaries
through binary stellar evolution, taken from Lorimer (2008)

decaying rate is da/dt = −a/τGW, where a is the binary separation and τGW is merger

timescale causing by gravitational wave radiation. According to the lowest-order

dissipative contribution from GR, τGW could be given by (Faber & Rasio, 2012)

τGW =
5

64

a4

µM2
=

5

64

a4

q(1 + q)M3
1

= 2.2× 108q−1(1 + q)−1

(
a

R"

)4 ( M1

1.4M"

)−3

yr, (5.1)
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where M1, M2, and M ≡ M1+M2 are the individual NS masses and the total mass of

the binary, µ = M1M2/M is the reduced mass, q = M2/M1 is the binary mass ratio

(G = c = 1 was assumed here).

DNS binaries would rapidly become unstable when its separation approaches com-

parable with the radii of the two NSs. coalescence phase would be triggered through

the onset of dynamical instability. For equal or nearly equal masses system, the merger

resembles a slow collision. Otherwise the secondary would be tidally disrupted during

the plunge and essentially accrete onto the primary. On the other hand, numerical

simulations show that binary neutron star mergers could eject a fraction of the ma-

terials, forming a mildly anisotropic outflow with a typical velocity about 0.1 − 0.3c

(where c is the speed of light), and a typical mass about 10−4 ∼ 10−2M" (e.g. Rezzolla

et al., 2011; Rosswog et al., 2012; Hotokezaka et al., 2013).

After the short standing coalescence phase, the system will again settle into a new,

dynamically stable configuration through a phase of ringdown, with a particular GW

signal form that depends on the remnant’s mass and rotational profile. Usually, the

merger product is assumed to be a black hole or a temporal hyper-massive neutron

star which survives 10-100 ms before collapsing into the black hole (e.g. Rosswog

et al., 2003; Aloy et al., 2005; Shibata et al., 2005; Rezzolla et al., 2011; Rosswog

et al., 2012). Nonetheless, recent observations of Galactic neutron stars and NS-NS

binaries suggest that the maximum NS mass can be high, which is close to the total

mass of the NS-NS systems (Dai et al., 2006; Zhang, 2013b, and references therein).

Indeed, for the measured parameters of 6 known Galactic NS binaries and a range of

equations of state, the majority of mergers of the known binaries will form a massive

millisecond pulsar and survive for an extended period of time (Morrison et al., 2004).

When the equation of state of nuclear matter is stiff (see arguments in Dai et al. (2006)

and Zhang (2013b) and references therein), a stable massive neutron star would form

after the merger. This newborn massive neutron star would be differentially rotating.

182



The dynamo mechanism may operate and generate an ultra-strong magnetic field

(Duncan & Thompson, 1992; Kluźniak & Ruderman, 1998; Dai and Lu, 1998c), so

that the product is very likely a millisecond magnetar. Evidence of a magnetar

following some SGRBs has been collected in the Swift data (Rowlinson et al., 2010;

Rowlinson & O’Brien, 2012), and magnetic activities of such a post-merger massive

neutron star have been suggested to interpret several X-ray flares and plateau phase

in SGRBs (Dai et al., 2006; Gao & Fan, 2006; Fan & Xu, 2006b).

By extrapolating the observed sample of NS binaries, or performing population-

synthesis simulation, the NS-NS merger event rate could be very roughly estimated as

(10− 5× 104) Gpc−3 yr−1(Phinney, 1991; Kalogera et al., 2004; Abadie et al., 2010).

On the other hand, for the relative location of DNS system to their host galaxy,

the population-synthesis simulation predicts relatively larger radial offsets (Wang et

al., 2006; Wong et al., 2010), but all observed Galactic neutron-star binaries reside

within the Galactic disk. Therefore, the circum number density of ISM is expected

to vary significantly, from n ∼ 1cm−3, in galactic disks, to n ∼ 10−6cm−3, for mergers

taking place outside their host galaxies (Nakar & Piran, 2011).

Gravitational Wave Signal

The form of the GW signal from DNS system varies with different undergoing

phases. The most clear and detectable waveform is during inspiral phase, often

called a chirp waveform, given by (Allen et al., 2012)

h+(t) = −1 + cos2 ι

2

(
GM
c2D

)(
tc − t

5GM/c3

)−1/4

× cos[2φc + 2φ(t− tc;M,µ)], (5.2)

h×(t) = − cos ι

(
GM
c2D

)(
tc − t

5GM/c3

)−1/4

× sin[2φc + 2φ(t− tc;M,µ)], (5.3)
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where D is the distance from the source, ι is the angle between the direction to the

observer and the angular momentum axis of the binary system, M = µ3/5M2/5 is

the chirp mass, and φ(t− tc;M,µ) is the orbital phase of the binary (Blanchet et al.,

1995, 1996). Here, tc and φc are coalescence time and coalescence phase, when the

waveform is terminated.

Entering the coalescence phase, full GR simulations is required to shown the GW

signal form. And it turns out this phase yields the maximum GW amplitude but with

a signal much simpler and more quasi-periodic than in the original cartoon version.

In ringdown phase, GW signal is even complicate and depends on the remnant mass

and rotational profile. Please refer to Faber & Rasio (2012) and reference therein for

detailed GW signal discussion.

Electromagnetic Signal

Depending on different central merger product (essentially different equation of

state of nuclear matter), the EM signals could be totally different: if the merger

product is a black hole, the EM signals could include a short gamma-ray burst (SGRB)

(Eichler et al., 1989; Rosswog et al., 2012; Gehrels et al., 2005; Barthelmy et al., 2005b;

Berger, 2011), an optical “macronova” powered by the radioactivity of the ejecta

(Li & Paczyński, 1998; Kulkarni, 2005; Metzger et al., 2010), and a long lasting

radio afterglow (Nakar & Piran, 2011; Metzger & Berger, 2012) raising from the

interaction between the ejecta and the ambient medium; on the other hand, if a

stable massive neutron star would form after the merger (Dai et al., 2006; Zhang,

2013b; Giacomazzo & Perna, 2013), besides SGRB (SGRB may be not relevant in

this case), the proto-magnetar would eject a near-isotropic Poynting-flux-dominated

outflow, the dissipation of which would power a bright early X-ray afterglow (Zhang,

2013b); the ejecta launched during the merger would firstly be heated up by the

magnetar wind to produce a bright ”merger-nova” peaking in the UV band (Yu et
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al., 2013; Metzger & Piro, 2013) and be accelerated even into relativistic regime,

giving rise to broad band afterglow emission through strong external shock between

the ejecta and the ISM (Gao et al., 2013b).

Figure 58 and 59 present the physical pictures for different EM emission compo-

nents for black hole remnant and megnetar remnant, respectively.

BH

θobs

θj
Tidal Tail & Disk Wind

Ejecta−ISM Shock

Merger Ejecta 

v ~ 0.1−0.3 c

Optical (hours−days)

Kilonova
Optical (t ~ 1 day)

Jet−ISM Shock (Afterglow)

GRB
(t ~ 0.1−1 s)

Radio (weeks−years)

Radio (years)

Figure 58 A physical picture for several EM emission components appearing after the
merger, black hole as the remnant. Following the merger a centrifugally supported
disk (blue) remains around the black hole. Rapid accretion powers a collimated
relativistic jet, producing a SGRB. Non-thermal afterglow emission results from the
interaction of the jet with the surrounding circumburst medium (red). Short-lived
isotropic optical emission lasting ∼ few days (kilonova; yellow) can also accompany
the merger, powered by the radioactive decay of heavy elements synthesized in the
ejecta. Figure produced by Metzger & Berger (2012).

Short gamma-ray bursts

Short GRBs is the most commonly discussed EM counterpart of DNS merger,

since it provides detectable signal all the way from γ-ray to radio bands. However,

two issues need to be claimed if we count on SGRBs for the joint detection of GW

and EM signals:

Firstly, NS-NS/NS-BH mergers were proposed as SGRB progenitors for a long
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Figure 59 A physical picture for several EM emission components appearing after the
merger, magnetar as the remnant. Near the spin axis, there might be a SGRB jet. An
observer towards this jet (red observer) would see a SGRB. At larger angles (yellow
observer), a free magnetar wind may be released, whose dissipation would power a
bright X-ray afterglow (Zhang, 2013b). At even larger angles (orange observer), the
magnetar wind is confined by the ejecta (green shell). The interaction between the
magnetar wind and ejecta would trigger magnetic dissipation of the wind and also
power a bright X-ray afterglow (Zhang, 2013b). After releasing some dissipated en-
ergy, a significant fraction of the spinning energy would push the ejecta and shock into
the ambient medium (Dai and Lu, 1998a; Zhang and Mészáros, 2001a). Synchrotron
emission from the shocked medium (red shell) would power brighter X-ray, optical
and radio afterglow emission. Taken from Gao et al. (2013b)

time (Paczynski 1986; Eichler et al. 1989; Narayan et al. 1992; Rezzolla et al.

2011), even prior to the discovery of the duration bimodality (Berger, 2013). From

theoretical point of view, DNS merger scenario could provided a roughly correct event

rate, rapid release enough energy, and a clean environment to avoid significant baryon

loading; from observational point of view, the observed properties of SGRBs tends

to be consistent with the observational predictions of DNS merger scenario, such as

short bursts will occur in both early- and late-type galaxies, offset distribution of

SGRBs are in good agreement with compact object population synthesis predictions

that include kicks, and the SGRBs are not accompanied by supernova explosions
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(Berger, 2013). But one need to be cautious that, the smoking gun is still lacking to

firmly establish the connection between DNS merger and SGRBs.

Secondly, even if there is a SGRBs and DNS merger association, the prompt

γ-ray signal, X-ray afterglow signal and optical afterglow signal of SGRBs are non-

detectable for the majority of cases, due to relativistic beaming effect. For example,

for SGRBs with jet half-opening angle as θj # π/2, only a fraction fb,γ ≈ 1− cos θj ≈

θ2j /2 ' 1 of viewers with observing angles θobs # θj will detect bright γ-ray signal

(the fraction could be relatively lager for X-ray and optical afterglow signal by a

very limited factor). Observations have provided evidence for collimation in at least

one case (GRB051221A), with a jet half-opening angle of θj ≈ 0.12 (Burrows et al.,

2006; Soderberg et al., 2006). Taking this value as the best-bet beaming factor for

all SGRBs, we only have fb,γ ∼ 0.01. Radio afterglow emission can in principle be

detected at all observer angles, but it is usually dim due to relatively low energy

budget and circumburst density (the study of SGRBs afterglows provide a scale for

the energy release and circumburst density, with E # 1051 erg and n # 0.1 cm−3

(Berger et al., 2005; Soderberg et al., 2006; Berger, 2007)).

Li-Paczyński Nova/macro-nova/kilo-nova

As mentioned above, a fraction of the materials would be ejected during the co-

alescence process, forming a mildly anisotropic outflow with a typical velocity about

0.1 − 0.3c, and a typical mass about 10−4 ∼ 10−2M" (e.g. Rezzolla et al., 2011;

Rosswog et al., 2012; Hotokezaka et al., 2013). The ejecta from NS-NS mergers is pri-

marily neutron-rich. Thus radioactive elements (mass number A " 130) are expected

to form as neutrons capture onto nuclei (r-process nucleosynthesis) (e.g., Lattimer

& Schramm 1974; Eichler et al. 1989; Freiburghaus et al. 1999). The resulting energy

release will power a brief transient in the UV-Optical band with brightness approx-

imately one thousand times brighter than novae but dimmer than supernova. With
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a simple one zone model, Li & Paczyński (1998) firstly propose a simple analytical

formula to estimate the peak luminosity and peak timescale of such transient as a

function free parameters f , i.e., the fraction of the rest mass converting into radioac-

tive decay energy budget. Back to that date, f ∼ 0.001 was adopt as a prior. Most

recently, Metzger et al. (2010) uses a nuclear physics reaction network to define the

value of f and found that provided that one adopts a value of fnuc ≈ 3× 10−6 for the

dimensionless parameter quantifying the amount of nuclear heating on a timescale of

∼ 1d, the resulting transient peaks on a timescale of ∼ 0.5 − 5 d, with an optical

luminosity in the range ∼ 1041 − 1042.5 erg s−1, corresponding to ≈ 19− 22.5 mag at

the edge of the ALIGO/Virgo volume. Following the peak, the luminosity declines

as Lν ∝ t−α, with α ≈ 1− 1.4, due to the declining radioactive power.

Long lasting radio afterglow

Similar with GRB afterglow scenario, the ejected material would interact with the

ambient medium, giving rise to synchrotron emission photons through external shock.

One can easily estimate this signal with results shown in Chapter 4. According to

estimation of Nakar & Piran (2011) , such signal would mainly emerge in radio band,

with peak flux

Fν,p ≈ 40Ej,50 n
7/8
0 β11/4

0.2 d−2
L,200 ν

−3/4
1 µJy, (5.4)

where β0.2 = vej/0.2c, ν1 is the observing frequency in GHz; and dL = 200dL,200 Mpc

is the luminosity distance. p = 2.5 and εe = εB = 0.1 is assumed here. The radio

emission peaks at the deceleration time:

tdec ≈ 2.6E1/3
j,50 n

−1/3
0 β−5/3

0.2 yr. (5.5)
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Dissipated early x-ray afterglow

If the merger product is millisecond magnetar instead of black hole, the proto-

NS would quick cool down and a Poynting-flux-dominated outflow can be launched

(Usov, 1992; Metzger et al., 2011). Two mechanisms could dissipate the magnetar

wind energy into radiation. (1) In the free wind zone with solid angle ∆Ωw,1, the

magnetar wind would undergo strong self-dissipation, for instance, through internal-

collision-induced magnetic reconnection and turbulence (ICMART) process (Zhang

& Yan, 2011a) beyond self-dissipation radius; (2) One can also consider the confined

magnetar wind zone with solid angle ∆Ωw,2 where the magnetar wind is expanding

into a heavy ejecta launched during the merger process. The magnetic energy may be

rapidly discharged upon interaction between the wind and the ejecta. Zhang (2013b)

carefully calculate these two situations and found that in both mechanism, radiation

is peaked in X-ray band.

On the other hand, since before the merger the two NSs are in the Keplerian orbits,

the post-merger product should be near the break-up limit, i.e., P0 = 1 ms P0,−3 could

be taken as the typical value of the initial spin period of the proto-magnetar. Given

nearly the same amount of the total rotation energy Erot = (1/2)IΩ2
0 ∼ 2× 1052 erg

(Ω0 = 2π/P ), the luminosity, and hence, the afterglow flux critically depend on the

dipole magnetic field Bp. Applying dipole spindown formula and correcting for the

beaming factor fw and the efficiency factor ηx to convert the spin down luminosity

to the observed X-ray luminosity in the detector band, Zhang (2013b) gives a rough

estimation to this dissipation X-ray flux,

Fx =
ηxLsd

4πfb,wD2
L

% 2× 10−8 erg s−1 cm−2

× ηx,−2f
−1
b,w

(
DL

300 Mpc

)−2

I45P
−2
0,3 T

−1
sd,3, (5.6)
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where Lsd = IΩ2
0/(2Tsd) is the characteristic spindown luminosity, and

Tsd % 2× 103 s I45B
−2
p,15P

2
0,−3R

−6
6 (5.7)

is the characteristic spindown time scale.

Merger-nova

In the confined magnetar wind zone, dissipation X-ray photons will heat up the the

merger ejecta, which is much stronger than heating from r-process. Yu et al. (2013)

develop a generic dynamic model for the merger ejecta with energy injection from

the central magnetar and find that the ejecta emission (the “merger-nova”) powered

by the magnetar peaks in the UV band and the peak of the light curve progressively

shifts to an earlier epoch with increasing frequency. A magnetar-powered mergernova

could have an optical peak brightness comparable to a supernova, which is a few tens

or hundreds times brighter than the radioactive-powered merger-novae (the so-called

macro-nova or kilo-nova). And such a merger-nova would peak earlier and have a

significantly shorter duration than that of a supernova.

Double neutron star merger afterglow

On the other hand, through absorbing magnetar wind energy, the merger ejecta

would essentially got accelerated, and under certain conditions, would reach a rela-

tivistic speed. Such a magnetar-powered ejecta, when interacting with the ambient

medium, would develop a bright broad-band afterglow due to synchrotron radiation.

In Chapter 6, we study this physical scenario in detail, and present the predicted

X-ray, optical and radio light curves for a range of magnetar and ejecta parameters.

We show that the X-ray and optical lightcurves usually peak around the magnetar

spindown time scale (∼ 103 − 105 s), reaching brightness readily detectable by wide-

field X-ray and optical telescopes, and remain detectable for an extended period.

190



The radio afterglow peaks later, but is much brighter than the case without a mag-

netar energy injection. Therefore, such bright broad-band afterglows, if detected and

combined with GW signals in the future, would be a probe of massive millisecond

magnetars and stiff equation-of-state for nuclear matter. Hereafter, we define such a

model as the “double neutron star (DNS) merger” afterglow model.

Palomar Transient Factory (PTF) team recently reported the discovery of a rapidly

fading optical transient source, PTF11agg. A long-lived scintillating radio counter-

part was identified, but the search for a high energy counterpart showed negative

results. The PTF team speculated that PTF11agg may represent a new class of rel-

ativistic outbursts. It turns out that the PTF11agg data could be explained well

with above DNS merger afterglow model, suggesting that at least some GW signal

from DNS mergers may be associated with such a bright electromagnetic counterpart

without a γ-ray trigger (see Chapter 7 for detail).

Possible High-Energy Neutrino and Photon Signals

For the scenario with magnetar as central product of DNS merger, protons accel-

erated in the forward shock powered by a magnetar wind pushing the ejecta launched

during the merger process would interact with photons generated in the dissipating

magnetar wind and emit high energy neutrinos and photons. In Chapter 8, we esti-

mate the typical energy and fluence of the neutrinos from such a scenario. We find

that ∼PeV neutrinos could be emitted from the shock front as long as the ejecta

could be accelerated to a relativistic speed. The diffuse neutrino flux from these

events, even under the most optimistic scenarios, is too low to account for the two

events announced by the IceCube Collaboration, but it is only slightly lower than the

diffuse flux of GRBs, making it an important candidate for the diffuse background

of ∼PeV neutrinos. The neutron-pion decay of these events make them a moderate

contributor to the sub-TeV gamma-ray diffuse background.

191



CHAPTER 6

BRIGHT BROD-BAND AFTERGLOWS OF GRAVITATIONAL WAVE BRSTS
OF BINARY NEUTRON STARS

This chapter is part of the following published paper :

Gao H., Ding, X., Wu, X.-F., Zhang B., Dai, Z.-G., 2013, Astrophysics Journal

771,86

The Double Neutron Star Merger Afterglow Model

The postmerger hyper-massive neutron star may be near the break up limit, so

that the total spin energy Erot = (1/2)IΩ2
0 % 2 × 1052I45P

−2
0,−3 erg (with I45 ∼ 1.5

for a massive neutron star) may be universal. Here P0 ∼ 1 ms is the initial spin pe-

riod of the proto-magnetar. Throughout this chapter, the convention Q = 10nQn

is used for cgs units, except for the ejecta mass Mej, which is in unit of solar

mass M". Given nearly the same total energy, the spin-down luminosity and the

characteristic spin down time scale critically depend on the polar-cap dipole mag-

netic field strength Bp (Zhang and Mészáros, 2001a), i.e. Lsd = Lsd,0/(1 + t/Tsd)2,

where Lsd,0 % 1049 erg s−1 B2
p,15R

6
6P

−4
0,−3, and the spin down time scale Tsd % 2 ×

103 s I45B
−2
p,15P

2
0,−3R

−6
6 % Erot/Lsd,0, where R = 106R6 cm is the stellar radius1.

After the internal dissipation of the magnetar wind that powers the early X-ray

afterglow (Zhang, 2013b), the remaining spin energy would be added to the blastwave.

The dynamics of the blastwave depends on the magnetization parameter σ of the

magnetar wind after the internal dissipation. Since for the confined wind, magnetic

dissipation occurs upon interaction between the wind and the ejecta, in this work,

we assume that the wind is still magnetized (moderately high σ), so that there is no

strong reverse shock into the magnetar wind (Zhang and Kobayashi, 2005; Mimica

1In principle, besides dipole spindown, the proto-magnetar may also lose spin energy via gravita-
tional radiation (Zhang and Mészáros, 2001a; Corsi & Mészáros, 2009; Fan et al., 2013). This effect
is neglected in the following modeling for simplicity.
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et al., 2009)2. As a result, the remaining spin energy is continuously injected into

the blastwave with a luminosity L0 = ξLsd,0, where ξ < 1 denotes the fraction of the

spin down luminosity that is added to the blastwave. The evolution of the blastwave

can be described by a system with continuous energy injection (Dai and Lu, 1998a;

Zhang and Mészáros, 2001a).

The newly formed massive magnetar is initially hot. A Poynting flux dominated

outflow is launched ∼ 10 s later, when the neutrino-driven wind is clean enough

(Metzger et al., 2011). At this time, the front of the ejecta traveled a distance

∼ 6 × 1010 cm (for v ∼ 0.2c), with a width ∆ ∼ 107 cm. The ultra-relativistic

magnetar wind takes ∼ 2 s to catch up the ejecta, and drives a forward shock into

the ejecta. Balancing the magnetic pressure and the ram pressure of shocked fluid

in the ejecta, one can estimate the shocked fluid speed as vs ∼ 10−4cL1/2
0,47∆

1/2
7 M−1/2

ej,−3 ,

which is in the same order of forward shock speed. So the forward shock would cross

the ejecta in around t∆ ∼ ∆/vs ∼ 3 s L−1/2
0,47 ∆1/2

7 M1/2
ej,−3. Note that when calculating

magnetic pressure, we have assumed a toroidal magnetic field configuration in the

Poynting flux, but adopting a different magnetic configuration would not significantly

affect the estimate of t∆.

After the forward shock crosses the ejecta, the forward shock ploughs into the

ambient medium. The dynamics of the blastwave during this stage is defined by

energy conservation3

L0t = (γ − 1)Mejc
2 + (γ2 − 1)Mswc

2, (6.1)

where Msw = 4π
3 R

3nmp is the swept mass from the interstellar medium. Initially,

(γ − 1)Mejc2 ( (γ2 − 1)Mswc2, so the kinetic energy of the ejecta would increase

2If, on the other hand, the wind is already leptonic matter dominated, a reverse shock can be
developed, which would predict additional radiation signatures (Dai, 2004).

3The accurate expression for Eq.8.4 should be L0t = (γ − γej,0)Mejc
2 + (γ2 − 1)Mswc

2, where
γej,0 is the initial Lorenz factor for the ejecta, which we take as unity for convenience.
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linearly with time until t = min(Tsd, Tdec), where the deceleration timescale Tdec is

defined by the condition (γ−1)Mejc2 = (γ2−1)Mswc2. By setting Tdec ∼ Tsd, we can

derive a critical ejecta mass

Mej,c,1 ∼ 10−3M"n
1/8I5/445 L−3/8

0,47 P−5/2
0,−3 ξ

5/4

∼ 10−3M"n
1/8I5/445 B−3/4

p,14 R−9/4
6 P−1

0,−3ξ
7/8 (6.2)

which separate regimes with different blastwave dynamics. For a millisecond mas-

sive magnetar, the parameters I45, R6, P0,−3 are all essentially fixed values. The

dependence on n is very weak (1/8 power), so the key parameters that determine the

blastwave parameters are the ejecta mass Mej and the magnetar injection luminosity

L0 (or the magnetic field strength Bp). If Mej < Mej,c,1 (or Tdec < Tsd), the ejecta can

be accelerated linearly until the deceleration radius, after which the blastwave decel-

erates, but still with continuous energy injection until Tsd. Conversely, in the opposite

regime (Mej > Mej,c,1 or Tsd < Tdec), the blastwave is only accelerated to Tsd, after

which it coasts before decelerating at Tdec. In the intermediate regime of Mej ∼ Mej,c,1

(or Tdec ∼ Tsd), the blastwave shows a decay after being linearly accelerated.

There is another critical ejecta mass, which defines whether the blastwave can

reach a relativistic speed. This is defined by Erotξ = 2(γ − 1)Mejc2. Defining a

relativistic ejecta as γ − 1 > 1, this second critical ejecta mass is

Mej,c,2 ∼ 6× 10−3M"I45P
−2
0,−3ξ. (6.3)

An ejecta heavier than this would not be accelerated to a relativistic speed.

Below we discuss four dynamical regimes.

Case I: Mej < Mej,c,1 or Tsd > Tdec. This requires both a small L0 (or low Bp)

and a small Mej. We take an example with L0 ∼ 1047 erg s−1 (Bp ∼ 1014 G) and

Mej ∼ 10−4M". To describe the dynamics in such a case, besides the spin down
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timescale Tsd, we need three more characteristic time scales and the Lorentz factor

value at the deceleration time

Tdec ∼ 4.4× 104 s L−7/10
0,47 M4/5

ej,−4n
−1/10

TN1 ∼ 3.6× 103 s L−1
0,47Mej,−4

TN2 ∼ 4.5× 107 s L1/3
0,47n

−1/3T 1/3
sd,5

γdec ∼ 12.2L3/10
0,47M

−1/5
ej,−4n

−1/10 + 1 (6.4)

where TN1, TN2 are the two time scales when the blastwave passes the non-relativistic

to relativistic transition line γ−1 = 1 during the acceleration and deceleration phases.

With these parameters, one can characterize the dynamical evolution of the blastwave

(Fig.60a), as shown in Table 28. Based on the dynamics, we can quantify the temporal

evolution of synchrotron radiation characteristic frequencies νa, νm, νc, and the peak

flux, Fν,max. The evolutions of the characteristic frequencies are presented in Fig.60b

and collected in Table 29.

Following the standard procedure in Sari et al. (1998a), we derive the synchrotron

radiation characteristic frequencies and the peak flux density at Tdec,

νa,dec ∼ 5.0× 108 Hz L3/50
0,47M

4/25
ej,−4n

29/50ε−1
e,−1ε

1/5
B,−2

×
(
p− 1

p− 2

)

(p+ 1)3/5f(p)3/5

νm,dec ∼ 1.3× 1014 Hz L6/5
0,47M

−4/5
ej,−4n

1/10ε2e,−1ε
1/2
B,−2

(
p− 2

p− 1

)2

νc,dec ∼ 9.6× 1014 Hz L1/5
0,47M

−4/5
ej,−4n

−9/10ε−3/2
B,−2

Fν,max,dec ∼ 1.7× 105 µJy L3/10
0,47M

4/5
ej,−4n

2/5ε1/2B,−2D
−2
27 (6.5)

where f(p) =
Γ( 3p+22

12 )Γ( 3p+2
12 )

Γ( 3p+19
12 )Γ( 3p−1

12 )
. With the temporal evolution power law indices of

these parameters (Table 29), one can calculate the X-ray, optical and radio after-

glow lightcurves. Notice that there are two more temporal segments listed in Table

195



29, since νa crosses νm twice at

Tma1 ∼ 1.4× 102 s L−5/4
0,47 M5/4

ej,−4n
1/8ε−5/4

e,−1 ε
−1/8
B,−2

(
p− 2

p− 1

)−5/4

× (p+ 1)1/4f(p)1/4,

Tma2 ∼ 1.9× 108 s L1/5
0,47n

−2/5T 1/5
sd,5ε

2
e,−1ε

1/5
B,−2

(
p− 2

p− 1

)2

× (p+ 1)−2/5f(p)−2/5, (6.6)

respectively. We present the light curves in X-ray (Fig.60d), optical and radio (10GHz)

band (Fig.60c). The distance is taken as 300 Mpc, the detection horizon of Advanced

LIGO.

Case II: Mej ∼ Mej,c,1 or Tsd ∼ Tdec. The dynamics and the expressions of the

characteristic parameters become simpler:

Tdec ∼ Tsd

TN1 ∼ 12 s ξ−1Mej,−4Tsd,3

TN2 ∼ 1.3× 108 s ξ8/3M−8/3
ej,−4Tsd,3

γsd ∼ 83.3ξM−1
ej,−4 + 1 (6.7)

The temporal indices of the evolutions of νa, νm, νc, Fν,max are listed in Table 29, and

the expressions of γ and R are shown in Table 28.

As examples, we consider L0 ∼ 1049 erg s−1 (Bp ∼ 1015 G) vs. Mej ∼ 10−4M",

which satisfies Tsd ∼ Tdec.

Similarly to Case I, we have

νa,sd ∼ 2.2× 109 Hz ξ11/5L−3/5
0,49 M−8/5

ej,−4n
4/5ε−1

e,−1ε
1/5
B,−2

×
(
p− 1

p− 2

)

(p+ 1)3/5f(p)3/5
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νm,sd ∼ 2.7× 1017 Hz ξ4M−4
ej,−4n

1/2ε2e,−1ε
1/2
B,−2

(

p− 2

p− 1

)2

νc,sd ∼ 8.6× 1014 Hz ξ−4M4
ej,−4n

−3/2T−2
sd,3ε

−3/2
B,−2

Fν,max,sd ∼ 2.4× 108 µJy ξ11L−3
0,49M

−8
ej,−4n

3/2ε1/2B,−2D
−2
27

Tma1 ∼ 1.4× 10−1 s ξ−1L−1/4
0,49 M5/4

ej,−4n
1/8Tsd,3ε

−5/4
e,−1 ε

−1/8
B,−2

×
(
p− 2

p− 1

)−5/4

(p+ 1)1/4f(p)1/4

Tma2 ∼ 2.5× 108 s ξ6/5L2/5
0,49M

−8/5
ej,−4n

−1/5Tsd,3ε
2
e,−1ε

1/5
B,−2

×
(
p− 2

p− 1

)2

(p+ 1)−2/5f(p)−2/5 (6.8)

The expressions of γ and R as well as the power-law indices for this case are also

presented in Table 28 and Table 29, respectively. The dynamics typical frequency

evolution, and the light curves are presented in Fig.61. We note that in this case

(and case III), the synchrotron radiation properties are very sensitive to Mej and ξ.

Case III: Mej,c,1 < Mej < Mej,c,2 (Tsd < Tdec). As an example, we take Bp ∼ 1015

G, and Mej ∼ 10−3M".

For this example, the dynamics and the expressions of the characteristic parame-

ters become

Tdec ∼ 1.5× 104 s ξ−7/3M8/3
ej,−3n

−1/3

TN1 ∼ 59.9 s ξ−1Mej,−3Tsd,3

TN2 ∼ 2.7× 107 s ξ1/3n−1/3

γsd ∼ 16.7ξM−1
ej,−3 + 1 (6.9)

and

νa,sd ∼ 1.6× 108 Hz ξ8/5M−8/5
ej,−3n

4/5T 3/5
sd,3ε

−1
e,−1ε

1/5
B,−2

(
p− 1

p− 2

)

× (p+ 1)3/5f(p)3/5
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νm,sd ∼ 4.5× 1014 Hz ξ4M−4
ej,−3n

1/2ε2e,−1ε
1/2
B,−2

(

p− 2

p− 1

)2

νc,sd ∼ 5.3× 1017 Hz ξ−4M4
ej,−3n

−3/2T−2
sd,3ε

−3/2
B,−2

Fν,max,sd ∼ 6.5× 102 µJy ξ8M−8
ej,−3n

3/2T 3
sd,3ε

1/2
B,−2D

−2
27

Tma1 ∼ 1.0 s ξ−5/4M5/4
ej,−3n

1/8T 5/4
sd,3ε

−5/4
e,−1 ε

−1/8
B,−2

(
p− 2

p− 1

)−5/4

× (p+ 1)1/4f(p)1/4

Tma2 ∼ 9.9× 107 s ξ1/5n−2/5ε2e,−1ε
1/5
B,−2

(
p− 2

p− 1

)2

× (p+ 1)−2/5f(p)−2/5 (6.10)

The power-law indices of various parameters for this case are also collected in

Table 29, and the dynamics, frequency evolutions, and light curves are presented in

Fig. 62.

Case IV: Mej > Mej,c,2. In this case, the blast wave never reaches a relativistic

speed. The dynamics is similar to Case III, with the coasting regime in the non-

relativistic phase. The dynamics for a non-relativistic ejecta and its radio afterglow

emission have been discussed in Nakar & Piran (2011). Our Case IV resembles what

is discussed in Nakar & Piran (2011), but the afterglow flux is much enhanced because

of a larger total energy involved.

Detectability and Implications

For all the cases, bright broadband EM afterglow emission signals are predicted.

The light curves typically show a sharp rise around Tsd, which coincides the ending

time of the X-ray afterglow signal discussed by Zhang (2013b) due to internal dissipa-

tion of the magnetar wind. The X-ray afterglow luminosity predicted in our model is

generally lower than that of the internal dissipation signal, but the optical and radio

signals are much brighter. In some cases, the R-band magnitude can reach 11th at

the 300 Mpc, if Mej is small enough (so that the blastwave has a high Lorentz factor)
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and the medium density is not too low. The duration of detectable optical emission

ranges from 103 seconds to year time scale. The radio afterglow can reach the Jy

level for an extended period of time, with peak reached in the year time scale. These

signals can be readily picked up by all-sky optical monitors, and radio surveys. The

X-ray afterglow can be also picked up by large field-of-view imaging telescopes such

as ISS-Lobster.

Since these signals are originated from interaction between the magnetar wind and

the ejecta in the equatorial directions, they are not supposed to be accompanied with

short GRBs, and some internal-dissipation X-ray afterglows (Zhang, 2013b) in the

free wind zone. Due to a larger solid angle, the event rate for this geometry (orange

observer in Fig.59) should be higher than the other two geometries (red and yellow

observers in Fig.59). However, the brightness of the afterglow critically depends on

the unknown parameters such as Mej, Bp (and hence L0), and n. The event rate also

crucially depends on the event rate of NS-NS mergers and the fraction of mergers

that leave behind a massive magnetar rather than a black hole.

This afterglow signal is much stronger than the afterglow signal due to ejecta-

medium interaction with a black hole as the post-merger product (Nakar & Piran,

2011). The main reason is the much larger energy budget involved in the magnetar

case. Since the relativistic phase can be achieved, both X-ray and optical afterglows

are detectable, which peak around the magnetar spindown time scale (103 − 105 s).

The radio peak is later similar to the black hole case (Nakar & Piran, 2011), but the

radio afterglow flux is also much brighter (reaching Jy level) due to a much larger

energy budget involved. The current event rate limit of > 350 mJy radio transients in

the minutes-to-days time scale at 1.4 GHz is < 6×10−4 degree−2 yr−1 (Bower & Saul,

2011), or < 20 yr all sky. In view of the large uncertainties in the NS-NS merger rate

and the fraction of millisecond magnetar as the post-merger product, our prediction

is entired consistent with this upper limit. Because of their brightness, these radio
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transients can be detected outside the Advanced LIGO horizon, which may account

for some sub-mJy radio transients discovered by VLA (Bower et al., 2007).

Recently, Kyutoku et al. (2012) proposed another possible EM counterpart of

GW signal with a wide solid angle. They did not invoke a long-lasting millisecond

magnetar as the merger product, but speculated that during the merger process, a

breakout shock from the merging neutron matter would accelerate a small fraction

of surface material, which reaches a relativistic speed. Such an outflow would also

emit broad-band synchrotron emission by shocking the surrounding medium. Within

that scenario, the predicted peak flux is lower and the duration is shorter than the

electro-magnetic signals predicted in (Zhang, 2013b) and this work, due to a much

lower energy carried by the outflow.

Detecting the GW-associated bright signals as discussed in this work would un-

ambiguously confirm the astrophysical origin of GW signals. Equally importantly, it

would suggest that NS-NS mergers leave behind a hyper-massive neutron star, which

gives an important constraint on the neutron star equation of state. With the GW

data, one can infer the information of the two NSs involved in the merger. Model-

ing afterglow emission can give useful constraints on the ejected mass Mej and the

properties of the postmerger compact objects. Therefore, a combination of GW and

afterglow information would shed light into the detailed merger physics, and in par-

ticular, provide a probe of massive millisecond magnetars and stiff equations of state

for neutron matter.
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γ R

t < TN1 0.28L0,47M
−1
ej,−4t3 + 1 3.2× 1013L

1/2
0,47M

−1/2
ej,−4 t

3/2
3

TN1 < t < Tdec 2.8L0,47M
−1
ej,−4t4 + 1 4.6× 1015L2

0,47M
−2
ej,−4t

3
4

Case I Tdec < t < Tsd 9.9L1/8
0,47n

−1/8t−1/4
5 + 1 5.9× 1017L1/4

0,47n
−1/4t1/25

Tsd < t < TN2 4.2L1/8
0,47T

1/8
sd,5n

−1/8t−3/8
6 + 1 1.1× 1018L1/4

0,47T
1/4
sd,5n

−1/4t1/46

t > TN2 0.4L
2/5
0,47T

2/5
sd,5n

−2/5t
−6/5
8 + 1 3.7× 1018L

1/5
0,47T

1/5
sd,5n

−1/5t
2/5
8

t < TN1 0.08ξM−1
ej,−4T

−1
sd,3t + 1 1.7× 1010ξ1/2M−1/2

ej,−4T
−1/2
sd,3 t3/2

Case II TN1 < t < Tsd 83.3ξM−1
ej,−4T

−1
sd,3t3 + 1 4.2× 1017ξ2M−2

ej,−4T
−2
sd,3t

3
3

Tsd < t < TN2 14.8ξM−1
ej,−4T

3/8
sd,3t

−3/8
5 + 1 1.3× 1018ξ2M−2

ej,−4T
3/4
sd,3t

1/4
5

t > TN2 1.4ξ16/5M−16/5
ej,−4 T 6/5

sd,3t
−6/5
8 + 1 7.1× 1018ξ8/5M−8/5

ej,−4T
3/5
sd,3t

2/5
8

t < TN1 0.02ξM−1
ej,−3T

−1
sd,3t + 1 7.8× 109ξ1/2M

−1/2
ej,−3T

−1/2
sd,3 t3/2

TN1 < t < Tsd 16.7ξM−1
ej,−3T

−1
sd,3t3 + 1 1.7× 1016ξ2M−2

ej,−3T
−2
sd,3t

3
3

Case III Tsd < t < Tdec 16.7ξM−1
ej,−3 + 1 1.7× 1017ξ2M−2

ej,−3t4
Tdec < t < TN2 3.5ξ1/8n−1/8t−3/8

6 + 1 7.2× 1017ξ1/4n−1/4t1/46

t > TN2 0.2ξ2/5n−2/5t
−6/5
8 + 1 2.8× 1018ξ1/5n−1/5t

2/5
8

Table 28 Expression of the Lorentz factor and radius as a function of model parameters
in different temporal regimes for all dynamical cases.
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γ − 1 R νa νm νc Fν,max

Case I: L0 ∼ 1047 erg s−1,Mej ∼ 10−4M"

t < Tma1 1 3
2

5p+4
2(p+4)

5
2 − 7

2 5

Tma1 < t < TN1 1 3
2

1
10

5
2 − 7

2 5
TN1 < t < Tdec 1 3 11

5 4 −6 11
Tdec < t < Tsd − 1

4
1
2

1
5 −1 −1 1

Tsd < t < Tma2 − 3
8

1
4 0 − 3

2 − 1
2 0

Tma2 < t < TN2 − 3
8

1
4 − 3p+2

2(p+4) − 3
2 − 1

2 0

t > TN2 − 6
5

2
5

2−3p
p+4 −3 − 1

5
3
5

Case II: L0 ∼ 1049 erg s−1,Mej ∼ 10−4M"

t < Tma1 1 3
2

5p+4
2(p+4)

5
2 − 7

2 5

Tma1 < t < TN1 1 3
2

1
10

5
2 − 7

2 5
TN1 < t < Tsd 1 3 11

5 4 −6 11
Tsd < t < Tma2 − 3

8
1
4 0 − 3

2 − 1
2 0

Tma2 < t < TN2 − 3
8

1
4 − 3p+2

2(p+4) − 3
2 − 1

2 0

t > TN2 − 6
5

2
5

2−3p
p+4 −3 − 1

5
3
5

Case III: L0 ∼ 1049 erg s−1,Mej ∼ 10−3M"

t < Tma1 1 3
2

5p+4
2(p+4)

5
2 − 7

2 5

Tma1 < t < TN1 1 3
2

1
10

5
2 − 7

2 5
TN1 < t < Tsd 1 3 11

5 4 −6 11
Tsd < t < Tdec 0 1 3

5
0 −2 3

Tdec < t < Tma2 − 3
8

1
4 0 − 3

2 − 1
2 0

Tma2 < t < TN2 − 3
8

1
4 − 3p+2

2(p+4) − 3
2 − 1

2 0

t > TN2 − 6
5

2
5

2−3p
p+4 −3 − 1

5
3
5

Table 29 Temporal scaling indices of various parameters in different temporal regimes
for all dynamical cases.
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Figure 60 Calculation results for Case I: L0 ∼ 1047 erg s−1 and Mej ∼ 10−4M"(for
all the examples, we adopt ξ = 0.5, p = 2.3). (a) The dynamical evolution of the
parameter (γ − 1); (b) Temporal evolutions of the characteristic frequencies νa, νm,
and νc, and the peak flux density Fν,max; (c) Analytical light curve in R-band (blue)
and 10 GHz radio band (red); (d) Analytical light curve in X-ray band. The solid
and dashed lines are for n = 1 cm−3 and n = 10−3 cm−3, respectively. In (c) and
(d), we mark the spectral and temporal indices for each segment of the light curves
for n = 1 cm−3. The main figures denote the time regimes when the light curves are
detectable. The insets show the full light curves for completeness. Both X-ray and
optical light curves reach their peaks around 104 s, and remain detectable in years.
The radio light curve peaks around 107 s, and lasts even longer. The peak flux for
X-ray, optical and radio could be as bright as 10−11 erg s−1cm−2, 10 mJy and Jy,
respectively.
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Figure 61 Calculation results for Case II: L0 ∼ 1049 erg s−1 and Mej ∼ 10−4M".
Captions are the same with Figure 60. For n = 1 cm−3, both X-ray and optical light
curve reach their peaks around 103 s, and the radio light curve peaks around 107 s.
The peak flux of X-ray, optical, and radio is 10−9 erg s−1cm−2, 100 mJy and 100 mJy,
respectively. Taking R-band magnitude 20 and 10−15 erg s−1cm−2 as the detection
limit, the durations of the detectable optical and X-ray afterglow are ∼ 106 s and
∼ 108 s respectively. The radio afterglow lasts even longer. For n = 10−3 cm−3, the
signals for X-ray is still detectable, but with shorter durations, ∼ 105 s.
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Figure 62 Calculation results for Case III: L0 ∼ 1049 erg s−1 and Mej ∼ 10−3M".
Captions are the same with Figure 61. For n = 1 cm−3, both X-ray and optical light
curve reach their peaks around 105 s, and the radio light curve peaks around 106

s. The peak flux for X-ray, optical and radio is 10−10 erg s−1cm−2, 10 mJy and Jy,
respectively. Taking R-band magnitude 20 and 10−15 ergs−1cm−2 as the detection
limit, the durations of the observable optical and X-ray afterglows are ∼ 107 s and
∼ 108 s respectively. The radio duration lasts even longer. If n = 10−3 cm−3, the
optical signal just reaches R-band magnitude 20 around ∼ 106 s, while the X-ray
afterglow is detectable with a duration ∼ 108 s.
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CHAPTER 7

A DOUBLE NEUTRON STAR MERGER ORIGIN FOR THE COSMOLOGICAL
RELATIVISTIC FADING SOURCE PTF11AGG?

This chapter is part of the following published paper :

Wu, X.-F., Gao H., Ding, X., Zhang B., Dai, Z.-G., Wei, J.-Y, 2013, Astrophysics

Journal 771,86

Statement of coauthorship: This chapter is based on the published paper

mentioned above. This paper (Wu, X.-F., Gao H., Ding, X., Zhang B., Dai, Z.-G.,

Wei, J.-Y, 2013, Astrophysics Journal 771,86) was led by Xue-Feng Wu, who first

propose to use DNS merger afterglow model to explain PTF11agg. Since the main

calculation in this work was carried out by me and I also contribute to the writing

part of this paper, I put this work as part of my dissertation.

Introduction

Recently, Cenko et al. (2013) (hereafter C13) reported a new discovery from the

Palomar Transient Factory (PTF), named as PTF11agg. A multi-wavelength counter-

part search was performed for this rapidly fading optical transient. While a year-long

scintillating radio counterpart was identified, no high energy counterpart was found.

Based on a late-time, deep optical observation which revealed a faint, quiescent source

at the transient location, C13 suggested a cosmological origin for this transient. If

so, a relativistic ejecta is required in order to explain the incoherent radio emission.

Many cosmological sources have been known (or proposed) to be able to generate

relativistic ejecta, such as active galactic nuclei ( Ghisellini et al. 1993; Krawczynski

& Treister 2013), gamma-ray bursts (GRBs; Zhang & Mészáros 2004; Mészáros 2006;

Gehrels & Razzaque 2013), tidal disruption of a star by a supermassive black hole

(Burrows et al., 2011; Bloom et al., 2011; Cenko et al., 2012; Lei & Zhang, 2011; Lei

et al., 2013), as well as core-collapse supernova without GRB association (Soderberg et
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al., 2010). Among these sources, the GRB afterglows have the most similar observed

properties to PTF11agg, regardless of the fact that PTF11agg has no high energy

counterparts. If PTF11agg is indeed a GRB afterglow, the lack of a high energy

signature could be explained in two ways: an on-axis burst but without a high energy

band trigger due to a lack of satellite coverage; or an off-axis burst that gives rise to

an “orphan” afterglow emerging due to a viewing-angle effect (Rhoads, 1997; Nakar&

Piran, 2002). C13 considered both possibilities: it turns out the likelihood of an

“untriggered” on-axis long GRB being discovered by PTF is quite small (∼ 2.6%),

and the off-axis afterglow model fails to interpret both the optical and radio data.

They therefore speculated that PTF11agg may represent a new class of relativistic

outburst. We suggest that PTF11agg might be the first recognized detection of

MDNSM afterglow emission.

Observations of PTF11agg

PTF11agg was first detected by the Palomar 48 inch Oschin telescope at 5:17:11

on 2011 January 30, and is located at R.A.(J2000.0) = 08h22m17.195s, decl.(J2000.0)

= +21◦37′38′′.26. In the R band, the source shows decay behavior from the very

beginning, with R = 18.26 ± 0.05mag in the first detection image and a faint last

detection R = 22.15± 0.33 mag on 2011 February 1. Checking back to 2009 Novem-

ber, no optical emission was reported at this location. Late-time (∆t > 1month)

deep optical observation revealed a faint, unresolved source in g′ and R bands at

R.A.(J2000.0) = 08h22m17.202s, decl.(J2000.0) = +21◦37′38′′.26. Based on this de-

tection, C13 speculated that the redshift of PTF11agg should fall somewhere in the

range 0.5 # z # 3.0. The R band light curve of PTF11agg could be fitted well by a

power-law with a best-fit index α = 1.66 ± 0.35, if t0 =23:34 UT (±1.7 hr) on 2011

January 29 is taken as the onset time.

Besides optical observation, the Karl G. Jansky Very Large Array (Perley et al.
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2011) was also employed to observe the radio counterpart of PTF11agg, starting from

2011 March 11, with a total bandwidth 8GHz and local oscillator frequency 93.6GHz.

The spectral energy distribution in the radio band was constructed at two epochs on

2011 March 14 and 2011 April 7, and both can be fitted with a power law with an

index β = 1/3 (convention Fν ∝ νβ). Based on the constraints from the angular

diameter of the emitting region, C13 inferred that PTF11agg was initially at least

modestly relativistic.

C13 also checked the archival data from three primary high-energy facilities for

GRB triggers, i.e. InterPlanetary Network (Hurley et al., 2010), the Gamma-ray

Burst Monitor on the Fermi spacecraft (Meegan et al., 2009), and Burst Alert Tele-

scope on the Swift spacecraft (Barthelmy et al., 2005c). No temporally coincident

triggers were reported in the direction of PTF11agg. The X-Ray Telescope ( Burrows

et al. 2005b) on Swift was also later employed to observe the location of PTF11agg

on 2011 March 13, but no X-ray source was detected.

Applying DNS Merger Afterglow Model to PTF11agg

In the Blandford-McKee regime, the characteristic synchrotron frequencies and the

peak synchrotron flux density Fν,max = 4π/3R3nPν,max for a constant circum-medium

density could be expressed (see Chapter 4 for detail)

νm = 8.1× 1011 Hz (1 + z)1/2
(
p− 2

p− 1

)2

E1/2
52 ε2e,−1ε

1/2
B,−2t

−3/2
5 ,

νc = 2.9× 1016 Hz (1 + z)−1/2E−1/2
52 n−1

0,0ε
−3/2
B,−2t

−1/2
5

Fν,max = 1.1× 104 µJy (1 + z)E52n
1/2
0,0 ε

1/2
B,−2D

−2
28 ,

νa = 3.1× 109 Hz (1 + z)−6/5 g(p)

g(3.2)
E1/5

52 n3/5
0,0 ε

−1
e,−1ε

1/5
B,−2,

(7.1)
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where g(p) =
(

p−1
p−2

)

(p+ 1)3/5
(

Γ( 3p+22
12 )Γ( 3p+2

12 )

Γ( 3p+19
12 )Γ( 3p−1

12 )

)3/5

is a numerical constant relate to p.

Before applying the above DNS merger afterglow model (see Chapter 6 for detail)

to explain the PTF11agg data, we first simply summarize the observational properties

of PTF11agg as follows (Cenko et al., 2013):

• Late time radio data suggest that the ejecta should be still relativistic even at

a very late epoch;

• The optical light curve starts to decay at the very beginning of observation, i.e.,

ts = 2 × 104s, with a simple power law decay slope α = 1.66 ± 0.35. The first

optical flux in R band is about 180 µJy (see Figure 63);

• The radio band (8 GHz) light curve reached its peak around 107 s, where the

peak flux is about 200 µJy. The spectral slope for the early radio spectral

regime is about β = 1/3 (until 5.8×106 s), implying that the radio peak should

correspond to νm crossing.

First, to reach a relativistic speed for the ejecta, we need

Mej ≤ Mej,c (7.2)

where Mej,c ∼ 6 × 10−3M"I45P
−2
0,−3ξ (defined by setting Erotξ = 2(γ − 1)Mej,c,2c2),

above which the blast wave would never reach a relativistic speed (Gao et al., 2013b).

Nevertheless, there is no obvious break for late radio light curve, implying that the

ejecta is still in the relativistic regime (e.g. γ−1 ≥ 1) until the end of the observation

te = 3×107s. Since it is in the Blandford-McKee stage, the ejecta evolves as γ ∝ t−3/8,

we thus have

max(γsd − 1, γdec − 1) ≥
(
te
ts

)3/8

. (7.3)
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Second, since the R-band light curve starts to decay from the beginning of the

observation, we thus have

max(tsd, tdec) ≤ ts. (7.4)

On the other hand, since the radio light curve (see Figure 63) implies that νm crosses

the 8 GHz band at about 5.8× 106 ∼ 1.2× 107, we thus have

8.1× 1011(1 + z)1/2
(
p− 2

p− 1

)2

E1/2
52 ε2e,−1ε̃

1/2
B,−2

(
tcross
105

)−3/2

= 8× 109,

(7.5)

where

5.8× 106 < tcross < 1.2× 107. (7.6)

Moreover, from νm ∝ t−3/2, one could easily estimate that νm(ts) < νopt = 5 ×

1014Hz. We thus expect the optical band to fall into the spectrum regime νm <

νopt < νc. Consequently the observed temporal decay index (αopt = 1.66± 0.35) can

be translated directly into the electron spectral index p, i.e., for a constant-density

medium as suggested by C13, we find p = 3.2± 0.47. At ts, we have

fν(ts) = Fν,max

(

ν

νm

)−1.1

≈ 180µJy. (7.7)

Based on the peak flux in the radio band, we get

1.1× 104 (1 + z)E52n
1/2
0,0 ε̃

1/2
B,−2D

−2
28 ≈ 200 (7.8)

Moreover, the self-absorption frequency should fall below the radio frequency range,
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i.e.,

3.1× 109(1 + z)−6/5E1/5
52 n3/5

0,0 ε
−1
e,−1ε̃

1/5
B,−2 < 8× 109. (7.9)

Note that the ejecta formed in a DNS merger system would expand into a pulsar

wind bubble created by the progenitor pulsars (Gallant & Achterberg, 1999). The

radius of the bubble could be about 1017 cm (Königl & Granot, 2002). The value of

εB should be relatively large in the bubble (Königl & Granot, 2002). One can easily

find that the optical signals of PTF11agg are emitted within this bubble radius (with

εB), while the radio emission is emitted from outside (with ε̃B = ηεB, and 0 < η < 1,

see equations 7.5, 7.8 and 7.9).

From equations 7.2-7.4, we get the following constraints on the ejecta mass and

spin down luminosity:

Mej ≤ 1.1× 10−3ξM"

Lsd,0 ≥ 1.5× 1048ξ erg s−1 .

(7.10)

Combining equations 7.5-7.9, we have

η1/2 = 0.006ξ−1(1 + z)−1n−1/2ε−1/2
B,−2D

2
28

n1/2 = 0.93ξ−1.55(1 + z)−1.55ε−2.2
e,−1ε

−1.05
B,−2D

2
28

1240(1 + z)−1.05ξ−1.05 ≤ ε4.2e,−1ε
1.05
B,−2 ≤ 3921(1 + z)−1.05ξ−1.05 .

(7.11)

For a given redshift, we only get three independent constraints on five unknown
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z n (cm−3) εe εB η ξ p
0.5 1.0× 10−4 0.4 0.08 0.09 0.3 3.2
1 2.4× 10−3 0.4 0.06 0.09 0.3 3.2
3 0.26 0.4 0.03 0.09 0.3 3.2

Table 30 Adopt parameters for fitting the optical and radio data of PTF11agg for
different redshift.

parameters, i.e., ξ, n, εe, εB and η (note that p = 3.2 is fixed). This leaves us some

degeneracy in choosing parameters to fit the data.

In the following, we fix ξ = 1/3 (i.e. ∼ 1052erg spin down energy injected into the

ejecta) and εe = 0.4, and then fit the optical and radio data for different redshifts by

adopting appropriate values for εB, n and η. One fitting result is shown in Figure 63,

and the adopted parameters are collected in Table 30. With the chosen parameters,

we have derived the corresponding X-ray flux, which is found to be consistent with

the non-detection limitation.

In view of the fact that PTF11agg might be the first recognized candidate for DNS

merger afterglow, it would be helpful to compare the inferred shock parameter values

with those of other relativistic shock related phenomena, such as GRBs. Recently,

Santana et al. (2013) performed a careful literature search for εe and εB, and found

that εe ∼ 0.02 − 0.6 and εB ∼ 3.5 × 10−5 − 0.33 were favored by the observations.

With GRB optical afterglow data, Liang et al. (2013) found that the electron spectral

index p is distributed in the range from 2 to 3.51. Moreover, Shen et al. (2006)

performed a general investigation for relativistic sources, such as GRBs (with both

prompt and afterglow data), blazars and pulsar wind nebulae, and found a similar

broad distribution of p. Our inferred parameters from the DNS merger afterglow

model fall well within the ranges of these parameter distributions.

1Note that medium density profile is relevant for determining the electron index p. For a general
circumburst medium density profile n ∝ r−k as adopted in Liang et al. (2013), the derived p would
be somewhat larger than the value derived by assuming a constant density of the medium
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Figure 63 Optical and radio (8 GHz) light curves for PTF11agg, with best fittings
by assuming different redshift for the source. The green square denotes the optical
observation and the purple squares denote the radio data. The black solid line is for
z = 0.5, the blue dash line is for z = 1 and the red dash-dot line is for z = 3.

Discussion

We have proposed a DNS merger origin for the cosmological relativistic fading

source PTF11agg. Based on the observational properties of PTF11agg, we analyti-

cally constrained the parameter space for the DNS merger afterglow model and then

fit the multi-wavelength data by adopting appropriate parameter values. We find that

the DNS merger afterglow model could fit both the optical and radio data well regard-

less of the source redshift. If our interpretation is correct, the following implications

can be inferred:

First, the next generation gravitational-wave (GW) detectors are expected to de-
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tect GW signals from mergers of two compact objects, with DNS mergers as primary

targets. PTF11agg-like transients could be potential electromagnetic counterparts to

such GW signals. The study of PTF11agg-like transients would not only shed light

on the nature of the DNS merger scenario itself, but also contribute to identifying

the astrophysical origin of GW signals.

Second, since DNS mergers are proposed to be the progenitor of short GRBs, the

lack of a high energy counterpart for PTF11agg could be due to the fact that our line

of sight is not along the direction of the jet axis. If so, there exists the possibility of

simultaneously detecting a short GRB afterglow and (off-beam) PTF11agg-like emis-

sion, when our line of sight is within the jet opening angle. Since the PTF11agg-like

emission component is Doppler de-boosted with respect to the on-beam calculations

(Gao et al., 2013b), it is detectable only under favorable condition. Some short GRB

afterglow features may be accounted for within this picture (H. Gao et al. 2014, in

preparation).

Third, recently the short GRB 130603B has attracted attention by showing an

infrared excess in its late emission (Tanvir et al., 2013; Berger, 2013). Even though it

was suggested that this emission is consistent with the r-process powered “kilonova”

emission with a black hole central engine, some authors have already pointed out

that both the mergernova and short GRB afterglow of this burst can be understood

within the scenario of a supra-massive magnetar central engine, as long as a large

fraction of magnetar spin-energy is lost, possibly by GW radiation (Fan et al., 2013;

Metzger & Piro, 2013). If so, the short-lived transient emission from GRB 130603B

and PTF11agg may be different manifestations of the same intrinsic phenomenon

with different viewing angles and/or magnetar parameters.

Finally, due to the large uncertainty of the DNS merger event rate and the fraction

of mergers that produce stable magnetars, it is difficult to predict the detection rate

by blind surveys for DNS merger afterglows (e.g. Yu et al., 2013, for a discussion).
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C13 suggested the event rate of PTF11agg-like sources is ∼5 times that of normal

GRBs, namely 5 Gpc−3 yr−1. Assuming a fraction f of DNS mergers may give rise

to PTF11agg-like events, one can estimate the DNS merger events rate as Ṅ ∼

5/f Gpc−3 yr−1 = 50f−1
−1 Gpc−3 yr−1(Gao et al., 2013c), which is consistent with

predictions using other methods (Phinney, 1991; Kalogera et al., 2004; Abadie et al.,

2010).

We note that Wang & Dai (2013) also proposed a different model for PTF11agg

within the same framework as this Letter. They assumed that the magnetar wind

injection is in the form of electron/positron pairs rather than a Poynting flux, and

they interpreted the observed emission from the reverse shock region. They obtained

different model parameter values and different spectral properties from ours. Future

observations with a larger sample of PTF11agg-like transients may be helpful to

distinguish between these two models, and consequently lead to a diagnosis of the

composition of the magnetar wind.
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CHAPTER 8

POSSIBLE HIGH-ENERGY NEUTRINO AND PHOTON SIGNALS FROM
GRAVITATIONAL WAVE BURSTS DUE TO DOUBLE NEUTRON STAR

MERGERS

This chapter is part of the following published paper :

Gao H., Wu, X.-F., Zhang B., Dai, Z.-G., 2013, Physical Review D 88, 043010

General Picture

As mentioned in Chapter 5, protons are expected to be accelerated in the forward

shock powered by a magnetar wind pushing the ejecta launched during the merger

process, serving as efficient high-energy cosmic ray accelerators. On the other hand, as

propagating to us, photons emitted via magnetic dissipation at a smaller radius from

the engine (Zhang, 2013b) would first pass through the external shock front, and

have a good chance to interact with the accelerated protons. Strong photo-meson

interactions happen at the ∆-resonance, when the proton energy Ep and photon

energy Eγ satisfy the threshold condition

EpEγ ≥
m2

∆ −m2
p

2
Γ2 = 0.147 GeV2Γ2, (8.1)

where Γ is the bulk Lorentz factor, m∆ = 1.232 GeV and mp = 0.938 GeV are the rest

masses of ∆+ and proton, respectively. The ∆+ particle decays into two channels.

The charged pion channel gives ∆+ → nπ+ → ne+νeν̄µνµ, with a typical neutrino

energy Eν % 0.05Ep. The neutron pion channel gives the ∆+ → pπ0 → pγγ.

Note that the broad-band photons produced in the shocked region could also serve

as the seed photons for pγ interaction. However, since their peak flux in the X-ray

band (Gao et al., 2013b) is much lower than that of the internal dissipation photons

(Zhang, 2013b), we do not consider their contribution.

With the multi-messenger era of astronomy ushered in, studying multi-messenger
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signals in astrophysical sources is of the great interest (e.g. Bartos et al. (2011)).

The high-energy neutrino detectors such as IceCube have reached the sensitivity to

detect high energy neutrinos from astrophysical objects for the first time. Gamma-ray

bursts (GRBs) have been proposed to be one of the top candidates of PeV neutrinos

(Waxman & Bahcall, 1997b). However, a dedicated search of high energy neutrinos

coincident with GRBs have so far led to null results (Abbasi et al., 2010, 2011; Ahlers

et al., 2011; Abbasi et al., 2012), which already places a meaningful constraint on

GRB models (Abbasi et al., 2012; He et al., 2012; Zhang & Kumar, 2013a). Very

recently, the IceCube collaboration announced their detections of two neutrino events

with an energy approximately 1-2 PeV(Abbasi et al., 2012; Cholis & Hooper, 2013),

which could potentially represent the first detections of high-energy neutrinos from

astrophysical sources. Among the proposed sources of such cosmic rays, GRBs stand

out as particularly capable of generating PeV neutrinos at this level (Cholis & Hooper,

2013; Liu & Wang, 2013). However, the absence of associated GRBs for these two

events calls for alternative cosmological PeV neutrino sources. Here we investigate the

possible neutrino signals associated with NS-NS mergers with a millisecond magnetar

central engine using the photomeson interaction mechanism delineated above.

Initially, the heavy ejecta launched during the merger is not far away from the

magnetar, so that in a large solid angle range, the magnetar wind would hit the ejecta

before self-dissipation of the magnetar wind happens. In this case, a good fraction

(η) of the magnetic energy may be rapidly discharged upon interaction between the

wind and the ejecta. The Thomson optical depth for a photon to pass through the

ejecta shell is τth ∼ σTMej/(4πR2mp). By setting the optical depth equals to unity,

we define a photosphere radius Rph = 2.5 × 1014M1/2
ej,−3 cm for the ejecta. When

R < Rph, the spectrum of the dissipated wind is likely quasi-thermal due to the large

optical depth of photon scattering. The typical photon energy can be estimated as

Eph,t ∼ k(Lsd,0η/4πR2σSB)1/4/τth ∼ 27 eV L1/4
sd,0,47η

1/4
−1 M

−1
ej,−4R

3/2
14 , where σSB is the
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Stefan-Boltzmann constant. Alternatively, when R > Rph, the typical synchrotron

energy could be estimated as Eγ,t % 1.8 × 104 keV L1/2
sd,0,47R

−1
15 η

3/2
−1 σ

2
4 , where σ is

the magnetization parameter of the Poynting flow when the magnetar wind catches

the ejecta (Zhang & Yan, 2011a). In order to estimate the value of σ, we assume

that the proto-magnetar has σ0 ∼ 107 at the central engine and the magnetized flow

is quickly accelerated to Γ ∼ σ1/3
0 at R0 ∼ 107 cm, where σ ∼ σ2/3

0 (Komissarov

et al., 2009). After this phase, the flow may still accelerate as Γ ∝ R1/3, with σ

falling as ∝ R−1/3 (Drenkhahn & Spruit, 2002a). Consequently, we have Eγ,t %

1.8 keV L1/2
sd,0,47η

3/2
−1 σ

4/3
0,7 R

2/3
0,7R

−5/3
15 .

As it is pushed forward by the magnetar wind, at a late time the ejecta is far

away enough from the central engine, so that before hitting the ejecta, the magnetar

wind already starts to undergo strong self-dissipation, for instance, through internal-

collision-induced magnetic reconnection and turbulence (ICMART) process (Zhang &

Yan, 2011a). In this case, the typical synchrotron frequency can be still estimated as

above, except that the emission radius is set to the self-dissipation radius, which we

parameterize as the ICMART radius Ri = 1015Ri,15, rather than the blastwave radius

(Zhang & Yan, 2011a; Zhang, 2013b), i.e. Eγ,t % 1.8 keV L1/2
sd,0,47η

3/2
−1 σ

4/3
0,7 R

2/3
0,7R

−5/3
i,15 .

Notice that for a substantial range of Mej, we have Rph < Ri. Overall, the seed

photon energy for pγ interaction can be summarized as

Eγ,t =













27 eV L1/4
sd,0,47η

1/4
−1 M

−1
ej,−4R

3/2
14 , R < Rph;

1.8 keV L1/2
sd,0,47η

3/2
−1 σ

4/3
0,7 R

2/3
0,7 R

−5/3
15 , Rph < R < Ri;

1.8 keV L1/2
sd,0,47η

3/2
−1 σ

4/3
0,7 R

2/3
0,7 R

−5/3
i,15 , R > Ri;

(8.2)

In the mean time, the magnetar-wind-powered ejecta would interact with the

ambient medium, forming a blastwave similar to GRB afterglow. Depending on

the unknown parameters such as Mej, Bp (and hence Lsd,0) (Gao et al., 2013b), the
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blastwave could be accelerated to a mildly or even highly relativistic speed, due to the

continuous energy injection from the magnetar wind. Protons are accelerated from the

forward shock front along with electrons via the first-order Fermi acceleration process.

Consequently, when the seed photons due to magnetar wind dissipation (Eq.8.14) pass

through the shocked region, significant neutrino production due to pγ interaction

through ∆-resonance would happen, as long as the condition R ≡ ΓγMmpc2

Ep,t
> 1 is

satisfied. Here, Ep,t = 0.147 GeV2Γ2/Eγ,t is the corresponding proton energy for the

typical seed photon at ∆-resonance, and γM is the maximum proton Lorentz factor.

It can be estimated by balancing the acceleration time scale and the dynamical time

scale, which gives γM ∼ ΓteB′

ζmpc
, where ζ is a parameter of order unity that describes

the details of acceleration and B′ is the comoving magnetic field strength. Once

pγ interaction happens, significant neutrinos with energy εν ∼ 0.05Ep,t would be

released, the neutrino emission fluence may be estimated as

fν =
Etot × fγp,t × fπ

4πd2
, (8.3)

where Etot ∼ 4πR3nΓ(Γ−1)mpc2/3 is the total energy of all the protons, fγp,t ≡
Eγp,t

Etot

is the energy fraction of the relevant protons, and fπ is the fraction of the proton

energy that goes to pion production. Assuming a power-law distribution of the shock

accelerated protons: N(Ep)dEp ∝ E−p
p dEp (hereafter assuming p > 2), one can

obtain fγp,t =
(

γp,t
γm

)2−p

, where γm = (Γ− 1)p−2
p−1 + 1 is the minimum proton Lorentz

factor. The fraction of the proton energy that goes to pion production could be

estimated as fπ ≡ 1
2(1 − (1− < χp→π >)τpγ ), where τpγ is the pγ optical depth and

< χp→π >% 0.2 is the average fraction of energy transferred to pion. Notice that fπ

is roughly proportional to τpγ when τpγ < 3 (Zhang & Kumar, 2013a).
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Neutrino Energy and Fluence

The dynamics of the blastwave is defined by energy conservation (Gao et al.,

2013b)

L0t = (γ − 1)Mejc
2 + (γ2 − 1)Mswc

2, (8.4)

where L0 = ξLsd,0 is the magnetar injection luminosity into the blastwave, and Msw =

(4π/3)R3nmp is the swept-up mass from the interstellar medium. Initially, one has

(γ−1)Mejc2 ( (γ2−1)Mswc2, so that the kinetic energy of the ejecta would increase

linearly with time until R = min(Rsd, Rdec), where the deceleration radius Rdec is

defined by the condition (γ − 1)Mejc2 = (γ2 − 1)Mswc2. By setting Rdec ∼ Rsd, we

can derive a critical ejecta mass

Mej,c,1 ∼ 10−3M"n
1/8I5/445 B−3/4

p,14 R−9/4
6 P−1

0,−3ξ
7/8, (8.5)

which separate regimes with different blastwave dynamics (Gao et al., 2013b):

Case I: Mej < Mej,c,1 or Rsd > Rdec. In such case, the ejecta can be accelerated

linearly until the deceleration radius Rdec ∼ 3.9 × 1017M2/5
ej,−4L

−1/10
sd,0,47n

−3/10
0 , where

bulk Lorentz factor of the blastwave is Γdec ∼ 12.2L3/10
sd,0,47M

−1/5
ej,−4n

−1/10
0 . After that,

the blastwave decelerates, but still with continuous energy injection until Rsd ∼ 1.0×

1018ξ1/2L−1/4
sd,0,47n

−1/4
0 , where Γsd ∼ 7.5ξ−1/4L3/8

sd,0,47n
−1/8
0 . During the acceleration phase,

the blastwave passes the non-relativistic to relativistic transition line Γ − 1 = 1 at

radius RN ∼ 2.2× 1014Mej,−4L
−1
sd,0,47.

For the different radius range of the typical photon energy shown in Eq. 8.14,

we can investigate whether pγ interaction at ∆-resonance can occur, and if so, the

typical energy and fluence of neutrino emission. We first assume that the blastwave

is always non-relativistic when R <= Rph, since RN is comparable with Rph with a

high probability. We first have
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R =




















0.1η1/4−1 L
−5/12
sd,0,47M

−1/3
ej,−4n

1/2
0 R11/6

14 < 1, R <= Rph;

26.0η3/2−1 L
−1/6
sd,0,47M

2/3
ej,−4n

1/2
0 σ4/3

0,7 R
2/3
0,7R

−4/3
15 > 1, Rph < R < Ri;

120.7η3/2−1 L
−1/6
sd,0,47M

2/3
ej,−4n

1/2
0 σ4/3

0,7 R
2/3
0,7R

−5/3
i,15 R1/3

17 > 1, Ri < R < Rdec;

1.2× 103η3/2−1 n0σ
4/3
0,7 R

2/3
0,7R

−5/3
i,15 R2

18 > 1, Rdec < R < Rsd;

(8.6)

implying that pγ interaction at ∆-resonance could happen only when R > Rph. The

typical neutrino energy and fluence for different range could be estimated as

εν =















1.1× 10−2 PeV η−3/2
−1 L1/6

sd,0,47M
−2/3
ej,−4σ

−4/3
0,7 R−2/3

0,7 R7/3
15 , Rph < R < Ri;

0.21 PeV η−3/2
−1 L1/6

sd,0,47M
−2/3
ej,−4σ

−4/3
0,7 R−2/3

0,7 R5/3
i,15R

2/3
17 , Ri < R < Rdec;

0.24 PeV η−3/2
−1 n−1/2

0 σ−4/3
0,7 R−2/3

0,7 R5/3
i,15R

−1
18 , Rdec < R < Rsd;

(8.7)

fν =














1.6× 10−12η−0.05
−1 L0.65

sd,0,47n0σ
−0.93
0,7 R−0.47

0,7 R3.2
15 , Rph < R < Ri;

1.6× 10−8η−0.05
−1 L0.65

sd,0,47n0σ
−0.93
0,7 R−0.47

0,7 R1.17
i,15R

2
17, Ri < R < Rdec;

1.6× 10−6η−0.05
−1 L0.65

sd,0,47n0σ
−0.93
0,7 R−0.47

0,7 R1.17
i,15R

2
18, Rdec < R < Rsd.

(8.8)

For better illustration, we take Lsd,0 = 1047 and Mej = 10−4M" as an example

and plot the evolution of εν and fν for this dynamical case in Figure 64.

Case II: Mej ∼ Mej,c,1 or Rsd ∼ Rdec. In this case, the ejecta would be continu-

ously accelerated until Rsd = 1.2×1018ξ3L−1
sd,0,49M

−2
ej,−4, where the bulk Lorentz factor

reaches Γsd = 83.3ξM−1
ej,−4. Similar to case I, we have

R =













0.01η1/4−1 L
−5/12
sd,0,49M

−1/3
ej,−4n

1/2
0 R11/6

14 < 1, R <= Rph;

12.0η3/2−1 L
−1/6
sd,0,49M

2/3
ej,−4n

1/2
0 σ4/3

0,7 R
2/3
0,7 R

−4/3
15 > 1, Rph < R < Ri;

55.9η3/2−1 L
−1/6
sd,0,49M

2/3
ej,−4n

1/2
0 σ4/3

0,7 R
2/3
0,7 R

−5/3
i,15 R1/3

17 > 1, Ri < R < Rsd.

(8.9)
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Again pγ interaction at ∆-resonance could happen only when R > Rph. The typical

neutrino energy and fluence for different range could be estimated as

εν =









0.02 PeV η−3/2
−1 L1/6

sd,0,49M
−2/3
ej,−4σ

−4/3
0,7 R−2/3

0,7 R7/3
15 , Rph < R < Ri;

0.5 PeV η−3/2
−1 L1/6

sd,0,49M
−2/3
ej,−4σ

−4/3
0,7 R−2/3

0,7 R5/3
i,15R

2/3
17 , Ri < R < Rsd;

(8.10)

fν =








3.2× 10−11η−0.05
−1 L0.65

sd,0,49n0σ
−0.93
0,7 R−0.47

0,7 R3.2
15 , Rph < R < Ri;

3.2× 10−7η−0.05
−1 L0.65

sd,0,49n0σ
−0.93
0,7 R−0.47

0,7 R1.17
i,15R

2
17, Ri < R < Rsd.

(8.11)

In this case, we take Lsd,0 = 1049 and Mej = 10−4M", and plot the evolution of εν

and fν in Figure 8.

Case III: Mej > Mej,c,1 or Rsd < Rdec. Similar to Case II, the ejecta would be accel-

erated to a relativistic speed of Γsd = 16.7ξM−1
ej,−3 until Rsd = 5.0×1016ξ3L−1

sd,0,49M
−2
ej,−3.

Similarly, one has

R =















0.004η1/4−1 L
−5/12
sd,0,49M

−1/3
ej,−3n

1/2
0 R11/6

14 < 1, R <= Rph;

35.1η3/2−1 L
−1/6
sd,0,49 M2/3

ej,−3n
1/2
0 σ4/3

0,7 R
2/3
0,7R

−4/3
15 > 1, Rph < R < Ri;

163.1η3/2−1 L
−1/6
sd,0,49M

2/3
ej,−3n

1/2
0 σ4/3

0,7 R
2/3
0,7R

−5/3
i,15 R1/3

17 > 1, Ri < R < Rsd.

(8.12)

No significant neutrino emission at R < Rph, and beyond Rph the typical neutrino

energy and fluence for different range could be estimated as

εν =









8.4× 10−3 PeV η−3/2
−1 L1/6

sd,0,49M
−2/3
ej,−3σ

−4/3
0,7 R−2/3

0,7 R7/3
15 , Rph < R < Ri;

0.2 PeV η−3/2
−1 L1/6

sd,0,49M
−2/3
ej,−3 σ−4/3

0,7 R−2/3
0,7 R5/3

i,15R
2/3
17 , Ri < R < Rsd;

(8.13)
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Figure 64 Examples of the evolution of neutrino energy εν and fluence fν for differ-
ent dynamics: Case I (dash-dot), Case II (solid) and Case III (dashed). Blue lines
represent εν and green lines show fν . Model parameters: n0 = 1,η = 0.1, σ0 = 107,
R0 = 107, and D = 300 Mpc (the advanced LIGO horizon for NS-NS mergers). For
the magnetar parameters for each case, see text.

fν =









3.2× 10−11η−0.05
−1 L0.65

sd,0,49n0σ
−0.93
0,7 R−0.47

0,7 R3.2
15 , Rph < R < Ri;

3.2× 10−7η−0.05
−1 L0.65

sd,0,49n0σ
−0.93
0,7 R−0.47

0,7 R1.17
i,15R

2
17, Ri < R < Rsd.

(8.14)

For this case, we take Lsd,0 = 1047 ergss−1 and Mej = 10−3M" and plot the

evolution of εν and fν in Figure 64.

Note that there is another critical ejecta mass Mej,c,2 ∼ 6 × 10−3M"I45P
−2
0,−3ξ

(defined by setting Erotξ = 2(γ − 1)Mej,c,2c2), above which the blast wave would

never reach a relativistic speed (Gao et al., 2013b). The dynamics is similar to Case

III, with the coasting regime in the non-relativistic phase. In this case, we always

have R < 1, therefore no significant neutrino flux is expected.
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Detection Prospect

From the above calculation, one can see that when the post-merger product is a

millisecond magnetar and the outgoing ejecta could be accelerated to a relativistic

speed, ∼PeV neutrinos could indeed be emitted from NS-NS mergers scenario. These

neutrinos are well suited for detection with IceCube(Ahrens et al., 2004).

As shown in Figure 64, for different initial conditions, i.e., different combinations

ofMej and Lsd, the maximum neutrino fluence is always reached at the spin-down time

scale. We therefore take the neutrino energy and fluence at this epoch as the typical

values for each specific NS-NS merger event. For the events happening at 300 Mpc,

the optimistical typical neutrino fluence could be as large as 10−6 − 10−5GeV cm−2

(corresponding to σ0 = 107, 106 respectively), one or two orders of magnitude lower

than the typical fluence of GRBs(He et al., 2012). Given the typical neutrino energy

∼PeV and the IceCube effective area ∼ several 106 cm2 (Ahrens et al., 2004; Li,

2013), optimistically only several 10−6 − 10−5 neutrinos are expected to be detected

by IceCube for a single event.

In any case, these events would contribute to the ∼PeV neutrino background.

The NS-NS merger event rate is rather uncertain, i.e., (10 − 5 × 104) Gpc−3 yr−1

(Phinney, 1991; Kalogera et al., 2004; Abadie et al., 2010). Considering that only

a fraction of NS-NS merger event would leave behind a massive neutron star rather

than a black hole, and that only a sub-fraction of these mergers have the right Mej

and Lsd,0 to make relativistic blastwaves, the event rate of NS-NS mergers that gen-

erate PeV neutrinos may be at least one order of magnitude lower, i.e. ∼ (1 − 5 ×

103) Gpc−3 yr−1. Even with the most optimistic estimate, the ∼PeV diffuse back

ground is ∼ 10−10 GeV cm−2 s−1 sr−1. It takes tens of years to get two events. So

these systems are not likely the origin of the two reported PeV events announced by

the Icecube collaboration (Aartsen et al., 2013). Nevertheless, compared with the

GRB event rate 1 Gpc−3 yr−1 (Liang et al., 2007a; Wanderman & Piran, 2010), this
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scenario may gain the event rate by 1-2 orders of magnitude than GRBs. Noticing that

a typical GRB has a fluence 1-2 orders of magnitude higher than a magnetar-wind-

powered NS-NS merger remnant, our scenario could contribute to the ∼PeV neutrino

diffuse background, which is comparable or slightly lower than that of GRBs.

High Energy Photon Emission

Besides high-energy neutrino emission, the decay of π0 produced in pγ interactions

would lead to the production of high energy gamma-ray photons. Assuming that half

of the∆+ decays go to the π+ channel (neutrino production), while the other half go to

the π0 channel (γ-ray production), the typical gamma-ray photon energy and fluence

values would be comparable to the neutrinos we studied in section III. However,

such high-energy photons may interact with the synchrotron emission photons in the

shock (Gao et al., 2013b) to produce electron/positron pairs, γγ → e±, and initiate an

electromagnetic cascade: the pairs would emit photons via synchrotron and inverse

Compton, which would be converted back to pairs, and the pairs would emit photons

again, etc. Photons can escape only when the γγ optical depth becomes lower than

unity (Murase & Beacom, 2012a; Murase et al., 2012b). Following the calculation

shown in Ref.(Gao et al., 2013b), we find that the γγ optical depth exceeds unity

for photon energy above εγγ ∼ 100GeV. For simplicity, we assume that the total

energy of the π0-decay photons would finally show up around 100GeV through an

EM cascade. These photons are within the energy windows of the Fermi/LAT. In

the most optimistic situation, the photon flux for an event at 300 Mpc could be

as high as 10−11erg cm−2 s−1, which is essentially 10−10 photons cm−2 s−1. The

effective area of LAT for 100GeV photons is around 9000 cm2 (Atwood et al., 2009),

suggesting that even for Tsd ∼ 105, one single NS-NS merger event could not trigger

LAT. Nevertheless, the total diffuse flux from these events could reach ∼ several

10−7 MeV cm−2 s−1 sr−1 optimistically, giving a moderate contribution to the sub-
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TeV γ-ray background, i.e., 4 × 10−4 MeV cm−2 s−1 sr−1, according to Fermi/LAT

observation(Abdo et al., 2010).
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Mészáros, P., Rees, M. J., Jun. 1997b, ApJ, 482, L29.
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Mészáros, P., 2006, Reports of Progress in Physics, 69, 2259–2322.

235



Meszaros, P., & Rees, M. J. 2014, arXiv:1401.3012

Mimica, P., Giannios, D., Aloy, M. A., Feb. 2009, A&A, 494, 879–890.

Moderski R., Sikora M., Lasota J. P. 1997, in Ostrowski M., Sikora M., Madejski, G.,
Belgelman M., eds, Proc. International Conf., Relativistic Jets in AGNs. Krakow,
p. 110

Morrison, I. A., Baumgarte, T. W., & Shapiro, S. L. 2004, ApJ, 610, 941

Morsony, B. J., Lazzati, D., & Begelman, M. C. 2010, ApJ, 723, 267

Murase, K., & Beacom, J. F. 2012a, JCAP, 10, 43

Murase, K., Beacom, J. F., & Takami, H. 2012b, JCAP, 8, 30

Nagataki, S. 2009, ApJ, 704, 937

Nagataki, S. 2011, Publications of the Astronomical Society of Japan, 63, 1243

Nakar, E., & Piran, T. 2002, MNRAS, 331, 40

Nakar, E., Granot, J., Oct. 2007, MNRAS, 380, 1744–1760.

Nakar, E., Ando, S., & Sari, R., 2009, ApJ, 703, 675

Nakar, E., & Piran, T. 2011, Nature, 478, 82

Narayan, R., Paczynski, B., & Piran, T. 1992, ApJ, 395, L83

Narayan, R., & Kumar, P. 2009, MNRAS, 394, L117

Nava, L., Sironi, L., Ghisellini, G., Celotti, A., Ghirlanda, G., Nov. 2012, ArXiv
e-prints:1211.2806

Nissanke, S., Kasliwal, M., & Georgieva, A. 2013, ApJ, 767, 124

Norris, J. P., Nemiroff, R. J., Bonnell, J. T., et al. 1996, ApJ, 459, 393

Norris, J. P., Marani, G. F., & Bonnell, J. T. 2000, ApJ, 534, 248

Nousek, J. A., Kouveliotou, C., Grupe, D., et al. May 2006, ApJ, 642, 389–400.

O’Brien, P. T., Willingale, R., Osborne, J., et al. Aug. 2006, ApJ, 647, 1213–1237.

Oppenheim, A.V., Schafer, R.W., Buck, J.R., 1998, ”Discrete-time signal processing”
second edit, Vol.2, 52

Paczynski, B. 1986, ApJ, 308, L43

Paczynski, B. 1998, ApJ, 494, L45
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Zhang, B., Mészáros, P., Jun. 2002a, ApJ, 571, 876–879.
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