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ABSTRACT

Implementing Influence Diagram Concepts to Optimize Border Patrol Operations

using Unmanned Aerial Vehicles

by

Ashish Karki

Dr. Wolfgang Bein, Examination Committee Chair

Professor, Department of Computer Science

University of Nevada, Las Vegas

The most common approach for border patrol operations is the use of human personnel and manned

ground vehicles, which is expensive, at times inefficient and sometimes even hazardous to people

involved. The length of the US border, mostly covering unpopulated areas, with harsh atmospheric

conditions makes it more susceptible to illegal human activities. Automated border surveillance by

unattended, fixed, ground sensors forming an electronic fence has proven expensive, inefficient and

was prone to unacceptable rate of false alarms.

A better approach would be using Unmanned Aerial Vehicles (UAVs) in combination with such

ground sensors. This would help improve the overall effectiveness of the surveillance system as a

UAV could first scan the alert area before sending in personnel and vehicles, if deemed necessary.

In this thesis, we are proposing border surveillance using multiple Unmanned Aerial Vehicles (UAVs)

in combination with alert stations consisting of Unattended Ground Sensors (UGSs) along the border

line/fence. Upon detecting an event, an alert would be triggered by any UGS. We simulate this

process by reading probability data for different timestamps from a text file. And, based on utility

values of each stations, two UAVs decide on which alert stations to service.
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CHAPTER 1

INTRODUCTION

The border of a country defines its political boundaries and areas of its jurisdictions. A border region

carries immense importance for a country in terms its national security. But, proper controlling of

such regions is a major challenge for most of them. As mentioned before, these boundaries not only

contain land areas but also water bodies and rough territories. Also, the length of the boundary line

may sometimes be long and patrolling it puts a strain on the resources that any nation can afford.

As an example the total length of border between the U.S. and Mexico is approximately 2000 miles

and that between the U.S. and Canada is approximately 5500 miles [1].

Most countries opt for patrolling their borders using guards stationed at posts. These personnel are

often times backed up by ground vehicles and aerial support like helicopters [2]. This approach is

not without drawbacks:

1. Equipment like vehicles and helicopters are expensive to build and maintain.

2. It could be inefficient as unnecessary resources could be spent on false alerts or insignificant

events like the intrusion of a small animal.

3. As mentioned before, the boundaries sometimes contain rough terrain which can be difficult

to secure, besides being life-threatening to the security personnel involved.

Sometimes security may be improved by fencing a part of the border line. But, fencing alone is not

enough. These fences need to be patrolled. Ground sensors can sometimes be a part of such fencing

or could be used separately. Such sensors trigger alarms at possible intrusion. False alarms require

unnecessary human intervention which in turn is expensive and even dangerous.
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1.1 Motivation

To compliment the current measures used in border patrol operations, a need for aerial surveillance

using unmanned vehicles has emerged. Countries like the United States are actively testing and

deploying Unmanned Aerial Vehicles (UAVs) [1] [3]. A UAV can significantly extend the range of

security missions. UAVs are equipped with various sensors that can detect potential violators inside

thick woods and even in rugged areas or mountain regions. A remote controlled UAV would be safer

than a manually operated vehicle or aircraft in certain conditions.

For our purpose, we assume the border to be a terrestrial area which is more or less like a line.

In other words, it is considered long and thin (relative to actual border size). There are n number

of alert stations consisting of Unattended Ground Sensors (UGSs). Any UGS upon detecting an

intrusion of any kind, sets off an alert. A UAV is then sent to this particular site or station to further

investigate the alert. In subsequent sections, we describe the use of multiple UAVs to investigate

alerts based on priority calculated using probabilistic data.

It is worth mentioning that the idea of using UGSs and UAVs for border patrolling could be extended

to Perimeter Patrol Operations as well. The application of such operations could be securing a

nuclear facility or a military installation and monitoring a wildlife reserve or an oil field [2].

1.2 Related Work

A perimeter patrol problem consisting of multiple UAVs equipped with cameras and controlled re-

motely by an operator is addressed in [4]. After the trigger of an alert, a UAV flies to the site

to investigate the alert, that is to check if the alert is a true and if yes, what kind of intrusion is

underway. The decision problem solved is the determination of optimal loitering or dwelling time

of a UAV at an alert site. That is the optimal amount of time spent at a site so that maximum

amount of information can be gathered but at the same time the servicing delay to other sites is

kept as minimal as possible. The problem is formulated as a Markov decision process and a solution

is obtained using dynamic programming. Simulations are run for cases like using one or two UAVs

and UAVs with or without turnaround capabilities. The quality of service is improved when using

two UAVs with turnaround capabilities. Similar discussion has been done in [5] [6].

A system to coordinate the working of multiple UAVs to be utilized in border and perimeter pa-

trolling jobs is presented in [7]. The motion control and navigation among the UAVs is divided into
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a hierarchical architecture. The lower hierarchy consists of controllers that perform positioning and

tracking jobs. The higher hierarchy systems are used for maneuvering operations. A team of UAVs

is assigned to patrol a particular region of a border. A border region is defined to be a geographical

region which is, in general, like a line: thin and long. A particular border region is split into sectors

which are roughly the same in shape and size. Each aircraft is assigned a sector. If any UAV detects

an event or target, it alerts its operator. If the operator deems the target is important, the UAV is

commanded to follow it. The sectors are then dynamically reassigned among remaining UAVs.

A variation of the UAV patrol problem would be the Dynamic Traveling Repairman Problem (DTRP)

[8]. In the latter case, the paths traveled may not be in a closed path or a line. The objective in

this case is to minimize the service delay time rather than the traveling time between various points

or sites. An example requiring the minimization of wait time is ambulance services. Few properties

associated with DTRP are: 1) objective is to minimize waiting time rather than travel time; 2) the

arrival of service demands is random; 3) and, the demands are dynamic with respect to time.

1.3 Thesis Summary

These days a lot of focus is being given to the use of UAVs for border patrolling. UAVs also called

drones or remotely piloted vehicles (RPVs) [9] are used in co-ordination with sensors, fences and

video cameras. More particularly, we are concerned with sensors contained in posts or alert stations

called UGS.

We have implemented an algorithm by which two UAVs monitor a set of alert sites. For our

simulation, values expressed in terms of percentage for different types of events (detected by a UGS)

are extracted from a text file. The percentages represent the probability of occurrence of each type

of event for a particular site. In addition, there is an intelligence data file containing coefficient

values for the same types of events. The intelligence data indicates the general pattern of events

detected by a station over a longer period of time. In brief, the following steps are then performed:

1. The probability data is updated using the intelligence data.

2. For each site (for a particular timestamp), two values are computed: gain and cost.

3. For each site(for a particular timestamp), a utility value is computed where utility = gain -

cost.

4. We apply the principle of Maximizing Expected Utility (MEU) to choose two sites, marked as

active, which would be serviced by the two UAVs.

3



The working of UAVs is programmed such that they “greedily”choose an active alert station closest

to their starting location or alert site. Additionally, to display the motion of UAVs and flagging or

setting off of alerts, a graphical animation panel has been implemented.
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CHAPTER 2

LITERATURE REVIEW

This chapter contains the concepts and models used in our thesis. Because we primarily deal with

a decision problem, an analysis of relevant decision making tools is done in this chapter. First we

define and present the steps of decision making. Next, we discuss about two decision tools namely

decision trees and influence diagrams. We examine their semantics and simple use cases.

2.1 Decision Making

Decision making can be defined as a process in which a selection is made from a set of alternatives

or options [10]. The selection is made in such a way so as to minimize or maximize an objective.

Decision Making forms an important part of daily activity for people like administrators or scientists.

An example of decision making could be that of a school administrator deciding whether to hire a

new teaching staff or increase the load of the current staff.

As a part of decision making, it is required to first identify all possible and feasible choices. Next,

these choices need to be analyzed or evaluated based on some criteria. And, finally a resulting choice

or selection is made that satisfies certain needs [11].

The Rational model of decision making is one in which all aspects of the process such as the set of

choices, results and decision criteria are known beforehand [12]. As per this model, decision making

can be listed in six steps shown in Fig. 2.1:

2.2 Decision Support Tools

In the current section, a discussion about tools or theories that aid in the process of decision making

is presented. Such tools help in properly defining a problem, analyzing it and reaching a conclusion.

These tools, especially diagrammatic ones, can help convey information to relevant people.

5



Figure 2.1: Steps of decision making

2.2.1 Decision Trees

A decision tree is a decision analysis tool in which a problem is represented as a directed acyclic

graph with nodes and arcs [13]. A node is an element in which either a decision is evaluated or an

uncertainty is calculated. The alternative or branch which gives the best overall value is the best

path within the tree. A decision tree, if arranged from left to right, means that the events on the

left have occurred earlier than the one on its right and so on.

Decision Tree Structure

Within a decision tree, a node and all its descendants is called a branch of that node. The bottom-

most nodes are called leaves [14].

A decision tree has mainly two types of nodes:

1. Decision node: it is drawn as a square and represents the alternatives or choices a decision

maker has in his control.

2. Chance node: it is drawn as a circle and represents uncertain factors during decision making.

6



Both decision and chance nodes will have arcs leading away from them to depict the possible outcome

of such nodes.

A simple example of utilizing decision trees for decision making is shown in Fig. 2.2.

Figure 2.2: A decision tree analysis to decide whether to buy a new car

Evaluating a Decision Tree

The evaluation begins at the far right end of a given tree. For every chance node, the expected

outcome is calculated by summing the product of measured value of outcome times its probability

for each arc leading away from that node. These expected outcomes become input for other chance

and decision nodes. At a decision node, the path that has the maximum expected outcome value is

selected from a set of alternatives.

7



Keeping these concepts in mind, from Fig. 2.2 we have following inferences:

• The values printed over the arcs or leading arrows from a chance node are the probabilities of

occurrence of an outcome. For example, on the Buy New car branch the probability that we

would buy a car of priced at $50,000 is 0.2.

• Values at chance nodes are aggregated and printed over the arcs leading into the chance nodes.

• Values at decision nodes is a summation of dollar amount in the arcs leading away from

respective nodes.

• In this example, it turns out that the total cost of using the same car is more than that of

buying a new car. Hence, the best financial choice is to buy a new car.

Relationship with Influence Diagrams

A decision tree is very useful in graphically displaying the decision alternatives of a problem. But

in cases where there are too many variables: decision alternatives and uncertainties, the graph can

quickly become large and complex. In such cases, we can represent the same problem with influence

diagrams because they focus on relationship among various elements and less on statistical values.

Influence diagrams are discussed in Section 2.2.2.

2.2.2 Influence Diagrams

An influence diagram (ID) is a graphical representation of a decision situation. The graph consists of

nodes representing various values. It also contains arcs that depict relationships between the nodes

[15]. IDs were described by [16] as modeling tools to visualize relationships among random variables

and resulting decisions.

Influence Diagram Structure

An ID is a directed acyclic graph [17]. It describes a decision problem in three levels: relational,

functional and numerical [18]. A brief discussion of these levels will be presented in items below.

This discussion follows from the ones presented in [19] [17] [20].

8



1. Level of relation: This level is the actual graphical representation of a problem using nodes

and arcs that connect one node to another. The arcs define relationships or dependencies

among different nodes. There are three type of nodes (and a sub-node type) and three types

of arcs used in this level.

(a) Types of Nodes

i. Decision Node: it represents a decision to be made and is drawn as a rectangle or

square. The variables that represent decision nodes are under the control of a decision

maker.

ii. Chance or Uncertainty Node: it represents uncertainty in a problem and is drawn as

an oval or a circle. Such nodes represent random variables.

• Deterministic Node: it is a special case in which the outcome is deterministic

whenever the outcomes of other uncertainties are known. It is drawn as a double

oval or a circle.

iii. Value or Utility Node: it represents the final choice or expected reward of a decision

and is drawn as a diamond or an octagon. Such nodes are represented by a utility

function.

(a) Types of Arcs

i. Conditional Arc: it is directed towards a chance node and indicates that the proba-

bility of this node is conditioned on the value of the input node.

ii. Functional Arc: it is directed towards a value node and indicates that the utility

function of this node is itself a function of the input node.

iii. Informational Arc: it is directed towards a decision node and indicates that the

choice(s) made in this node are conditional upon an input node. This node can be

an uncertainty or another decision.

2. Level of function: This level specifies the actual function that describes the dependencies

indicated by the graphical structure at the relational level.

3. Level of number: This level specifies the numerical values related to probability and utility

functions.
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We outline the dependencies between different types of arcs and nodes in Fig. 2.3, Fig. 2.4, Fig. 2.5

and Fig. 2.6.

Figure 2.3: The value of variable X is known when decision Y is made

Figure 2.4: The decision X is known when decision Y is made

Figure 2.5: The probabilities related with chance variable Y is dependent on the outcome of variable
X

Figure 2.6: The probabilities related with chance variable Y is dependent on the decision X

Next, we depict a simple example of using influence diagrams in Fig. 2.7.

In Fig. 2.7, note the following:

• The car design and features variable is deterministic because we are assuming that the features

are fixed for a given price.
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Figure 2.7: An influence diagram to decide which car to buy

• The decision of getting a new car or a used car depends on the values of price, design and

features (both interior and exterior) and car mileage (miles per gallon). Consider a scenario

in which a buyer gets a used car for a decent price with good mileage and features, he might

buy one. In another scenario, a buyer may purchase a new car if his budget allows for it and

the features are great (mileage may not be very important here).

• The car make and model as well as the year it was manufactured (i.e. how old or new the car

is) determine the driver satisfaction value.

• There is no arc between the price node and the mileage node of the car which means that a

more expensive car may not necessarily get a better mileage and vice-versa.

• The arcs ending in the Design and Features node are conditional arcs.

• The informational arc ending in the New or Used Car node indicates that the decision is made

depending upon the price, features designs and fuel economy of a car.

• The informational arc ending in Car Year, Make and Model node indicates that the buyer

already knows if he is buying a new or a used car before making this decision.

• Finally, the functional arc ending in Driver Satisfaction node indicates that the satisfaction

depend upon the value of a car’s manufacture year and its brand and model.
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2.3 Important Concepts and Notations

2.3.1 Probability Data

An Unattended Ground Sensor (UGS) is a group of sensors that contains, but is not limited to,

thermal and seismic sensors. Each UGS detects events which are an aggregation from all its sensors.

The events that are detected are classified into an event space (as discussed in Section 3.1) based on a

perception of threat posed by each detection. As an example for a border patrolling operation, we can

say that events categorized as being human are less potent as threats than those categorized as being

vehicles. The final result of classification is a probabilistic distribution, expressed in percentage, over

the event space. An example of probability distribution for an alert site, where N = no event, S =

small animal, L = large animal, H = human and V = vehicle from the event space, can be: (5%

N, 10% S, 20% L, 60% H, 5% V) . For each alert station, one such distribution is generated for a

timestamp. Therefore, there would be more than one block of data (representing all alert stations)

for each timestamp value.

2.3.2 Intelligence Data

Intelligence Data is a set of coefficients over the same event space that compounds the probability

distribution to either strengthen or weaken some values. In general, our assumption is that the

intelligence data changes very slowly compared to its probabilistic counterpart. Hence, intelligence

is what is known to be a pattern over a longer period of time. As an analogy, we can compare

probability values to weather and intelligence values to climate of any geographical region.

2.3.3 Probabilistic Decision Making with Intelligence Data

In our decision making process, we update the probabilistic distribution values with intelligence

coefficients, if they are available. Then, decision making is performed on the updated probability

values. If no intelligence is known, the probabilistic distribution remains unchanged. Otherwise,

intelligence changes the probability. In other words, if something is more probable based on past

experience, its probabilistic distribution is increased. For example: if an alert site is known for wild

animal crossings, then the values for small and large animals are increased.

Basic Mathematical Example

The process of updating is performed by multiplying the values (of the event space) obtained from the

probability distribution with the corresponding values in the intelligence coefficients. The multiplied

values are normalized to obtain final values. Consider the aforementioned probability distribution
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for a site given by (5, 10, 20, 60, 5). If our intelligence coefficients are ( 1
2 , 2, 2, 1,

1
2 ), the probability

of N and V is halved, that of S and L are doubled and that of H remains the same. The calculations

are performed as shown:

(5, 10, 20, 60, 5)× ( 1
2 , 2, 2, 1,

1
2 ) = ( 5

2 , 20, 40, 60, 5
2 )

These values are normalized as:

( 5
2 ×

100
125 , 40× 100

125 , 60× 100
125 ,

5
2 ×

100
125 ) where 125 = 5

2 + 20 + 40 + 60 + 5
2

= (2, 16, 32, 48, 2) are the final updated distribution values for a site

2.3.4 Maximizing Expected Utility (MEU) Principle

A basic influence diagram for decision making can be drawn as shown in Fig. 2.8 [19].

Figure 2.8: An influence diagram to depict expected utility

Let us assume that the outcomes of Uncertainty are C1 and C2 and the probabilities associated with

them are P(C1) and P(C2) respectively. Let the alternatives for Decision be represented as D1 and

D2. As per the MEU principle, we make our decision in order to maximize the value of Utility [21]

[22]. The utility can be represented by a function shown in 2.1.

U(Di, Cj) : P → R (2.1)
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CHAPTER 3

MATHEMATICAL MODELING

In this chapter we present topics related to real-life objects and actions such as the types of events

sensed by a UGS, the states of a UAV and a UGS and the way in which influence diagram semantics

is used in our decision making.

3.1 Types of Events

We have defined five types of events that can be sensed by a UGS. These event types also referred to

as event space are No Event (N), Small Animal (S), Large Animal (L), Human (H) and Vehicle (V).

To each of these events we have assigned an importance value or weight which are totally ordered:

N < S < L < H < V (3.1)

So, if our event space (E) is the set {N, S, L, H, V}, then we can define the weight space (W) as

follows:

W : E → R+ |E| (3.2)

Based on (3.2), we have:

W (N) = 1,W (S) = 2,W (L) = 3,W (H) = 4,W (V ) = 5 (3.3)

3.2 Types of Site Data

The input to the decision making algorithm implemented in our thesis comes from two text files.

One of these files contains probability distribution over the event space described in section 3.1 and

the other is a set of coefficients. The algorithm outputs a file that contains the ground truth which

is the actual event occurring in a given alert station for a specific timestamp. We are concerned

with three data files whose format and contents are described in the subsections that follow.
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3.2.1 Probability Data

This data is contained in a text file named SiteProbabilityDistribution. The file contains blocks of

data for separate, increasing timestamps. An example of a block of data is as shown in Fig. 3.1.

Figure 3.1: A block of probability values for timestamp = 70

In Fig. 3.1, note the following:

• In each block, the first number in every row represents the site ID for which the probability

data in listed.

• The probabilistic event data is placed after the site ID in the order of N S L H V events.

• Any row that starts with a # symbol is considered a comment.

• Each block always starts with a comment that mentions the timestamp.

Probability Data Error Checking

The probability data for a given timestamp must adhere to the following two rules, otherwise it is

not processed by the algorithm:

• In every row, the values corresponding to all the events must be ≥ 0.0.

• The sum of the values for a site must be equals to 100. Each row must then have a sum equals

to 100%.

If any one or both of the above rules are violated during error checking, the whole timestamp

data is ignored and the processing moves forward to the next available timestmap. Fig. 3.2 gives

two examples of invalid or erroneous data sets.
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Figure 3.2: Two blocks of probability values to show invalid data

3.2.2 Intelligence Data

In our implementation, this data is placed in a text file named SiteIntelligenceData. This file too

contains blocks of data for separate, increasing timestamps. An example of a block of data is as

shown in Fig. 3.3.

In Fig. 3.3, the following points are noteworthy:

• Like the probability data, in each block, the first number in every row represents the site ID.

• The intelligence data is placed after the site ID in the order of N S L H V events.

• Any row that starts with a # symbol is considered comment. The start of each block contains

a comment that mentions the timestamp of the current data set.

• Because we assume that the intelligence data is almost constant with respect to probability

data, all the timestamps in its file would be less than or equals to that in the probability file.
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Figure 3.3: A block of intelligence data values for timestamp = 4

Intelligence Data Error Checking

The intelligence data for a given timestamp must abide by one rule mentioned below, otherwise it

is ignored by the algorithm:

• In every row, each value that corresponds to a event type must be ≥ 0.0.

Fig. 3.4 is an example of invalid intelligence data set.

Figure 3.4: A block of intelligence values to show invalid data

This invalid data set is kept in the file only as a means to display the error checking mechanism

of the algorithm in the coding implementation. If no valid intelligence data set is found, then the

probability data is not updated with intelligence values.

17



3.2.3 Ground Truth

Ground Truth is the actual event that occurred during a specific timestamp. Because the alert

stations in our case are unsupervised, they do not have access to the ground truth. Therefore, we

consider the ground truth to be the most probable value for each station (for a specific timestamp)

breaking any ties by order (whichever comes last). All our inferred truth values are put in a text

file named SiteGroundTruth. We follow the following steps to generate the ground truth file:

1. Read each valid timestamp data block from the probability distribution file.

2. In each row, for each alert site/station, read values for each of the five event type.

3. The event corresponding to the maximum value from the previous step is the ground truth.

4. Write this event to the ground truth file.

Fig. 3.5 gives an idea of what the values look like.

Figure 3.5: Two blocks of ground truth values

In Fig. 3.5, note the following:

• For this file too, a # symbol at the start means a line of comment. For every block, its

corresponding timestamp is written to the ground truth file.
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• Consider the valid timestamp : 70, its distribution values for site 1 are 5 10 20 60 5. In this

set of values, the maximum is 60 which corresponds to the event type human (H).

3.3 UGS States

Each UGS has four different states in which it transitions. The states are as follows:

1. Idle: this state is denoted by I and indicates that the UGS is inactive or idle. A UGS starts

in this state.

2. Alert: this state is denoted by A and indicates that the UGS has triggered an alert.

3. Service: this state is denoted by S and indicates that the UGS that triggered an alert is being

serviced by a UAV, i.e. the UAV is dwelling over or around the UGS location.

4. Undecided: this state is denoted by U and indicates that a UGS is currently inactive.

These states and related transitions are shown in Fig. 3.6.

Figure 3.6: Diagram depicting UGS states

From Fig. 3.6 it is obvious that once an alert is triggered, a request for a UAV is continuously

generated until either the site is serviced (by a UAV) or the request is denied (for example by a
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control system or algorithm because the request has timed out). Additionally, once a site is serviced

and there are no further events, the UGS transitions to the undecided state. From this state, it can

either move to either the idle state or the alert state whichever occurs first.

3.4 UAV States

Each UAV has four states among which its transition occurs. The states are presented below:

1. Idle: this state is denoted by I and indicates that the UAV is simply patrolling.

2. Service: this state is denoted by S and indicates that the UGS that triggered an alert is being

serviced by a UAV, i.e., a UAV is dwelling over or around the UGS location.

3. Continue Direction: this state is denoted by CD and indicates that a specific UAV will continue

in its current direction to move to a new station/site.

4. Reverse Direction: this state is denoted by RD and indicates that a specific UAV will reverse

in its current direction to move to a new station/site.

These states and related transitions are shown in Fig 3.7.

Figure 3.7: Diagram depicting UAV states
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We assume that each of our two UAVs initially loiter over the two extreme edges, i.e. the first and the

last alert station. Once a UAV is done servicing an alert, it would then move back to the idle state

which could indicate that it is either loitering in the same station or it had moved back to its ini-

tial location/position or it is in a brief transition state before it moves to a new location for servicing.

We have also assumed the border to be a long straight line. That is why a specific UAV would be

traveling in a straight line and would either continue or reverse its current direction to change its

alert station location. We provide details about a UAV’s direction and the way it changes in the

Section 3.5.

3.5 UAV Direction (from graphical point of view)

Each UAV has to move a fix number of units, i.e., x-coordinates in the graphical display panel

(discussed in Chapter 4). The direction of the UAV, either positive or negative or zero, plays an

important role in calculating these number of units. The basic steps for calculating the next direction

for a UAV is listed below:

Site IDs: unique consecutive numerical values starting from 1 assigned to each alert site/station

(the leftmost station’s ID is 1),

Let p = previous Site ID of a UAV, c = current Site ID of the UAV and d = next direction value.

The value of d is, if required, is calculated as

d = (p - c) / abs(p - c) where abs represents the absolute value (3.4)

Hence, the set of values d takes is {-1, 0, 1}.

1. if p - c > 0 then d is positive and its value is calculated from Equation 3.4

2. if p - c < 0 then d is negative and its value is calculated from Equation 3.4

3. if p = c then d is zero

Based on the values of d, each UAV could either continue its direction or reverse its direction or

loiter in the same location.

3.6 Value Functions

Value functions are the functions that are computed during the decision making process by our

algorithm. Let us define a few terms in order to explain the functions.
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1. Probability of Events (p) = (pj)i where j is the number of event types as described in Section 3.2

and i is the total number of alert stations. It can be defined as:

p : E → [0, 1] (3.5)

It follows from 3.5 that the probability distribution is every event type mapped to a value

between 0 and 100%.

2. Intelligence Data (I) can be defined as:

I : E → R+ (3.6)

It follows from 3.6 that the intelligence data is every event type mapped to a positive real

value ≥ 0.

3. Weight of Events (W) also described in Section 3.2. It can be defined as given in Function 3.2.

4. Gain Matrix (GM) is a 5 × 5 matrix that represents the comparison of observed events (as

reported by a UGS) against the ground truth (the actual event type). If n = |E| is the number

of events, then GM is defined as:

GM : N ×N → R+ n× n (3.7)

Now, we define three value functions: gain, cost and utility in succeeding subsections.

3.6.1 Gain Function

Gain Function (GF) of sensed data is a measure of how much a system gains by being at that

specific location. Gain is based on the weight of the events and the gain matrix combined with

the probability distribution and if available the intelligence data. Hence, the gain function can be

defined as:

GF = (p, I,W,GM) (3.8)

3.6.2 Cost Function

Cost Function (CF) is the cost of not using a UAV in other alert stations when it is loitering over

a given station. It is the maximum value of gain at all other stations except the current station.

Hence, cost function can be defined as:

CF = max(gain of all sites other than the current one) (3.9)
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3.6.3 Utility Function

Utility is simply the numerical value of benefit obtained by engaging a UAV at a specific alert site.

Utility for a site is the calculation:

Utility = (gain - cost) for that site (3.10)

3.7 Influence Diagram Concepts in Decision Making

The influence diagram of the decision algorithm that we have implemented is shown in Fig. 3.8.

Fig. 3.8 presents the following significant points:

• The whole decision making is performed in two parts: the first part is evaluating function

values at the individual alert stations and the second part is comparing these values in a

centralized manner.

• The central system can be a server which operates on input information and sends commands

to each UAV about their next location.

• Although the utility values are calculated at each node/alert station and is distributed, the

actual decision making is centralized.

Part 1: Processing at Alert Station i

1. In this part, the data read from the sensors is probabilistically categorized into five event

types. Once categorized, this data forms the probability of events and is updated using the

intelligence coefficients. The details of how the update is performed in discussed in Section 4.5.

A utility value, for every timestamp that has been recorded, is calculated following a series of

steps from the probabilistic distribution data.

2. The above step is carried out in all alert stations to obtain a collection of utility values.

Part 2: Processing at Central System

1. The central system takes all the utility values from all stations and applies MEU principle to

choose where to send each of the two UAVs. The decisions that are made are to send UAV1

to site x, to send UAV2 to site y and not to send the UAVs to the remaining sites.

2. The final value is the presence of the two UAVs at specific alert stations.
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Figure 3.8: Influence Diagram of our implementation



CHAPTER 4

SOFTWARE IMPLEMENTATION

In this chapter we present topics related to the actual coding level implementation of our thesis

project.

4.1 Programming Environment and Setup

The project code is implemented in Java programming language. Java is a high level programming

language much similar to C++ but is strictly object oriented. A .java file is compiled into byte-codes

stored in .class file. This file is then executed by the Java Virtual Machine (JVM) installed in any

operating system. The java runtime environment version used in our project is 1.7.0.

The Integrated Development Environment (IDE) employed for project development is Eclipse (ver-

sion: Kepler Service Release 1). The code has been vesion controlled using TortoiseSVN tool inte-

grated to the IDE itself.

4.2 Code Structure

The source code for the project is divided into two categories or from a IDE point of view into two

source packages:

1. mainPackage: this package contains all the core logic classes including the MainClass class to

start running the project.

2. drawingPackage: this package contains all the component classes that are concerned with

displaying the graphical panel of the project.

Additionally, we have two text files used as input to process the probabilistic distribution and

intelligence coefficients. When the project is running, a ground truth file is also created.
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4.3 Class Diagrams

A class diagram displays relationships among classes and interfaces within a project or package. In

our case, we are only concerned with java class as the project does not define any interface. The

diagram represents a java class using a rectangular box. Such boxes are partitioned into sections.

The first section contains class name and its package information. The second section contains the

attributes or simply called the variables of this class. The third section contains all the methods

declared within the class. Three different class diagrams have been created for our project:

1. Class-Diagram-drawingPackage: this diagram shows the java classes, their attributes and

methods and their relationship with each other within the drawingPackage package or folder.

2. Class-Diagram-mainPackage: this diagram shows the java classes, their attributes and methods

and their relationship with each other within the mainPackage package or folder.

3. Class-Diagram-wholeProject: this diagram is minimized to show the overall project structure

and only contains the first section of all available java classes and their relationship with each

other.

In a class diagram, the actual relationships between classes is displayed using arrows or arcs. The

most common relationships displayed in our diagrams are association and dependency. These rela-

tionships are summarized below:

1. Association relationship: it is illustrated by the use of a solid straight line with the association

value and its multiplicity printed as a label of the line. An association value is the instances

by which any two classes are related and multiplicity is a count of how many such instances

of a class (pointed to by the arrow head) are created and used in the other class.

2. Dependency relationship: it is illustrated by the use of a dotted straight line and implies

a weaker relationship between the classes involved. In such relationship a class A (the one

pointed to by the arrow head) is dependent on another class B by the virtue of using some

variables or instances of class B as method parameters and also that a change in the structure

of class B affects class A.

Next, we present the aforesaid class diagrams in three separate subsections.
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4.3.1 Class Diagram for Drawing Package

In addition to other relations shown, we have an inner class called UAVTimerTask inside the class

DrawingPanel represented by a + symbol inside a circle at the parent class DrawingPanel’s end.

Figure 4.1: Class Diagram for Drawing Package

27



4.3.2 Class Diagram for Main Package

In the Main package, the UtilityValueClass contains all the core logic and steps and hence builds

relations with all the other classes in the package.

Figure 4.2: Class Diagram for Main Package
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4.3.3 Class Diagram for Whole Project

From this diagram, it can be inferred that for graphics related operations the UtilityValue class in

the main package calls the methods contained in the DrawingUtils class which then delegates the

logic functionality to the DrawingPanel class.

Figure 4.3: Class Diagram for Whole Project
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4.4 Implementation Phases

We have used an incremental approach to code our project. The project has been implemented in

successive phases with each phase adding to or upgrading capabilities or flexibilities in solving the

problem more effectively. There are three such phases or stages, each of which is discussed in the

sections that follow.

4.4.1 Single UAV - Multiple Alert Stations

The implementation started by using a single UAV to patrol all the alert stations. In this phase, we

calculate a utility value for all stations but choose only one value at the end: the maximum utility.

The UAV would be sent for patrolling to the corresponding site.

4.4.2 Two UAVs - Multiple Alert Stations with Fixed Area of Surveillance

The implementation in the first phase is extended in this phase by adding another UAV to the

patrolling operations. This would again involve calculating the utility values. One station with the

best utility is selected for patrolling and one of the UAVs is sent to the location. A restriction of

this algorithm was that each UAV would be assigned only half or approximately half the stations

for monitoring: for UAV1 the number of sites = integer(total number of sites / 2) and the rest of

the sites to UAV2. There would be a boundary between patrolling areas of each UAV. Each UAV

would cater to an alert only if it falls within its monitoring range.

4.4.3 Two UAVs - Multiple Alert Stations with Changing Area of Surveillance

The fixed boundary limitation in the second phase is removed and replaced with a moveable boundary

that allows for each UAV to cater to alerts in almost any station. The only restriction is that while

the UAVs can move from one active alert station to another, they do not cross-over. Each UAV has

to choose the active alert station that is closest to its initial position (which is the first station for

UAV1 and last station for UAV2). Hence, in every timestamp, two stations with two highest utility

values are chosen. Currently, the order of choice is that UAV1 chooses its next station for patrolling

which is followed by a choice by UAV2. Although, the reverse can be done without affecting the

final result. Because each UAV “greedily” chooses an active alert site closest to its starting position,

the process is analogous to stretching an elastic material from a fixed point.
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4.5 Implementation of Decision Making with Pseudo-codes

This section presents as step-wise description of the way our algorithm processes the data and uses

it to decide two best sites for patrolling (for a specific timestamp).

Before we start with these steps, it is important to know that the program or algorithm reads the

probabilistic distribution file and intelligence coefficients file. If any data block (again for a specific

timestamp) does not confirm to the rules of validity listed in Section 3.2.1 and Section 3.2.2 for

probability and intelligence data respectively, then an error message is printed out in the eclipse

IDE console and the processing moves on to the next available data block.

4.5.1 Updating Probabilistic Distribution with Intelligence Data

If intelligence data is available and is valid, an update of probability values is performed based on

the former values. The theoretical details and a mathematical example about these are provided in

Section 2.3.3. Within the program, an extra check is done that ensures that the number of alert

stations, i.e. the number of rows for corresponding timestamp in both the files are the same. In

cases where the numbers do not match, the update process is not followed through and simply the

probability data block is used for further processing.

As mentioned in Section 2.3.3, in each timestamp, for each row of data, an update is the process

of multiplying corresponding values for each event type in both the probabilistic and intelligence

data files. These data are stored in a Java LinkedHashMap which is of the format Map<Integer,

Map<String, Double>>. In this map, the data that is stored is <siteID, <eventType, probabil-

ity/intelligence value>> for each site.

Once the values are updated, they are normalized to obtain final values. A pseudo-code of this

specific process is shown below:

// for a specific timestamp, perform these operations

for (loop through all the sites) {

siteId = getSiteID();

probabilityDataMap = getProbabilityMap();

intelligenceDataMap = getIntelligenceCoffiecients();
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// updating via multiplication of corresponding event types

for (loop through each row of a data block of the probability file) {

updatedProbabDistrValue = probabilityDataMap.getValue() * intelligenceDataMap.getValue();

// sum is used during normalization

sumOfupdatedProbabDistrValue += updatedProbabDistrValue;

// Store the value temporarily before normalization

updatedProbabDataMap.put(siteId, updatedProbabDistrValue);

}

// Normalize the augmented value

for (loop through the updated Probability Data Map) {

normalizedValue = updatedProbabDataMap.getValue() * (100 / sumOfupdatedProbabDistrValue);

// these are final values for this siteId/row of the data block

newUpdatedProbabDataMap.put(siteId, normalizedValue);

}

// Store the final values for this row/site in another Java Map

siteIntDataBasedProbabDistrMap.put(siteId, newUpdatedProbabDataMap);

}

4.5.2 Calculating Site Gain Values

Each site has a gain value associated with it. The calculation of site gain is based on probability

values, intelligence coefficients, weight of the events (as given by 3.3) and gain matrix.

To re-emphasize, a gain matrix is a 5× 5 matrix with the values in the rows representing observed

events and that on the columns representing ground truth. Each value represents a gain made any

site for the claimed or observed event versus the actual ground truth. The values across the main

diagonal (going from top-left to bottom-right) is the weight of events. All the other values are

relative to these weight values and represents how much we would lose by wrongly categorizing an

event. For example: in the third row if L (Large Animal) is correctly categorized, then the gain is

3. But, if we wrongly categorize it by saying it is a S (Small Animal), then from the second row and

third column we have the gain value to be only 2.5. Fig. 4.4 shows the gain matrix that we have

used in our calculations:
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Figure 4.4: Gain Matrix used in Decision Making

To calculate the gain values for each alert station, we multiply the corresponding event types from an

updated probabilistic distribution and each row of the gain matrix and sum the multiplied results.

The same process is repeated for each row of the matrix in order to obtain partial sums. These sums

are representative of gains made if the observed event is any one of the types from the event space.

All the partial sums are added and divided by the total number of events to get the final result.

This calculation can be summarized by the following expression:

(

N∑
i=1

(

N∑
j=1

Esitej × Egain−matrixj
))/N (4.1)

where N is the total number of events in the event space,

j is the columns (of a row) within the gain matrix,

i is the rows within the gain matrix,

Esitej is the value of an event from the probabilistic distribution of a site and

Egain−matrixj
is the value of the same event from the gain matrix.

A pseudo-code of this specific process is shown below:

// perform this operation on the updated probability map

for (loop through the updated site probability map) {

siteId = getSiteID();

probabilityDataMap = getUpdatedProbabilityMap();

// For each site and each row of gain matrix:

// (i) multiply event values and then sum those values > partialSum

// (ii) add all partialSum and divide them by the no of events

33



for (loop through each row > each column of the Gain Matrix) {

for (loop through each column/event type of a row in the probability map) {

// express probability in percentage: divide by 100

partialGainValue += (probabilityDataMap.getValue() / 100) * gainMatrix[firstDim][secondDim];

secondDim += 1;

}

firstDim += 1;

// reset secondDim for the next row

secondDim = 0;

}

// Average the partialGainValue by dividing by the total number of events

siteGainMap.put(siteId, partialGainValue / totalNoOfEvents);

// Reset first dim for a new site

firstDim = 0;

// Reset partial gain for a new site

partialGainValue = 0.0;

}

// Store the gain for this site in a Java Map

setSiteGainMap(siteGainMap);

4.5.3 Calculating Site Cost Values

As described in Section 3.6.2, the cost of a site is the loss of all other sites not to be serviced by a

UAV. If a UAV services as site, it cannot service the remaining sites. So, the cost of any site i is the

maximum loss of not servicing a site other than i. In other words, the cost of site i is the maximum

gain of all the sites other than i. The pseudo-code of this process can be shown as:

for (loop through the site gain map, original entry) {

// cost: maximum among all gains (except this one)

for (duplicate entry/loop for site gain map) {

// ignore the site currently being processed

if (originalSiteEntry.getSiteID() == duplicateSiteEntry.getSiteID()) continue;

// update with a new maximum value if needed

if (cost < duplicateSiteEntry.getValue()) { cost = duplicateSiteEntry.getValue();}

}
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// store the cost in a map per siteID

siteCostMap().put(originalSiteEntry.getSiteID(), cost); }

4.5.4 Calculating Site Utility Values

As described in Section 3.6.3, utility is the target value obtained after all our calculations. It is

expressed as difference between the gain and cost values of a site and its pseudo-code can be shown

as:

for (loop through the site gain map) {

// cost for current site is calculated here

// Utility (of a site) = gain (of that site) - cost(of the same site)

utility = getGainValue() - cost;

// Store utility in another Java map

SiteUtilityMap().put(siteEntry.getKey(),utility);

}

4.5.5 Applying MEU Principle

As the Maximizing Utility (MEU) principle demands (refer Section 2.3.4), we select the utility that

maximizes our benefit. Since we have two UAVs, we therefore select the two highest values from a

set of utilities (for a given timestamp). These are the sites to which the two UAVs are commanded

to move for monitoring in the current timestamp. The pseudo-code of this process is shown below:

printout("Applying MEU principle for time stamp: " + uvPropertiesObject.getCurrentTimestamp());

// determine 1st and 2nd maximum utility values

// selectedSiteA: site with maximum utility, selectedSiteB: site with second maximum utility

for (loop through the utility values map) {

if (maxUtility < utilityMap.getValue()) {

// Just swap values

selectedSiteB = selectedSiteA;

secondMaxUtility = maxUtility;

selectedSiteA = utilityMap.getSiteID(); maxUtility = utilityEntry.getValue();

} else if (secondMaxUtility < utilityMap.getValue()) {
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selectedSiteB = utilityMap.getSiteID(); secondMaxUtility = utilityEntry.getValue();

}

}

4.5.6 UAV locations per Timestamp

Once the two best sites for monitoring are decided, the next step to be performed is to determine

which UAV goes to which of the two active alert sites. The theoretical aspect of this is discussed in

Section 4.4.3 and its pseudo-code is presented below:

// find which of the active alert site is closer to uav1

// uav1ToAlertActiveSite1: distance in terms of site ID between UAV1 & active alert site 1

// uav1ToAlertActiveSite2: distance in terms of site ID between UAV1 & active alert site 2

if (uav1ToAlertActiveSite1 < uav1ToAlertActiveSite2) {

uav1.setUavCurrentSiteID(activeAlertSite1.getSiteID());

uav2.setUavCurrentSiteID(activeAlertSite2.getSiteID());

} else {

uav1.setUavCurrentSiteID(activeAlertSite2.getSiteID());

uav2.setUavCurrentSiteID(activeAlertSite1.getSiteID());

}

4.5.7 Calculating Actual Gain and Cost

While the UAVs are being positioned over the two alert stations with the highest utility values, we

also calculate other gain and cost values by reading from the ground truth file. The values are the

actual gain and the actual cost of moving one UAV to site I and the other to site II. These values are

solely for the purpose of comparison with the estimated gain and cost values and do not currently

form a feedback into the algorithm. The pseudo-code of this calculation is as follows:

while (read each line from ground truth file with variable strLine) {

// within the file find the data block for current timestamp

if(timestampReadFromFile != currentTimestamp)

continue; // if no match above, do not process lines below this

// the split results in two elements with siteID at index 0 and actual event at index 1

grdTruthArray = strLine.split(" ");

siteActualMap.put(siteID, mostProbableEventWt);
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}

// set the values for actual gains

selectedSiteIActualGain = siteActualMap.get(uvPropertiesObject

.getMaxUtilitySite().getKey());

selectedSiteIIActualGain = siteActualMap.get(uvPropertiesObject

.getSecondMaxUtilitySite().getKey());

for (loop through siteActualMap with variable actualEntry) {

if (this is not the site with max utility) {

if (selectedSiteIActualCost < actualEntry.getValue()) {

selectedSiteIActualCost = actualEntry.getValue();

}

}

if (this is not the site with second max utility) {

if (selectedSiteIIActualCost < actualEntry.getValue()) {

selectedSiteIIActualCost = actualEntry.getValue();

}

}

}
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CHAPTER 5

RESULTS AND USER DOCUMENTATION

This chapter presents the results of processing displayed in the eclipse IDE console. We also present

the graphical panel that displays the alert generated in stations and the resulting motion of UAVs.

In addition to these, we have assembled a brief documentation about configuring and running the

project.

5.1 Console Output

Error checking for the validity of data is an important part of our algorithm. In the following

sections, we look at error checking as well as valid data processing of both probabilistic distribution

and intelligence coefficient files.

5.1.1 Processing of Valid and Invalid Intelligence Data

The output shown below corresponds to the processing of data shown in Fig. 3.4 and then in Fig. 3.3.

Because the data at timestamp 2 is invalid, only the next data block for timestamp 4 is considered.

No further intelligence data blocks added as its values are considered almost constant during the

processing of probabilistic distribution data.

Time stamp:2

ERROR: Invalid data format for current time stamp in the intelligence data file.

Moving to next available time stamp

*********************************************************

Time stamp:4

intelligence data map for time stamp: 4 is:

{1={N=0.5, S=2.0, L=2.0, H=1.0, V=0.5}, 2={N=1.0, S=1.0, L=1.0, H=1.0, V=1.0},

3={N=1.0, S=1.0, L=2.0, H=2.0, V=1.0}, 4={N=0.5, S=1.0, L=3.0, H=2.0, V=0.5},

5={N=0.1, S=0.5, L=2.0, H=1.0, V=0.5}, 6={N=1.0, S=1.0, L=1.0, H=1.0, V=1.0},

7={N=2.0, S=1.0, L=2.0, H=2.0, V=0.5}, 8={N=1.0, S=1.0, L=1.0, H=1.0, V=1.0},
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9={N=1.0, S=3.0, L=2.0, H=2.0, V=1.0}}

5.1.2 Processing of Invalid Probabilistic Distribution Data

The output shown below corresponds to the processing of data shown in Fig. 3.2.

Time stamp:10

ERROR: Invalid data format for current time stamp in the probability file.

Moving to next available time stamp

*********************************************************

Time stamp:30

ERROR: Invalid data format for current time stamp in the probability file.

Moving to next available time stamp

*********************************************************

5.1.3 Processing of Valid Probabilistic Distribution Data

The output presented below corresponds to the processing of data shown in Fig. 3.1.

Time stamp:70

probability distr map for time stamp: 70 is:

{1={N=5.0, S=10.0, L=20.0, H=60.0, V=5.0}, 2={N=5.0, S=5.0, L=25.0, H=15.0, V=50.0},

3={N=10.0, S=10.0, L=50.0, H=15.0, V=15.0}, 4={N=60.0, S=15.0, L=12.5, H=9.5, V=3.0},

5={N=20.0, S=19.7, L=20.3, H=30.0, V=10.0}, 6={N=7.0, S=35.0, L=33.0, H=20.0, V=5.0},

7={N=1.0, S=3.5, L=5.0, H=20.0, V=70.5}, 8={N=1.0, S=1.0, L=1.0, H=1.0, V=96.0},

9={N=1.0, S=90.0, L=2.0, H=2.0, V=5.0}}

************************************************************

int data based updated probab distr for time stamp: 70 is:

{1={N=2.0, S=16.0, L=32.0, H=48.0, V=2.0}, 2={N=5.0, S=5.0, L=25.0, H=15.0, V=50.0},

3={N=6.0606060606060606, S=6.0606060606060606, L=60.60606060606061, H=18.181818181818183,

V=9.090909090909092},

4={N=29.12621359223301, S=14.563106796116505, L=36.407766990291265, H=18.446601941747574,

V=1.4563106796116505},

5={N=2.287021154945683, S=11.263579188107489, L=46.42652944539737, H=34.305317324185246,

V=5.717552887364208},

6={N=7.0, S=35.0, L=33.0, H=20.0, V=5.0}, 7={N=2.203856749311295, S=3.8567493112947657,

L=11.019283746556475, H=44.0771349862259, V=38.84297520661157},
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8={N=1.0, S=1.0, L=1.0, H=1.0, V=96.0},

9={N=0.352112676056338, S=95.07042253521126, L=1.408450704225352, H=1.408450704225352,

V=1.76056338028169}}

*************************************

Data set added to SiteGroundTruth.txt for time stamp: 70

**********************************************************

estimated sitegain for time stamp: 70 is:

{1=2.6419999999999995, 2=2.7600000000000002, 3=2.4757575757575756, 4=2.0334951456310684,

5=2.5923384791309316, 6=2.217, 7=2.962809917355372, 8=3.058, 9=1.658098591549296}

*************************************

Utility values for time stamp:70 is

{1=-0.41600000000000037, 2=-0.2979999999999996, 3=-0.5822424242424242, 4=-1.0245048543689315,

5=-0.4656615208690682, 6=-0.8409999999999997, 7=-0.0951900826446277, 8=0.0951900826446277,

9=-1.3999014084507038}

*************************************

Applying MEU principle for time stamp: 70 :::::::::::::::::::::::

The sites with active alerts are site: 8 with utility value: 0.0951900826446277 and

site: 7 with utility value: -0.0951900826446277

*******************************************************************

UAV ID: 1, current site: 7, previous site: 1 goes to Site: 7 for monitoring!!!

Estimated GAIN of moving to Site: 7 for time stamp: 70 is: 2.962809917355372,

Estimated COST of moving to Site: 7 for time stamp: 70 is: 3.058

*******************************************************************

UAV ID: 2, current site: 8, previous site: 9 goes to Site: 8 for monitoring!!!

Estimated GAIN of moving to Site: 8 for time stamp: 70 is: 3.058,

Estimated COST of moving to Site: 8 for time stamp: 70 is: 2.962809917355372

******************************************************************************

Actual GAIN of moving UAV2 to Site: 8 for time stamp: 70 is: 5.0,

Actual COST of moving UAV2 to Site: 8 for time stamp: 70 is: 5.0

Actual GAIN of moving UAV1 to Site: 7 for time stamp: 70 is: 4.0,

Actual COST of moving UAV1 to Site: 7 for time stamp: 70 is: 5.0

************************************************************

FINISHED CALCULATION FOR TIME STAMP: 70
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************************************************************

*********************************************************

5.2 Graphical Display

We have created a simple graphical panel using Java 2D to display the concept of the project and

its algorithm implementation more clearly. As we have mentioned before, our two UAVs start at

the extreme edges of the border line where two alert stations are kept. The timestamp at the start

is 0 (zero) and there are no alerts yet. This situation is shown in Fig. 5.1.

Figure 5.1: Graphical Display at timestamp = 0

If we consider our current probabilistic distribution file, the data for timestamps 10 and 30 are

invalid and are ignored. The next valid data is for timestamp 70. The active alert sites in this case

are sites 7 and 8. These sites are marked by a red rectangle (as opposed to a blue rectangle used to

mark inactive or passive sites). The UAVs are commanded to move to these sites. This situation is

shown in Fig. 5.2.

Now, consider the scenario shown in Fig. 5.3 for timestamp 85 where the UAVs are dwelling over

the stations 7 and 8 again.

In the next valid timestamp which happens to be 90, the active sites/stations are 2 and 9. UAV1 is

to travel to site 2 (as it is closer to its initial location which is site 1) and UAV2 is to travel to site

9 (as it is closer to its initial location which is site 9 itself). Fig. 5.4 displays the process of UAVs

travelling to each these locations.
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Figure 5.2: Graphical Display at timestamp = 70

Figure 5.3: Graphical Display at timestamp = 85

Figure 5.4: Graphical Display at timestamp = 90
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5.3 User Documentation

This section contains a brief introduction to configuring the project, running it and its input and

output file requirements.

5.3.1 Configuring and Running the Project

The project name is BorderPatrolWithGraphics which can be changed as required. It is written in

Java (SE for core logic and 2D for graphics). Eclipse IDE has been used as a development platform.

To open the project using eclipse, click the following menus in the sequence: File > New > Java

Project. This opens the New Java Project dialog box. Uncheck the Use Default Location checkbox

and browse for the location of the project. Once this is done, click on the Finish button to open the

project. See Fig. 5.5 for hints.

Figure 5.5: New Project Diaglog box in Eclipse
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To run the project, one should select the Run option from the Run Menu or press the run button in

the Shortcuts Menu (below the Main Menu bar). On a windows machine, pressing Ctrl + F11 gives

the same result.

When the project is running, a graphics panel is displayed which shows the movement of UAVs and

the alerts for each timestamp. The console of the eclipse IDE displays the details of calculations.

5.3.2 Input and Output files

The project requires at least one text file as an input containing the probabilistic distribution

values in the format specified in Section 3.2.1. To augment this, another text file containing the

intelligence coefficients, formatted as specified in Section 3.2.2, can be provided as an additional

input. All the input files can be set for reading in the MainClass java file. Finally, a ground truth

file currently named SiteGroundTruth.txt is created once the probabilistic distribution file is done

reading. One should check the writeSiteDataToFile() method of the UtilityClass java file for details

about configuring the name and contents of this file.

5.3.3 Code Structure and Flow

The execution of the project starts with the main() method inside the MainClass java class. The

main logic is placed in the UtilityValueClass file and the flow from the main() method enters its

readDataFromFileNSimulate() method. After all utility values for the current timestamp is calcu-

lated, a graphical panel is displayed with the flow going through the DrawingUtils class into the

DrawingPanel class. To learn further about the packaging structure of the project and all the classes

contained within it and their relationships, please refer to the class diagrams in Section 4.3 and the

project code itself.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we utilize the concepts from influence diagrams to build an algorithm which solves

a decision problem. The problem is deciding where to send each UAV to dwell. This decision is

based on determining two highest utility values from a set of values. And these values, in turn,

are calculated for each alert stations/alert sites/UGSs from the updated probabilistic distributions.

This process of calculation and decision is repeated for each valid timestamp data block that is read

from the probabilistic distribution file. It is important to remember that the calculation of utility

is performed at each UGS. A central system consisting of a computer server backed by one or more

human operators collects all utility values and decides, using some criterion, the two sites chosen for

monitoring during a specific timestamp.

Thus, utilizing an algorithm or computer program in border patrolling using UAVs and UGSs makes

the overall process independent of human decision. Consequently, the decision making becomes less

prone to human error and hence more efficient in terms of human resources.

The most important enhancement that can be done in the project is to make the scenario more

realistic by considering the border as a region of overlapping areas. For example: when a UAV is

servicing area i, it can also service area i-1 and i+1 simultaneously. Also, more than two UAVs can

be integrated into the algorithm especially when a larger area or border line is under consideration.

Within the algorithm’s implementation, a restriction placed on UAVs that they cannot cross-over

can be removed. This will increase the flexibility during operation and probably result in better

response time to alerts.
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APPENDIX A

CODE SNIPPETS INVOLVING DECISION MAKING

A.1 Calculating Estimated Site Gain

/**

* @Description Estimate the gain of each site for a given time stamp

* (recorded in the original probability distribution file)

*/

public void calculateEstimatedSiteGain() {

/*

* First, read and store intelligence data of each site. Note, that

* there would be only one valid "intelligence data" group as this data

* is considered to be almost constant throughout the process.

*/

if (uvPropertiesObject.getSiteProbabDistrMap().size() != uvPropertiesObject

.getSiteIntelligenceDataMap().size()) {

System.out

.println("ERROR: The length of probability distribution site entries "

" and intelligence data site entries do not match!!!!");

System.out

.println("No updating of probability with intelligence data will be done.");

System.out.println("*************************************");

uvPropertiesObject

.setSiteIntDataBasedProbabDistMap(uvPropertiesObject

.getSiteProbabDistrMap());

} else {

// Update the probability distribution with intelligence data
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updateProbabDistrWithIntelligenceData();

}

uvPropertiesObject.getSiteTimeStampedDataMap().put(

uvPropertiesObject.getCurrentTimestamp(),

uvPropertiesObject.getSiteIntDataBasedProbabDistMap());

// WRITE TO FILE HERE

writeSiteDataToFile("SiteGroundTruth.txt");

/*

* Now, calculate the Gain for each site for all the sites. Perform

* following operations for each site.

*/

// probability * intelligence data map with event class as key

Map<String, Double> updatedProbabDataMap = new LinkedHashMap<>();

// Map that temporarily stores the site gains

Hashtable<Integer, Double> siteGainMap = new Hashtable<>();

// First and second dimension values for the gain matrix array

int firstDim = 0; // rows within the array

int secondDim = 0; // columns within each row of the array

// partial gain value that gets added up to total gain for each site

double partialGainValue = 0.0;

for (Entry<Integer, Map<String, Double>> entry : uvPropertiesObject

.getSiteIntDataBasedProbabDistMap().entrySet()) {

siteId = entry.getKey();

updatedProbabDataMap = entry.getValue();

/*

* For each site, go through each row of the gain matrix array and

* multiply each column/event class in the row with the updated

* probability distribution for the event class.

*/
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for (@SuppressWarnings("unused")

double[] val : uvPropertiesObject.getGainMatrix()) {

for (Entry<String, Double> updatedProbabEntry : updatedProbabDataMap

.entrySet()) {

// express probability in percentage: divide by 100

partialGainValue += (updatedProbabEntry.getValue() / 100)

* uvPropertiesObject.getGainMatrix()[firstDim][secondDim];

secondDim += 1;

}

firstDim += 1;

// reset secondDim for the next row

secondDim = 0;

}

/*

* We average the partialGainValue by dividing it by the number of

* rows in the gain-matrix. The number of rows = number of events in

* the eventClass i.e. {N,S,L,H,V} for this case.

*/

siteGainMap.put(siteId, partialGainValue

/ uvPropertiesObject.getEventClassWeightMap().size());

// Reset first dim for a new site

firstDim = 0;

// Reset partial gain for a new site

partialGainValue = 0.0;

}

uvPropertiesObject.setSiteGainMap(siteGainMap);

System.out.println("estimated sitegain for time stamp: "

+ uvPropertiesObject.getCurrentTimestamp() + " is:\n"

+ new TreeMap<>(uvPropertiesObject.getSiteGainMap()));

}
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A.2 Calculating Site Utility and Applying MEU Principle

/**

*

* @Description Estimate the utility for a given time stamp (recorded in the

* original probability distribution file)

* @return PropertiesClass object with the maps for site gain and site

* utility set to values

*/

public PropertiesClass calculateSiteUtility() {

// First calculate Gain for each site

calculateEstimatedSiteGain();

/*

* Next, calculate the utility for each site...........................

* Cost for a site = the maximum value of the gains of all sites other

* than this site

*/

Double cost = 0.0;

Double utility = 0.0;

for (Entry<Integer, Double> siteEntry : uvPropertiesObject

.getSiteGainMap().entrySet()) {

/*

* Following loop determines the maximum of the gains of all sites

* other than the current site i.e determines the cost for current

* site

*/

for (Entry<Integer, Double> duplicateSiteEntry : uvPropertiesObject

.getSiteGainMap().entrySet()) {

if (siteEntry.getKey() == duplicateSiteEntry.getKey())

continue;

// cost += duplicateSiteEntry.getValue();

if (cost < duplicateSiteEntry.getValue()) {

cost = duplicateSiteEntry.getValue();

}
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}

uvPropertiesObject.getSiteCostMap().put(siteEntry.getKey(), cost);

// Utility (of a site) = gain (of that site) - cost(of the same site)

utility = siteEntry.getValue() - cost;

uvPropertiesObject.getSiteUtilityMap().put(siteEntry.getKey(),

utility);

// Reset cost for next loop

cost = 0.0;

}

System.out.println("Utility values for time stamp:"

+ uvPropertiesObject.getCurrentTimestamp() + " is \n"

+ new TreeMap<>(uvPropertiesObject.getSiteUtilityMap()));

// Using MEU (Maximizing Expected Utility) principle select the site

// with maximum utility

Integer selectedSiteA = -1;

double maxUtility = ConstantsClasss.negativeInfinity;

Integer selectedSiteB = -1;

double secondMaxUtility = ConstantsClasss.negativeInfinity;

System.out.println("Applying MEU principle for time stamp: "

+ uvPropertiesObject.getCurrentTimestamp());

// Following is an algorithm to determine 1st and 2nd maximum utility values.

for (Entry<Integer, Double> utilityEntry : uvPropertiesObject

.getSiteUtilityMap().entrySet()) {

if (maxUtility < utilityEntry.getValue()) {

// Just swap values

selectedSiteB = selectedSiteA;

secondMaxUtility = maxUtility;
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selectedSiteA = utilityEntry.getKey();

maxUtility = utilityEntry.getValue();

} else if (secondMaxUtility < utilityEntry.getValue()) {

selectedSiteB = utilityEntry.getKey();

secondMaxUtility = utilityEntry.getValue();

}

}

// set first maximum and second maximum sites

uvPropertiesObject.getMaxUtilitySite().setKey(selectedSiteA);

uvPropertiesObject.getMaxUtilitySite().setValue(maxUtility);

uvPropertiesObject.getSecondMaxUtilitySite().setKey(selectedSiteB);

uvPropertiesObject.getSecondMaxUtilitySite().setValue(secondMaxUtility);

System.out.println("The sites with active alerts are site: "

+ selectedSiteA + " with utility value: " + maxUtility

+ " and site: " + selectedSiteB + " with utility value: " + secondMaxUtility);

// We have used dynamic code to check for which UAV here

whatUAV();

return uvPropertiesObject;

}

A.3 Calculating Next Location for UAVs

/**

* @Description determine which UAV goes to which of the two active alert

* sites during the current time stamp. Also, update the

* properties of all UAVs.

* @Notes (i): For each UAV, out of all active alert sites, the one which is

* closer to a particular UAV’s initial position/Site is chosen for

* loitering/servicing

* @Notes (ii): (i) ensures no UAV crosses-over another UAV. The property is
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* somewhat similar to suspending an "elastic" object from a fixed

* point.

* @Notes (iii): The order of choices {UAV1 chooses new site before UAV2 or

* vice-versa} does not make a difference to the final results.

*/

private void whatUAV() {

/*

* Distance in terms of difference between site IDs of UAV1’s current

* site and one of the site, say Site A, which has an active alert.

*/

Integer uav1ToAlertActiveSite1 = -1;

/*

* Distance in terms of difference between site IDs of UAV1’s current

* site and other of the site, say Site B, which has an active alert.

*/

Integer uav1ToAlertActiveSite2 = -1;

/*

* Find the site of alert, one which would be closer to the initial

* location of UAV1. Similar logic can be implemented for UAV2 with no

* difference in result.

*/

UAVClass uav1 = this.localUAVVector.get(0);

UAVClass uav2 = this.localUAVVector.get(1);

uav1ToAlertActiveSite1 = Math.abs(uav1.getUavInitialSiteID()

- uvPropertiesObject.getMaxUtilitySite().getKey());

uav1ToAlertActiveSite2 = Math.abs(uav1.getUavInitialSiteID()

- uvPropertiesObject.getSecondMaxUtilitySite().getKey());

// Set previous sites before

uav1.setUavPreviousSiteID(uav1.getUavCurrentSiteID());

uav2.setUavPreviousSiteID(uav2.getUavCurrentSiteID());
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// find which of the active alert site is closer to uav1

if (uav1ToAlertActiveSite1 < uav1ToAlertActiveSite2) {

uav1.setUavCurrentSiteID(uvPropertiesObject.getMaxUtilitySite()

.getKey());

uav2.setUavCurrentSiteID(uvPropertiesObject

.getSecondMaxUtilitySite().getKey());

} else {

uav1.setUavCurrentSiteID(uvPropertiesObject

.getSecondMaxUtilitySite().getKey());

uav2.setUavCurrentSiteID(uvPropertiesObject.getMaxUtilitySite()

.getKey());

}

System.out

.println("*******************************************************************");

// Graphics code

// How many stations does UAV1 transcend in this Time-stamp

int uav1DeltaIndex = uav1.getUavCurrentSiteID() - uav1.getUavPreviousSiteID();

// How many stations does UAV2 transcend in this Time-stamp

int uav2DeltaIndex = uav2.getUavCurrentSiteID() - uav2.getUavPreviousSiteID();

DrawingUtils drawing = DrawingUtils.getDrawingUtils();

drawing.setCurrentTimestamp(uvPropertiesObject.getCurrentTimestamp());

/*

* In graphics, the sites are indexed starting from 0 rather than 1

* (used in mainPackage). Hence, the subtraction by 1.

*/

drawing.markActiveSites(uav1.getUavCurrentSiteID() - 1,
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uav2.getUavCurrentSiteID() - 1);

drawing.moveUAVs(uav1.getUavCurrentSiteID() - 1, uav1DeltaIndex,

uav2.getUavCurrentSiteID() - 1, uav2DeltaIndex);

// EO Graphics code ///////////

System.out.println(uav1.toString() + " goes to Site: "

+ uav1.getUavCurrentSiteID() + " for monitoring!!!");

System.out.print("Estimated GAIN of moving to Site: " + uav1.getUavCurrentSiteID()

+ " for time stamp: "+ uvPropertiesObject.getCurrentTimestamp() + " is: "

+ uvPropertiesObject.getSiteGainMap().get(uav1.getUavCurrentSiteID()));

System.out.println(", Estimated COST of moving to Site: " + uav1.getUavCurrentSiteID()

+ " for time stamp: " + uvPropertiesObject.getCurrentTimestamp() + " is: "

+ uvPropertiesObject.getSiteCostMap().get(uav1.getUavCurrentSiteID()));

System.out.println(uav2.toString() + " goes to Site: "

+ uav2.getUavCurrentSiteID() + " for monitoring!!!");

System.out.print("Estimated GAIN of moving to Site: "

+ uav2.getUavCurrentSiteID() + " for time stamp: "

+ uvPropertiesObject.getCurrentTimestamp() + " is: "

+ uvPropertiesObject.getSiteGainMap().get(uav2.getUavCurrentSiteID()));

System.out.println(", Estimated COST of moving to Site: "

+ uav2.getUavCurrentSiteID() + " for time stamp: "

+ uvPropertiesObject.getCurrentTimestamp() + " is: "

+ uvPropertiesObject.getSiteCostMap().get(uav2.getUavCurrentSiteID()));

}
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APPENDIX B

CODE SNIPPET INVOLVING GRAPHICS DISPLAY

/**

* @Description initialize the panel with border lines and UAVs

*/

public void initializeDrawingPanel(int noOfSites) {

this.totalNoOfSites = noOfSites;

width = getWidth(); // width (length for our purpose) of the JFrame

height = getHeight(); // height of the JFrame

// left-most points of the borderLine/border

startX = (int) (width * 0.1);

startY = (int) (height * 0.4);

// border length is 80% of JFrame length

borderLength = (int) (width * 0.8);

// spacing between two stations

spacing = (int) ((borderLength - AlertStationSprite.WIDTH * noOfSites)

/ (noOfSites - 1));

// so that the ending of last site is the ending of the border too

borderLength = (int) ((spacing + AlertStationSprite.WIDTH)

* noOfSites - spacing);

borderLine = new BorderLineSprite();

alertStations = new AlertStationSprite[noOfSites];
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legends = new LegendPanel();

legends.setPosition(startX, startY + 40);

timestampPanel = new TimestampPanel();

timestampPanel.setPosition(startX + 400, startY - 80);

timestampPanel.setTimestampValue(this.currentTimestamp);

// Initialize the Alert stations

for (int i = 0; i < noOfSites; i++) {

alertStations[i] = new AlertStationSprite(i + 1);

}

UAVOffset = (int) (AlertStationSprite.WIDTH / 2 - UAVSprite.WIDTH / 2);

// Starting x-coordinate position for UAV1

UAVStartX[0] = startX + UAVOffset;

// Starting x-coordinate position for UAV2

UAVStartX[1] = startX + borderLength - UAVOffset - UAVSprite.WIDTH;

// Starting y-coordinates position for both UAVs is same

UAVStartY = startY - AlertStationSprite.HEIGHT - UAVSprite.HEIGHT;

// Initialize the UAV elements

for (int i = 0; i < uavs.length; i++) {

uavs[i] = new UAVSprite();

// UAV1

if (i % 2 == 0) {

uavs[i].moveTo(UAVStartX[0], UAVStartY);

uavs[i].setColor(Color.GREEN);

}

// UAV2

else {

uavs[i].moveTo(UAVStartX[1], UAVStartY);

uavs[i].setColor(Color.GREEN);

}
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}

try {

Thread.sleep(3000);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

/**

* @param site1, site2

* @Description: mark the active sites for this timestamp

*/

public void markActiveSites(int site1, int site2) {

this.site1 = site1;

this.site2 = site2;

}

@Override

public void paintComponent(Graphics g) {

super.paintComponent(g);

drawGraphics(g);

}

/**

* @param g

* @Description delegates drawing of sites, border and UAVs to other method

*/

private void drawGraphics(Graphics g) {

Graphics2D g2 = (Graphics2D) g;

g2 = setupRendering(g2);

if (totalNoOfSites > 0) {

drawBorderAndSitesAndUAVs(g2);
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}

}

/**

* @param g2

* @Description Draw the border line, alert sites, legends and UAVs on the

* Graphics panel

*/

private void drawBorderAndSitesAndUAVs(Graphics2D g2) {

// Border Line

borderLine

.paint(startX, startY, borderLength, (int) (height * 0.1), g2);

legends.paint(g2);

// Time stamp Panel

timestampPanel.setTimestampValue(this.currentTimestamp);

timestampPanel.paint(g2);

// Alert stations. Set the color of Alert stations. RED=ACTIVE, BLUE=PASSIVE

Color color;

for (int i = 0; i < totalNoOfSites; i++) {

if (i == site1 || i == site2) {

color = Color.RED;

} else {

color = Color.BLUE;

}

alertStations[i].paint(startX

+ (spacing + AlertStationSprite.WIDTH) * i, startY

- AlertStationSprite.HEIGHT, color, g2);

}

// Draw the UAVs

for (int i = 0; i < uavs.length; i++) {

uavs[i].paint(g2);
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}

}

/**

* @param uav1Index: new position/site of uav1

* @param uav2Index: new position/site of uav2

* @param uav1DeltaIndex: by how much does uav1 move

* @param uav2DeltaIndex: by how much does uav2 move

*/

public void moveUAVs(int uav1Index, int uav1DeltaIndex,

int uav2Index, int uav2DeltaIndex) {

// distance to travel for each "graphical" step

final float distancePerStep = (float) (spacing + AlertStationSprite.WIDTH)

/ (float) STEPS_PER_INDEX;

// time in milliseconds to take for each "graphical" step

int timePerStep = TIME_PER_INDEX / STEPS_PER_INDEX;

// the number of "graphical" steps for uav1

final int uav1Steps = STEPS_PER_INDEX * uav1DeltaIndex;

// the number of "graphical" steps for uav2

final int uav2Steps = STEPS_PER_INDEX * uav2DeltaIndex;

timer = new Timer();

UAVTimerTask uavTimer = new UAVTimerTask();

uavTimer.distancePerStep = distancePerStep;

uavTimer.uav1Steps = Math.abs(uav1Steps);

uavTimer.uav2Steps = Math.abs(uav2Steps);

// if UAV1 changes location/position

if (0 != uav1Steps)

uavTimer.uav1Direction = uav1Steps / Math.abs(uav1Steps);

else

uavTimer.uav1Direction = 0;
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// if UAV2 changes location/position

if (0 != uav2Steps)

uavTimer.uav2Direction = uav2Steps / Math.abs(uav2Steps);

else

uavTimer.uav2Direction = 0;

timer.scheduleAtFixedRate(uavTimer, 0, timePerStep);

}

/**

* @param x

* @Description Move UAV1 to given coordinates

*/

private void moveUAV1To(int x) {

uavs[0].moveTo(x, UAVStartY);

}

/**

* @param x

* @Description Move UAV2 to given coordinates

*/

private void moveUAV2To(int x) {

uavs[1].moveTo(x, UAVStartY);

}

/**

* @Description Update the coordinates of uav1 and uav2 and paint new

* positions of the Graphics Panel

*/

private class UAVTimerTask extends TimerTask {

int count = 0;

int uav1Direction, uav2Direction;

float distancePerStep;
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int uav1Steps, uav2Steps;

@Override

public void run() {

int x1, x2;

if (count < uav1Steps) {

x1 = (int) (distancePerStep * count * uav1Direction);

} else {

x1 = (int) (distancePerStep * uav1Steps * uav1Direction);

}

if (count < uav2Steps) {

x2 = (int) (distancePerStep * count * uav2Direction);

} else {

x2 = (int) (distancePerStep * uav2Steps * uav2Direction);

}

// move/update the coordinates of uav1 and uav2 to new positions

moveUAV1To(UAVStartX[0] + x1);

moveUAV2To(UAVStartX[1] + x2);

// The number of required steps for both uav1 and uav2 is done

if (count > uav1Steps && count > uav2Steps) {

UAVStartX[0] += x1;

UAVStartX[1] += x2;

timer.cancel();

}

// while the timer is running, repaint the Graphics panel

repaint();

count++;

}

}
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