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ABSTRACT 

A Branch and Bound Method for Sum of Completion Permutation Flow Shop  

By 

Swapna Kodimala 

Dr. Wolfgang Bein, Examination Committee Chair 

Professor of Computer Science  

University of Nevada, Las Vegas 

 

We present a new branch and bound algorithm for solving three machine permutation flow shop 

problem where the optimization criterion is the minimization of sum of completion times of all the 

jobs. The permutation flow shop problem (F|| iC ) belongs to the class of NP-hard problems; 

finding the optimal solution is thus expected to be highly computational. For each solution our 

scheme gives an approximation ratio and finds near optimal solutions. Computational results for up to 

20 jobs are given for 3 machine flow shop problem when the objective is minimizing the sum of 

completion times. The thesis also discusses a number of related but easier flow shop problems where 

polynomial optimization algorithms exist. 
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CHAPTER 1 

INTRODUCTION TO SCHEDULING 

1.1 Scheduling 

A scheduling problem can be described as follows.  Given m identical machines Mj (j=1, 2…, m) and 

n jobs Ji (i=1, 2,…n) with processing times.  A schedule is an optimal allocation of jobs to machines 

over time. The scheduling restrictions are a job cannot be processed by more than one machine at a 

time and a machine can process at most one job at a time.   

Gantt charts are used to graphically represent a schedule.  There are two types of Gantt charts, 

namely machine oriented Gantt charts and job-oriented Gantt charts.  In machine oriented Gantt 

charts X-axis represents the time and Y-axis represents the machines.  In job oriented Gantt charts X-

axis represents the time and Y-axis represents the jobs.  Figure 1.1 and Figure 1.2 represent the 

machine oriented and job oriented Gantt chart respectively for 3 machine and 4 jobs problem.  

 

0 1 2 3 4 5 6 7 

M1 J4 J1 J3 

M2 J2  J4  

M3 J1 J3 J2  

 

Figure 1.1 Machine Oriented Gantt Chart 

 

0 1 2 3 4 5 6 7 

J1 M3 M1  

J2 M2  M3  

J3  M3 M1 

J4 M1 M2 

 

Figure 1.2 Job Oriented Gantt Chart 

 

1.1.1 Notations 

According to Peter Brucker
[2]

, the following notations are used to describe a basic scheduling 

problem. 

Ji represents the set of n jobs where i = {1, 2… n}.  Mj represents the set of m machines where 
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 j = {1, 2… m}.  Each job Ji has k number of operations and are denoted as Oi1, Oi2,…, Oik.  Associated 

with each operation is a processing time denoted by pij.  Completion time of operation of job i on 

machine j is denoted as cij.  Completion time of job Ji is the time taken by the job to complete all its 

operations and is denoted by Ci.  In addition each job has a weight wi, deadline di and release time ri.  

A schedule is said to be feasible if no two operations of a job are processed at the same time and a 

machine can process at most one job at a time.  A schedule is said to be optimal if it minimizes the 

optimality criteria. 

1.2 Classes of Scheduling 

Scheduling problems are defined by a three field notation α|β|γ [2] where  

α describes machine environment 

β describes job characteristics and 

γ specifies optimality criteria 

1.2.1 Machine Environment (α) 

The machine environment is described by the string α = α1α2 where α1   {o, P, Q, R, PMPM, QMPM, 

G, J, O, F, X} and α2 specifies number of machines.  

Case 1: If α1   {o, P, Q, R, PMPM, QMPM} each job Ji consists of a single operation. 

α1   o Single machine 

o represents the empty symbol.  When α1 = o, α = α2 and here only single machine is available for 

processing the jobs. 

α1   P Identical parallel machines 

There are m parallel machines with identical speeds available for processing the jobs.  The processing 

time pij of job Ji on machine Mj is, pij = pi. 

α1   Q Uniform parallel machines 

For processing the jobs there are m parallel machines available with each machine having an 

individual processing speed sj.  The processing time pij of job Ji on machine Mj is, pij = pi / sj. 

α1   R Unrelated parallel machines 

For processing the jobs there are m parallel machines available with each machine having an 

individual processing speed sij.  The processing time pij of job Ji on machine Mj is, pij = pi / sij. 
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α1   PMPM  or QMPM  

If α1 = PMPM or QMPM then they are multi-purpose machines with identical speeds and uniform 

speeds respectively. 

Case 2: If α1   {G, J, O, F, X} then each job Ji is associated with a set of operations {Oi1, Oi2,…,Oik}  

and each operation must be processed on a dedicated machine. 

α1   G General shop 

In general shop there is precedence relation between the operations.  

α1   J Job shop 

Job shop is a special case of general shop.  In job shop each job has a predetermined route and the 

precedence relation between the operations is of the form Oi1 → Oi2 → ……Oik.  Thus for the job 

shop problem, for each machine j we need to find a job order. 

α1   F Flow shop 

In flow shop each job Ji consists of m operations Oi1,Oi2,…Oim  and the j
th

 operation of job i has to be 

processed on machine j for pij time units.  The precedence relation between the operations is, a job 

can start processing on machine j, only after completing its operation on machine (j-1).  Here all the 

jobs follow the same machine order M1 → M2 →……Mm.  Thus for the flow shop problem we need 

to find the job order for each machine.  If all the machines follow the same job order then is called 

permutation flow shop.   For permutation flow shop we use the notation F –perm. 

α1   O Open shop 

In open shop each job Ji consists of m operations Oi1, Oi2,…, Oim  and the j
th

 operation of job i has to 

be processed on machine j for pij time units.  There are no precedence relations between the 

operations.  Thus in case of open shop we need to find both the job as well as machine orders.  

α1   X Mixed shop 

Mixed job is the combination of job shop and open shop. 
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Symbol Description 

1 Single machine 

P Identical parallel machine 

Q Uniform parallel machine 

R Unrelated parallel machine 

PMPM Multi-purpose machine with identical speeds 

QMPM Multi-purpose machine with uniform speeds 

G General shop problem 

J Job shop  

O Open shop  

F Flow shop  

X Mixed shop  

 

Table 1.1 Notations for Machine Environment (α) 

 

1.2.2 Job Characteristics (β) 

Job characteristics are specified by the set β   {β1, β2, β3, β4, β5, β6}[2]. 

β1    pmtn Preemption 

Preemption means that the processing of the jobs can be interrupted and can be resumed later even on 

other machine.  If β1 = pmtn then preemption is allowed, otherwise preemptions are not allowed. 

β2   prec Precedence constraints 

Job Jj cannot start processing until the job Ji has completed.   This constraint on jobs is specified 

using precedence constraints.  Precedence constraints are given by graph G = (V, A) where each 

vertex corresponds to a job and each arc represents a precedence constraint.   Chains, intree, outree, 

sp-graph gives restricted precedence constraint between the jobs.  We set β2 = chains if each node has 

atmost one predecessor and one successor.  We set β2 = intree if each node has atmost one successor 

and β2 = outree if each node has atmost one predecessor. 

 According to Peter Brucker
[2]

, A graph G = (V, A) is called a series parallel graph if it consists of 

a single vertex or if it is formed by the parallel combination of two graphs G1 = (V1, A1) and  

G2 = (V2, A2) such that G = (V1 ∪ V2, A1 ∪ A2) or by the series combination of two graphs  
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G1 = (V1, A1) and G2 = (V2, A2) such that G = (V1 ∪ V2, A1 ∪ A2 ∪ T1 × S2).  Here T1 is set of 

sinks in graph G1 and S2 is set of sources in graph G2.  We set β2 = sp-graph if the given graph is a 

series parallel graph. 

β3    ri Release dates 

Release dates specifies the time when the first operation of the job Ji is available for processing.  If 

each job is associated with a release time then it is specified by β3 = ri [3]. 

β4    pij Processing times 

If there are restrictions on the processing times of the jobs then we represent it using β4.  If  

β4 = pij = 1 then the processing times of all the jobs is 1.  If β4 = pij = p then the processing times of 

all the jobs is equal to p. 

β5   di Deadlines 

Deadline is the time by which the job Ji has to complete its execution.  If the jobs are subjected to 

deadline constraint then it is specified by β5 = di. 

 Β6    {s-batch, p-batch} Batch processing 

In batch problems the jobs are grouped together and are scheduled.  There are two types of batches 

namely s-batch and p-batch.  The completion time of jobs in the batch is equal to finishing time of the 

batch.  In s-batch the finishing time of the batch is the sum of processing times of all the jobs in the 

batch and in p-batch, the finishing time of the batch is maximum of processing times of jobs. 

1.2.3 Optimality Criteria (γ) 

According to Peter Brucker
[2]

, the third field refers to optimality criteria.  A schedule is said to be 

optimal if it minimizes the objective function.  cij denotes the completion time of operation of job i on 

machine j.   

Ci denotes completion time of job Ji.  Completion time of a job is the time at which the job 

completes its processing and exits the system.  The commonly used objectives are to minimize the 

makespan or the sum of the completion times of the jobs.   

Makespan (Cmax) 

Makespan is the maximum of the completion times of all the jobs.  It is represented as Cmax. 

Cmax = max {Ci, i = 1,2,…,n} 
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Sum of Completion Time ( iC ) 

Sum of completion time is the summation of the completion times of all the jobs. 

 iC = 


n

i
iC

1

 

Lateness (Li) 

Lateness is the difference between the completion time of a job and its due date.  It is used to 

determine whether a job is completed before or after its due date.  If lateness is positive implies a job 

is completed after the due date and is called tardiness.  If lateness is negative, it is earliness and 

implies that the job is competed before the due date [3]. 

Li = Ci - di 

Tardiness (Ti) 

Tardiness occurs if the job Ji is completed after its deadline.  It is given as, 

Ti = max {0, Ci - di} 

Earliness (Ei) 

Earliness occurs if the job Ji is completed before its deadline.  It is given as, 

Ei = max {0, di - Ci} 

Unit Penalty (Ui) 

If a job Ji is completed after the deadline, then a penalty of one unit is imposed on the job.   

Ui = {
otherwise

dC ii

1

0 
 

Absolute Deviation (Di) 

Di = |Ci − di| 

Squared Deviation (Si) 

Si = (Ci − di) 
2
 

1.3 Disjunctive Graph Model 

Disjunctive graph depicts all the feasible solutions of the shop problems.  The feasible solution set 

always contains the optimal solution.  Therefore disjunctive graph model can be used to find the 

optimal solution.  According to Peter Brucker
[2]

, for a disjunctive graph G (V, C, D) 
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V Set of vertices 

V is the set of vertices containing the operations of all jobs.  In addition to these vertices, it also 

contains a source (0) and a sink (*) vertex.  Weight of source and sink are zero while the weights of 

all the other nodes are there corresponding processing times. 

C Set of conjunctive arcs 

C is the conjunctive arc set representing the precedence constraint between the operations.  

Additionally conjunctive arcs are drawn between source and all operations without a predecessor and 

between sink and all operations without a successor.  

D Set of disjunctive arcs 

Disjunctive arcs are drawn between pair of operations belonging to the same job which are not 

connected by conjunctive arcs and between pair of operations which are to be processed on the same 

machine and which are not connected by conjunctive arcs.  
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CHAPTER 2 

FLOW SHOP SCHEDULING 

2.1 Flow Shop Problem 

A flow shop problem is defined as follows.  There are n jobs Ji (J1, J2, J3,….,Jn) and m machines Mj 

(M1,M2,M3,….Mm).  Each job Ji consists of m operations Oi1,Oi2,…Oim  and the j
th

 operation of job i 

has to be processed on machine j for pij time units.  

The precedence relation between the operations is, a job can start processing on machine j, only 

after completing its operation on machine (j-1) [5].  No two operations of a job are processed at the 

same time and a machine can process at most one job at a time.  In flow shop all the jobs follow the 

same machine order M1 → M2 → ……Mm but the job order for each machine differs.  The common 

objectives are to minimize the makespan or the sum of the completion times of the jobs.  Thus for the 

flow shop problem, for each machine j we need to find a job order.   In case of n-job m-machine flow 

shop problem there exists (n!)
m
 schedules and finding an optimal schedule in that case is likely hard.  

Therefore we restrict our attention to permutation schedules. 

Example for Flow Shop Problem 

 

Job i M1 M2 M3 

J1 1 2 3 

J2 2 3 4 

J3 2 3 5 

 

Table 2.1 Example to Illustrate Flow Shop Problem 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

M1 J1 J2 J3  

M2  J2 J1 J3  

M3  J1 J2 J3 

 

Figure 2.1 Gantt Chart for Flow Shop problem 
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2.2 Permutation Flow Shop 

Permutation flow shop is a special case of flow shop problem with an additional constraint that 

the job sequence is same on all the machines.  With this constraint the number of sequences reduces 

to (n!).   

Example for Permutation Flow Shop Scheduling Problem 

  

Job i pi1 pi2 

J1 5 2 

J2 1 6 

 

Table 2.2 Example to Illustrate Permutation Flow Shop Problem 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

M1 J1 J2  

M1  J1  J2 

 

Figure 2.2 Gantt Chart for Permutation Flow Shop Problem 

 

2.2.1 F2||Cmax and F2||∑Ci 

According to Peter Brucker
[2]

, “For the F2||Cmax and F2||∑Ci problem there exists an optimal schedule 

in which both the machines process the jobs in the same order”.  

Proof:  Assume an optimal schedule with the same order for first k jobs on both machines and k<n.  

Let i be the k
th

 job, and let j be the job immediately after job i on machine 2.  

Then we have the optimal schedule as follows: 

 

M1 1 2     i e    h j     

M2  1 2       i  j    

 

Figure 2.3 Schedule Representing Same Job Order for First k Jobs 
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If we reschedule job j to the position immediately after job i on machine 1 and move all jobs 

scheduled between job i and job j by pj1 time units to the right, (we can do this without increasing the 

completion time of any job on machine 2) we get another optimal schedule[1].  We can continue this 

pairwise switching of jobs on the machine 1 until the job order of machine 1 matches with machine 2 

[6].  Thus for the F2||Cmax and F2||∑Ci problem there exists an optimal schedule in which both the 

machines process the jobs in the same order.  

2.2.2 Fm||Cmax  

According to Lemma 6.8 
[2]

, “For problem Fm||Cmax optimal schedule exists with the following 

properties: 

(i) The job sequence on the first two machines is the same. 

(ii) The job sequence on the last two machines is the same. 

For two or three machines, the optimal solution of the flow shop problem is not better than that of the 

corresponding permutation flow shop. This is not the case if there are more than three machines”. 

Proof: The proof of (i) is similar to F2||Cmax. 

In case of (ii), from [1], if the job order differs on last two machines; reschedule the jobs on machine 

m so that it matches with the order on machine m-1. We continue this pairwise switching of jobs on 

the machine m until the job order of machine m and machine m-1 is identical.  Therefore when  

m ≥ 3 the number of sequences reduces from (n!)
m
 to (n!). 

But when m ≥ 3 the above property is not true for the sum of completion time of all jobs, Fm||∑Ci 

Example: 

 

Job i pi1 pi1 pi1 

J1 4 1 1 

J2 1 4 1 

 

Table 2.3 Example to show same job order for Fm||∑Ci does not hold for m ≥ 3 
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 1 2 3 4 5 6 7 8 9 10 11 12 

M1 J2 J1  

M2  J2 J1  

M3  J2 J1  

For same job order J2-J1 ∑Ci = C1+C2 = 9 + 10 =19 

Figure 2.4 Schedule with same job order on last 2-machines 

 

 1 2 3 4 5 6 7 8 9 10 11 12 

M1 J2 J1  

M2  J2 J1  

M3  J1 J2  

For different job order ∑Ci = C1+C2 = 7 + 11 =18 

Figure 2.5 Schedule with different job order on last 2-machines 

 

From Figure 2.4 and Figure 2.5 we see that, if we follow a different job order on the machine 3, 

we get another schedule where ∑Ci = C1 + C2 = 7 + 11 =18.  Therefore the above example makes the 

point that, when m ≥ 3 property (ii) does not hold for the total completion time, Fm||∑Ci. 

2.3 Johnson’s Algorithm for F2||Cmax Problem 

According to Peter Brucker 
[2]

, Johnson’s algorithm finds the optimal schedule for F2||Cmax problem.  

The algorithm uses the same job order on both the machines.  It constructs two lists L and R, where 

list L contains jobs such that pi1< pi2 and list R contains jobs such that pi1>pi2.  The optimal schedule 

is constructed by concatenating T = L and R [6].  

From the list of unscheduled jobs identify the job with the smallest processing time.  If the job 

with smallest processing time involves machine 1, then concatenate the job at the end of the list L. 

If the job with the smallest processing time involves machine 2 concatenate the job at the beginning 

of the list R.  Then delete the job from the list.  This process continues on until all jobs have been 

scheduled.  Final schedule is obtained by combining the lists L and R.   
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Algorithm 2.1 Johnson’s Algorithm 

1. Let S = {1, 2… n} be the list of unscheduled jobs.  Let L, R denote two other lists 

2. Find the job i with minimum processing time i.e pij 

3. If j = 1, concatenate job i at the end of list L 

4. Else concatenate job i at the beginning of list R 

5. Remove the job i from the list S. 

6. If there is an unscheduled job GO TO step 1 

7. Else concatenate L and R 

 

Example for F2||Cmax : 

To explain Johnson’s algorithm the following 5 jobs and 2 machines problem has been used.  

 

Job i pi1 pi2 

J1 4 5 

J2 1 6 

J3 9 1 

J4 8 1 

J5 5 6 

 

Table 2.4 Example to Demonstrate Johnson’s F2||Cmax Problem   

 

Let S = {1, 2… n}, L = { }, R = { }  

 

 

 

 

 

 

Table 2.5 Execution Steps for Johnson’s F2||Cmax problem  

 

Min pij Machine j List L List R Set of job’s S 

p21 j=1 {2} { } {1,3,4,5} 

P32 j=2 {2} {3} {1,4,5} 

P42 j=2 {2} {4,3} {1,5} 

P11 j=1 {2,1} {4,3} {5} 

P51 j=1 {2,1,5} {4,3} { } 
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Disjunctive Graph for F2||Cmax  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Disjunctive Graph for F2||Cmax 

 

Therefore using Johnson’s algorithm the optimal sequence is, T = {J2, J1, J5, J4, J3} 

 1    5  7   10  12      18 19        27 28 

M1 J2 J1 J5 J4 J3  

M2  J2 J1 J5 J4  J3 

T=J2, J1, J5, J4, J3 

Cmax=28 

Figure 2.7 Optimal Schedule for Johnson’s F2||Cmax Problem   
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Disjunctive Graph of Optimal Solution for F2||Cmax  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Disjunctive Graph for Optimal Solution for F2||Cmax 

 

Lemma 2.3.1 

According to Lemma 6.9 
[2]

, to solve F2||Cmax problem Johnson proposed a rule called Johnson’s 

rule.  If T is the list constructed by the algorithm then, for any two jobs Ji and Jj if  

min {ai ,bj} < min{aj ,bi} then job Ji is scheduled earlier than job Jj in the list T.   

Proof:  

Case 1:  

If ai is min, ai < min{aj,bi} then ai < bi implies Job Ji belongs to list L.  If job Jj is added to list R 

we are done.  Otherwise if Job Jj goes into L, it appears after Ji because ai < aj. 

Case 2:  

If bj is min, bj <min{aj,bi} then bj < bi implies Job Jj belongs to list R.  If job Ji is added to list L 

we are done.  Otherwise if Job Ji goes into R, it appears before Jj because bi > bj. 

 

0 O31 
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O41 

O51 

O32 

O22 

O42 

O52 

* 

O12 O11 
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Lemma 2.3.2 

According to Lemma 6.10 
[2]

, Consider a schedule in which job j is scheduled immediately after job i, 

then 

min{ pj1, pi2} ≤ min{pi1, pj2} 

implies that i and j can be swapped without increasing the Cmax value. 

Proof:  

If j is scheduled immediately after i, then we have three possible cases as shown in figure.  Let wij be 

the length of the time period from the start of job i to the finishing time of job j.  Then, 

Case 1:  

 

Figure 2.9 Case (a) if j is scheduled immediately after i 

 

For case 1, wij = max{ pi1 + pj1 + pj2} 

Case 2:  

 

Figure 2.10 Case (b) if j is scheduled immediately after i 

 

For case 2, wij = max{ pi1 + pi2 + pj2} 
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Case 3: wij = max{x + pi2 + pj2} 

 

 

Figure 2.11 Case(c) if j is scheduled immediately after i 

 

For case 3, wij = max{x + pi2 + pj2} 

From case 1, case 2 and case 3, the possible wij is, 

wij = max{ pi1 + pj1 + pj2, pi1 + pi2 + pj2, x + pi2 + pj2} 

= max {pj1 + pi2 + max {pi1, pj2}, x + pi2 + pj2} 

Similarly wji = max {pi1 + pj2 + max {pj1, pi2}, x + pj2 + pi2}, if i is scheduled immediately after j 

According to Lemma 6.10 
[2]

, we see that  

min{ pj1, pi2} ≤ min{pi1, pj2} can be written as, 

max{-pi1,-pj2} ≤  max{-pj1,-pi2} 

Adding pi1, pi2, pj1, pj2 to both sides of the above inequality we get, 

pi1 + pj2 + max{-pi1,-pj2} + pi2 + pj1 ≤  pj1 + pi2 + max{-pj1,-pi2}+ pi1 + pj2 

= max{ pi1, pj2} + pi2 + pj1 ≤  max{ pj1, pi2}+ pi1 + pj2 

= wji ≤ wij 

As, wji ≤ wij implies that we can swap i and j without increasing Cmax value. 

Theorem 2.3.3 

According to Theorem 6.11 
[2]

, the list L: L(1), L(2)…,L(n) constructed by the Johnson’s algorithm 

for F2||Cmax problem is optimal 

Proof: 

To prove the above theorem we use the Lemma 2.3.1 and Lemma 2.3.2 

Assume that the list L constructed by the Johnson’s algorithm was not optimal.  Let us consider then, 

an optimal solution S such that, S matches with L as much as possible in the following way [2]: 
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L(v) = S(v) for v = 1, 2, 3,…,(s-1). 

Let L(s) = i and S(s) = j.  In S, i is not an immediate successor of j.  Let the job k be schedule between 

job j and job i.  Thus we have, 

L: L(1), L(2),…,L(s-1), i, k, j and S: S(1), S(2),…,S(s-1), j, k, i 

Here all we have to show is that we can swap k and i without increasing Cmax value of S.  We need to 

continue swapping until S matches with L, then we can say that the list L constructed by Johnson’s 

algorithm is optimal. 

Since k is not before i in L, using the Lemma 2.3.1 we say that, 

min{ pk1, pi2} ≥ min{pi1, pk2} 

Now applying the lemma 2.3.2 to S, we can swap k and i without increasing the Cmax value.  We 

continue swapping in S until, S matches with L.  Thus the list L constructed by Johnson’s algorithm is 

optimal. 

2.4 Johnson’s Algorithm for F2||∑Ci Problem 

Johnson’s algorithm gives arbitrarily bad solution for F2||∑Ci problem.  From [5], for example let us 

consider a two machine flow shop problem with n jobs.  The value ϵ is considered very small and 

value k is very large.  

 

Job i pi1 pi2 

J1 ϵ ϵ 

J2 ϵ ϵ 

J3 ϵ ϵ 

⁞   

   

Jn ϵ/2 k 

 

Table 2.6 Example to Show Johnson’s Algorithm is bad for F2||∑Ci Problem 

 

Johnson’s algorithm schedules the n
th

 job first, followed by jobs J1, J2…, Jn. 
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M1 n J1 J2 J3 J4 J5 J6    
n-

1 
 

M2  k J1 J2 J3       
n-

1 

Figure 2.12 Schedule for F2||∑Ci based on Johnsons Algorithm 

  

∑Ci = C1+C2+C3+…….Cn-1+Cn 

= ( ϵ/2+k)+( ϵ/2+k+ϵ)+( ϵ/2+k+2ϵ)+……………+( ϵ/2+k+(n-1)ϵ) 

= n(ϵ/2)+nk+(n(n-1)ϵ)/2 

= nk+ϵ/2(n+n(n-1)) 

Therefore the solution constructed by this algorithm is arbitrarily bad as n grows. 

The optimal solution for F2||∑Ci problem would schedule the n
th

 job last 

 

M1 J1 J2 J3 J4 J5     
n-

1 
n  

M2  J1 J2 J3 J4      
n-

1 
K 

Figure 2.13 Gantt Chart for Optimal Schedule F2||∑Ci 

 

∑Ci =C1+C2+C3+…….Cn-1+Cn 

  = (ϵ+ϵ)+(ϵ+ϵ+ϵ)+………………nϵ+ (nϵ+ ϵ/2+k) 

 = (n(n+3)-1)( ϵ/2)+k 
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CHAPTER 3 

BRANCH AND BOUND ALGORITHM FOR PERMUTATION FLOW SHOP 

From this chapter we consider only permutation flow shop Fm-perm.  This chapter is organized as 

follows:  In the next section we define the problem statement.  In section 3.2 we present the branch 

and bound algorithm; then in section 3.3 we derive the three possible lower bounds.  In section 3.4 

we introduce the notations used for branch and bound algorithm.  In section 3.5 we illustrate the 

branch and bound algorithm with an example.  In section 3.6 we generalize the branch and bound 

approach when m ≥ 3. 

3.1 Problem Statement  

Given a three machine permutation flow shop scheduling problem F3-perm, and the objective is to 

find a permutation schedule that minimizes the sum of the completion time ∑Ci of all the jobs.  The 

three machine flow shop problem F3 is defined as follows: 

There are n Jobs Ji (J1, J2, J3…Jn) and 3 machines M1, M2, M3.   Each job must be processed on the 

three machines, first on machine M1, then on M2 and then on M3.  The processing times of job i on 

machine j is denoted as pij.  The completion time of job i on machine j is denoted as cij.  The 

completion time of job Ji ; Ci, is the time when its last operation has completed on the last machine  

Ci = Ci3. 

The problem F3-perm||∑Ci belongs to the class of NP-hard and thus finding the optimal solution 

is likely hard. We construct a new branch and bound algorithm for solving it.  Branch and bound 

intelligently enumerates permutations of the schedule.  This algorithm is obviously an exponential 

algorithm, but it performs much better in practice than the complete enumeration.  

3.2 Using Branch and Bound Algorithm 

Given a Problem P and all feasible solutions of the problem P are defined by the set S, which is 

called the solution space for that problem.  The problem P is divided into sub problems Si such that  

Si⊆ S [2].  These sub problems are again divided into smaller sub problems.  Thus branching is a 

recursive process and entire solution space is organized as a tree.   

The basic components needed for branch and bound algorithm are: 



 

20 

 

Branching Strategy: Branching strategy divides the solution space S in to smaller and smaller sub 

problems Si (i =1, 2, 3…r) such that S = ⋃   
   i. 

Lower Bounding:  Then we apply an algorithm to calculate the lower bound for each sub problem 

generated in the branching tree. 

Pruning Strategy:  If the lower bound of the sub problem is greater than or equal to upper bound, 

then this sub problem cannot yield a better solution and we stop branching from the corresponding 

node and all other nodes that emerge from it in the branching tree. 

The principle of branch and bound algorithm is to make an implicit search through all feasible 

solutions.  Branch and bound tree starts with an initial root node where no jobs have been scheduled.  

Then we try to branch in this tree by trying to fix each of the jobs as the first job in the sequence.  The 

possible branches are n since there are n jobs.  Each of these n nodes emanate in to (n-1) branches as 

there are (n-1) possible jobs that can occupy the second place in the sequence. Thus this is a recursive 

process. 

In branch and bound algorithm, each node represents a partial schedule where k jobs are 

scheduled in fixed order.  Branching from a node consists of taking each of the unallocated jobs in 

turn and placing it next to the partial schedule.  Each of these new partial schedules is then 

represented by a new node.  The lower bound values for each node are then calculated. 

 

 

Figure 3.1 General Branch and Bound Search Tree 
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3.3 Lower Bound Calculation: 

Each node in the search tree contains a set of jobs k that are already scheduled and set of jobs that 

need to be scheduled.  Let Ji  (J1, J2, J3,…,Jn) represents the set of jobs.   Suppose we are at a node at 

which the jobs in the set M ⊆ {1, 2…k} are already scheduled in that order; |M| = r.  Let  

U ⊆ {r+1, r+2,…,n} represents the set of unscheduled jobs.  Sum of the completion times for this 

schedule can be divided into, 





Mi

i
Mi

i CCS  (3.1)            

Computing the second sum is very difficult, therefore we estimate its lower bound based on the 

following assumptions: 

3.3.1 Calculation of LB1: 

1. Every job i ∉ M starts processing on machine 1 without any delay time.  That is, after the first job 

finishes its processing on machine 1, the following job starts immediately without any waiting time.   

LB1 =  
 


n

rk Mi
iiii kkk

pppknp
1

3211 ])1([  

Consider the jobs r+1, r+2…n completes its processing without any delay on machine 1. 

 

M1 1,1 2,1 … r,1 r+1,1 r+2,1 …… k,1 … n,1  

M2  1,2 ……… r+1,2  r+2,2 …… k,2 … n,2  

M3  1,3 …… r+1,3 r+2,3 …… k,3 … n,3 

 

Figure 3.2 Calculation of LB1 

 

LB1 = Cr+1 + Cr+2 + Cr+3 + …………..+ Cn 

32111 111 
 


 rrr iii

Mi
ir ppppC  

321112 2221 
 


 

rrrr iiii
Mi

ir pppppC  

⁞ 

321111 .......
21 kkkrr iiiii

Mi
ik ppppppC 




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⁞ 

3211111 .............
21 nnnkrr iiiiii

Mi
in pppppppC  




  

Therefore, LB1 =  
 


n

rk Mi
iiii kkk

pppknp
1

3211 ])1([  

For LB1 schedule the jobs in U in increasing order of pi1 values. 

3.3.2 Calculation of LB2 : 

2. Every job i ∉ M starts processing on machine 2 without any delay time.  That is, after the first job 

finishes its processing on machine 2, the following job starts immediately without any waiting time.  

The expression }min,max{ 112 i
MiMi

ii ppC
r 

 is a lower bound on the start of first job i ∉M on  

machine 2. 

LB2 =  
  


n

rk
ii

Mi
i

Mi
ii kkr

ppknppC
1

32112 ])1(}min,[max{  

Consider the jobs r+1, r+2…n completes its processing without any delay on machine 2. 

 

M1 1,1 2,1 … r,1 r+1,1 r+2,1 …… k,1 … n,1  

M2  1,2 … r,2  r+1,2 r+2,2 …… k,2 … n,2  

M3  1,3 …… r+1,3 r+2,3 …… k,3 … n,3 

 

Figure 3.2 Calculation of LB2 

 

LB2 = Cr+1 + Cr+2 + Cr+3 + …………..+ Cn 

321121 11
}min,max{
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 
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32222112 ...........}min,max{
21 knkrrr iiiiii
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Therefore, LB2 =  
  


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For LB2 schedule the jobs in U in increasing order of pi2 values. 

3.3.3 Calculation of LB3 : 

3. Every job i ∉ M starts processing on machine 3 without any waiting time.  That is, after the first 

job finishes its processing on machine 3, the following job starts immediately without any waiting 

time.  The expression }min}min,max{  ,max{ 21123 i
Mi

i
MiMi

iii pppCC
rr 

  is a lower bound on the 

start of first job i∉M on machine 3. 

])1(}min}min,max{  ,max{[ 321123
1
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i
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n
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pknpppCCLB 


  

Consider the jobs r+1, r+2…n completes its processing without any delay on machine 3. 

 

M1 1,1 2,1 … r,1 r+1,1 r+2,1 …… k,1 … n,1  

M2  1,2 ……… r,2 r+1,2 r+2,2 …… k,2 … n,2  

M3  1,3 …… r,3  r+1,3 r+2,3 …… k,3 … n,3 

 

Figure 3.3 Calculation of LB3 

LB3 = Cr+1 + Cr+2 + Cr+3 + …………..+ Cn 
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Therefore, ])1(}min}min,max{  ,max{[ 321123
1

3 krr ii
Mi

i
MiMi

iii

n

rk

pknpppCCLB 


  

For LB3 schedule the jobs in U in increasing order of pi3 values. 

Therefore the lower bound is max (LB1, LB2, LB3) 

From (3.1), we obtain,  





Mi

i
Mi

i CCS  

S = 
Mi

iC  max (LB1, LB2, LB3) is the cost of the schedule. 

3.4 Parameters of the Algorithm  

Input 

The input to the algorithm is given in a file, where the first parameter indicates the number of jobs n, 

second parameter indicates the number of machines m.  From the third parameter the processing 

times of jobs follows.  The number in row i and column j is the processing time of job i on machine j.  

Notations 

Following notations are used to implement the algorithm 

 

Notations 

N Number of jobs 

M Number of machines 

Job_arr = {J1, J2, 

J3…Jn} 
Set of jobs 

M ⊆ {1, 2…r} Ordered set of scheduled jobs  

U ⊆ {r+1, r+2,…n} Set of unscheduled jobs 

pij≥0 Processing time of job i on machine j 

cij Completion time of operation of job of  i on machine j 

Ci Completion time of job Ji 

S Sum of the completion time of the schedule 

LB1 Lower bound based on machine 1 

LB2 Lower Bound based on machine 2 

LB3 Lower bound based on machine 3 

 

Table 3.4 Basic Notations for Branch and Bound Algorithm 
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Algorithm 3.1 Branch and Bound 

1. Initialize  Job_arr = {J1, J2, J3…Jn} 

2. Calculate initial upperbound = sum of completion times of initial feasible schedule 

cb_order = initial feasible schedule 

3. sorting_Jobs() 

4. generate_node(fixed_Jobarr, level) 

a. IF level = n (i.e. leaf) then current solution = completion time of the schedule. 

If current solution < upper bound, update upper bound 

b. ELSE 

i. CALCULATE the lowerBound 

ii. IF lowerbound >= upperbound THEN prune the node 

ELSE 

CALL generate_node(fixed_Jobarr, level+1) 

    END IF 

   END IF 

5. Stop 

 

3.5 The Algorithm Illustration 

To evaluate the branch and bound algorithm the following 5 jobs and 3 machines problem has 

been used.  

 

Job i pi1 pi2 pi3 

1 4 1 1 

2 2 3 2 

3 6 5 1 

4 5 1 3 

 

Table 3.5 Example to Demonstrate Branch and Bound 

 



 

26 

 

In the above table, each row represents the job i and each column represents the machine j.  The 

processing time of an operation of job i on machine j is mentioned in each cell and is denoted as pij.  

Our objective is to obtain a permutation schedule that minimizes the sum of completion times of all 

the jobs. 

Step 1: Find initial feasible schedule by arranging the jobs in the increasing order of their sum of 

processing times.  The initial feasible schedule is [1, 2, 4, 3] 

 

Job i Sum of pij 

1 4+1+1 = 6 

2 2+3+2 = 7 

3 6+5+1 = 12 

4 5+1+3 = 9 

 

Table 3.6 Calculating Initial Feasible Schedule 

 

Step 2: Calculate initial upper bound which is sum of completion times of initial feasible schedule.  

For order [1, 2, 4, 3] upper bound (UB) = 


n

i
iC

1

= 6+11+15+23 = 55 

 

Job i ci1 ci2 ci3 

1 4 5 6 

2 6 9 11 

4 11 12 15 

3 17 22 23 

 

Table 3.6 Calculating Initial Upper Bound 

 

Step 3: We now compute the lower bound for each node in the tree.  In tree each node represents a 

partial sequence Sk where jobs in the first k positions are fixed.  C1(k), C2(k), C3(k), be the completion 

times on machine 1, machine 2, machine 3 respectively for the partial sequence. 

Calculating Lower Bound for Partial Sequence [1 * * *] 

Set of scheduled jobs M = {1} and |M| = r = 1 

Set of unscheduled jobs U = {2, 4, 3}.   
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Cost of the schedule S = 
Mi

iC max (LB1, LB2, LB3) 

 

Job i C1 C2 C3 

1 4 5 6 
 

Table 3.8 Calculation of Completion Times for Partial Sequence [1 * * *] 

 

For LB1 from the list of unscheduled jobs U, schedule the jobs in the increasing order of their 

processing times on machine 1.  Sequence of jobs with increasing pi1 values is [2, 4, 3].  Let ik,  

k = 1, 2,…,n be the index of these jobs.  

   

 
Mi

ip 1  
1)1(

ki
pkn   2ki

p  3ki
p  3211 )1(

kkk iii
Mi

i pppknp 


 

k=2 4 3.p21 = 6 p21 = 3 p23 = 2 15 

k=3 4 2.p41 = 10 p41 = 1 p43 = 3 18 

k=4 4 1.p31 = 6 P31 = 5 p33 = 1 16 
 

Table 3.9 Calculation of LB1 for Partial sequence [1 * * *] 

 

LB1 =  
 


n

rk Mi
iiii kkk

pppknp
1

3211 ])1([ = 15+18+16 = 49. 

For LB2 from the list of unscheduled jobs U, schedule the jobs in the increasing order of their 

processing times on machine 2.  Sequence of jobs with increasing pi2 values is [4, 2, 3].  The 

expression, }min,max{ 112 i
MiMi

ii ppC
r 

 = max {5, 4 + p21} = max {5, 4 + 2} = 6 

 

 2)1(
ki

pkn   3ki
p  32112 )1(}min,max{

kkr ii
Mi

i
Mi

ii ppknppC 
 

 

k=2 3.p42 = 3 P43 = 3 12 

k=3 2.p22 = 6 P23 = 2 14 

k=4 1.p32 = 5 p33 = 1 12 

 

Table 3.10 Calculation of LB2 for Partial sequence [1 * * *] 
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LB2 =  
  


n

rk
ii

Mi
i

Mi
ii kkr

ppknppC
1

32112 ])1(}min,[max{  = 12+14+12 = 38 

For LB3 from the list of unscheduled jobs U, schedule the jobs in the increasing order of processing 

times on machine 3.  Sequence of jobs with increasing pi3 values is [3, 2, 4].   The expression, 

}min}min,max{  ,max{ 21123 i
Mi

i
MiMi

iii pppCC
rr 

 = max {6, max {5, 4 + p21} + p42} 

= max {6, max {5, 4 + 2} + 1} = max {6, 6+1} = 7 

 

 3)1(
ki

pkn   321123 )1(}min}min,max{  ,max{
krr ii

Mi
i

MiMi
iii pknpppCC 


  

k=2 3.p33 = 3 10 

k=3 2.p23 = 4 11 

k=4 1.p43 = 3 10 

 

Table 3.11 Calculation of LB3 for Partial sequence [1 * * *] 

 

])1(}min}min,max{  ,max{[ 321123
1

3 krr ii
Mi

i
MiMi

iii

n

rk

pknpppCCLB 


 = 10+11+10 = 31 

LB(1 * * * ) = 
Mi

iC max (LB1, LB2, LB3) = C1 + max( 49, 38, 31) = 6 + 49 =55 

Since lower bound of partial sequence (1 * * *) = 55 ≥ upper bound, prune the node [1***] and all 

the branches that emerge from it. 

Calculating Lower Bound for Partial Sequence [2 * * *] 

Similarly we calculate the lower bound for partial sequence (2 * * *) 

Set of scheduled jobs M = {2} and |M| = r = 1 

Set of unscheduled jobs U = {1, 4, 3}.   

 

Job i C1 C2 C3 

2 2 5 7 
 

Table 3.12 Calculation of Completion Times for Partial sequence [2 * * *] 
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For LB1 from the unscheduled jobs U, schedule the jobs in the increasing order of their processing 

times on machine 1.  Sequence of jobs with increasing pi1 values is [1, 4, 3].   

 

 
Mi

ip 1  
1)1(

ki
pkn   2ki

p  3ki
p  3211 )1(

kkk iii
Mi

i pppknp 


 

k=2 2 3.p11 = 12 P11 = 1 p23 = 1 16 

k=3 2 2.p41 = 10 p41 = 1 p43 = 3 16 

k=4 2 1.p31 = 6 P31 = 5 p33 = 1 14 
 

Table 3.13 Calculation of LB1 for Partial sequence [2 * * *] 

 

LB1 =  
 


n

rk Mi
iiii kkk

pppknp
1

3211 ])1([ = 16+16+14 = 46. 

For LB2 from the list of unscheduled jobs U, schedule the jobs in the increasing order of their 

processing times on machine 2.  Sequence of jobs with increasing pi2 values is [1, 4, 3].  The 

expression, }min,max{ 112 i
MiMi

ii ppC
r 

 = max {5, 2 + p11} = max {5, 2 + 4} =6 

 

 2)1(
ki

pkn   3ki
p  32112 )1(}min,max{

kkr ii
Mi

i
Mi

ii ppknppC 
 

 

k=2 3.p12 = 3 P43 = 1 10 

k=3 2.p42 = 2 P23 = 3 11 

k=4 1.p32 = 5 p33 = 1 12 

 

Table 3.14 Calculation of LB2 for Partial sequence [2 * * *] 

 

LB2 =  
  


n

rk
ii

Mi
i

Mi
ii kkr

ppknppC
1

32112 ])1(}min,[max{  = 10+11+12 = 33 

For LB3 from the list of unscheduled jobs U, schedule the jobs in the increasing order of processing 

times on machine 3.  Sequence of jobs with increasing pi3 values is [1, 3, 4].  The expression, 

}min}min,max{  ,max{ 21123 i
Mi

i
MiMi

iii pppCC
rr 

 = max {7, max {5, 2 + p11} + p12} 

= max {7, max {5, 2 + 4} + 1} = max {7, 6+1} = 7 
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 3)1(
ki

pkn   321123 )1(}min}min,max{  ,max{
krr ii

Mi
i

MiMi
iii pknpppCC 


  

k=2 3.p13 = 3 10 

k=3 2.p33 = 2 9 

k=4 1.p43 = 3 10 

 

Table 3.15 Calculation of LB3 for Partial sequence [2 * * *] 

 

])1(}min}min,max{  ,max{[ 321123
1

3 krr ii
Mi

i
MiMi

iii

n

rk

pknpppCCLB 


 = 10+9+10 = 29 

LB(2 * * * ) = 
Mi

iC max (LB1, LB2, LB3) = C2 + max( 46, 33, 29) = 7 + 46 =53 

Since lower bound of partial sequence (2 * * *) = 53< upper bound, we branch to lower level nodes 

from partial sequence (2 * * *).  Branching from a node consists of taking each of the unallocated 

jobs in turn and placing it next to the partial schedule.  Each of these new partial schedules is then 

represented by a new node. 

Calculating Lower Bound for Partial Sequence [2 1 * *] 

Lower bound for the partial sequence [2 1 * *] is calculated as follows: 

Set of scheduled jobs M = {2, 1} and |M| = r = 2 

Set of unscheduled jobs U = {4, 3}.   

 

Job i C1 C2 C3 

2 2 5 7 

3 6 7 8 
 

Table 3.16 Calculation of Completion Times for Partial sequence [2 1 * *] 

 

For LB1 from the list of unscheduled jobs U, schedule the jobs in the increasing order of their 

processing times on machine 1.  Sequence of jobs with increasing pi1 values is [4, 3].   

 

 



 

31 

 

   
Mi

ip 1  
1)1(

ki
pkn   2ki

p  3ki
p  3211 )1(

kkk iii
Mi

i pppknp 


 

k=3 6 2.p41 = 10 p41 = 1 p43 = 3 20 

k=4 6 1.p31 = 6 P31 = 5 p33 = 1 18 
 

Table 3.17 Calculation of LB1 for Partial sequence [2 1 * *] 

 

LB1 =  
 


n

rk Mi
iiii kkk

pppknp
1

3211 ])1([ = 20+18 = 38 

For LB2 from the list of unscheduled jobs U, schedule the jobs in the increasing order of their 

processing times on machine 2.  Sequence of jobs with increasing pi2 values is [4, 3].  The expression, 

}min,max{ 112 i
MiMi

ii ppC
r 

 = max {7, 6 + p41} = max {5, 6 + 5} = 11 

 

 2)1(
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pkn   3ki
p  32112 )1(}min,max{

kkr ii
Mi

i
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ii ppknppC 
 

 

k=3 2.p42 = 2 P43 = 3 16 

k=4 1.p32 = 5 p33 = 1 17 

 

Table 3.18 Calculation of LB2 for Partial sequence [2 1 * *] 

 

 LB2 =  
  


n

rk
ii

Mi
i

Mi
ii kkr

ppknppC
1

32112 ])1(}min,[max{  = 16+17 = 33 

For LB3 from the list of unscheduled jobs U, schedule the jobs in the increasing order of processing 

times on machine 3.  Sequence of jobs with increasing pi3 values is [3, 4].  The expression, 

}min}min,max{  ,max{ 21123 i
Mi

i
MiMi

iii pppCC
rr 

 = max {8, max {7, 6 + p41} + p42} 

= max {8, max {7, 6 + 5} + 1} = max {8, 12} = 12 
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pkn   321123 )1(}min}min,max{  ,max{
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Mi
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MiMi
iii pknpppCC 


  

k=3 2.p33 = 2 14 

k=4 1.p43 = 3 15 

 

Table 3.19 Calculation of LB3 for Partial sequence [2 1 * *] 
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])1(}min}min,max{  ,max{[ 321123
1

3 krr ii
Mi

i
MiMi

iii

n

rk

pknpppCCLB 


 = 14+15 = 29 

LB(2 1 * * ) = 
Mi

iC max (LB1, LB2, LB3) = C2 + C1 + max( 38, 33, 29) = 15 + 38 =53 

Since lower bound of partial sequence (2 1 * *) = 53< upper bound, we branch to lower level nodes 

from partial sequence (2 1* *).  Branching from a node consists of taking each of the unallocated jobs 

in turn and placing it next to the partial schedule.  Each of these new partial schedules is then 

represented by a new node. 

Calculating Lower Bound for Partial Sequence [2 1 4 *] 

Lower bound for the partial sequence [2 1 4 *] is calculated as follows: 

Set of scheduled jobs M = {2, 1, 4} and |M| = r = 3 

Set of unscheduled jobs U = {3}.   

 

Job i C1 C2 C3 

2 2 5 7 

1 6 7 8 

4 11 12 15 
 

Table 3.20 Calculation of Completion Times for Partial sequence [2 1 4 *] 

 

For LB1 from the list of unscheduled the jobs arrange jobs in the increasing order of processing times 

on machine 1.  Sequence of jobs with increasing pi1 values is [3].   
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k=4 11 1.p31 = 6 P31 = 5 p33 = 1 23 
 

Table 3.21 Calculation of LB1 for Partial sequence [2 1 4 *] 

 

LB1 =  
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For LB2 from the list of unscheduled jobs U, schedule the jobs in the increasing order of their 

processing times on machine 2.  Sequence of jobs with increasing pi2 values is {3}.  The expression, 

}min,max{ 112 i
MiMi

ii ppC
r 

 = max {12, 11 + p31} = max {12, 11 + 6} = 17 
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k=4 1.p32 = 5 p33 = 1 23 

 

Table 3.22 Calculation of LB2 for Partial sequence [2 1 4 *] 

LB2 =  
  
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ppknppC
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32112 ])1(}min,[max{   = 23 

For LB3 from the list of unscheduled jobs U, schedule the jobs in the increasing order of processing 

times on machine 3.  Sequence of jobs with increasing pi3 values is {3}.  The expression, 

}min}min,max{  ,max{ 21123 i
Mi

i
MiMi

iii pppCC
rr 

 = max {15, max {12, 11 + p31} + p32} 

= max {15, max {12, 11 + 6} + 5} = max {15, 22} = 22 
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
  

k=4 1.p33 = 1 23 

 

Table 3.23 Calculation of LB3 for Partial sequence [2 1 4 *] 

 

])1(}min}min,max{  ,max{[ 321123
1

3 krr ii
Mi

i
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iii

n

rk

pknpppCCLB 


 = 23 

LB(2 1 4 * ) = 
Mi

iC max (LB1, LB2, LB3) = C2 + C1 + C4 + max( 23, 23, 23) = 7 + 8+ 15 +23 = 53 

Since lower bound of partial sequence (2 1 4 *) = 53< upper bound, we branch to lower level nodes 

from partial sequence (2 1 4 *).    Here when we branch to the lower level, we find that the node with 

partial sequence (2 1 4 3) is a leaf node, so we calculate the completion time of the schedule. 
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Job i C1 C2 C3 

2 2 5 7 

1 6 7 8 

4 11 12 15 

3 17 22 23 
 

Table 3.24 Calculation of ∑Ci for Schedule [2 1 4 3] 

 

Completion time for the schedule [2 1 4 3] =53 < upper bound. Therefore, now we update the upper 

bound and the current best order. We now explore other nodes in the search tree with the updated 

upper bound.   

Similarly the Lower bound for the partial sequence [2 1 3 *] = 54, [2 4 * *] = 54, [2 3 * *] = 56,  

[3 * * *] = 60 and [4 * * *] = 57.  Since all lower bounds ≥ upper bound (53), we prune all these 

nodes.  

 

 

Figure 3.2 Enumeration tree for 4 jobs- 3 machine using branch and bound algorithm 
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Partial 

sequence 

Lower 

bound 

Current best UB 

and order 
Operation 

[1 * * * ] 55 55, [1, 2, 4, 3] Cut node 

[2 * * * ] 53 55, [1, 2, 4, 3] Branch from node 

[2  1* * ] 53 55, [1, 2, 4, 3] Branch from node 

[2 1 4 * ] 53 53, [2, 1, 4, 3] Leaf node, calculate ∑Ci 

[2 1 3 * ] 54 53, [2, 1, 4, 3] Cut node 

[2  4* * ] 54 53, [2, 1, 4, 3] Cut node 

[2  3* * ] 54 53, [2, 1, 4, 3] Cut node 

[3 * * * ] 60 53, [2, 1, 4, 3] Cut node 

[4 * * * ] 57 53, [2, 1, 4, 3] Cut node 

 

Table 3.25 Execution Steps for F3||∑Ci 

 

 

Figure 3.3 Screenshot of the Output for the pi1, pi2, pi3 Values Given in Table 3.5 

 

3.6 Branch and Bound Fm-perm||∑Ci (m ≥ 3) 

Branch and bound approach for F3-perm||∑Ci can be generalized to m machines.   In this case at each 

node we determine m machine based lower bounds and the overall lower bound is the maximum of 

the m-lower bounds [8].   
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Thus the lower bound at node T is, 

LB [T] = 



Mi

i
Mi

i CC  

= 
Mi

iC max (LB1, LB2, LB3… LBm) 

Generally to calculate the lower bound on a machine x, we assume the possibility that the processing 

on machine x is continuous for the unassigned job set {U}. 

LBx = earliest time that the first job in the set U can start on machine x + sum of completion times of 

jobs in set U on machine x (here schedule the jobs in the increasing order of processing times on 

machine x.   Let r+1, r+2,…,n represent the sequence of jobs with increasing pix values ) + sum of 

processing times of jobs in set U on remaining (m-x) machines.  

Let r be the last job in the ordered set of scheduled jobs M, then  
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CHAPTER 4 

RESULTS 

This chapter gives a detailed view of the results obtained by applying Branch and Bound algorithm 

for permutation F3-perm||∑Ci scheduling problem.   

4.1 Assumptions 

Following assumptions are made while implementing the algorithm: 

1. The algorithm initializes the branch and bound tree with an initial feasible schedule and an 

initial upper bound.  Initial feasible schedule is obtained by arranging the jobs in the increasing order 

of their sum of processing times. 

2. Initial Upper bound can be obtained by calculating the sum of completion times of initial 

feasible schedule. 

4.2 Parameters that Determine Performance of the Algorithm  

Initial Upper Bound 

Initial Upper bound is obtained by calculating the sum of completion times of initial feasible 

schedule. 

Global Lower bound  

The minimum lower bound on the highest level nodes corresponds to global lower bound.  We start 

the branch and bound tree with initial upper bound.  Then we try to branch in this tree by trying to fix 

each of the jobs as the first job in the sequence.  From the data given in Table 3.5 and Figure 3.2, 

there are four jobs, so possible branches are four.   

 

 

Figure 4.1 Branching Tree Showing the Highest Level Nodes 
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Then we calculate the lower bound for these nodes.  The minimum lower bound on these highest 

level nodes corresponds to the global lower bound because all the corresponding branches emerging 

from these nodes have lower bound greater than or equal to it.  For the above problem, global lower 

bound = 53. 

Current Best Solution 

Cost of the schedule obtained by applying branch and bound algorithm represents the current best 

solution. 

Performance Ratio 

                                      
                     

         
     

% increase over the optimal solution is used to analyze the performance of branch and bound 

algorithm.  Branch and bound is one of the heuristic to determine near optimal solution, but it does 

not guarantee to provide an optimal solution.  Therefore we use performance ratio in order to 

determine the percentage of deviation of current best solution obtained from optimal.    

Execution Time 

Execution time is the time taken by the branch and bound program to determine the current best 

solution.  From the above results we see that, branch and bound performs much better in practice than 

the complete enumeration. 

Number of Eliminated Sequences 

If the lower bound of the sub problem is greater than or equal to upper bound, then this sub problem 

cannot yield a better solution and we stop branching from the corresponding node in the branching 

tree.  Thus we prune all the branches emerging from that node.   

 If there are n jobs and if a node at k
th

 level is pruned, then we eliminate (n-k)! sequences from 

processing. 

4.3 Results for Various pi1, pi2 and pi3 Values 

Following results are obtained by applying branch and bound algorithm.  Computational results 

for up to 20 jobs are given for 3 machine permutation flow shop problem when the objective is 

minimizing the sum of completion times. 
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4.3.1 Random pi1, pi2 and pi3 Values 

For randomly chosen pi1, pi2 and pi3 values given in the Table 4.1 the results obtained by 

executing branch and bound algorithm for the objective function ∑Ci are presented in Table 4.2 and 

Table 4.3.  

 

Job i pi1 pi2 pi3 

1 6 4 2 

2 8 5 8 

3 1 1 1 

4 5 8 3 

5 9 3 1 

6 9 2 4 

7 7 6 6 

8 4 3 7 

9 6 3 2 

10 4 3 1 

11 7 1 4 

12 2 9 3 

13 7 2 8 

14 3 6 1 

15 2 6 1 

16 1 8 5 

17 4 5 3 

18 9 3 2 

19 4 6 1 

20 6 5 7 

 

Table 4.1 Random pi1, pi2 and pi3 values for n up to 20 

 

 

 

 

 

 



 

40 

 

For the 

first n 

jobs 

Initial 

UB 

Global 

LB 

Current 

Best 

solution 

(Current 

solution/Global 

LB)*100 

Execution 

time(sec) 

n=10 357 331 334 1.0090635 2 

n=11 428 397 400 1.0075567 2 

n=12 490 432 446 1.0324074 2 

n=13 575 512 526 1.0273438 2 

n=14 623 558 581 1.0412186 2 

n=15 671 594 623 1.0488216 2 

n=16 769 623 681 1.093097 5 

n=17 846 688 756 1.0988373 22 

n=18 940 787 855 1.0864041 29 

n=19 1025 859 940 1.0942957 213 

n=20 1139 961 1045 1.0874089 548 

 

Table 4.2 ∑Ci Results for Random Values of pi1, pi2 and pi3 

 

For the 

first n 

jobs 

No of eliminated 

sequences 

No of 

processed 

sequences 

Current best order 

n=10 3628786 14 [3, 10, 8, 1, 9, 4, 2, 7, 5, 6] 

n=11 39916782 18 [3, 10, 8, 4, 9, 1, 11, 7, 2, 5, 6] 

n=12 479001576 24 [3, 12, 10, 9, 8, 4, 1, 11, 7, 2, 5, 6] 

n=13 6227020766 34 [3, 12, 10, 9, 8, 4, 1, 11, 13, 7, 2, 5, 6] 

n=14 87178291172 28 [3, 14, 10, 8, 12, 9, 13, 4, 1,11, 7, 2, 5, 6] 

n=15 1307674367966 34 [3, 15, 10,  8, 14 ,13, 12, 9, 1, 11, 4, 2, 7, 5, 6] 

n=16 20922789887949 51 
[3, 16, 10, 9, 8, 15, 13, 12, 11, 14, 1, 4, 2, 7, 5, 

6] 

n=17 355687428095950 50 
[3, 16, 10, 9, 8, 15, 13, 12, 11,  14, 1, 17, 4, 2, 

7, 5, 6] 

n=18 6402373705727933 67 
[3, 16, 10, 9, 8, 15, 13, 12, 11,  14, 1, 17, 4, 2, 

7, 5, 18, 6] 

n=19 6402373705727933 66 
[0, 3, 16, 10, 9, 8, 15, 14, 11, 17, 19, 13, 12, 1, 

7, 4, 5, 2,  18, 6] 

n=20 2432902008176639922 78 
[3, 16, 10, 9, 8, 15, 14, 11, 17, 19, 13, 12, 1, 7, 

20, 4, 2, 5, 18, 6] 

 

Table 4.3 Results of Branch and Bound Algorithm for n up to 20 
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4.3.2 Large Values of pi1, pi2 and pi3 

For the large values of pi1, pi2 and pi3 given in the Table 4.4 the results obtained by executing 

branch and bound algorithm for the objective function ∑Ci are presented in Table 4.5.  

 

Job i pi1 pi2 pi3 

1 375 12 142 

2 632 452 758 

3 12 876 124 

4 460 542 523 

5 528 101 789 

6 796 245 632 

7 532 230 543 

8 14 124 214 

9 257 527 753 

10 896 896 214 

11 532 302 501 

12 456 856 963 

13 789 930 21 

14 630 214 475 

15 214 257 320 

16 573 896 124 

17 218 532 752 

18 653 142 147 

19 214 547 532 

20 204 865 145 

 

Table 4.4 Large Values of pi1, pi2 and pi3  
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For the 

first n 

jobs 

Initial 

UB 

Global 

LB 

Current 

solution 

(Current 

solution/Global 

LB)*100 

Execution 

time(sec) 

No of 

processed 

sequences 

n=10 30633 25538 28882 1.1309421 2 13 

n=11 36190 30647 34278 1.1184782 2 11 

n=12 43939 36772 41281 1.1226205 2 14 

n=13 51139 43886 48298 1.1005332 2 15 

n=14 58536 50891 55588 1.0922953 2 20 

n=15 64357 54276 59175 1.0902609 3 33 

n=16 72334 62114 66636 1.0728016 3 44 

n=17 81438 66690 74394 1.1155195 24 71 

n=18 90860 75024 81613 1.0878252 32 87 

n=19 103635 79767 88553 1.1101458 241 146 

n=20 118496 84475 96059 1.1371293 1241 282 

 

Table 4.5 ∑Ci Results for Large Values of pi1, pi2 and pi3  

 

Job i pi1 pi2 pi3 

1 1 20 1 

2 2 19 2 

3 3 18 3 

4 4 17 4 

5 5 16 5 

6 6 15 6 

7 7 14 7 

8 8 13 8 

9 9 12 9 

10 10 11 10 

11 11 10 11 

12 12 9 12 

13 13 8 13 

14 14 7 14 

15 15 6 15 

 

Table 4.6 Increasing pi1, pi3 and Decreasing pi2 Values  
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4.3.3 Increasing pi1, pi3 and Decreasing pi2 Values  

For a particular case where the values of pi1, pi3 increases and pi2 decreases as the job index 

increases are given in the Table 4.6 and the results obtained by executing branch and bound algorithm 

for the objective function ∑Ci are presented in Table 4.7.  

 

For the 

first n 

jobs 

Initial 

UB 

Global 

LB 

Current 

solution 

(Current 

solution/Global 

LB)*100 

Execution 

time(sec) 

No of processed 

sequences 

n = 3 204 200 200 1.0 2 3 

n = 5 300 290 290 1.0 2 8 

n = 7 539 504 504 1.0 2 32 

n = 9 834 750 750 1.0 2 81 

n=10 1000 880 880 1.0 2 117 

n=11 1177 1012 1012 1.0 2 162 

n=12 1366 1144 1147 1.0026224 2 211 

n=13 1568 1274 1285 1.0086342 2 263 

n=14 1784 1400 1430 1.0214286 2 317 

n=15 2015 1520 1582 1.0407895 12 358 

 

Table 4.7 ∑Ci Results for Increasing pi1, pi2 and Decreasing pi3 Values  

 

4.3.4 pi1, pi3 Increases and then Decreasing  

The values of pi1, pi3 increases as the job index increases and decreases after i > (n+1) / 2 and the 

values of pi2 decreases as the job index increases and increases after i > (n+1) / 2 are given in the  

Table 4.8.  The results obtained by executing branch and bound algorithm for the objective function 

∑Ci are presented in Table 4.9.  
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Job i pi1 pi2 pi3 

1 1 20 1 

2 2 19 2 

3 3 18 3 

4 4 17 4 

5 5 16 5 

6 6 15 6 

7 7 14 7 

8 8 13 8 

9 9 12 9 

10 10 11 10 

11 10 11 10 

12 9 12 9 

13 8 13 8 

14 7 14 7 

15 6 15 6 

16 5 16 5 

17 4 17 4 

18 3 18 3 

19 2 19 2 

20 1 20 1 

 

Table 4.8 pi1, pi3  Increasing and then Decreasing   

 

For the 

first n 

jobs 

Initial 

UB 

Global 

LB 

Current 

solution 

(Current 

solution/Global 

LB)*100 

Execution 

time(sec) 

No of 

processed 

sequences 

n=15 2045 1775 1775 1.0 2 268 

n=16 2317 2011 2011 1.0 2 304 

n=17 2617 2266 2266 1.0 2 349 

n=18 2948 2540 2540 1.0 2 406 

n=19 3313 2833 2833 1.0 2 478 

n=20 3715 3145 3145 1.0 2 568 

 

Table 4.9 ∑Ci Results for pi1, pi2 Increasing and then Decreasing   

 



 

45 

 

4.4 Efficiency of the Algorithm  

In order to validate practically the efficiency of branch and bound algorithm, the results of the 

algorithm are compared with the results obtained by generating all the n! permutations sequences, 

when number of jobs (n ≤ 12) .  From the results obtained, we see that branch and bound performs 

much better in practice than the complete enumeration.  From the experiments, we notice that instead 

of searching entire solution space branch and bound algorithm pruned many nodes and this 

considerably reduced the computational time.  

Branch and bound algorithm is used to determine near optimal solution, but it does not guarantee 

to provide an optimal solution.  Therefore we use performance ratio in order to determine the 

percentage of deviation of branch and bound solution from optimal.  From the results obtained we see 

a difference of approximately 1.1% between the branch and bound solution and optimal solution.    
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

In this thesis, we have presented, evaluated and implemented the branch and bound algorithm to 

minimize the sum of completion times for three machine permutation flow shop problem.  We 

presented the lower bounds, upper bounds and performance ratio for the various problems.  In 

general, our results consistently give solutions with a ratio of better than 1.1% of optimal.  We indeed 

observed that a significant number of sub problems can be eliminated from further consideration, if 

the initial upper bound is tight.  Therefore we can use some good heuristics to obtain better initial 

upper bound.   

As n grows, the branch and bound algorithm is obviously exponential in time but performs much 

better in practice than the complete enumeration. The future work would be to improve lower bounds 

for minimizing the sum of completion times of n jobs over m machines.  
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APPENDIX  

package sumci; 

 

import java.io.*; 

import java.util.*; 

 

public class BranchAndBound { 

 static public int njobs, nmachines; 

 static public int[][] p; 

 static int[][] c; 

 static long cb_ub = 100000000; 

 static long global_lb = 100000000; 

 static String cb_order; 

 Map<Integer, Integer> sorted_pmac1; 

 Map<Integer, Integer> sorted_pmac2; 

 Map<Integer, Integer> sorted_pmac3; 

 static int[] job_arr; 

 static long processd_node = 0; 

 static long count = 0; 

 

 // Method to read data from input file 

 public static void readData(String filename) { 

  Scanner sc = null; 

  try { 

   sc = new Scanner(new FileReader(filename)); 

  } catch (Exception e) { 

   System.out.println("could not find the file "); 

  } 

 

  njobs = sc.nextInt(); 

  nmachines = sc.nextInt(); 

  p = new int[njobs + 1][nmachines + 1]; 

 

  System.out.println("The processing times are:"); 

  for (int j = 1; j <= njobs; j++) { 

   for (int m = 1; m <= nmachines; m++) { 

    p[j][m] = sc.nextInt(); 

    System.out.print(p[j][m] + " "); 

   } 

   System.out.println(); 

  } 

 

  System.out.println("Number of Jobs are:" + njobs); 

  System.out.println("Number of Machines are:" + nmachines); 

 

  sc.close(); 

 } 

 

 // Method to calculate completion time of the given jobs and sumci for the 

 // given schedule 

 public int calComp(int[] a) { 

  c = new int[njobs + 1][nmachines + 1]; 

  int sumci = 0; 

  for (int j = 1; j <= a.length - 1; j++) { 

   for (int m = 1; m <= nmachines; m++) { 
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    c[a[j]][m] = Math.max(c[a[j]][m - 1], c[a[j - 1]][m]) 

      + p[a[j]][m]; 

   } 

  } 

  for (int j = 1, m = nmachines; j <= a.length - 1; j++) 

   sumci = sumci + c[j][m]; 

  return sumci; 

 } 

 

 public long fact(long n) { 

  if ((n == 0 || n == 1)) 

   return 1; 

  else 

   return n * fact(n - 1); 

 } 

 

 // Method to calculate LB1, LB2, LB3 

 public int calclb(int[] temparr, int[] temparr2, int[] temparr3, 

   boolean[] used, int level) { 

 

  int lb1 = 0, lb2 = 0, lb3 = 0, max_job; 

 

  int compvl = c[temparr[level]][2]; 

  int comp = c[temparr[level]][3]; 

  int sumpi = 0; 

  for (int i = 1; i <= level; i++) { 

   sumpi = sumpi + p[temparr[i]][1]; 

  } 

  int j = level + 1; 

  for (Integer index : sorted_pmac1.keySet()) { 

   if (used[index]) { 

   } else { 

    temparr[j] = index; 

    j++; 

   } 

  } 

 

  int pos = level + 1; 

  for (Integer ind : sorted_pmac2.keySet()) { 

   if (used[ind]) { 

   } else { 

    temparr2[pos] = ind; 

    pos++; 

   } 

  } 

  int i3 = level + 1; 

  for (Integer it : sorted_pmac3.keySet()) { 

   if (used[it]) { 

   } else { 

    temparr3[i3] = it; 

    i3++; 

   } 

  } 

 

  int val = Math.max(compvl, sumpi + p[temparr[level + 1]][1]); 

  int intermediate = Math.max(val + p[temparr2[level + 1]][2], comp); 
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  for (int k = level + 1; k <= njobs; k++) { 

 

   lb1 = lb1 + sumpi + ((njobs - k + 1) * p[temparr[k]][1]) 

     + p[temparr[k]][2] + p[temparr[k]][3]; 

   lb2 = lb2 + val + ((njobs - k + 1) * p[temparr2[k]][2]) 

     + p[temparr2[k]][3]; 

   lb3 = lb3 + intermediate + ((njobs - k + 1) * p[temparr3[k]][3]); 

  } 

  // System.out.println("lb1"+" "+lb1+" "+"lb2"+" "+lb2+" "+"lb3"+" "+lb3); 

  if (lb1 > lb2 && lb1 > lb3) 

   max_job = lb1; 

  else if (lb2 > lb1 && lb2 > lb3) 

   max_job = lb2; 

  else 

   max_job = lb3; 

 

  return max_job; 

 } 

 

 // Method to generate a node(new partial sequence of jobs) 

 public void generateNode(int[] arr, int level) { 

 

  for (int job = 1; job <= njobs; job++) { 

   boolean[] used = new boolean[njobs + 1]; 

   int[] fixed_Jobarr = new int[level + 1]; 

   int[] temparr_P1 = new int[njobs + 1]; 

   int[] temparr_P2 = new int[njobs + 1]; 

   int[] temparr_P3 = new int[njobs + 1]; 

 

   int current_lb = 0; 

 

   for (int i = 1; i < level; i++) { 

    temparr_P1[i] = arr[i]; 

    temparr_P2[i] = arr[i]; 

    temparr_P3[i] = arr[i]; 

    fixed_Jobarr[i] = arr[i]; 

    used[arr[i]] = true; 

   } 

   if (used[job_arr[job]]) { 

   } else { 

    temparr_P1[level] = job_arr[job]; 

    temparr_P2[level] = job_arr[job]; 

    temparr_P3[level] = job_arr[job]; 

    fixed_Jobarr[level] = job_arr[job]; 

    used[job_arr[job]] = true; 

 

    int finishedjobs = calComp(temparr_P1); 

    if (level == njobs && finishedjobs < cb_ub) { 

     cb_order = Arrays.toString(temparr_P1); 

     cb_ub = finishedjobs; 

     processd_node++; 

     // System.out.println("cb_order" + " " + cb_order + " " 

     // + "cb_ub" + " " + cb_ub); 

    } else { 

     int max_job = calclb(temparr_P1, temparr_P2, temparr_P3, 
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       used, level); 

     current_lb = finishedjobs + max_job; 

     // System.out.println("current lb" + " " + current_lb + " " 

     // + Arrays.toString(fixed_Jobarr)); 

     if (current_lb >= cb_ub) { 

      count = count + fact(njobs - level); 

     } else { 

 

      generateNode(fixed_Jobarr, level + 1); 

     } 

    } 

   } 

  } 

 } 

 

 // To sort jobs based on processing times of machine1, machine2, machine3 

 public void sortingJobs() { 

  Map<Integer, Integer> unsorted_pmac1 = new HashMap<Integer, Integer>(); 

  Map<Integer, Integer> unsorted_pmac2 = new HashMap<Integer, Integer>(); 

  Map<Integer, Integer> unsorted_pmac3 = new HashMap<Integer, Integer>(); 

 

  for (int i = 1; i <= njobs; i++) { 

   unsorted_pmac1.put(i, p[i][1]); 

   unsorted_pmac2.put(i, p[i][2]); 

   unsorted_pmac3.put(i, p[i][3]); 

  } 

  sorted_pmac1 = sortByComparator(unsorted_pmac1); 

  sorted_pmac2 = sortByComparator(unsorted_pmac2); 

  sorted_pmac3 = sortByComparator(unsorted_pmac3); 

 

 } 

 

 private Map<Integer, Integer> sortByComparator( 

   Map<Integer, Integer> unsortedhm) { 

 

  List list = new LinkedList(unsortedhm.entrySet()); 

  Collections.sort(list, new Comparator() { 

   @Override 

   public int compare(Object o1, Object o2) { 

    return ((Comparable) ((Map.Entry) (o1)).getValue()) 

      .compareTo(((Map.Entry) (o2)).getValue()); 

   } 

  }); 

 

  Map sortedMap = new LinkedHashMap(); 

  for (Iterator it = list.iterator(); it.hasNext();) { 

   Map.Entry entry = (Map.Entry) it.next(); 

   sortedMap.put(entry.getKey(), entry.getValue()); 

  } 

  return sortedMap; 

 } 

 

 public static void main(String args[]) throws IOException { 

 

  long start = System.currentTimeMillis(); 
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  Scanner read_filename = new Scanner(System.in); 

  System.out.println("Enter the file  name"); 

  String filename = read_filename.next(); 

  read_filename.close(); 

  BranchAndBound.readData(filename); 

  BranchAndBound obj = new BranchAndBound(); 

 

  Map<Integer, Integer> initial_arr = new HashMap<Integer, Integer>(); 

 

  for (int i = 1; i <= njobs; i++) 

   initial_arr.put(i, p[i][1] + p[i][2] + p[i][3]); 

  initial_arr = obj.sortByComparator(initial_arr); 

 

  job_arr = new int[njobs + 1]; 

  int position = 1; 

  for (Integer index : initial_arr.keySet()) { 

   job_arr[position] = index; 

   position++; 

  } 

 

  int initial_ub = obj.calComp(job_arr); 

 

  if (cb_ub > initial_ub) { 

   cb_ub = initial_ub; 

   cb_order = Arrays.toString(job_arr); 

   System.out.println("UpperBound is:" + cb_ub + " " 

     + "with initial order" + cb_order); 

  } 

 

  obj.sortingJobs(); 

 

  for (int i = 1; i <= njobs; i++) { 

   int[] sub1_arr = new int[njobs + 1]; 

   int[] sub2_arr = new int[njobs + 1]; 

   int[] sub3_arr = new int[njobs + 1]; 

   boolean[] use = new boolean[njobs + 1]; 

   sub1_arr[1] = job_arr[i]; 

   sub2_arr[1] = job_arr[i]; 

   sub3_arr[1] = job_arr[i]; 

   // System.out.print("[" + sub1_arr[1] +"]"); 

   use[job_arr[i]] = true; 

   int finished = obj.calComp(sub1_arr); 

   int lb = obj.calclb(sub1_arr, sub2_arr, sub3_arr, use, 1); 

   int result = lb + finished; 

   global_lb = Math.min(global_lb, result); 

   // System.out.println(" "+"lb" + " " + result); 

 

  } 

 

  // For Branching the problem P 

  obj.generateNode(job_arr, 1); 

 

  System.out 

   

 .println("********************************************************************"); 
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  System.out.println("Global lowerBound is:" + " " + global_lb); 

  System.out.println("Current solution is:" + cb_ub + " " + "with order" 

    + cb_order); 

 

  float percent = (float) cb_ub / global_lb; 

  System.out 

    .println("Current solution/Global lowerBound" + " " + percent); 

 

  System.out.println("The number of cut sequences is:" + " " + count); 

  System.out.println("The number of processed sequences is:" 

    + (obj.fact(njobs) - count)); 

 

  long end = System.currentTimeMillis(); 

  System.out.println("Total execution time" + " in seconds ==> " 

    + (end - start) / 1000 + " seconds"); 

 

 } 

 

} 
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