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GENERAL ABSTRACT 
 

________________________________________________________________________ 
 
 

Grass shrimp, Palaemonetes pugio, can survive in brackish waters and estuarine 

ecosystems despite the frequent oscillations and fluctuations in salinity, temperature and 

oxygen.  Adult P. pugio have the ability to osmoregulate (Romney and Reiber 2011), 

change cardiac parameters to tolerate temperatures (not yet published, Mika and Reiber) 

and oxyregulate (Guadagnoli and Reiber 2013).  Manipulation of cardiac parameters 

allows for these methods of regulation.  However, cardiac contraction and internal 

convection of oxygen do not occur until later stages of embryonic development.  Studies 

focused on these morphological and physiological advantages may provide further 

understanding of the regulatory mechanisms within grass shrimp embryos, larvae and 

adults.  To answer these questions, experiments are conducted under controlled 

laboratory conditions.  The purpose of this study is to examine the effects of varying 

oxygen conditions on Palaemonetes pugio, a brackish water crustacean.  Specifically, the 

study determines whether developmental and physiological changes contribute to 

increased survivorship of P. pugio embryos.  Changes in rate of embryonic oxygen 

consumption under normoxic conditions during cardiac development will be compared 

with oxygen consumption rates under hypoxic conditions to quantify any changes in 

oxygen uptake.  Furthermore, we will determine if exposure to variable oxygen 

conditions influences metabolic processes, whether oxyconformation shifts to 

oxyregulation and finally, quantify the amount of lactate production per P. pugio clutch.  
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CHAPTER 1 INTRODUCTION 
________________________________________________________________________ 
 
 
 

The grass shrimp, Palaemonetes pugio 
 
Paleomonetes pugio, otherwise known as grass shrimp, serve as an ideal model organism 

for examination of cardiovascular physiological development.  Similar to the translucent, 

protective chitin of adult P. pugio, embryonic grass shrimp possess a clear chorion which 

allows for non-invasive observation of cardiac development.  Adult morphology and 

physiological parameters have been previously described; however, embryonic grass 

shrimp description of physiological parameters remains vague.  An embryonic staging 

scheme has recently been established which dictates cardiac development throughout 

specific stages, initiation of intermittent cardiac contraction and finally, achievement of 

steady cardiac beats (Romney, 2010).  Temporal development and physiological changes 

under experimental conditions have not yet been conducted on embryos.   

 

Adult and embryonic animals alike are easy to maintain under laboratory conditions, as 

natural environmental factors can be simulated.  The breeding season spans from 

February through October (Anderson, 1985).  Within this time frame, numerous 

ovigerous females carry large clutches of eggs.  An ovigerous female carries clutch sizes 

ranging from 200 to 400 eggs, thus provides an abundant sample size and decreases 

confounding effects based on variation within individuals (Alon and Stancyk, 1982).  

Fertilized embryos are carried externally along the pleiopods of the female and adhere by 

attachment to setae.  Exposure to fluctuating environmental conditions is readily 

witnessed in the externally developing embryos (Bauer and Abdalla, 2000).  Despite 
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extreme changes in oxygen levels, salinity and temperature, grass shrimp adults and 

embryos persist in ample numbers within their ecological niche. 

 

Paleomonetes pugio serve as an ideal model organism for examination of cardiovascular 

physiological development.  Similar to the translucent, protective chitin of adult P. pugio, 

embryonic grass shrimp possess a clear chorion which allows for non-invasive 

observation of cardiac development.  Adult P. pugio have morphological advantages that 

allow for regulation of oxygen through internal convection processes (Guadagnoli and 

Reiber 2007); however, embryonic grass shrimp description of physiological parameters 

remains vague.  No previous studies have detailed embryonic oxygen consumption 

(ṀO2) in a closed, normoxic system.  Even more, no previous studies have accounted for 

embryonic ṀO2 in a closed, hypoxic system.  Normoxic ṀO2 will be calculated for each 

stage of development under controlled laboratory conditions.  Changes in rate of 

embryonic ṀO2 under experimental hypoxic conditions will be compared against the 

normoxic baseline.  Specifically, we will determine if exposure to variable oxygen 

conditions influences metabolic processes, whether oxyconformation shifts to 

oxyregulation and finally, quantify the amount of lactate production per P. pugio clutch.  

The purpose of this thesis is to provide a thorough descriptive assessment of metabolic 

processes that occur under various oxygen conditions throughout P. pugio embryonic 

development.  

 

The compensatory mechanisms exhibited by P. pugio embryos have not been explored.  

Further understanding in this area may provide a physiological basis of regulatory 
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mechanisms within grass shrimp embryo development.  According to prior studies, 

embryos have not been shown to possess the ability to manipulate oxygen regulation 

parameters until later stages in embryonic development (Romney and Reiber 2011).  

Despite this, clutches hatch in abundant numbers throughout the breeding season.  An 

embryonic staging scheme has recently been established which describes cardiac 

development throughout specific stages, including the initiation of intermittent cardiac 

contraction and finally, achievement of steady cardiac beats (Romney and Reiber 2011).  

Each stage has been described on an anatomical, morphological, volumetric and cardiac 

physiological basis, but has not delved into metabolic processes involved in development.  

Studies conducted throughout this thesis will use the established staging scheme to 

determine physiological and metabolic changes under experimental oxygen conditions in 

P. pugio embryos.  We wish to explore the processes involved in embryo survival upon 

development under low oxygen conditions.  The model organisms of this study are 

Palemonetes pugio collected from the Gulf Coast and raised in 20 gallon (75.7 L) tanks at 

21˚C, 30 ppt and exposed to a natural photoperiod (12L:12D).  

 

 Animal exposure to fluctuating oxygen conditions  

Palaemonetes pugio, grass shrimp, persist among diverse ecological niches, ranging from 

brackish waters to saltwater ecosystems (Alon and Stancyk 1982).  P. pugio are abundant 

along the Atlantic and Gulf Coasts of North America, predominantly in estuarine 

environments with highly variable conditions.  Estuarine systems are characterized by 

frequent fluctuations in several ecological parameters that may affect physiological 

homeostasis and create a dynamic environment for the inhabitants (Welsh 1975).  Despite 
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these fluctuations, P. pugio withstand drastic changes throughout a daily cycle.  They 

effectively live and breed within these environments that may range in dissolved oxygen 

levels from 4 to 22 kPa O2, salinities of between 0 to 55 parts per thousand (seawater at 

30-32 parts per thousand; ppt) and temperatures of 5˚ to 38˚C (Anderson 1985; Brown-

Peterson et al. 2008; Cochran and Burnett 1996; Knowlton and Kirby 1984; Welsh 

1975).   

 

Frequent exposure to oscillating oxygen levels results in an animal’s need to regulate 

internal physiological parameters and maintain homeostasis.  This need to maintain 

homeostasis is heightened in animals inhabiting estuarine environments; hence, the need 

for regulation.  Attention has been directed towards physiological mechanisms that 

underlie maintenance of hemolymph oxygen levels.  It has been demonstrated that 

aerobic metabolism and regulation is intricately involved in this mechanism (Guadagnoli 

and Reiber 2011).  Direct measurements of cardiovascular parameters: stroke volume, 

heart rate and subsequent calculation of cardiac output, hemolymph flow and Pressure-

Area response as a whole describe the physiological correlation to these environmental 

changes (Harper and Reiber 2004; Guadagnoli and Reiber 2011).  To further our 

understanding of the physiological effects of hypoxia on both adult and embryonic 

crustaceans, one must first become familiar with cardiovascular anatomy as it develops 

from the embryo, to larva, and to the finalized adult heart structure. 
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Cardiac development in crustaceans 

The bilaterian body plan is highly conserved between vertebrates and invertebrates 

(DiRobertis 2008).  Bilateral pattern encompasses the cardiovascular systems of a 

majority of organisms as well (Olsen 2006).  Arthropod cardiac development has been 

well studied in insects such as Drosophila melanogaster, the fruit fly.  However, 

development of the heart in aquatic organisms has not been described in depth.  Research 

on crustacean cardiac development can help to elucidate the effects of highly variable 

aquatic environments on crustacean embryos, which are directly exposed to extreme 

temperature changes, oxygen levels and salinity gradients throughout development 

(Welsh 1975; Torres et al. 2007; Brouwer 2008; Li and Brouwer 2009; Guadagnoli and 

Reiber 2011).  Recently, there has been growing interest in aquatic animal cardiac 

development.  An integrative scientific approach combining developmental, molecular, 

physiological and evolutionary theories provides a more comprehensive viewpoint and 

contributes to the under-studied sector of crustacean cardiac development.  This section 

will review newly published research describing crustacean cardiac development 

beginning from cell lineage tracing of multipotent mesoderm cells through terminally 

differentiated cardiac cells.  

 

In several crustacean species, external fertilization occurs when the male deposits 

spermatophore to the oviduct of the female.  In the oviduct, unfertilized eggs move from 

the ovary towards the spermatophore. The eggs become fertilized and form a single-cell 

stage zygote (Welsh 1975).  The zygote then undergoes cleavage to increase number of 

cells, while embryonic volume does not significantly increase (Welsh 1975; Romney and 
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Reiber 2011).  Gastrulation then involves formation of 3 germ layers and appears highly 

conserved among crayfish taxa (Vilpoux et al. 2006).  Succeeding stages of crustacean 

embryo development generate muscle precursor cells.  This process has been described in 

Drosophila melanogaster and has become accepted in crustacean research as well.  The 

current view of this cell model proposes that adult muscle groups initially form along the 

anterior-posterior axis during crayfish embryogenesis (Price and Patel 2008; Jirikowski 

2010).  Muscle pioneer cells along the anterior-posterior axis recruit undifferentiated 

mesoderm cells and fuse to shape the scaffold for multicellular syncytial muscle 

precursors (Paululat et al. 1999; Xavier-Neto 2012).  Mononucleate muscle pioneer cells 

elongate to form F-actin fibers that interact with myosin-HC, creating the striated 

sarcomere structure of cardiac mesoderm similarly seen in Drosophila.  In arthropods, the 

heart originates from the dorsal mesoderm, providing strong evidence that cardiac 

formation processes are conserved among insects and crustaceans (Janssen 2008; 

Jirikowski 2010; Hunnekuhl and Wolff 2012).  In the marbled crayfish, Procambarus 

fallux, progenitor mesoderm cells give rise to trunk mesoderm from which several muscle 

groups arise and myocardiocytes will originate (Jirikowski 2010).  Characterization of F-

actin myofibril isoforms among specific muscle cells depends on function and spatial 

orientation in the developing embryo (B.W. Kim et al 2009; Jirikowski 2010).  Among 

these isoforms, a cardiomyocyte F-actin isoform was identified, stained with phalloidin 

and followed through embryonic stages 5 to 10 (described in Table 1).  The processes of 

cardiac development described in the marbled crayfish are consistent with processes 

occurring in grass shrimp embryos (BW Kim 2009; Jirikowski 2010; Romney and Reiber 

2011).   
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Initial cardiac contractions are observed in P. pugio embryonic stage VIb, followed by 

stronger, coordinated contractions prior to hatching (Jirikowski 2010; Romney and 

Reiber 2011). Similarly, in the amphipod crustacean Orchestia cavimana, functional 

cardiac contraction appears at stage 6 when the thoracic musculature has differentiated 

(Hunnekuhl and Wolff 2012).  

 

Based on this evidence, embryonic stages preceding initiation of cardiac contractions 

may be in the process of creating the thoracic scaffold and organizing mesodermal 

precursors.  Further studies must be conducted to support this hypothesis. 

Table 1. F-actin Related Cardiogenesis in the Marbled 
Crayfish* 	  	   	  	  
Embryonic Stage Developmental Feature 	  	   	  	   	  	  

5 Initial appearance of heart-forming cell isoform on dorsal side 

6 F-actin heart primordium exhibits irregular 
contractions 	  	  

7 Contractile heart membrane expands anterio-posteriorly and 
dorsally 

8 Dorsal extensions of the contractile network form the tubular 
heart 

9 Myocardium becomes dense and ostia become 
visible 	  	  

10 Alary muscles become visible on the ventral myocardial surface 
* adapted from Jirikowski 2010 and BW Kim 2009 

	   	   	   

  

Following thoracic scaffold formation in both crayfish and lobster embryos, larval hearts 

possess a tubular morphology (Figure 1 A); ultimately, adult hearts acquire a bulbous 

shape (Figure 1 B) (Wirkner and Richter 2009).  In both crayfish and lobsters, 

prospective anterior aortic cells, otherwise defined as longitudinal muscle strands, 

develop into the anterior aortic vessel.  This transition from heart to aortic specification 
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results in the complete loss of detection of myosin-HC signal, which is specifically 

detected in the tubular larval heart (Jirikowski 2010).  Consistent with the founder cell 

model, the myosin-HC signal is detected only in early embryonic stages during which 

cells involved in tubular heart formation are recruited to the thoracic scaffold.  

Interestingly, the myosin-HC signal is never detected along the presumptive posterior 

aortic region, further suggesting that early myosin-HC isoforms in the anterior aortic 

region recruit cells for formation of the primitive tubular heart (Wilkens 1999; Wirkner 

and Richter 2009; Jirikowski 2010).  Mesodermal cell fates are established at an early 

time point during the segmentation process (Price and Patel 2008).  Studies using 

Macrobrachium rosenbergii  indicate a model showing further evidence that cardiac 

muscle originates from the mesoderm and migrates into a saclike region of the heart 

(Pakeendarong 2010).  Studies conducted on the amphipod crustacean O. cavimana give 

more insight that this predetermination may be attributed to spatial arrangement along the 

dorso-ventral axis (Hunnekuhl and Wolff 2012).  After mesoderm precursor segments 

have been established, tubular embryonic and larval heart morphology is arranged 

(Figure 1A) (Hunnekuhl and Wolff 2012).  Adult crustacean hearts become bulbous and 

provide intrinsic hemolymph circulation (Figure 1B).  This transition from tubular to 

bulbous morphology may be marked by initiation of neurogenic control from the cardiac 

ganglion.  Though adequate hemolymph circulation persists in the early stages of heart 

development through myogenic control, maturation continues beyond larval development 

(Spicer 2001; McMahon 2008).  Heart rate and stroke volume in adult crustaceans 

function under neurogenic control from the cardiac ganglion and the central nervous 

system (Romney and Reiber 2011).  Complete growth of the bulbous adult heart and 
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excitatory effects produced by the cardiac ganglion do not occur until later juvenile 

stages.  This is supported by experiments using injection with tetrodotoxin (TTX), a 

neurotoxin that blocks Na+ voltage gated channels and prevents action potential firing 

(Spicer 2001; Hwang 2007).  TTX injections throughout sequential juvenile stages of 

Metapenaeus ensis, the sand shrimp, led to the discovery that fatal effects occur only in 

juveniles weighing more than 25 milligrams, implying that nerve control is initiated 

during this transition (McMahon 2002).  Further studies on the crab Neohelice granulata 

cardiac ganglion anatomy show similarities to other decapods in that neuronal processes 

ramify within the dorsal wall of the adult heart and provide an intrinsic “pacemaker” 

system to distribute neuronal signals to myocardiocytes with which the cardiac ganglion 

is entangled (Yang 2013). These data indicate that cardiac ganglion function is not fully 

developed until later juvenile stages and there is a transition from myogenic to 

neurogenic control in cardiac muscle during development.  These complex cardiac events 

occur simultaneously throughout development of an entire grass shrimp clutch 

(approximately 200 embryos) (Romney and Reiber 2010).  This temporal coordination is 

interesting because grass shrimp embryos are carried externally, exposed to extreme 

aquatic estuarine conditions, yet maintain synchronous embryoic developmental 

processes.  Identification of the mechanisms used to maintain homeostasis throughout 

development in grass shrimp embryos will greatly contribute to studies regarding 

development in aquatic organisms.   
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Grass shrimp embryonic cardiac anatomy and physiology 

Unlike most birds and reptiles, crustaceans carry developing embryos externally and have 

a higher tendency to drop the clutch if environmental conditions are too severe, thus 

abandoning parental investment.  Due to these complications, crustaceans have evolved 

mechanisms to compensate for decreased maternal care periods.  An embryo will molt its 

protective chorion once internal yolk has been depleted, marking the transition from 

embryonic to larval stage.  Development of the cardiovascular system cues time of larval 

hatching (Romney and Reiber 2011).  Once the circulatory system develops and 

metabolizing mass in the embryo increases, rate of yolk hydrolysis accelerates, implying 

an increase in metabolic rate (Habashy et al. 2012).  Cardiac development and highly 

conserved events that occur during development allow for accurate assessment of 

processes occurring at each developmental time point.   

 

 

 

Figure 1. Embryonic Tubular Heart and Adult Bulbous Heart. 
Embryonic heart (left); adult heart (right).  
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Due to the conserved nature of bilaterian circulatory morphology, detection of specific 

cardiac markers serves as a major tool to compare and establish temporal staging 

schemes in non-model organisms.  Even more, the transparent chorion of crustacean 

embryos provides a non-invasive method to obtain these observations.  Despite this, few 

studies exist that delve into the characterization, development and molecular nature of 

crustacean embryos.  The circulatory system is the first to fully develop during 

organogenesis (Harper and Reiber 2004). Coordinated myocardial contractions, 

formation of ostia pairs and alary ligaments are not apparent until development of the 

final adult segment (Spicer 2006). Embryonic staging schemes describing cardiac 

formation have been established in Macrobrachium rosenbergii, Macrobrachium 

carcinus freshwater prawns and Palaemonetes pugio (Lara and Wehrtmann 2009; 

Habashy et al. 2012; Romney and Reiber 2011).  Developmental features between these 

species are highly conserved and most obviously perceived in the dorsal placement of the 

heart.   

 

In addition to similar anatomical heart morphology, functional homologies arise in the 

crustacean embryo circulatory system and include: providing an internal conduction 

mechanism, serving as a hemolymph reservoir and aiding in regulation of stroke volume 

to allow acclimation to oscillating environments (Romney and Reiber 2011; Xavier-Neto 

2012).  Two highly evolved decapod crustaceans, Metapenaeus ensis and Palaemonetes 

pugio, possess short and globular heart morphology in larval stages (Figure 1A).  During 

embryonic development in both species, initiation of myocardial contraction occurs 

during the naupliar stage when the previously established thoracic segments provide a 
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foundation to anchor the heart structure (Harper and Reiber 2004, Romney and Reiber 

2011).  Coincidentally, initiation of cardiac contractions is accompanied by an increased 

rate of yolk hydrolysis in M. rosenbergii (Habashy et al. 2012), possibly providing a 

physiological cue for the embryo to hatch to larval form and actively search for an 

external nutrient source to continue development.  It is unknown whether oxygen 

regulation occurs in the crustacean embryo, studies described in this thesis will address 

this issue. 

 

Grass shrimp adult cardiac anatomy and physiology 

The heart of the adult P. pugio, like most decapod crustaceans, consists of one ventricle 

to pump oxygenated hemolymph through multiple arterial outlets, providing a singular 

flow entering and leaving the heart (Figure 1B).  Multiple sets of ostia (3 sets) and aortic 

valves located at the entrance of each vessel provide intricate control of the hemolymph 

distribution and cardiac filling.  The valves work in coordination to create a one-way 

flow of hemolymph through the heart—an important factor in organisms with open 

circulatory systems.  Ostia receive hemolymph while aortic valves disperse oxygenated 

hemolymph throughout the systems.  Pre-branchial, deoxygenated hemolymph from 

surrounding tissues is targeted towards the gills for reoxygenation.  Post-branchial 

oxygenated hemolymph is then delivered through specified branchio-cardiac veins to the 

heart for re-distribution throughout the tissues.  This one-way flow established by the 

single ventricle ensures hemolymph directionality and a constant cardiac cycle 

(Guadagnoli and Reiber 2007).   

 



 

 13 

Neurogenic control of the heart provides P. pugio’s main source of adult cardiac 

contraction.  The central nervous system conducts action potentials to the dorsal cardiac 

ganglion, allowing excitatory or inhibitory response by the cardiac myocytes.  

Mammalian hearts are similarly controlled by an intrinsic nodal conduction system and 

possess a “pacemaker”, but are also induced by the parasympathetic nervous system.  

Cardiac control by an intrinsic pacemaker suggests there may be parallels, indicating 

early evolutionary divergence between crustaceans and mammals.   

 

The heart responds to environmental fluctuations accordingly.  Here, we focus on effects 

of hypoxia on cardiac parameters in adult crustaceans.  Several studies have been 

conducted to determine crustacean response to hypoxic conditions.  Generally, larger 

crustaceans maintain steady cardiac output under hypoxia through a decrease in heart rate 

and increase in stroke volume (Reiber 1995).  Harper and Reiber (2004) described adult 

Palaemonetes pugio response as an increase in heart rate and decrease stroke volume in 

order to maintain steady cardiac output from hypoxic ranges 13.3 kPa O2 through 8.0 kPa 

O2.  Heart rate seemed to be the primary regulator of cardiac and oxygen homeostatis in 

P. pugio.  However, recent studies have challenged this idea and rather support that 

hypoxia-induced bradycardia occurs in adult grass shrimp as well (Guadagnoli and 

Reiber 2011).  In other words, to maintain cardiac output under hypoxic conditions, the 

adult grass shrimp will decrease heart rate to increase stroke volume, thus maintaining 

cardiac output (Guadagnoli and Reiber 2011).  This mechanism provides an immediate 

means for adult grass shrimp to survive under fluctuating oxygen conditions and adjust as 

necessary.  
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Pressure-Volume and Pressure-Area loops have provided further evidence of oxygen 

regulation (Guadagnoli and Reiber 2011).  The ability for Palaemonetes pugio grass 

shrimp to survive under extreme hypoxic conditions is attributed to the fact that cardiac 

work is significantly decreased.  This decrease is accomplished by (1) hypoxia-induced-

bradycardia and (2) a decrease in intra-cardiac pressure.  Hypoxia-induced-bradycardia 

results in decreased heart rate, increase in stroke volume and maintenance of cardiac 

output. The decrease in intra-cardiac pressure resulting from decreased contractility and 

decrease in recoil of cardiac components, contributes to the increase in stroke volume.  

Together, these parameters decrease the overall cardiac work necessary to maintain adult 

grass shrimp cardiac output under hypoxic conditions.  

 

Research objectives 

Integration of various scientific approaches has produced a comprehensive snapshot of 

crustacean development. Descriptive analysis of cardiogenesis, study of cardiac 

physiology and cell lineage tracing in embryonic crustaceans all demonstrate the highly 

conserved nature of heart development and genetic homology between insects and 

crustaceans.  Crustaceans endure external embryogenesis under extreme environmental 

gradients, have abundant clutches and possess a clear chorion, possibly making this 

organism a candidate invertebrate model.  Further research into the development and 

physiology of grass shrimp may provide accurate temporal description of mesoderm 

scaffolding and organizing events, specification of transition from maternally driven 

development to independent zygotic transcription and the metabolic processes that 

accompany this development.  Contributions from Palaemonetes pugio research may 
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illuminate questions about aquatic development, exposure to extreme environmental 

conditions and encourage a more integrative scientific method.  The remainder of this 

study will focus on P. pugio embryonic development in aquatic systems ranging from 

normal to moderately severe oxygen availability.  

 

The results from this study will shed light on the physiological and developmental 

compensatory mechanisms that occur in aquatic embryos upon exposure to a range of 

external oxygen concentrations.  The first objective of this study is to determine oxygen 

consumption rates per stage of embryonic development under controlled laboratory 

conditions of 20˚ C, 12 hour light: 12 hour dark photoperiod, constant salinity of 30 parts 

per thousand (30 ppt), and starting oxygen conditions of 20.0 kPa O2.  This will allow 

extrapolation of the critical oxygen pressure (Pcrit) per stage and delineate the shift from 

oxygen conformation to oxygen regulation in Palaemonetes pugio embryos.  Second, we 

wish to determine oxygen consumption rates per stage of embryonic development under 

moderate hypoxic conditions (11.0 kPa  O2– 10.5 kPa O2), maintaining the controlled 

laboratory conditions of 20˚ C, 12 hour light: 12 hour dark photoperiod, constant salinity 

of 30 parts per thousand (30 ppt).  Here, we can also extrapolate the Pcrit of each embryo 

under hypoxic conditions.  Finally, we wish to assess whether a shift from aerobic 

metabolism to anaerobic metabolism occurs during any point of embryonic development. 

This will be determined through conduction of lactate assays on whole embryos.   
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CHAPTER 2 OXYGEN CONSUMPTION OF THE EMBRYONIC GRASS 

SHRIMP, Palaemonetes pugio, (CRUSTACEA, DECAPODA) UNDER VARYING 

OXYGEN LEVELS 

________________________________________________________________________ 

 

Abstract 

Estuary ecosystems provide a challenging environment for animals to live.  In spite of 

this, Palaemonetes pugio grass shrimp embryos develop in abundance during an annual 

breeding season that lasts from February through October.  One clutch ranges from 200-

400 embryos per ovigerous female.  Fertilization, development and hatching occur 

synchronously within each clutch (Romney and Reiber 2011).  Here, we investigate the 

oxygen consumption rate (ṀO2) of a single embryo in a closed system while maintaining 

control laboratory conditions of 20° C, seawater 20 ppt, normoxic water (PO2=18.5 kPa 

O2) and 12L:12:D photoperiod.  Additionally, to examine effects of fluctuating oxygen 

conditions, hypoxic oxygen consumption rate of a single embryo will be investigated 

using the same control laboratory conditions.  All oxygen consumption (ṀO2) data were 

obtained through use of the OxySense (OxySense® 4000B, OxySense®, Inc., Dallas, 

TX, USA) and analyzed through a customized Python program.  These data will provide 

a quantitative basis for metabolic processes occuring throughout P. pugio embryonic 

development.  We show that normoxic ṀO2 shows consistent trends with embryonic 

growth rate—previously quantified through calculation of cardiac parameters including 

cardiac output, heart rate, stroke volume and ratio of embryonic surface-area-to-volume 
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(Romney and Reiber 2011).  The data also indicate that hypoxic exposure contributes to a 

significant increase in ṀO2 of grass shrimp embryos. 

 

Numerous aquatic species have adapted different techniques to deal with oscillating 

oxygen conditions in estuarine ecosystems.  The transition from an oxyconformer to an 

oxyregulator is a well-studied mechanism used by crustaceans and other aquatic 

organisms.  This transition can be quantified by the identification of an animal’s critical 

oxygen pressure (Pcrit).  Here, we show that Palaemonetes pugio embryos in early stages 

must rely on diffusive properties because they do not possess the internal capacity to 

circulate oxygen.  Grass shrimp embryos in later stages, however, possess an internal 

convective system and begin to regulate oxygen distribution to deep metabolizing tissue.  

These data will help to understand how grass shrimp embryos are able to survive in 

abundance while developing in fluctuating oxygen conditions. 

 

Introduction 

According to the Palaemonetes pugio embryonic staging scheme described under 

normoxic conditions, embryonic growth and development is initially supported by 

diffusion of water and nutrients across the chorion in stages I through VIa (Romney and 

Reiber 2011).  Upon reaching stage VIb, cardiac contractions are initiated and provide an 

internal convection system.  On this basis, we hypothesize that rate of oxygen uptake 

from external sources contributes to rate of embryonic development in Palaemonetes 

pugio.   
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H01: Palaemonetes pugio embryonic oxygen consumption rate under 

normoxic conditions is not significantly different than oxygen 

consumption rate under hypoxic conditions.   

H1: Palaemonetes pugio embryonic oxygen consumption rate under 

normoxic conditions is significantly different than oxygen consumption 

rate under hypoxic conditions.   

 

H02: Critical oxygen pressure (Pcrit) will remain consistent in early 

embryonic and later embryonic stages.  

H2: Critical oxygen pressure (Pcrit) is higher in early embryonic stages 

then decreases in later embryonic stages. Lower Pcrit indicates the 

transition from oxyconformer to oxyregulator and accompanies initiation 

of cardiac contractions in Palaemonets pugio embryonic stage VIb.  

 

Materials and methods 

Animal care:  Adult P. pugio were obtained from Gulf Specimen Marine Laboratories, 

Inc. (Panacea, FL, USA).  Experimental animals were maintained in 40L aquaria in 

aerated artificial seawater (30-32 ppt at 20-25˚C) with a 12L: 12D photoperiod.  Aquaria 

were maintained individually using filters with frequent water changes.  Animals were 

fed a high protein marine fish flake to encourage ova production (Ocean Nutrition 

Formula Two Flakes).  Conditions were maintained at 20° C, seawater 20 ppt, normoxic 

water (PO2=20.5 kPa O2) and 12L:12:D photoperiod. 
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Embryo collection:  Ovigerous grass shrimp were attached to the flattened end of a 

wooden applicator stick on the lateral cephalothorax with cyanoacrylate glue.  Embryos 

were removed from pleiopods of ovigerous females and transferred to nursery chambers 

located on a continuously rotating platform to mimic movements of an ovigerous female.  

Conditions were maintained at 20° C, seawater 20 ppt, normoxic water (PO2=20.5 kPa 

O2) and 12L:12:D photoperiod. 

 

Oxygen consumption:  A single embryo was selected from the clutch and staged using a 

stereo-microscope (Leica MZ12.5, McBain Instruments).  The embryo was placed in a 

sealed chamber containing 0.1 ml of normoxic seawater (PO2=20.5 kPa O2, 20 ppt, 20° 

C).  Changes in PO2 were obtained using OxySense (OxySense® 4000B, OxySense®, 

Inc., Dallas, TX, USA) and plotted using Microsoft Excel 2011.  Normoxic conditions 

were isolated to PO2 ranges from 20.0 kPa O2 through 18.0 kPa O2. Hypoxic conditions 

were simulated using the same controlled laboratory conditions. Moderate hypoxia is 

defined between 11.0 kPa O2 through 10.5 kPa O2.  The closed chamber allowed for self-

induced hypoxia, as the embryo decreased oxygen availability through time.  A 

maximum of 5 hours was allotted per data point to ensure that the embryo remained at the 

specified developmental stage. After data collection and exposure to experimental 

conditions, embryos were placed on a microbalance to obtain wet weight (0.0001 mg 

accuracy; Cahn 21 automatic electrobalance, Cahn Instruments Div., Ventron Corp., 

Cerritos, CA, USA).   
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Oxygen consumption rates: Using custom Python scripts, written by Christopher M. 

Hardy, Doctoral Candidate at the University of Nevada, Las Vegas, raw oxygen pressure 

data from the OxySense was converted to oxygen consumption rates (ṀO2). The program 

is devised to create a streamlined, unbiased analysis of normoxic and hypoxic conditions.  

Each data point was normalized per embryo by division by wet weight. Annotated 

custom python scripts are included in appendix.  

 

Critical oxygen pressure (Pcrit): Pcrit was determined by piecewise linear regression 

analysis through a LINEST program on Microsoft Excel 2011.  The workbook was 

obtained and revised according to oxygen pressure parameters from: 

“http://processtrends.com/toc_trend_analysis_with_Excel.htm#Segmented_-

_Piecewise_Regression”  

 

Statistical analysis:  Means and standard deviations were calculated for each 

developmental stage (n=1-9) using normoxic oxygen consumption (18.5 kPa O2 – 18.0 

kPa O2) and moderate hypoxia oxygen consumption (11.0 kPa O2 – 10.5 kPa O2). The 

overall effects of oxygen consumption throughout development due to various dependent 

variables, stage and oxygen condition, were studied using an analysis of variance 

(ANOVA) to account for effects of oxygen availability (JMP®, Version <1.4>. SAS 

Institute Inc., Cary, NC, 1989-2007).  A Tukey post-hoc test was used for pairwise 

multiple comparisons where a significance of P ≤0.05 was accepted to reject the null 

hypothesis.   
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Results 

Mass: Embryonic stage VIII mass for a single embryo (0.242 mg  ±  0.037) is 

significantly higher than stages I, II, IIIa, IV and V (p = 0.001, n = 3 – 11) (Romney and 

Reiber 2011).  These values are listed below and shown in Figure 1.  

Table 1. Embryonic Mass  
Stage Egg mass (mg) 

I 0.103  ±  0.009a 

II 0.100  ±  0.011a 

IIIa 0.113  ±  0.007a 

IIIb 0.143  ±  0.033 
IV 0.109  ±  0.004a 

V 0.119  ±  0.014 
VIa 0.147  ±  0.006 
VIb 0.142  ±  0.015 
VIIa 0.139  ±  0.013 
VIIb 0.172  ±  0.008 
VIII 0.242  ±  0.037b 

 

Oxygen consumption:  Oxygen consumption rates were determined under normoxic 

conditions in a closed oxygen chamber with a starting PO2 of 20.0 kPa O2 (200 mBar O2) 

maintained under controlled laboratory conditions of 20° C, seawater 20 ppt and 

12D:12L photoperiod.  Individual data points describe the average oxygen consumption 

per embryonic stage (n=1-9).  Normoxic oxygen ranges were confined to 18.5 kPa O2 

through 18.0 kPa O2 to bracket a specific normoxic range throughout all experimental 

stages.  When raising embryos under normoxic conditions (18.5 kPa O2 – 18.0 kPa O2), 

there is no significant difference in oxygen consumption rate throughout individual 

embryonic stages  (Figure 2).  However, upon raising embryos under hypoxic conditions 

(11.0 kPa O2 – 10.5 kPa O2), there is a significant increase in hypoxic ṀO2 compared 

with normoxic ṀO2 (p = 0.0294) (Figure 4).   To further investigate the increase in 

hypoxic ṀO2, individual embryonic stages were analyzed.  Results indicate that there is a 
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significant increase in ṀO2  during embryonic stage IIIb when embryos are raised under 

hypoxic conditions (p = 0.0169) (Figure 3). 

 

 

 

 

 

Critical oxygen pressure results show a non-significant decrease throughout embryonic 

development (Figure 5).  Though not significant, the decreasing trend is as predicted: 

Critical Oxygen Pressure decreases as the heart begins to gain more coordinated cardiac 

contractions.  This further supports the idea that later stages can endure lower ambient 

oxygen levels and have transitioned from oxyconformation to oxyregulation.  This is a  
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Figure 1. Embryonic Mass Versus Development in Normoxia (18.0 kPa O2): Embryonic 
stage VIII mass for a single embryo is significantly higher than stages I, II, IIIa, IV and V (p = 
0.001, n = 3 – 11).  
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key physiological switch to those aquatic animals surviving in brackish, estuarine 

ecosystems. 

 

Critical oxygen pressure results show a non-significant decrease throughout embryonic 

development (Figure 5).  Though not significant, the decreasing trend is as predicted: 

Critical Oxygen Pressure decreases as the heart begins to gain more coordinated cardiac 

contractions.  This further supports the idea that later stages can endure lower ambient 

oxygen levels and have transitioned from oxyconformation to oxyregulation.  This is a 

key physiological switch to those aquatic animals surviving in brackish, estuarine 

ecosystems. 
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Figure 2. Average Normoxic ṀO2 per Embryonic Stage (18.5 kPa O2 – 18.0 kPa O2). Overall 
ṀO2 under normoxia undergoes no significant change between stages.  
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Critical oxygen pressure indicates the animal’s tolerance to low oxygen conditions. Pcrit 

represents the lowest oxygen level the embryo can be exposed, yet continue to function 

and develop normally.  No previous studies have been conducted on grass shrimp 

embryos that analyze P crit throughout development.  We predict that tolerance of hypoxia 

will increase throughout embryonic development, as cardiac contractions become more 

coordinated and robust.  As hypoxia tolerance increases, P crit consequently decreases.  In 

other words, embryos in later stages can tolerate lower oxygen pressure levels because 

the cardiac system has developed coordinated contractions, allowing for specific control 

of hemolymph flow and oxygen distribution throughout the animal.  
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Figure 3. Average Hypoxic ṀO2 per Embryonic Stage (11.0 kPa O2 – 10.5 kPa O2). 
Embryonic stage IIIb undergoes a significant increase in ṀO2 under hypoxic conditions.   
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Analysis of oxygen consumption under two oxygen conditions, normoxia (18.5 kPa O2 – 

18.0 kPa O2) and moderate hypoxia (11.0 kPa O2 – 10.5 kPa O2), supports that hypoxic 

conditions significantly increase oxygen consumption rates across embryonic 

developmental stages (p = 0.0294).  Grass shrimp in estuarine ecosystems endure major 

oxygen fluctuations during a daily cycle (Welsh 1975).  Despite this, grass shrimp adults 

and embryos alike continue survival in these estuaries. 
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Figure 4: Normoxic Versus Hypoxic Oxygen Consumption Throughout Stages of 
Development. Oxygen consumption significantly increases upon exposure to hypoxia 
compared with normoxia (p = 0.029, n = 1 – 9).  Specifically, ṀO2 significantly increases 
during embryonic stage IIIb (p = 0.0169, n = 1 - 9).  There is no significant increase or 
decrease in embryonic ṀO2 between stages when embryos are raised under normoxic 
conditions.  Solid line and closed circles indicate normoxic ṀO2; dotted lines and open circles 
indicate hypoxic ṀO2. 
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Discussion 

An increase in oxygen consumption during exposure to hypoxic conditions suggests there 

is deviation from development in normoxia.  It is possible that cardiac initiation occurs at 

an earlier time point when dissolved oxygen levels are decreased, or other compensatory 

mechanisms initiate at specific stages.  Further analysis suggests that embryonic stage 

IIIb experiences a significantly higher hypoxic ṀO2 when compared with other 

embryonic stages raised in hypoxia (p = 0.0169) (Figure 3).  This increase in ṀO2 

suggests a developmental window at stage IIIb in which the embryo must activate 

compensatory mechanisms to continue with normal embryonic development under low 

dissolved oxygen conditions.  The compensatory mechanisms in grass shrimp embryos 

are unknown and warrant further investigation into embryonic cardiac development, 
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Figure 5. Critical Oxygen Pressure (Pcrit) per Embryonic Stage. Embryonic stages VIb 
through VIII undergo a non-significant in Pcrit during exposure to normoxic conditions (18.0 
kPa O2) 
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analysis of cardiac parameters under hypoxic conditions and molecular analysis of genes 

that may undergo increased expression during hypoxic embryonic development. 

 

An overall increase in hypoxic ṀO2, specifically during embryonic stage IIIb, may 

indicate that compensatory mechanisms are activated during this time to maintain 

homeostasis and continue with embryonic development.  No previous studies in grass 

shrimp embryos have indicated an increase in oxygen consumption rate as a method of 

maintaining homeostasis during development in hypoxia.  Adult grass shrimp studies 

support that upon exposure to hypoxia, the adult will decrease heart rate and increase 

stroke volume to maintain overall cardiac output (Guadagnoli and Reiber 2011).  

However, in Early and Gastrulation stages of embryonic development, cardiac 

contractions are not yet initiated (Romney and Reiber 2011) and therefore require other 

methods to compensate for a low oxygen environment.  It is possible that internal, 

molecular mechanisms are activated during crucial points of embryonic development 

(Hand 2011).  

 

P crit  serves as a strong determination as to whether the animal is an oxyconformer or 

oxyregulator (Richards 2011).  A higher P crit  indicates the animal is an oxyconformer 

and relies largely on diffusive means to obtain oxygen from the environment (Richards 

2011).  A lower P crit indicates that the animal is an oxyregulator and has other means of 

obtaining oxygen, such as internal convective processes or manipulation of cardiac 

contractions.  Palaemonetes pugio embryos raised in normoxia do not possess the ability 

to regulate oxygen levels prior to stage VIb when cardiac precursors are in the process of 
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forming (Jirikowski 2010; Romney and Reiber 2011).  Therefore, stages I through VIa 

are not included in this data set and are considered oxyconformers.  Since our focus 

involves oxyregulation throughout development, data points obtained in this dataset were 

taken from embryonic stages VIb through VIII, when cardiac contractions have been 

initiated and the animal is a known oxyregulator.  Upon raising embryonic grass shrimp 

in normoxic conditions, a non-significant decreasing trend in Pcrit indicates there is no 

ongoing regulation to maintain oxygen consumption within the embryo (Figure 5).  The 

non-significant decrease, is however, consistent with our hypothesis that as cardiac 

contractions become more coordinated, the animal can tolerate lower ambient oxygen 

conditions.   

 

Our current studies have opened up the aquatic embryonic field to numerous interesting 

questions.  Future studies in this area should attempt to further identify the specific level 

of hypoxia that is tolerable until the embryo can no longer proceed through development 

normally.  This may be done by raising embryos in serial hypoxic conditions starting 

from normoxia and decreasing oxygen levels slightly, until critical oxygen pressure is 

obtained and compensatory mechanisms can no longer function.  Finally, using an 

integrative approach, future studies may use molecular techniques to isolate proteins 

expressed during stressful environmental conditions.  Such proteins include hypoxia-

inducible factor-1 (HIF-1) and pyruvate dehydrogenase complex, which are upregulated 

and downregulated, respectively, during hypoxic exposure (Hand 2011).  These proteins 

may provide insight as to what specific compensatory mechanisms allow for increased 
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oxygen consumption rates during embryonic development, especially for those stages 

prior to cardiac contraction.   

 

Additionally, Pcrit has not yet been determined in grass shrimp embryos raised in hypoxia.  

The non-significant decreasing trend in Pcrit observed in our studies may be further 

amplified once the embryos are exposed to lower oxygen conditions.  This can be 

accomplished in the same protocol that was used to collect Pcrit data under normoxic 

conditions. 
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CHAPTER 3 ANAEROBIC METABOLISM IN THE GRASS SHRIMP,  

Palaemonetes pugio, EMBRYO 

 

 

Abstract 

Anaerobic metabolism is the last ditch effort for animals to continue basal metabolic 

processes.  Adult Palaemonetes pugio do not undergo anaerobic metabolism under 

hypoxia and high temperatures (Schofield and Mika 2011).  No studies in anaerobic 

metabolism have been conducted on P. pugio embryos.  Results from this study indicate 

that, when quantifying lactate accumulation before and after initiation of cardiac 

contraction, there is a significant decrease in lactate in the embryo.  Cardiac contractions 

are initiated in the embryo at stages VIb.   Lactate concentration significantly decreases at 

stage VIb, VIIb and VIII (p = 0.001, n = 3 – 6, n = 1 clutch of 100 – 200 embryos).   

 

Introduction 

Embryonic adaptations occuring as a result of exposure to environmental insults have 

accumulated numerous types of compensatory mechanisms.  In crustaceans and insects, 

these mechanisms include diapause, sporulation, upregulation of hypoxia-inducible 

factor-1 (HIF-1) and downregulation of pyruvate dehydrogenase complex (Hand 2011).  

Triops longicaudatus, the horseshoe crab, may enter a sporulation stage; hatching in the 

larval form will occur only when abundant food sources become available.  Upon 

hatching, the larva will undergo organogenesis and transition to complete adult form 

(Gilbert 2014).   
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Hindrances to successful hatching and survival in aquatic organisms include exposure to 

low oxygen conditions, extreme salinity gradients or extreme temperatures (Welsh 1975).  

Artemia fransciscana embryos, decapod crustaceans, suffer DNA damage when exposed 

to prolonged bouts of anoxia (McLennan 2009).  Our model organism the grass shrimp, 

Palaemonetes pugio, is a brackish water inhabitant and endures harsh fluctuations in a 

daily bout (Welsh 1975).  Even more, grass shrimp embryos develop externally and 

delicate organogenesis processes occur upon exposure to the same oscillating conditions 

which adult grass shrimp are exposed.  Despite these obstacles, P. pugio remain an 

abundant species within brackish waters.  Large clutches of embryos carried externally 

are able to survive from fertilization to hatching, thus ensuring the propagation of this 

species.  Our data show that embryonic development continues to occur even under 

moderate hypoxia (11.0 kPa O2– 10.5 kPa O2).  However, it is unknown whether the 

developing embryo enters an anoxic state.  To test this, we quantify lactate accumulation 

in several P. pugio clutches where each clutch contains 200 – 400 individual embryos 

(Romney and Reiber 2011).  Lactate quantification in the embryo serves as a viable 

indicator of amount and/or duration of hypoxia the individual has been exposed (Bridges 

1979).  From these data, we also determine if embryonic development in P. pugio relies 

on anaerobic metabolism at any point from fertilization to hatching.   

 

Though it has been shown that embryos use compensatory mechanisms to survive 

moderate hypoxia (11.0 kPa O2 – 10.5 kPa O2), no evidence of anoxic processes have 

been described.  Therefore, we hypothesize the following:  
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H0: Anaerobic metabolism occurs during embryonic development.  In 

early stages of development, diffusion of gases through the chorion are 

insufficient to support aerobic metabolism and growth of the embryo.  

Anaerobic metabolism must be activated in order for development to 

continue. 

H1: Anaerobic metabolism does not occur during embryonic 

development.  In early stages of development, diffusion of gases through 

the chorion is sufficient to support growth of the embryo.  Initiation of 

cardiac contractions will continue aerobic metabolic processes to 

distribute oxygen to deep embryonic tissue.  

 

Materials and methods 

Animal care: Adult P. pugio were obtained from Gulf Specimen Marine Laboratories, 

Inc. (Panacea, FL, USA).  Experimental animals were maintained in 40L aquaria in 

aerated artificial seawater (30-32 ppt at 20-25˚C) with a 12L: 12D photoperiod.  Aquaria 

were maintained individually using filters with frequent water changes.  Animals were 

fed a high protein marine fish flake to encourage ova production (Ocean Nutrition 

Formula Two Flakes). Conditions were maintained at 20° C, seawater 20 ppt, normoxic 

water (PO2=20.5 kPa O2) and 12L:12:D photoperiod. 

 

Embryo collection: Ovigerous grass shrimp were attached to the flattened end of a 

wooden applicator stick on the lateral cephalothorax with cyanoacrylate glue.  Embryos 

were removed from pleiopods of ovigerous females and transferred to nursery chambers 
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located on a continuously rotating platform to mimic movements of an ovigerous female.  

Conditions were maintained at 20° C, seawater 20 ppt, normoxic water (PO2=20.5 kPa 

O2) and 12L:12:D photoperiod. 

 

Lactate assays: Embryo clutches (n = 7 – 11) were harvested and placed in 0.5 ml 

Eppendorf tubes with 0.1 ml of Tris(hydroxymethyl)aminomethane (Tris) buffer solution.  

The tubes were flash frozen with liquid nitrogen to prevent tissue and protein degradation 

and stored in a -80 degree Celsius freezer.  Experimental assays were conducted 

according to the protocol described by the lactate assay kit provided by Sigma-Aldridge 

(MAK064 Sigma-Lactate Assay Kit, Sigma-Aldrich Co. LLC, United States).  Minor 

changes were made to the protocol to accommodate for mass sample of P. pugio clutch 

and include: 1nmole/µL standard solution, lactate standard final concentrations ranging 

from 0 – 0.3 nm/µL and 50 µL of sample per well.  

 

Statistical analysis: Means and standard deviations were calculated for each 

developmental stage (n = 3 – 6) for lactate accumulation data on embryos raised under 

normoxic conditions (18.5 kPa O2 – 18.0 kPa O2).  The overall effects of development on 

the various dependent variables were studied using an analysis of variance (ANOVA) and 

Tukey t-test (PASW Statistics 18) and used to account for effects of oxygen availability.  

Multiple pairwise comparisons were conducted where a significance of P 0.05 was 

accepted to reject the null hypothesis.   

 

 

≤
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Results 

Overall lactate concentrations from embryonic stages IIIb through VIII indicate a 

significant decreasing trend in lactate accumulation within the embryo when raised under 

normoxia (18.5 kPa O2 – 18.0 kPa O2, p = 0.001) (Figure 1).  Lactate concentration 

significantly decreases upon initiation of cardiac contractions in stages VIb, VIIb and 

VIII (p = 0.001, n = 3 – 6).   

 

 

 

Discussion 

Lactate data was collected on embryos raised under normoxic oxygen conditions, flash 

frozen and homogenized according to the lactate assay protocol provided by Sigma-

Aldridge (MAK064 Sigma-Lactate Assay Kit, Sigma-Aldrich Co. LLC, United States).  
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Figure 1. Lacate Accumulation During Development in Normoxia (18.5 kPa O2 – 
18.0 kPa O2). Stages VIb, VIIb and VIII have significantly lower lactate accumulation 
compared to stage V (p = 0.001, n = 3 – 6, n = 1 clutch of 100 – 200 embryos).  
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In recent years, various theories about anaerobic metabolism in aquatic embryos have 

become popular.  One theory states that an embryo, without internal convective 

processes, utilize aerobic metabolism until the slight anaerobic metabolism initiates 

(Ehlinger and Tankersley 2003).  Initiation of anaerobic metabolism then cues the 

embryo to hatch in order for aerobic metabolism to continue.  A molecular theory has 

been established using the arthropod, Artemia fransciscana, and supports that HIF-1 

proliferation or pyruvate dehydrogenase complex is downregulation is a method of 

compensatory response to oxygen stress (Hand 2011). 

 

Our data show a significant decrease in lactate accumulation after initiation of cardiac 

contraction at stage VIb.  Stage IIIb through VIa embryos accumulate trace amounts of 

lactate and continue with normal development until hatching approximately 3 days after 

cardiac contraction initiation, during stage VIII.  These data support that in grass shrimp 

embryos, lactate accumulation does not act as a physiological cue for hatching.  Instead, 

it is possible that HIF-1 upregulation occurs as a compensatory mechanism in order for 

embryonic development to continue normally.  Another possibility for the significant 

decrease in lactate accumulation is the fact that cardiac contractions aid in circulation of 

ambient oxygen towards embryonic inner cell mass.   In this case, lactate stores may be 

metabolized or excreted through the chorion, allowing for embryonic tissue development 

to continue and proceed towards hatching. 

 

Further molecular studies must be conducted to quantify HIF-1 and pyruvate 

dehydrogenase complexes in order to confirm molecular compensatory mechanisms in P. 
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pugio embryos.  Future studies may assess lactate accumulation under various hypoxic 

conditions to discover if any compensatory mechanisms take place in the grass shrimp 

embryo during exposure to oxygen stress.  These may include serial exposure to low 

oxygen conditions, ranging from mild to severe hypoxia in order to bracket when—if 

any—switch from aerobic to anaerobic metabolism occurs during development.   
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CHAPTER 4 HYPOXIC EXPOSURE EFFECTS ON THE EMBRYONIC GRASS 

SHRIMP, Palaemonetes pugio 

 

 

Research conclusions 

Prior to this study, no data have detailed embryonic oxygen consumption (ṀO2) in a 

closed, normoxic system.  This research provides greater understanding of development 

and physiology in grass shrimp embryos.  Contributions from Palaemonetes pugio 

research will provide the physiological element to integrative research, shed light on 

development in aquatic environments and determine effects of exposure to extreme 

environmental conditions.   

 

The oxygen consumption data delves into the understudied research sector of aquatic 

embryonic development.  Data obtained from these studies details metabolic processes 

that occur under normoxic and hypoxic conditions (18.5 kPa O2 – 18.0 kPa O2 and 11.0 

kPa O2 – 10.5 kPa O2, respectively).  No prior oxygen consumption analysis has been 

established with grass shrimp embryos.  Therefore, our normoxic oxygen consumption 

data provides the first normoxic baseline of ṀO2 per embryonic stage.  Embryos raised 

under hypoxic conditions have a significantly higher ṀO2 across embryonic stages.  

Embryonic stage IIIb suggests a developmental window where the embryo must activate 

compensatory mechanisms, or perish.  
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Each data point can be used to further divide individual components of oxygen regulation 

mechanisms.  Oxygen consumption was further extrapolated to determine critical oxygen 

pressure (Pcrit) per stage.  Stages following cardiac initiation indicate a non-significant 

decreasing trend in Pcrit, suggesting oxyregulation occurs in later embryonic stages.  This 

may contribute to the mechanism which grass shrimp embryos are able to develop, hatch 

and survive at extreme hypoxic levels as low as 3.0 kPa O2.  The embryo can tolerate 

lower oxygen levels as cardiac development proceeds.  Despite exposure to lower oxygen 

levels, no anaerobic metabolism occurs in embryos raised under normoxic conditions.  

There are however, lactate traces present throughout development, but P. pugio embryos 

do not undergo anaerobic metabolism during development in normoxic conditions (18.5 

kPa O2 – 18.0 kPa O2).  Lactate accumulation significantly decreases once cardiac 

contractions begin at stage VIb.  During initiation of the heart, oxygen circulates 

internally and breaks apart the hypoxic oxygen gradient to allow sufficient oxygen 

circulation within the inner cell mass of the embryo.   

 

The normoxic baselines for oxygen consumption (ṀO2), critical oxygen pressure (Pcrit) 

and lactate concentration have been established for Palaemonetes pugio embryos in this 

study.  These data implicate a physiological control mechanism that grass shrimp 

embryos undergo to survive external development and short maternal care periods 

(McMahon 2001).  This warrants future research focused on P. pugio embryo exposure to 

experimental oxygen levels ranging from saturated hyperoxia, to severe hypoxia and 

anoxia.  Future work may investigate: whether variable oxygen conditions delay or 

accelerate cardiac development in embryonic stages; determine if developmental and 
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physiological changes contribute to increased survivorship of P. pugio in estuarine 

systems and assess whether anaerobic metabolism occurs during exposure to long-term 

hypoxia or anoxia.  When these data are compared with normoxic baseline data, a more 

thorough description of Palaemonetes pugio embryonic development will contribute to 

the aquatic embryology field of study.  
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APPENDIX 
______________________________________________________________________ 

 

 

Annotated python script 

Customized by Doctoral Candidate, Christopher M. Hardy, University of Nevada, Las 

Vegas. 

### This program takes raw data files from oxysense and calculates ṀO2 from user 
defined oxygen ranges. ### 
 
### Import packages to use. ### 
import csv 
import os 
import math 
 
### User inputs the directory where oxysense raw data files are located. ### 
dir = raw_input("Enter full directory where files are located: ex. /Users/dir/folder: ") 
 
### User inputs full file path to metadata file. ### 
metaDataFile = raw_input("Enter full file path to metadata file: ex. 
/Users/dir/folder/metadata.txt: ") 
 
### User inputs desired oxygen ranges to calculate ṀO2. Here the user can provide two 
ranges: 1 normoxic range and 1 hypoxic range. ### 
valueNorHigh = input("Normoxic High Range: ") 
valueNorLow = input("Normoxic Low Range: ") 
valueHypHigh = input("Hypoxic High Range: ") 
valueHypLow = input("Hypoxic Low Range: ") 
 
### This function calculates ṀO2. ### 
def findOxyRate(mBarStart,mBarEnd,timeStart,timeEnd, massFactor, volumeFactor): 
 timeDiff = timeEnd - timeStart 
 mBarDiff = mBarStart - mBarEnd 
 torrDiff = mBarDiff * 0.75006 
 solubility = torrDiff * 1.4823 
 molOxy = (solubility*(volumeFactor/1000))/(62.363*293) 
 oxyRate = molOxy / massFactor / timeDiff 
 print oxyRate 
 return oxyRate 
 
### These lists are created to hold data that is calculated later in the program. ### 
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metaData = [] 
stageFactorList = [] 
skipList = [] 
stageNames=[] 
normoxiaValues=[] 
hypoxiaValues=[] 
 
### Transfers contents of metadata file to metaData List ### 
with open(metaDataFile, 'Ur') as x: 
 metadata = csv.reader(x, delimiter='\t') 
 for row in metadata: 
  metaData.append(row) 
 
### Iterates through the raw oxysense files and pulls out time, PO2 and corresponding 
metadata information ### 
for f in os.listdir(dir): 
 fileName, fileExtension = os.path.splitext(f)  
 if fileExtension == '.csv' and fileName != 'output': 
  for row in metaData: 
   if f in row: 
    timeFactor = int(row[1]) 
    stageFactor = row[2] 
    massFactor = float(row[3]) 
    volumeFactor = float(row[4]) 
    mBarList=[] 
    timeList =[] 
    with open(f, 'Ur') as r: 
     file = csv.reader(r, delimiter=';') 
     for row in file: 
      if row[4] == 'mBAR' or row[4] == 'NaN': 
       pass 
      else: 
       mBarList.append(row[(4)]) 
     for i in range(0, len(mBarList)): 
      timeList.append(((i*timeFactor)/60.)) 
      
     zipList = zip(timeList,mBarList) 
     finalTimeList = [float(row[0]) for row in zipList] 
     finalmBarList = [float(row[1]) for row in zipList] 
     timeListTrash = timeList 
     timeList = [] 
     mBarListTrash = mBarList 
     mBarList =[] 
     finalList= zip(finalTimeList,finalmBarList) 
           
     def findHighVal(pressure,finalList): 
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      import math 
      idx = [] 
      for row in finalList: 
       if math.fabs(row[1]-pressure) <= 1: 
        idx.append(row[0]) 
      for x in idx: 
       if x == min(idx): 
        for row in finalList: 
         if row[0] == x: 
          HighMBar = 
row[1] 
          HighTime = 
row[0] 
          if HighMBar 
is not None or HighTime is not None: 
           return 
HighMBar, HighTime 
      
     def findLowVal(pressure,finalList): 
      import math 
      idx = [] 
      for row in finalList: 
       if math.fabs(row[1]-pressure) <= 1: 
        idx.append(row[0]) 
      for x in idx: 
       if x == max(idx): 
        for row in finalList: 
         if row[0] == x: 
          LowMBar = 
row[1] 
          LowTime = 
row[0] 
          if LowMBar is 
not None or LowTime is not None: 
           return 
LowMBar, LowTime 
      
     
     stageNames.append(f) 
     stageFactorList.append(stageFactor) 
     print f 
     print massFactor 
     print volumeFactor 
      
     if findHighVal(valueNorHigh,finalList) is None: 
      normoxiaValues.append("Out of Range") 
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      print "Normoxic Out of Range" 
     elif findLowVal(valueNorLow,finalList) is None: 
      normoxiaValues.append("Out of Range") 
      print "Normoxic Out of Range" 
     else: 
      high = findHighVal(valueNorHigh,finalList) 
      for a in range(0,len(high)): 
       b, c = high 
       mbarStart = b 
       timeStart = c 
      low = findLowVal(valueNorLow,finalList) 
      for x in range(0,len(low)): 
       y, z = low 
       mbarEnd = y 
       timeEnd = z  
      print mbarStart, mbarEnd, timeStart, 
timeEnd 
     
 normoxiaValues.append((findOxyRate(mbarStart,mbarEnd,timeStart,timeEnd,ma
ssFactor,volumeFactor))) 
      
     if findHighVal(valueHypHigh,finalList) is None: 
      hypoxiaValues.append("Out of Range") 
      print "Hypoxic Out of Range" 
     elif findLowVal(valueHypLow,finalList) is None: 
      hypoxiaValues.append("Out of Range") 
      print "Hypoxic Out of Range" 
     else: 
      high = 
findHighVal(valueHypHigh,finalList) 
      for a in range(0,len(high)): 
       b, c = high 
       mbarStart = b 
       timeStart = c 
      low = findLowVal(valueHypLow,finalList) 
      for x in range(0,len(low)): 
       y, z = low 
       mbarEnd = y 
       timeEnd = z 
      print mbarStart, mbarEnd, timeStart, 
timeEnd 
     
 hypoxiaValues.append((findOxyRate(mbarStart,mbarEnd,timeStart,timeEnd,mass
Factor,volumeFactor))) 
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### Calculates averages, standard deviations for each stage and oxygen range. ### 
     
summary = zip(stageNames, normoxiaValues, hypoxiaValues, stageFactorList) 
 
averageNames = [] 
blanks = [] 
nstageI = [] 
nstageII = [] 
nstageIIIa = [] 
nstageIIIb = [] 
nstageIV = [] 
nstageV = [] 
nstageVIa = [] 
nstageVIb = [] 
nstageVIIa = [] 
nstageVIIb = [] 
nstageVIII = [] 
hstageI = [] 
hstageII = [] 
hstageIIIa = [] 
hstageIIIb = [] 
hstageIV = [] 
hstageV = [] 
hstageVIa = [] 
hstageVIb = [] 
hstageVIIa = [] 
hstageVIIb = [] 
hstageVIII = [] 
for row in summary: 
 if row[3] == "": 
  blanks.append(0) 
 elif row[3] == "I": 
  nstageI.append(row[1]) 
  hstageI.append(row[2]) 
 elif row[3] == "II": 
  nstageII.append(row[1]) 
  hstageII.append(row[2]) 
 elif row[3] == "IIIa": 
  nstageIIIa.append(row[1]) 
  hstageIIIa.append(row[2])  
 elif row[3] == "IIIb": 
  nstageIIIb.append(row[1]) 
  hstageIIIb.append(row[2]) 
 elif row[3] == "IV": 
  nstageIV.append(row[1]) 
  hstageIV.append(row[2]) 
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 elif row[3] == "V": 
  nstageV.append(row[1]) 
  hstageV.append(row[2]) 
 elif row[3] == "VIa": 
  nstageVIa.append(row[1]) 
  hstageVIa.append(row[2]) 
 elif row[3] == "VIb": 
  nstageVIb.append(row[1]) 
  hstageVIb.append(row[2]) 
 elif row[3] == "VIIa": 
  nstageVIIa.append(row[1]) 
  hstageVIIa.append(row[2]) 
 elif row[3] == "VIIb": 
  nstageVIIb.append(row[1]) 
  hstageVIIb.append(row[2]) 
 elif row[3] == "VIII": 
  nstageVIII.append(row[1]) 
  hstageVIII.append(row[2]) 
 
 
 def average(stageList): 
  if "Out of Range" in stageList: 
   stageList.remove("Out of Range") 
  if len(stageList) is 0: 
   return "None" 
  else: 
   average = sum(stageList)/len(stageList) 
   return average 
  
 def stdError(stageList): 
  if "Out of Range" in stageList: 
   stageList.remove("Out of Range") 
  if len(stageList) < 3: 
   return "" 
  else:  
   avg = average(stageList) 
   variance = map(lambda x: (x-avg)**2, stageList) 
   avgVariance = average(variance) 
   stdDev = math.sqrt(avgVariance) 
   stdError = (stdDev/math.sqrt(len(stageList))) 
   return stdError 
    
 naverages = [] 
 nstdErrors = [] 
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 naverageLists = 
[blanks,nstageI,nstageII,nstageIIIa,nstageIIIb,nstageIV,nstageV,nstageVIa,nstageVIb,nst
ageVIIa,nstageVIIb,nstageVIII] 
 for list in naverageLists: 
  if len(list) > 0: 
   naverages.append(average(list)) 
   nstdErrors.append(stdError(list)) 
  else: 
   naverages.append("None") 
   nstdErrors.append("None") 
 
 haverages = [] 
 hstdErrors = [] 
 haverageLists = 
[blanks,hstageI,hstageII,hstageIIIa,hstageIIIb,hstageIV,hstageV,hstageVIa,hstageVIb,hst
ageVIIa,hstageVIIb,hstageVIII] 
 for list in haverageLists: 
  if len(list) > 0: 
   haverages.append(average(list)) 
   hstdErrors.append(stdError(list)) 
  else: 
   haverages.append("None") 
   hstdErrors.append("None") 
  
 averageNames = ["No 
Stage","I","II","IIIa","IIIb","IV","V","VIa","VIb","VIIa","VIIb","VIII"] 
 
 printAverage = zip(averageNames,naverages,nstdErrors,haverages,hstdErrors) 
  
### Outputs all data to file 'output.csv' ### 
 with open("output.csv", "wb") as s: 
  writer = csv.writer(s) 
  writer.writerow(['Normoxic High', 'Normoxic Low', 'Hypoxic High', 
'Hypoxic Low']) 
  writer.writerow([valueNorHigh, valueNorLow, valueHypHigh, 
valueHypLow]) 
  writer.writerow([""]) 
  writer.writerow(['Stage','Avg. Normoxic O2','Std Error','Avg. Hypoxic 
O2','Std Error']) 
  writer.writerows(printAverage) 
  writer.writerow([""]) 
  writer.writerow(['Stage Name', 'Normoxic O2 Consumption 
Rate','Hypoxic O2 Consumption Rate','Stage']) 
  writer.writerows(summary) 
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Metadata file: 
 
Metadata table must be a tab deliminated text file. Easiest way to make this is to make it 
in Microsoft excel and save it as a .txt file. 
 
File Name Time  

(sec) 
Stage Mass (mg) Volume (mL) 

Oxysense File 1 Time between 
readings 

Developmental 
Stage 

Mass of 
embryo 

Volume of 
chamber 
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