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ABSTRACT 

 

Modeling of Short Term and Long Term Impacts of Freeway Traffic Incidents 

using Historical Data 

 

by 

 

Vidhya Kumaresan, M.S.E, E.I 

 

Mohamed Kaseko, Ph.D., Examination Committee Chair 

Associate Professor 

Department of Civil and Environmental Engineering 

University of Nevada, Las Vegas 

 

 Traffic incidents are major contributors to non-recurring traffic congestion in 

most urban areas in United States. In addition to losses in terms of injury and property 

damage, freeway incidents also produce negative effects on the system including 

increased travel delays, fuel consumption and vehicle emissions. Incident management 

strategies are aimed at reducing the impacts caused by such incidents. Development of 

guidelines or models to quantify the impacts of these incidents on the society can aid in 

analyzing the effectiveness and economic feasibility of such incident management 

strategies.  

 The first objective of this study is to calibrate models that relate the short term 

marginal impacts caused by freeway incidents with incident characteristics such as 

incident duration and the number of lanes blocked. These models will help in quantifying 

the impacts of freeway incidents on the system as a part of the evaluation of incident 

management strategies or other related freeway operation projects. Historical incident 

data from a Las Vegas freeway is used to calibrate these statistical models. Additionally, 

freeway operation-related information is obtained from the web-based Dashboard system 
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maintained by the Regional Transportation Commission of Southern Nevada (RTC). 

Different statistical regression models calibrated relate freeway travel times, fuel 

consumption and emissions as functions of incident characteristics including incident 

duration, number of lanes blocked and time of day. Statistical measures of performance 

are used to evaluate the models and appropriate models are selected for recommendation. 

An additional component included in the impacts is the effect of the incident on the 

opposing direction of flow (rubbernecking).  

 The second objective of this research is to calibrate the influence of incidents and 

their corresponding impacts. In this study, various travel time reliability indices are used 

in quantifying the long term impacts of freeway incidents. Travel time reliability is an 

important planning tool both from the user point of view as well as transportation 

planners. The findings of this part of the research can help in operational and economic 

evaluation of freeway safety and incident management projects from the point of travel 

time reliability. The models can also be used to quantify system-wide impacts of incident 

to provide economic justification for acquisition of funding for such projects.  

 This contribution of this research is two-fold. First, statistical models are 

calibrated for quantifying the short-term impacts of freeway incidents on travel time, fuel 

consumption and vehicular emissions exclusively from field data as opposed to 

simulation and/or mathematical models. These marginal impacts can be used by 

transportation agencies and public organizations in the evaluation of incident 

management strategies. Also, given that these models are based on historical field data, 

accuracy is improved over existing models that are based on computer simulation.  
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The second contribution of this research is in providing models that quantify the 

long-term impacts of incidents in terms of travel time reliability. This quantification is a 

principal benefit since models specific to traffic incident impacts and travel time 

reliability have rarely been explored previously. In addition, this analysis is also based on 

field data unlike the very few previous studies and is therefore an improvement in the 

understanding of relationships between travel time reliability and incident characteristics.   
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CHAPTER 1  

INTRODUCTION 

1.1 Problem Statement 

Efforts to provide sustainable transportation and improve system performance and 

effectiveness have been given much importance in the recent times. According to the 

World Energy Council, transport systems are among the most important factors that have 

significant impacts on the environment, contributing to about 20% of world energy 

consumption and emissions (World Energy Council, 2011).  

Traffic incidents are defined as non-recurring events that result in reduction of 

roadway capacity. Examples include traffic crashes, disabled vehicles, spilled cargo or 

planned events like work zone activity and special events (Frandrup, Groth, Anderson, 

Sroga, & Hanzalink, 2002). Traffic incidents can have two types of impacts: short term 

and long term. Short-term impacts occur immediately during and after the incident. They 

include vehicle delay, fuel consumption and vehicle emissions. Long term impacts are 

produced by incident characteristics that influence driver behavior, over time. Drivers‟ 

perception of the reliability of travel times experienced on a roadway section is a long 

term impact of incidents in that location.  

Traffic incidents are a major source of non-recurring congestion on freeways. 

These incidents, along with other non-recurring events like work zone and weather 

contribute to about 60% of the delay caused by roadway congestion (Federal Highway 

Administration [FHWA], 2008). In addition to costing millions of dollars in terms of loss 

of life, injuries and property damage, traffic incidents also cause additional losses due to 

the resulting traffic delay, excess energy consumption and vehicle emissions. Depending 



2 
 

upon the severity of the impact of an incident, in terms of the number and location of 

travel lanes blocked and the duration of the incident, the resulting congestion can cause 

significant additional traffic delays, travel time, and associated additional fuel 

consumption and vehicle emissions. According to the Texas Transportation Institute‟s 

Urban Mobility Report, traffic congestion in the US in 2011 caused an estimated 5.5 

billion hours of extra time and 2.9 billion gallons of wasted fuel resulting in a cost of 

$121 billion of travel delay and fuel consumption approximately (Schrank, Lomax & 

Eisele, 2012).  

Congestion and the resulting delays are important problems in most urban 

locations (Ji, Zhang & Sun, 2011). Reducing recurrent congestion is more challenging 

since the most common solutions of increased capacity are difficult to enforce. However, 

non-recurrent congestion can be addressed to an extent by means of practicing incident 

management strategies and planning construction activities during night-time so as not to 

interrupt commuter traffic during the day. Many states have incident management 

strategies in place to reduce the detection and response time of the emergency vehicles 

resulting in reduction of travel delay due to incidents. Another impact, namely excess 

fuel consumption is a major concern for sustainability and environmental reasons. 

Measures to consume fuel efficiently are recommended to aid in reducing the depletion 

of our natural resources. The Unites States Department of Energy recommends 

sustainable use of energy to meet the current needs without compromising the need for 

future (fueleconomy.gov). Vehicle emissions are also of concern since the transportation 

industry is one the highest producers of pollutant emissions that affect air quality. 

Hydrocarbons (HC), Carbon Monoxide (CO), Oxides of Nitrogen (NOx) and Carbon 
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Dioxide (CO2) are among the most common vehicle pollutants (Office of Mobile Source, 

1994). 

For the short term impacts of incidents, a number of efforts have been reported 

over the years that attempt to model such impacts for the purpose of developing tools for 

evaluation of the effectiveness of incident management strategies. Most recently such 

studies have generally involved traffic simulation and/or theoretical models for 

quantifying impacts of incidents on vehicle travel times, speeds and queues formed as a 

result of blocked lanes due to incidents. With the existence of real-time and historical 

freeway traffic data and incident data, this study deviates from the use of simulation 

models and calibrates statistical impact models using actual field historical incident and 

traffic data obtained from RTC. Therefore more accurate models can be calibrated and 

the marginal impacts be estimated. Determining the marginal impacts is essential in 

understanding the influence of incident and traffic characteristics on the incident impact. 

Using the marginal impact relationships, agencies can explore various what-if scenarios 

for reducing incident impacts.  

Since congestion is deteriorating in urban areas, estimation of travel time is 

gaining importance for both the travelers and transportation professionals alike (Lyman 

& Bertini, 2008). Most drivers that have experienced congestion, plan trips according to 

an expected delay. However these estimates may not consider non-recurrent congestion 

components like traffic incidents. In the recent times, interest has turned to travel time 

measurement followed by an analysis of how reliable they are. Travel time reliability is a 

measure of consistency in travel times. Road users value reliability highly for work and 

business reasons. Transportation planners have recently started to consider travel time 
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reliability a key performance measure since it indicates how the users perceive the system 

performance and is of a lot of importance to many transportation system users (FHWA, 

2009).  

For long term impacts, the effect on travel time reliability experience by the users 

is the focal point. Commuters plan trips according the everyday congestion. But the 

experience of incidents can build up to cause the drivers to plan extra time in order to 

ensure on-time arrival at their destination. Thus the trip planning by the user is not at the 

average expected time of travel but higher, allowing for an incident. This impact of 

incidents on travel time reliability is of use to drivers to plan their trip better. For 

agencies, this factor can be included while estimating the benefits of a project. Therefore 

the use of direct impacts of incidents such as excel travel time, emissions and fuel 

consumption in combination with the indirect impacts of decrease in travel time 

reliability can better evaluate or forecast project benefits.  

1.2 Research Objectives 

The first objective of this study is related to the short term impacts and it involves 

modeling and quantifying the impacts of freeway incidents on measures of effectiveness 

including travel times, fuel consumption and vehicle emissions. Statistical regression 

models are calibrated that relate excess travel times, fuel consumption and vehicle 

emissions as functions of incident characteristics including incident duration, number of 

lanes blocked, time of day, day of week, peak/off-peak and location of the blocked lanes. 

These models can be used to estimate the marginal impacts of incidents. For example, for 

a given incident scenario, the additional travel times, energy consumption and emissions 
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for each minute of incident duration can be estimated. Such information can be used by 

transportation agencies for project evaluation and justification.  

The second objective of this study is to model travel time reliability in order to 

account for the long term impact of incidents. The objective is to develop models to relate 

travel time reliability measures as a function of incident characteristics. These models can 

be used by transportation agencies to be added to the long-term benefits of incident 

management projects during their evaluation.  

1.3 Research Contribution 

The first contribution of this research is the development of marginal impacts of 

traffic incidents on travel time, fuel consumption and vehicle emissions using calibrated 

statistical models from real-world data. These models quantify the short term or direct 

impacts of incidents. Archived historical traffic data along with corresponding incident 

data is used for this modeling. 

The second contribution of this study is the model between traffic incidents and 

travel time reliability. The relations between incident, traffic characteristics and travel 

time reliability have not been modeled before. The methodology used in this study is 

novel and the final models from this research are based on archived real data. 

1.4 Dissertation Report Organization 

 Chapter 1 of this document introduces the reader to background information 

related to the problem and states the objectives of the research. Chapter 2 provides a 

review of some of the most relevant literature that has been published previously on the 

study topic. Chapters 3 and 4 present the methodologies for the first and second 
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objectives respectively. Chapters 5 and 6 discuss the data description and collection for 

short term and long term objectives respectively. This is followed by Chapters 7 and 8, 

which summarize the descriptive summary statistics of the data used in the analysis. 

Chapter 9 presents the analysis and statistical modeling results for the first objective and, 

Chapter 10 for the second. Chapter 11 provides the results for the marginal impacts of the 

first objective, Chapter 12 for the second. The conclusions drawn, recommendations and 

suggestions for future work are presented in Chapter 13. 
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CHAPTER 2  

LITERATURE REVIEW 

There is a multitude of literature published in the general area of modeling 

impacts caused by traffic incidents on freeways. This chapter presents a summary of a 

number of such publications along with other literature related to the topic being 

addressed in this study, which is the impact of incidents on travel time, fuel consumption, 

vehicle emissions and travel time reliability. The review has been organized in 

subdivisions covering some of the relevant focus areas. 

2.1 Estimation of Impacts from Incident Management Strategies 

Many of the previous attempts to estimate the impacts of incidents have been 

byproducts of studies that aimed at measuring the effectiveness of incident management 

programs. The study by Hagen, Zhou and Singh (2005) evaluated the benefits of the 

Road Ranger freeway service patrol (FSP) program of the Florida Department of 

Transportation (FDOT) in terms of delay, fuel consumption and reduction of air pollution 

against the costs of operation, maintenance and administration of the program in the year 

2004. The study used a default travel time value of $13.45 in 2004 for each person hour 

of travel and $71.05 for trucks, in accordance with the Texas Transportation Institute‟s 

2005 Urban Mobility report. For this study, using an assumed occupancy and truck 

percentage, the average value of travel time was calculated as $22.71. The FSP 

evaluation (FSPE) model developed by the University of California, Berkeley was used 

to estimate the savings in delay and fuel consumption. An incident duration of 30 minutes 

is used by FSPE for the „without FSP‟ case. Response time with service patrol is 

calculated using the FSP beat length, number of FSP trucks and their speed. The study 
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estimated savings for nitrogen oxides (NOx), carbon monoxide (CO) and reactive organic 

gases (ROG) as a result of the projected reduction in incident duration (estimated by 

FSPE) using the traffic profile, incident information, traffic volumes and the FSP beat 

information as input. Total monthly delay savings for all the sites were found to be 

$25,863,715 corresponding to 1,138,869 vehicle-hours of travel time saved and savings 

in fuel consumption of 1,717,064 gallons translating to $3,365,445. Additional benefits 

not included in the benefit-cost (B/C) ratio calculation included reductions in air pollutant 

emissions that were found to be 3690 kg of reactive organic gases, 160 kg of CO and 740 

kg of NOx. The B/C ratio of the entire program was found to be in excess of 25:1. 

The paper by Fries, Chowdhury and Ma (2007) examined the effectiveness of 

traffic cameras in the detection and verification of incidents at five different metropolitan 

freeway sites in the US state of South Carolina by means of benefit-cost analysis. Various 

incident scenarios were simulated using Parallel Micro Simulation Software 

(PARAMICS) software. The authors used emission and fuel consumption data from the 

United States Environmental Protection Agency (EPA) Mobile6 model for the rates of 

pollutant emission and fuel consumption for vehicles moving at various speeds. 

Statistical tests were performed on the simulated volumes and measured volumes for the 

sites and it was found that there was no significant difference in the mean and variance of 

measured and simulated volume for both freeway and arterial links. The incident 

detection and verification time for the base case with no early incident detection was a 

mean of 20 minutes and a standard deviation of 2 minutes. Incidents were then modeled 

with a range of incident detection time of 180 seconds (std. deviation: 61 s) and 

verification time of 60 seconds (std. deviation: 15 s). The resulting percentage reduction 
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in delay, fuel and emissions were then computed. The costs considered for economic 

analyses were: service and maintenance, communication, infrastructure, and personnel. 

The benefits were categorized as savings in: delay reduction, energy consumption and air 

pollution (CO emissions, NOx emissions, Hydrocarbon emissions, Particulate Matter). A 

vehicle age of 9 years was assumed for the analysis based on Davis and Diegel (2002). 

With the fuel consumption rates from Moblie6, the dollar values were found using 

Intelligent Transportation Systems (ITS) Deployment Analysis System (IDAS). Vehicle 

delay was found to have been reduced by 5.2% and fuel consumption was reduced by 

3.8% (diesel) and 3.2% (unleaded gasoline). Total hydrocarbons and volatile organic 

compounds were both reduced by approximately 14%, CO by almost 10%, NOx by 

almost 7%, and particulate matter (PM) by approximately 1% corresponding to 35 kg/day 

of hydrocarbons (HC), 195 kg/day of CO, and 40 kg/day of NOx respectively.  A benefit-

cost analysis based on the simulation results suggested traffic cameras returned $12 for 

every dollar spent under the prevailing conditions at the study sites. 

The study by Dia, Gondwe and Panwai (2008) aimed to quantify the impacts of 

incident management strategies namely ramp metering, VMS information dissemination 

combined with route diversions, and variable speed limit systems. The basis for analyses 

was a calibrated and validated simulation model of a motorway in the Gold Coast region 

of Australia. A total of 54 incidents were simulated for the AM Peak and 66 incidents for 

the PM peak. The effectiveness of each of the incident management strategies in reducing 

the negative impacts of the incidents was reported from the simulation results. Incidents 

were found to increase travel times by 2.2 percent; delays by 5.7 percent; and number of 

stops by 11.1 %. In addition to that, incidents resulted in an average increase of 1.5 
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percent in CO emissions and fuel consumption, and 5 percent increase in operating costs. 

On an average, each AM-peak incident resulted in an increase of $21,000 (AUD) in 

operating costs over the duration of the incident. For ramp metering, delays were reduced 

by 10.5 %, travel times by 2.8 % and number of stops by 23 % when the demand 

increased by 25 %. Results showed a reduction of delays by 8.8 %, decrease in number of 

stops by 22 %, and decrease in travel times by 3.3 % when both VMS route diversion and 

dynamic traffic signal plans on surface roads were implemented simultaneously and 30 

percent of the drivers followed the route diversion. Some of the results of implementing 

variable speed limits indicated 11% improvement in efficiency based on traffic operation 

and 64 % reduction in the number of stops if the speed was changed from 110 kph (68 

mph) to 70 kph (44 mph) over an 8 km (5 mi) road length.  

The above mentioned studies develop and demonstrate the use of models 

estimating the impact of incidents in terms of delays produced and increase in fuel 

consumption and emissions. Models relating the above variables can be used to compute 

the effectiveness of incident management strategies and provide for a monetary 

comparison between viable strategies. 

2.2 Measurement of Travel Delays 

The study by Lv, Liu and Zhu (2010) explained a methodology to analyze and 

predict traffic incident impact using historic data.  The overall goal was to estimate the 

impact of traffic incidents in order to improve management strategies to enhance the 

quality of the transportation system and reduce environmental pollution. The travel speed 

of the system without any incidents was computed by measuring average under normal 

circumstances. The impact of the incident was defined in this paper as the difference 
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between the travel speeds with and without the incident under similar conditions. Models 

to predict the traffic conditions were developed based on an average of historical data 

with similar conditions. Three classifications of incidents were used: (i) step-type - the 

incident and the impact lasts for some time with the impact being steady (work zone); (ii) 

pulse-type - the duration of the incident is short but the impact could last for a long time 

(traffic incidents) and; (iii) progressive - the incident and the impact duration is long 

(special events). The autoregressive moving average (ARMA) and generalized 

autoregressive conditional heteroscedasticity (GARCH) models were used to model the 

incident impact value series. The time-sliding matching method was used to predict the 

traffic pattern. The modeled analyses results compared well with the field data measured 

from the Beijing Float Car data except for the extremities. The paper concluded that the 

traffic prediction model developed can simulate traffic conditions under incidents. 

Chung and Recker (2011) presented a methodology to estimate the spatial and 

temporal impact caused by freeway accidents. The paper also identified the causal factors 

determining the total delay of an incident. Loop detector data from six freeways in 

Orange County, California was used to demonstrate the method. Speed matrices were 

plotted under regular conditions and accident conditions from the occupancy 

measurements and counts collected from inductive loop detectors every 30 seconds. The 

maximum extent of the incident shockwave was estimated from the speed plots. Accident 

data was collected from Traffic Accident Surveillance and Analysis System (TSAS) 

maintained by California Department of Transportation (Caltrans). In order to filter the 

speed data without the influence of incidents, a threshold was applied. The maximum 

incident duration was set to 4 hours. The median total delay was 22.27 vehicle hours for 
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2232 accidents and the maximum total delay, 1379.49 vehicle hours. Based on univariate 

analysis using nonparametric analysis based on log-rank tests and Kaplan-Meier (KM) 

estimates, the variables with the most positive influence on delay were peak periods, 3 

vehicles involved (function of number of vehicles involved), rear-end collision (type of 

collision), left lane (location of collision) and speeding (causal factors).   

The study by Skabardonis et al. (1995 and 1997) analyzed data from the I-880 

(California) field experiment on incidents and freeway traffic-flow characteristics. The 

field observed data was collected by probe-vehicles traveling a 9.2 mile I-880 freeway 

section at an average headway of 7 min. Field data during peak hours before and after the 

introduction of a Freeway Service Patrol (FSP) service was collected. A total of 2181 

incidents during the before and after period were recorded along with the incident 

characteristics. The study found that a Poisson distribution provided an adequate fit for 

the incident frequency. The study also found that the average response time was 29 

minutes in the „before‟ period and was reduced to 18 minutes after the implementation of 

FSPs. Without FSP, the impact per assisted incident was 156.74 vehicle hours and with 

FSP it was reduced to 136.42 vehicle hours. The delay savings per incident were 20.32 

vehicle hours. 

Chien, Goulias, Yahalom and Chowdhury (2002) presented a simulation-based 

travel delay estimation at freeway workzones. CORSIM software was use for the 

simulation and the results were compared with a deterministic queuing model. The 

methodology was validated using data from a study area in I-80 East, New Jersey. The 

modeling scenario was a workzone of 0.5 mile blockage of one freeway lane allowing 3 

lanes to operate. The total construction activity was for 16 hours. Results for a sample 
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simulation for 4 hours with varying traffic flows of 5000 – 8000 vph showed the resulting 

queuing delays estimated by to be approximately 5818 vehicle hours (364 vehicle hours 

per hour of workzone activity).  

Wang and Cheevarunothai (2008) quantified travel delays introduced by incidents 

on freeways. Occupancy data from loop detectors for the study was used for analysis on 

queuing.  The influence of an incident was found by comparing the delays due to 

different incident types. Loop detector data and incident data was used as input to the 

deterministic queuing theory based algorithm that was developed to estimate delays. 

Prevalent traffic conditions were represented using a dynamic volume-based profile 

developed to more accurately represent non-incident scenario. VISSIM was used to 

validate the algorithm. Calibration was also performed to replicate the model to field 

conditions. 18 incidents on the SR-520 Evergreen Point Floating Bridge in Washington, 

United States were simulated and compared with algorithm-based estimates. The incident 

induced delay was found to be 173 vehicle hours for each incident. Among incident 

types, disabled vehicle incidents were found to cause very high incident delays. A 

drawback of the procedure was that it was based on a deterministic queuing technique 

which had some discrepancies with the reality and that fatalities were not modeled 

because none occurred during the 3-month study period. 

The objective of the paper by Zhang, Ni and Yang (2012) was to predict freeway 

traffic incident delay based on simulation. The study used was six freeway incidents that 

took place on a specific link of the Nanjing-Nantong freeway in China. Traffic Software 

Integrated Systems (TSIS) software was used for simulation. The input parameter, 

incident duration data was not readily available. A regression model from a previous 
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study (2009) was used to obtain the incident duration. The simulated delay value was 

compared with the true delay value measured from toll data. Travel delays were an 

average of 70,380 vehicle hours per incident corresponding to an average incident 

duration of 141 minutes. A comparison of the simulated delay with the true delay 

measured from toll data showed that the results were mostly comparable. The authors 

recommend the use of simulation methodology owing to its simplicity and practicality. A 

drawback was that this study used only 6 incidents and did not take into account the 

characteristics of the incidents.  

The paper by Chung (2011) had two objectives. One was to quantify non-

recurrent congestion due to a freeway incident as the difference between accident-free 

speed and the speed during and after an accident. The second objective was to identify 

the characteristics that affected the non-recurrent congestion due to accidents. The 

analytical procedure developed for measuring congestion impact was demonstrated using 

freeway data from South Korea in 2008. The methodology involved the development of 

speed matrices of normal flow and the accident flow. The shockwave due to the accident 

was then developed and visualized. The boundary conditions in this study were adopted 

from a previous study by the author: approximately 20 miles upstream spatially and 3 

hours temporally. The case study on the South Korean freeways included 2224 accident 

records that were used. The non-recurrent delay was estimated to be 161,735.20 vehicle 

hours in total or 72.72 vehicle hours per incident. For the causal factors influencing the 

congestion, increase in number of vehicles involved, incident duration and rainy 

conditions were found to increase congestion. Delay was found to be higher for straight 
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sections when compared to horizontal curves (reasoning being reduced speeds on curves). 

Night-time accidents had lesser delay than day-time accidents.  

Incidents have numerous impacts on freeways including congestion, delays, 

decreased productivity, increased pollution and reduced safety. Kripalani and Scherer 

(2007) presented a study on estimating incident related congestion based on incident 

severity for freeways. The authors used a statistical approach to model congestion with 

relation to incident severity. The crash data for Virginia, United States for the year 2003 

was used for this study along with the corresponding traffic flow data. The model of 

estimating the „percent vehicle-hours lost‟, which was normalized with the traffic 

volume, was found to be the best (adjusted R2 of 0.64). The model was expressed as a 

function of the historical volume, number of vehicles, number of people uninjured and 

number of people with visible injuries. (Percentage of vehicle-hours lost = 0.0000343 * 

historical volume - 0.0291254 * no. of uninjured people + 0.2401116 * no. of people with 

moderate injuries + 0.6658071 * no. of overturned vehicles).  

Some studies have tried to develop special analysis methodologies for secondary 

incidents that are caused as a result of deteriorating traffic conditions caused by a primary 

incident. The reduction of secondary incidents can be an important criterion to evaluate 

the incident management programs. Sun and Chilukuri (2011) used an Incident 

Progression Curve (IPC) to find the region of influence. The IPCs were applied on a 

police crash database to classify the secondary incidents. One challenge faced was that, 

since the effect of primary incidents can persist long after it has been cleared, it is hard to 

judge whether the second crash was due to recurrent or non-recurrent congestion. The 

representative IPC chosen for the whole database was a median because it was less 
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influenced by the extremities and modes. Those incidents that fell under the progression 

curve starting after the occurrence of a primary incident were identified as secondary. 

The analysis was also compared to a static threshold of a distance of 3.53 miles and a 

time of 42 minutes. The analyses results showed that the difference in classification of 

secondary incidents using both methods was 30%, with the dynamic being higher. This 

sort of classification is important since incident management can effectively mitigate 

secondary incidents. Therefore one can analyze the true impact of a primary incident on 

travelers and the system. One drawback of this study is that it does not differentiate the 

curve for number of lanes blocked or traffic volume. Also, it may be difficult to obtain 

queuing information from archived incident data. 

Chou and Miller-Hooks (2010) formulated a method to identify secondary 

incidents. The paper focused on a dynamic methodology to address deficiencies in 

previously documented (mostly static) methodologies.  Some methods like using CCTVs 

to identify secondary incidents may involve human judgment and visual perspective, 

producing erroneous results. Static methods involved a setup of spatial and temporal 

limits (an incident occurring within 15 minutes and 1 mile of the primary incident). In 

this paper, CORSIM was used to calibrate the regression models developed to indentify 

the incident impact areas, the motivation being that simulated data can be used to capture 

a wide range of characteristics rather than field data. The recommendation of the authors 

was to use this method on large datasets where there is an existing calibrated simulation 

model duplicating the respective systems. 

Based on the review of numerous published literature related to the estimation of 

delay in terms of travel time due to incidents, it can be seen that a lot of the studies used 
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simulation software to imitate real world situations. Some studies have also used 

shockwave analysis and delay prediction algorithms to estimate the values. Those studies 

that used real world data also impose limitations like set temporal and spatial limits. In 

the current study, historical field data related to incidents and the corresponding traffic 

conditions is used and impact is computed for each incident selected.  

2.3 Excess Fuel Consumption and Vehicle Emissions due to Incidents 

Poor air quality and the importance of ambient air quality standards have been 

well explored in the past few decades. National standards have been established for 

pollutants like green house gases (most common: CO2, CH4, N2O and 

hydrofluorocarbons), volatile organic compounds, carbon monoxide, ozone, lead, 

nitrogen dioxide, particulate matter (also known as particle pollution or PM) and sulfur 

dioxide. These pollutants are constantly monitored through studies and measurements.  

Since the transportation industry is a major contributor to the production of many of these 

pollutants, the study and monitoring of vehicle emissions is very important. Production of 

atmospheric pollutants from vehicles increases with the increase in fuel consumption. 

Study of fuel consumption is also important to for sustainable use of energy in order to 

produce ways to reduce or optimize fuel consumption.  

Thomas and Jacko (2007) presented a stochastic model to estimate the impact of 

highway incidents on air pollution and traffic delay. The study area was the I-94 freeway 

in Indiana, United States. Incident characteristics such as incident duration, degree of 

capacity reduction, and the demand-to-capacity ratio were modeled as random variables 

to estimate excess emissions and traffic delays. Mobile6 model was used for the emission 

factors and Monte Carlo simulation was used to determine the statistical characteristics of 
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the emissions. The results indicated that an incident caused an average of 126.9 kg of 

excess CO, 20.8 kg of VOC, 8.8 kg of NOx and 0.27 kg of PM2.5 and delay of 630 

vehicle-hours. This corresponds to 138%, 500%, 26% and 43% of increase in CO, VOC, 

NOx and PM2.5 respectively when compared with normal traffic conditions. The paper 

also reported that a peak-hour incident was found to have 7 times the estimated CO and 

VOC of an off-peak-hour incident.  

Chung et al. (2013) presented a case study to measure impacts of freeway 

accidents on carbon dioxide (CO2). The study area was Orange County in California, 

United States. The model developed by a previous study by Barth and Boriboonsomsin 

(2008) was used for estimating CO2 measured for 2171 incidents that happened during a 

one-year period (Mar 2001- Feb 2002). The study reported that the average amount of 

CO2 emissions for one freeway accident was 398.34 kg. The study also fitted a model and 

the factors that were found significant (p-value < 0.05) in contributing to CO2 emissions 

were five-minute occupancy, AADT for passenger cars and trucks, accidents with three 

or more vehicles involved, and accidents that occurred at night. All the significant 

variables except AADT for passenger cars caused an increase in CO2 emissions with 

increase in the variable.  

The study by M.F. Coelho, Bandera and M.C. Coelho (2011) also evaluated the 

impact of road traffic incidents on pollutant emissions. The study was based on 

simulation of incidents using VISSIM for an arterial street in Aveiro, Portugal. The 

traffic volume and signal timing information were obtained from field studies. Thirteen 

incidents were modeled and compared with a base no-incident scenario. For peak 

condition, an increase of 25% and 50% for CO and CO2 emissions were noted in 
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comparison to no-incident situation in the north direction. For the south direction, an 

increase of 30% and 45% were noted. 

The paper by Nejadkoorki, Nicholson, Lake and Davies (2008) presented an 

approach for modeling CO2 emissions in urban areas. The method integrated three 

software packages namely SATURN, MATLAB and ArcGIS to model the CO2 emissions 

at street-level resolution and visualize the results. SATURN is a micro-scale simulation 

software which uses a trip matrix and the road traffic network as input. The road choice 

model estimated the total flows in the links. The average speeds, length and density were 

input from SATURN to MATLAB. In addition, the fleet composition (vehicle and fuel 

type) and the respective emission factors according to speed from the Transportation 

Research Laboratory database were also used as input. Total emissions were then 

computed and visualized using ArcGIS. A case study for the city of Norwich, England 

was used for demonstration and total CO2 emissions were found to be 69,100 tons in 

2003. The results indicated that 85% of CO2 emissions were from the main roads with 

passenger cars contributing to 72.5% of all the CO2 emissions. Of the total emissions, 

41% were attributed to off-peak hours. 

This review along with the studies from section 2.1, explain studies to estimate 

vehicle emissions through simulation and regression analysis methods. This study 

attempts to look at individual incidents and relate the estimated emissions produced and 

the incident characteristics. By looking at individual incidents and obtaining the 

corresponding emissions, then model built in this study presents a good opportunity to 

perform marginal impact analysis. 
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2.4 Travel Time Reliability 

 Reliability is defined by Ebeling (1997) as “the probability that a component or 

system will perform a required function for a given period of time when used under 

stated operating conditions. It is the probability of a non-failure over time”. Travel time 

reliability is an important measure of traffic performance and is commonly defined as the 

extent of consistency in travel times. Since commuters and shippers are averse to 

unexpected delay, efforts have been made to quantify travel time reliability. Another 

definition used in conjunction to reliability is the term variability or unreliability which is 

the measure of variance or dispersion in travel time. Conceptually, higher variability 

leads to lower reliability.  The value of travel time reliability has been investigated by 

many studies including Carrion and Levinson (2013), Sikka and Hanley (2012), Bates, 

Jones and Cook (2001), Lam and Small (2001). These studies have explored and 

reiterated the importance of the travel time reliability to road users.  

Bertini and Lyman (2007) and Elefteriadou and Cui (2010) summarized the 

various measures of reliability. The following are some common definitions of measures 

of reliability: 

 95
th

 Percentile Travel Time: travel times are lower than this on a given corridor, 

95% of the time. 

 Travel Time Index: average time taken to travel during peak times defined as the 

ratio of average travel time to free flow travel time.  

 Buffer Time/Planning Time: ratio of 95
th

 percentile travel time divided by free-

flow travel time.  
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 Buffer Index: ratio of the difference between 95
th

 percentile travel time and mean 

travel time, divided by mean travel time. 

Frequency that congestion exceeds some expected threshold: percent of days or 

time that mean speed falls below a certain speed. 

The paper by Chen, Skabardonis and Varaiya (2002) explained the use of travel 

time reliability as a measure of service. The study used travel statistics to analyze service 

quality for a section of I-5 in Los Angeles, California. Descriptive statistics were used to 

represent travel time variability and quantify incidents and travel time predictability, LOS 

and travel time. The paper reported a wide range of expected travel times and „what if‟ 

scenarios on the freeway study area. In one of the what-if scenarios, for a road-user a trip 

with a travel time of 40 minutes during 1 PM needed to plan for a travel time of 55 

minutes during 6 PM. The cost estimate function combined average travel time as well as 

the standard deviation because the users placed different costs on travel time experienced 

and scheduled time. One of the results reported was that it was enough to budget 32 

minutes for a certain trip if the driver knew that there were no incidents. However, if that 

information was not available, the planned travel time would be 45 minutes. Therefore, 

by knowing that there was no incident, 10 minutes of the trip travel time were saved.  

Susilawati, Taylor and Somenahalli (2010) assessed travel time reliability for 

several corridors in the Adelaide area, Australia. The buffer time and planning indices 

were used to determine travel time reliability for 8 years‟ data and the trends were noted. 

By looking at the distribution, it was found that buffer time index and the planning index 

seemed to underestimate reliability due to the significant difference between the mean 
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and 95
th

 percentile travel time. Further statistical analyses were performed and it was 

found that the travel time data did not follow normal distribution. The study found that 

the log-normal type of distribution fit the data for some of the corridors well. The results 

of the study included the plots of buffer index and planning index for ten different 

corridors over 8 years. One drawback of this study is that it did not use time of day or day 

of week criteria to differentiate the annual travel time data. 

Oh and Chung (2006) investigated the use of loop detector data in measuring 

route and link travel time variability. The study used real-time data from Caltrans in 

California. A GIS-based database was developed and three measures: day-to-day 

variability, within-day variability, and spatial variability were investigated. The study 

area was in Orange County, California for the year 2001. Single-loop detector data for 5-

minute intervals was used in this analysis. The standard deviation and normalized 

standard deviation (normalized for length and travel time) were used as measures of 

travel time reliability. Time of day analysis showed that reliability was less during 

morning and afternoon peaks. Day of week analysis did not show significant difference. 

In terms of analysis across the months of the year, December was found to have lower 

reliability than the other months.  

Very few studies have been dedicated to exploring the effects of incidents on 

travel time reliability. Two such studies are Tu, Van Lint and Van Zuylen (2008) and 

Park, Rakha and Guo (2011). Tu et al. investigated the effect of the direct impacts of 

traffic accidents on travel time reliability under different demand levels. The travel time 

data was estimated from empirical loop detector data on a freeway in Netherlands and 

police accident records. The raw data consisted of 10-minute aggregate speed recordings 
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for the year 2004. Travel times were estimated based on the „Piecewise Linear Speed 

Based‟ algorithm. The plot results for travel time as a function of inflow levels for the 

10th, 50th and 90th percentile volumes showed that traffic accidents increased the travel 

time. The 90th percentile travel time increased by around 75% due to traffic incidents. 

Plots of the travel time reliability measure developed and estimated by the study showed 

that travel time reliability with incidents was much lower than that without traffic 

incidents. This study made a temporal assumption in that it considers the data for a 3-

hour period following the traffic accident to encompass the accident effect.  

 Park et al. (2011) proposed a multi-state travel time reliability model to quantify 

the impact of traffic incidents on travel time reliability due to incidents. The study used 

simulated data for weekdays over a period of 17 days from 5:00 AM to 10:00 AM. A 

multi-state model was used as opposed to the single-state model since the former fit field 

measured travel times better as shown in Figure 2-1. The three different states represent 

uncongested, medium-level congested and heavily congested flows.  

 

 

Figure 2-1. Mixed normal and log-normal density function (Park et al., 2011) 
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The study accounted for incidents of different severities by simulating different 

incident scenarios with one, two and three lanes blocked. The means and standard 

deviation of the travel times were reported. The results identified the increase in travel 

time variability. The difference between mean travel time and 90
th

 percentile travel time 

increased around 6:00 AM to 8:00 AM. Scenarios with and without incidents were 

modeled. The study found that in the medium-level congested state, there was 93% 

increase in the 90
th

 percentile travel time for the incident scenario. In the heavily 

congested state, once traffic congestion has already onset, traffic incidents did not affect 

the travel time much. One disadvantage of this study is that it uses an assumed incident 

duration of 40 minutes based on the average for all incidents in Virginia, United States. 

The study by Tsubota et al. (2011) estimated the benefit of reducing accidents due 

to improvement in travel time reliability. The study used data from a Tokyo Expressway 

to analyze the relation between traffic accidents and travel time reliability. An additional 

concept of penalties for late and early arrival was also introduced. A plot with 

comparison between the incident and non-incident travel time measurements was 

developed. The estimated costs calculated by the study were compared for incident and 

non-incident conditions. The results found was that the benefit of reducing one incident 

was savings of 2.54 million yen (app. 25,670 USD) on an average. Some drawbacks of 

this study included that the impact measurement was stopped once the vehicle were 

cleared. The delay that continued after the clearance until normal flow returned was 

ignored. Also, the incidents that did not produce any noticeable traffic jam were ignored. 

The study compared the overall travel times and did not include incident characteristics 

like number of lanes blocked, incident duration of the incidents.  



25 
 

2.5 Summary 

The review above presents many papers and reports similar in objective as the 

current study. The estimation of the short-term impacts of incidents has been well 

explored. In this study, in addition to presenting a methodology to estimate short-term 

impacts of incidents, analysis and results for marginal impacts of the measures are 

modeled. For fuel consumption and vehicle emissions, since real-world measurements are 

difficult of obtain, simulation software packages are typically used. In this study, fuel 

consumption and vehicle emissions are modeled using EPA‟s MOVES software. For long 

term impacts of incidents, studies that relate incidents and travel time reliability measures 

are very few. The methodology presented in this study and the incident, traffic 

characteristics used in developing the statistical models are novel. In both short-term and 

long term impacts of incidents, archived field-measured traffic data and recorded 

incidents data are used.  
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CHAPTER 3  

METHODOLOGY FOR ANALYSIS OF SHORT TERM IMPACTS OF INCIDENTS 

3.1 Introduction 

This chapter presents the methodology for modeling the short term impacts of 

incidents. In this study, only the impacts of vehicular incidents are considered. The 

impacts on the opposing direction of traffic due to rubbernecking are also added to the 

impacts of the primary analysis direction. The term rubbernecking is used to describe the 

phenomenon where the drivers in one direction of flow are distracted by an incident (and 

queues) in the opposing direction of flow (Masinick and Teng, 2004).  Since the effect is 

caused due to the incident in the primary direction of flow, the resulting rubbernecking 

impacts are also added as additional components while computing incident impacts.  

3.2 Impacted Measures of Performance 

In this study, short term impacts of incidents on travel time, fuel consumption and 

vehicle emissions are modeled. The following is a description of these measures of 

performance.  

3.2.1 Travel Time 

One of the impacts of incidents is increased travel time for vehicles travelling on 

the impacted segment. The travel time measures used in this study are vehicle-hours of 

travel, and additional average vehicle travel time over the freeway segment impacted by 

the incident. The excess of travel time performance measures caused due to traffic 

incidents is measured by comparing travel time during non-incident and incident 

conditions.  
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3.2.2 Fuel Consumption 

Another impact of incidents is excess fuel consumption due to reduced vehicle 

speeds and increased travel time. Figure 3-1 shows the effect of speed on fuel economy 

with lower and higher speeds indicating reduced fuel economy (USDOE, 2005). Traffic 

incidents and the ensuing congestion cause lower speeds, therefore resulting in lower fuel 

economy as shown by Figure 3-1. In this study, EPA‟s MOVES software is used to 

estimate the increase in fuel consumption of the impacted vehicles. The excess fuel 

consumption is computed as the difference between the fuel consumption during incident 

and non-incident traffic conditions. 

 

 

Figure 3-1. Fuel Economy and Speed (Source: USDOE) 

 

3.2.3 Vehicle Emissions 

Based on the literature review of related studies and publications, the emission 

pollutants chosen to be considered in this study are Carbon Dioxide (CO2), Carbon 

Monoxide (CO), Oxides of Nitrogen (NOx) and Particulate Matter of size 10 micrometers 

or less, (PM10). Vehicular traffic has been found to be a significant contributor to the 

production of these three pollutants (Rodrigue, 2013). Transportation industry is the 
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highest contributor accounting to about 70% of CO, 40% of NOx and 25% of PM10 

production respectively. Oxides of nitrogen contribute to illnesses and react with the 

atmosphere to affect ozone levels. Also, a component of NOx namely NO2 is toxic. PM10 

causes respiratory illnesses and CO causes oxygen deprivation in human body leading to 

numerous other illnesses (Gorham, 2002).  

Vehicle emissions vary with the speed of vehicle and type of vehicle. Figures 3-2, 

3-3 and 3-4 from the California Life-Cycle Benefit Cost Analysis Model (Cal-B/C) show 

the CO, NOx and Particulate Matter less than 10 micrometers (PM10) emissions by speed 

based on UCLA speed measurements for 2003 and 2007 on a highway facility (System 

Metrics Group, Inc., 2009). The figures show emissions for three types of vehicles, 

automobiles, buses and trucks, for a highway facility. Traffic incidents can be expected to 

cause increased emissions due to resulting low operating speeds and sudden acceleration 

and deceleration.  

 

 

Figure 3-2. CO Emissions versus Speed (System Metrics Group, Inc., 2009) 
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Figure 3-3. NOx Emissions versus Speed (System Metrics Group, Inc., 2009) 

 

 

Figure 3-4. PM10 Emissions versus Speed (System Metrics Group, Inc., 2009) 

 

As seen in the figures, very low and very high speeds result in higher emissions 

when compared to normal speeds. The vehicle emissions in this study are modeled using 
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EPA‟s MOVES for the incident and non-incident scenarios and the difference between 

the two is computed as the excess vehicle emissions produced due to that incident.  

3.3 Framework of the Study: Impacts of Incidents on Travel Time, Emissions and 

Fuel Consumption 

The flowchart in Figure 3-5 presents the overall methodology for computing the 

short term impacts considered in this study - travel time, fuel consumption and vehicle 

emissions. 

 

 

Figure 3-5. Flowchart for Modeling Incident Impacts on Travel Time, Emissions and 

Fuel Consumption 

 

 

3.3.1 Sample Selection 

The first step in the process is the selection of a suitable sample of incidents from 

the incident database. All the incidents that occurred in a one- year period are used as the 

population. Proportional sampling is performed to ensure that the sample has the same 

proportion of incidents, segment-wise, as the population. After performing proportional 

sampling on this data, a sample subset is chosen at random according to the requirement 

for each segment.  

Sample Selection 

Generation of Analysis Database 

Statistical Modeling 

Model Selection 

Marginal Analysis 
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3.3.2 Generation of Analysis Database 

The flowchart for generation of the analysis database is shown in Figure 3-6. 

 

Figure 3-6. Flowchart for Generation of the Analysis Database 
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Step 1. Recording incident characteristics.  

This step is to record the incident characteristics from the incident database. Table 

3-1 shows sample incident information for which the procedure for computation of the 

impact on delay is explained. The incident characteristics recorded include day of week, 

time of day, location, number of lanes blocked, incident duration, presence of a 

secondary crash and severity of the incident. 

 

Table 3-1. Sample incident data 

 

 

Step 2. Determination of spatial and temporal extents of the incident  

This step involves the collection and plotting of speeds for the incident day in 

order to determine how far upstream the incident had impact (spatial extent) and the total 

time period impacted (temporal extent). Figure 3-7 shows a typical plot of speeds of the 

day of an incident under consideration from which the spatial and temporal extents are 

clearly evident. 

The following parameters are extracted from this data, namely, 

i. Duration of temporal extent (in minutes), i.e., how long after the occurrence of the 

incident is the impact felt 

ii. Length of spatial extent (in miles), i.e., how far upstream does the incident-

induced congestion extend 
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Figure 3-7. Speed Plot for Sample Incident 

 

Step 3. Computing VHT, VMT, travel time, emissions, and fuel consumption for impact 

extent 

a) This step involves the calculation of the traffic parameters for incident 

condition over the corresponding spatial and temporal extent of the incident. The 

parameters to be determined include traffic volumes, speeds, travel times, and 

densities over each segment and time period covering the spatial and temporal extents. 

Similar data in opposite direction is obtained for the impact of rubbernecking. The 

following parameters are calculated for the corresponding segments and time periods 

covered in the spatial and temporal extents. 
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Average volume per lane,  
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Where  

NK = the total number of segments over the spatial extent of the incident 

Lk = length of segment k in miles 
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Mk = the number of lanes on segment k 

T = length of time period t in minutes 

NT = the total number of time periods over the temporal extent (each time 

period is approximately 15 minutes) 

vk,t = number of vehicles on segment k during time period t 

Vk,t = volume on segment k during time period t in vph 

Sk,t = speed, in mph, on segment k during time period t 

Dk,t = density, in vpm, on segment k during time period t 

TTk,t = travel time, in minutes, on segment k during time period t 

FEx,j = output from MOVES in grams for emissions and gallons for fuel  

x = factor estimated using MOVES: fuel and emissions (CO2, CO, NOx, 

PM10) 

j is used to distinguish between incident and non-incident parameters and 

the primary and rubbernecking direction 

jVMTM = vehicle-miles of travel estimated by MOVES 

b) For each incident, corresponding non-incident traffic parameters are 

collected for the same day-of-week, spatial and temporal extent as the incident using 

the same formulae mentioned above. The days-of-week are divided into four, namely, 

weekdays (Monday – Thursday), Fridays, Saturdays and Sundays. The non-incident 

parameters are computed averages over several days‟ worth of non-incident time 

periods for corresponding day of week.  
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The entire process is to be repeated for the rubbernecking direction as well, for 

the same temporal and spatial extent (plus an extra segment upstream in the 

rubbernecking direction).  

Step 4. Computing impact VHT, VMT, additional travel time, emissions and fuel 

consumption 

In this step, the following incident impact parameters are calculated for each 

incident: 

i. Average additional travel time: This is the difference between the incident and 

non-incident average total travel time over the all the segments in the spatial and 

temporal extents, i.e., 

)( noninc TTTTTT                              (3-11) 

)( RnonRincR TTTTTT              (3-12) 

where  

TTinc and TTnon are incident and non-incident travel times, respectively. 

TTRinc and TTRnon are incident and non-incident travel times for the 

rubbernecking direction, respectively. 

ii. The additional vehicle-hours-of-travel and vehicle-miles of travel are calculated 

as follows, i.e., 
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           RnonRincR VMTVMTVMT        (3-16) 

where  

VMTinc and VMTnon are vehicle-miles of travel for the incident and non-

incident condition, respectively. 

VMTRinc and VMTRnon are vehicle-miles of travel for the incident and non-

incident condition in the rubbernecking direction, respectively. 

iii. The additional fuel consumption in gallons/vehicle miles is computed by running 

EPA‟s MOVES software for incident and non-incident conditions and calculating 

the difference in fuel consumed per vehicle mile. 

    RnonfuelRincfuelRincnonfuelincfuelincfuel fefeVMTfefeVMT ,,,,       (3-17) 

where  

fefuel,inc and fefuel,non are incident and non-incident fuel consumption rates in 

gallons per mile respectively.  

fefuel,Rinc and fefuel,Rnon are incident and non-incident fuel consumption rates in 

gallons per mile respectively for the rubbernecking direction.  

iv. The additional emissions in grams/vehicle miles are similarly determined by 

running EPA‟s MOVES software for incident and non-incident conditions and 

calculating the difference. 

    RnonemissionsRincemissionsRincnonemissionsincemnissionsincemissions fefeVMTfefeVMT ,,,, 

                (3-18) 

where  

feemissions,inc and feemissions,non are incident and non-incident emissions in grams 

per mile respectively.  
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feemissions,Rinc and feemissions,Rnon are incident and non-incident emissions in grams 

per mile respectively for the rubbernecking direction.  

The above procedure is repeated for all incidents considered and corresponding 

databases are generated. 

3.3.3 Statistical Modeling 

Regression models are calibrated to obtain the relationship between incident 

characteristics, such as the duration of blockage and the number of lanes blocked, and the 

impact on performance measures, such as the average travel time, vehicle-hours-of-travel, 

fuel consumption and vehicle emissions. These models are then used to estimate marginal 

impact of the incident parameters. For example, they can be used to estimate the impact 

on VHT for each additional minute of block duration, or for each lane blocked during an 

incident. Using Minitab and R statistical packages, regression analysis based on the 

following functional forms is performed. 

3.3.3.1 Linear Regression Models 

Linear regression models the mean value of the dependent variable as a linear 

function of the independent variables. This model is appropriate for analyzing dependent 

variables that are continuous and normally distributed. 





N

j

jjd XY
1
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Where:   

Yd = impact on an MOE parameter, such as VHT, travel time, fuel 

consumption, or emissions 

βj = regression coefficient for variable j 

Xj = predictor/independent variable j  



39 
 

3.3.3.2 Log-Transformed Regression Models 

An exponential regression uses an equation of the exponential function to fit a set 

of data. Exponential regression model takes the form: 
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In this analysis an exponential relationship between the dependent and 

independent variables is subjected to linear transformation by taking logarithm on both 

sides. This model changes the dependent variable and interpretation should be changed 

accordingly. 

3.3.3.3 Generalized Linear Models 

Generalized Linear Models (GLM) models relate the mean of a dependent 

variable to a linear combination of explanatory variables while allowing for non-constant 

variance. A generalized linear model is made up of a linear function and two other 

functions: a link function that describes how the mean depends on the linear predictor, 

and a variance function that describes how the variance depends on the mean. GLMs are 

fit to data by the method of maximum likelihood, which is different from the Ordinary 

Least Squares method used by regular linear models. These models are useful when the 

dependent variable does not follow normal distribution.  

Linear Models: jjdd XyE  )( where yd ~ N (μ, σ
2
) 

GLMs:  )()( jjdd XyE   where yd ~ Exponential Family   (3-21) 

Where, 𝛾 is the link function. 

The exponential family of distributions can include distributions such as Poisson, 

Gaussian (normal), binomial and gamma. GLMs of the Gaussian and Gamma families are 
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modeled in this study. For the Gamma GLM the link used in inverse and therefore the 

general model is of the form: 

1

22110 )....(  pp XXXY 
      

(3-22) 

Minitab software is used for development of the descriptive statistics of the data, 

their histograms, box plots and correlation matrices. R software is used for calibrating the 

linear, exponential and GLM models. These software packages are chosen owing to their 

ability to perform the required analysis and ease of use. Stepwise regression is used to 

determine the most significant variables, while taking into account the correlation 

between the predictor variables. A confidence interval of 95% is used to evaluate the 

statistical significance.  

3.3.4 Model Selection 

The full model with all the predictor variables is modeled for each of the LMs and 

GLMs. A nested model is selected by using Adjusted R
2
, Akaiake Information Criteria 

(AIC) and stepwise regression, with the variables being significant at α = 0.05. The 

coefficient of determination R
2
 is an indicator of how well the model fits the set of data. 

In general, a higher R
2
 signifies a good model. AIC is another parameter to measure 

goodness of fit and is applicable to GLM models (Burham and Anderson, 1998). These 

methods are used, whenever appropriate to select the appropriate regression model in this 

study. Once the final nested models for each of the functional forms of the LMs and 

GLMs are modeled, the residual plots are compared to select the best model. The 

selection of the best model depends upon the list of variables present in the model and its 

fit. 
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3.3.5 Marginal Impacts 

The final nested model selected is then used to interpret and determine the 

marginal impacts of the predictor variables on the response variable. The marginal impact 

analysis is used to determine the rate of change of incident impact (e.g., excess VHT) 

with percentage or unit change in incident characteristics such as incident duration and 

number of lanes blocked. 
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CHAPTER 4  

METHODOLOGY FOR ANALYSIS OF LONG TERM IMPACTS OF INCIDENTS  

4.1 Travel Time Reliability 

Long term impacts in this study are measured by impacts on travel time reliability. 

The travel time measures used commonly are explained in Chapter 2. In this study, the 

following measures of travel time reliability are used: 

 95
th

 percentile travel times  

 Buffer Time  

 Buffer Index  

The 95
th

 percentile travel time can be used to indicate the time planned for a trip 

by a road user. The travel time data for the period under consideration is arranged and 

accumulated according to the day-of-week and time-of-day categories to facilitate the 

computation of the travel time reliability indices. The following section describes the 

analysis methodology for measuring the impacts of incidents on travel time reliability. 

The methodology involves aggregating all of the data first by weekdays and then by 

hourly time slots. The incident details are then aggregated for the same time slot. Other 

traffic characteristics including speeds, volumes and densities are also aggregated in the 

same manner. To be noted is that the days and times with documented workzone 

activities, weekends and holidays, night-time (9 PM to 5 AM) are to be excluded from 

this dataset. This is done in order to ensure that the effect of workzones, holidays or 

weekends is avoided.  
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4.2 Framework of the Study 

The following text provides a description of the procedure used for calculating the 

impacts on travel time reliability as shown in the flowchart in Figure 4-1. 

 

Figure 4-1. Data Processing Flowchart Incident Impacts on Travel Time Reliability 
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Start 

Hour has the 

influence of an 

incident? 

Yes 

No 

Additional time 

periods to be 

analyzed? 

 
No 

Yes 

4. Calculate difference in TTR 

indices (Mixed – Non-incident) 

5. Create database for calibration and analysis 

 

2. Compute avg. TTR indices, traffic and 

incident characteristics 

Enter into „Mixed’ data 

3. Compute avg. TTR indices, traffic 

characteristics 

Enter into „Non-incident’ data 
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The methodology to compute the impacts of TTR can be applied to a pre-

determined segment or corridor selected for consideration. The time period of data 

collection is also to be decided ahead. Since the concept of reliability is most effective for 

weekday commuter traffic, analysis for weekdays alone is carried out. The procedure is 

described as follows: 

Step 1: Obtain travel times, volumes, speeds and densities for one hour of one weekday 

For the selected weekday, the traffic data from Dashboard is downloaded and 

arranged by hour. The averages are computed for travel times, volumes, speeds and 

densities.   

Step 2: Compute average TTR indices, traffic and incident characteristics for „Mixed‟ 

data 

Since the above dataset contains a mixture of incident and non-incident traffic 

characteristics, it forms the „mixed‟ data. The mixed condition represents the field travel 

time experienced on an average when incidents might have been experienced. The 95
th

 

percentile, buffer/planning time and buffer index reliability measures of travel time 

reliability are computed for each hour.  

Step 3: Compute average TTR indices, traffic and incident characteristics for „Non-

Incident‟ data 

If there was no incident in the current hour and two hours prior to the current hour, 

the data is deemed fit for use in the non-incident dataset. The travel time and traffic 

characteristics for the non-incident data are also aggregated in the same manner as mixed 

data. The travel time reliability measures are computed for the non-incident dataset. 
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Step 4: Calculate difference in TTR indices 

 The differences in TTR indices between mixed and non-incident conditions are 

then computed to account for the influence of incidents on the travel time experience of 

the road users. 

    NONMIXEDTTR TTRTTR                                   (4-1) 

where TTRMIXED and TTRNON are mixed and non-incident travel time indices 

respectively.  

Step 5: Create database for calibration and analysis 

The complete database then contains data for weekdays namely - Mondays, 

Tuesdays, Wednesdays and Thursdays and hourly time slots from 5 AM to 9 PM yielding 

4 x 15 = 60 data points. Summarized along with the TTR impacts are the incident and 

traffic characteristics to be used as predictor variables in the statistical modeling.  

4.3 Statistical Modeling 

Statistical modeling for the reliability section, involves the calibration of the 

travel time reliability (indices) as a function of the incident characteristics and traffic data. 

The incident characteristics used as predictor variables include: number of incidents in 

the subject hour, number of lanes blocked and average Incident Duration reported. These 

characteristics for the previous hour, second hour, two hours combined are also 

determined. The regression model forms explained in 3.3 are performed for reliability 

analysis also. 
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4.4 Model Calibration 

Stepwise regression and correlation matrices are used to select the appropriate 

significant variables. The p-value used is 5%. In some cases, a p-value of 10% is also 

used so as not to lose variables that are very important for practical purposes.  

4.5 Model Selection 

The model selection process for reliability analysis is also similar to the model 

selection for the short term impacts explained in section 3.5. AIC, residual plots and 

adjusted R
2
 are used to select the model that fits the data best. 
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CHAPTER 5  

DATA DESCRIPTION AND COLLECTION FOR SHORT-TERM IMPACT 

ANALYSIS 

5.1 Introduction 

In accordance with the methodology described in Chapter 3, the data required for 

short-term impact analysis include incident data and traffic characteristics. The Regional 

Transportation Commission of Southern Nevada‟s Freeway and Arterial System of 

Transportation (RTC FAST) maintains a web-based system called the PMMS Dashboard 

which keeps historical incident and traffic data for the Las Vegas valley freeway system 

(Xie and Hoeft, 2012) in a wide variety of customizable displays for evaluating day-to-

day operation, incident management, express lane evaluation, ramp meters operation, ITS 

devices maintenance and operation data quality control. This Dashboard is the main 

source of data for this research. 

5.2 Data Description for Short Term Impacts of Incidents 

5.2.1 Incident Data 

The incident database on the Dashboard is a consolidated historical database of all 

the reported incidents on Las Vegas freeways, including the Interstate 15 (I-15). The I-15 

carries a lot of local commuter traffic in and out of the resort corridor from the suburbs. 

Even though incident information for all the freeways was available from FAST, the I-15 

was chosen since the corresponding traffic data was more comprehensive in terms of data 

entry, when compared to the other freeways. The map of the study location is shown in 

Figure 5-1. 
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Figure 5-1. Map of Study Location 

 

The following summarizes the study area parameters: 

a. Study area: I-15 NB from St Rose to the Speedway.  

b. Time period: March 2011 - March 2012. 

c. Time of Day: 5 AM – 9 PM. Nighttime was left out because most freeway 

maintenance activities are conducted at night, and there is lack of reliable data on 

workzone schedules. In any case, due to low traffic volumes at night, the impact 

of incidents is expected to be much lower compared to daytime conditions. 

During this study period, I-15 NB had 674 incidents and SB had 399 distributed 

by location as shown in Figure 5-2. The data shows that the segment between Sahara 

Avenue and Charleston Boulevard had the most number of the incidents. Also, 
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Northbound direction had more number of incidents than the corresponding Southbound 

direction. The primary segment in this analysis is the Northbound direction, with the 

impacts on the rubbernecking direction (SB) included in the analysis. Figures 5-3 and 5-4 

show the crash distribution by day of week and time of day. 

 

 

Figure 5-2. Number of Incidents by Segment 

 

Figure 5-5 shows a typical Dashboard report with some incidents that occurred on 

December 30-31, 2011. 
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Figure 5-3. Number of Incidents by Day of Week 

 

 

Figure 5-4. Number of Incidents by Time of Day 
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Figure 5-5. Typical Incident Report Page from Dashboard 
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The following incident details were used in this study:  

 Day of the week of occurrence of the incident 

• Time of day of occurrence of the incident 

• Location of segment on which incident occurred 

• Time the incident was cleared: The time duration between the time the incident 

occurred and when it was cleared gives the incident duration. 

• The number of travel lanes blocked by the incident 

• Location of blocked lanes, i.e., left, center, right or shoulder lanes 

• Presence of a secondary crash: If an incident occurred in the wake of the 

congestion of another incident. If the latter incident is within the temporal and 

spatial extent of the former incident, the latter is termed as a secondary incident.  

From the incident data, a random sample of incidents to be used for the study is 

selected based on proportional sampling by incident location. An additional criterion in 

the proportional sampling is that each segment should have at least one incident in the 

study sample. Table 5-1 shows the number of incidents from each segment in the incident 

database and the corresponding sample size selected for the study. From each segment, 

the required number of incidents is selected at random. There are a total of 203 incidents 

in the study sample. 

In order to obtain the impacts of the incident in the primary direction exclusively, 

if a primary direction incident had the presence of an incident in the corresponding 

rubbernecking (I-15 SB) segment‟s impact area, it was removed from the dataset. 
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Table 5-1. Number of Incidents for each Freeway Segment in the Study Area (I-15 NB) 

 

Roadway-

Segment ID Seq ID Segment

Total 

Incidents Proportion

Sample 

Selection

356-2 56 Silverado Ranch 0 0.0000 0

356-3 57 past Silverado Ranch 1 0.0015 1

355-1 58 past Silverado Ranch 0 0.0000 0

355-3 60 before Blue Diamond 0 0.0000 0

354-1 61 before Blue Diamond 0 0.0000 0

354-2 62 Blue Diamond 0 0.0000 0

354-3 63 past Blue Diamond 1 0.0015 1

32-2 65 past Blue Diamond 0 0.0000 0

34-2 67 before I-215 Interchange (Southern Beltway) 2 0.0030 1

39-2 68 I-215 Interchange (Southern Beltway) 2 0.0030 1

48-2 69 past I-215 Interchange (Southern Beltway) 18 0.0267 5

49-1 70 before Russell Road 5 0.0074 2

49-2 71 Russell Road 3 0.0045 1

49-3 72 Russell Road 15 0.0223 5

58-2 73 before Tropicana Ave 25 0.0371 7

59-1 74 Tropicana Ave 8 0.0119 3

59-2 75 Tropicana Ave 9 0.0134 3

70-2 76 before Flamingo Rd 26 0.0386 8

71-2 77 Flamingo Rd 13 0.0193 4

72-1 78 Flamingo Rd 20 0.0297 6

89-1 80 Spring Mountain 24 0.0356 7

89-2 81 Spring Mountain 14 0.0208 4

97-1 82 past Spring Mountain 18 0.0267 5

97-2 83 Desert Inn 11 0.0163 3

97-3 84 before Sahara 50 0.0742 14

99-1 85 Sahara 116 0.1721 32

110-1 86 past Sahara 181 0.2685 49

112-2 87 before Charleston 45 0.0668 13

113-2 88 Charleston 15 0.0223 5

122-2 89 past Charleston 15 0.0223 5

124-2 90 US 95 Interchange 8 0.0119 3

137-1 92 past US 95 Interchange 2 0.0030 1

138-1 93 D Street 2 0.0030 1

138-2 94 Washington Ave 4 0.0059 2

146-2 96 Owens Ave 3 0.0045 1

148-2 97 Lake Mead Blvd 2 0.0030 1

149-2 98 past Lake Mead Blvd 2 0.0030 1

160-2 100 Carey Ave 0 0.0000 0

396-1 102 before Cheyenne 2 0.0030 1

396-2 103 before Cheyenne 1 0.0015 1

396-3 104 Cheyenne 3 0.0045 1

397-1 105 past Cheyenne 1 0.0015 1

398-1 108 before Craig Road 3 0.0045 1

398-2 109 before Craig Road 1 0.0015 1

399-2 112 past Craig Road 0 0.0000 0

400-1 114 Lamb Blvd 2 0.0030 1

402-1 120 CC 215 (Northern Beltway) 1 0.0015 1

403-3 125 Speedway 0 0.0000 0

TOTALS 674 203
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Another problem with the incident data is the lack of detailed data for some 

incidents. For instance, about 30% of the incidents do not have the incident duration. 

Since incident duration is one of the important variables in this study, incidents with no 

incident duration reported are manually determined from individual plots of speeds and 

traffic volumes.  

5.2.2 Traffic Data 

Data regarding traffic characteristics are also obtained from RTC FAST‟s PMMS 

Dashboard. The data includes the following parameters at 15 minute intervals for each 

segment: 

• Volume 

• Speed 

• Travel Time 

The data is collected by means of loop detectors for each segment of the freeway. 

Table 5-2 shows the traffic data from the freeway data plotting section of the Dashboard. 

 

Table 5-2. Dashboard Corridor Traffic Plotting Module Snapshot 
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To facilitate the computation of incident impacts, the traffic data is collected 

separately for: non-incident and incident conditions. 

Incident Data:  

Vehicle speeds, volumes and travel times are collected for each segment for the 

study period. Then, the speed plots are developed for each segment to determine each 

incident‟s temporal and spatial extents of the impact. The corresponding densities are 

computed from the speed and volume data. For each incident, using the formulas 

described in the methodology, the impacted total volume, impacted average density, and 

impacted average speed are computed. 

Non-Incident Data: 

 The traffic data for the corresponding non-incident scenario over the same spatial 

and temporal extent and day-of-week is also collected. Traffic data files for non-incident 

scenario are created by grouping the data according to weekday and overlapping 8-hour 

time periods. In order to develop the regular traffic conditions without the presence of an 

incident, 30 data points (for most categories) are collected for each weekday and each 

time slot, after removal of outliers. The categories are weekdays (MWTR, Fridays, 

Saturday and Sunday) for overlapping time periods: 5 AM to 1 PM, 9 AM to 5 PM, 1 PM 

to 9 PM. The average of this is considered the non-incident data for travel speed, volume 

and travel time for the corresponding day of week and time of day. Outliers can be 

detected using the following formulas. 

fs = upper fourth – lower fourth         (5-1)  

Extreme Outlier =  upper fourth + 3 fs   OR         (5-2) 

lower fourth - 3 fs 
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where: 

upper fourth = median of the upper half of the observations when arranged 

in ascending order 

lower fourth = median of the lower half of the observations when arranged 

in ascending order 

 In order to obtain the true non-incident travel pattern, it is necessary to filter out 

the days on which construction activities were planned and carried out. The Nevada 

Department of Transportation was contacted to obtain the database of recorded work 

zone activities. One of the problems encountered was the lack of electronic 

documentation of work zone activities. Since most work zone activities were planned 

during night time, all night time analysis (9 PM to 5 AM) are removed from the study in 

order to eliminate the risk of the influence of roadway construction work. In addition, the 

data for planned work zone activities during day time are also removed from the database. 

Also, federal holidays are removed from the weekday traffic data since this data would 

not be representative of the recurrent congestion for weekdays. If federal holidays 

occurred on weekends, they are retained in the dataset.  

5.2.3 Data Collection Procedure for Short Term Impacts of Incidents 

In this section the procedure for computing the impacts of incidents on travel time 

is employed to the data. As mentioned in the methodology described in Chapter 3, each 

incident is analyzed separately. 

Step 1. Record incident characteristics.  

Table 5-3 is an example of incident parameters for one incident that took place on 

February 4, 2012. 
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Table 5-3. Sample incident parameters 

 

 

Step 2. The spatial and the temporal extent of the incident are determined 

Figure 5-6 shows the speed segment plots for the example incident. 

 

 

Figure 5-6. Speed-Segment Plot showing Spatial and Temporal extents of Sample 

Incident 

 

In Figure 5-6, each line represents the speed profile over time for a single segment. 

The segments are numbered in ascending order from South to North. The incident took 

Day Date TimeStamp Corridor

Segment 

Description

Roadway

ID

Segment 

ID

Blocked 

Lanes

Blockage 

Description

Block 

Duration

TowTruckCome 

TimeStamp

LaneCleared 

TimeStamp

Saturday 2/4/12 5:53:00 PM I-15 NB

before 

Flamingo Rd 70 2 2

center 

lanes 25 6:18:00 PM

Time Affected (Temporal extent) Segments Affected (Spatial extent)

From 5:30:00 PM From 77 From 49                

To 6:45:00 PM To 72 To 53                

Rubbernecking
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place on segment number 76. From Figure 5-6, the temporal extent is from 5:30 PM to 

6:45 PM. The spatial extent is from segment 72 to 76. The corresponding extent in the 

opposing direction including an additional segment downstream of the incident is used to 

determine the rubbernecking extent. Table 5-4 shows the same for the sample incident 

under consideration.  

 

Table 5-4. Sample Incident Parameters 

 

 

Step 3. Computation of incident and non incident impact parameters 

Tables 5-5 and 5-6 show examples of spreadsheet calculations for average traffic 

parameters for incident and non-incident conditions using the formulas from Section 

3.3.2 for the sample incident used in the above steps. The process is carried out for 

rubbernecking direction also. 

Step 4. Computation of impacts 

The difference between incident and non-incident condition is computed as the 

impact of each incident. Added to this, are the impacts in the rubbernecking direction as 

well. Table 5-7 shows the summary of the analysis data for the sample incident. 

Day Date TimeStamp Corridor Segment Description

RoadwayI

D

Segment 

ID

Blocked 

Lanes

Blockage 

Description

Block 

Duration

LaneCleared

TimeStamp

Saturday 2/4/12 5:53:00 PM I-15 NB Before Flamingo Rd 70 2 2

Center 

lanes 25 6:18:00 PM

Time Affected Segments Affected (Spatial extent)

From 5:30:00 PM From 76 From 50           

To 6:45:00 PM To 72 To 53           

Rubbernecking
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Table 5-5. Worksheet with Traffic Data for Non-Incident Conditions 

 

 

 

 

 

 

tot v-h vphpl vph mph vmt

222.6    961          5,242       60.7    13,478        

SeQ ID tTime Av Speed Av TT Av Volume by segmentTime segsFMS DistanceDensity Lanes Vol (vphpl)

72 5:30:00 PM 61 0.3678 1116 1 0.3712 14.74 5          893              

72 5:45:00 PM 62 0.3579 1131 2 0.3712 14.54 5          905              

72 6:00:00 PM 63 0.3551 1021 3 0.3712 13.02 5          817              

72 6:15:00 PM 62 0.3572 1081 4 0.3712 13.86 5          865              

72 6:30:00 PM 62 0.3572 1097 5 0.3712 14.07 5          878              

72 6:45:00 PM 63 0.3558 1018 6 0.3712 13.00 5          814              

73 5:30:00 PM 59 0.4939 1465 1 0.4817 19.95 5          1,172           

73 5:45:00 PM 59 0.4949 1483 2 0.4817 20.24 5          1,186           

73 6:00:00 PM 59 0.4915 1378 3 0.4817 18.69 5          1,103           

73 6:15:00 PM 59 0.4928 1459 4 0.4817 19.82 5          1,167           

73 6:30:00 PM 59 0.4921 1469 5 0.4817 19.92 5          1,175           

73 6:45:00 PM 59 0.4902 1413 6 0.4817 19.08 5          1,131           

74 5:30:00 PM 58 0.2327 809 1 0.2253 11.11 5          647              

74 5:45:00 PM 61 0.2234 731 2 0.2253 9.66 5          584              

74 6:00:00 PM 61 0.2227 641 3 0.2253 8.45 5          512              

74 6:15:00 PM 60 0.2247 704 4 0.2253 9.36 5          563              

74 6:30:00 PM 60 0.2240 834 5 0.2253 11.05 5          667              

74 6:45:00 PM 60 0.2245 734 6 0.2253 9.74 5          587              

75 5:30:00 PM 52 0.2942 1425 1 0.2510 21.87 5          1,140           

75 5:45:00 PM 55 0.2730 1359 2 0.2510 19.66 5          1,087           

75 6:00:00 PM 56 0.2691 1242 3 0.2510 17.74 5          993              

75 6:15:00 PM 56 0.2697 1307 4 0.2510 18.71 5          1,045           

75 6:30:00 PM 56 0.2679 1305 5 0.2510 18.56 5          1,044           

75 6:45:00 PM 57 0.2636 1253 6 0.2510 17.55 5          1,003           

76 5:30:00 PM 64 0.3596 1787 1 0.3851 15.85 7          1,021           

76 5:45:00 PM 65 0.3546 1727 2 0.3851 15.15 7          987              

76 6:00:00 PM 66 0.3507 1632 3 0.3851 14.13 7          933              

76 6:15:00 PM 65 0.3566 1710 4 0.3851 15.06 7          977              

76 6:30:00 PM 66 0.3501 1745 5 0.3851 15.11 7          997              

76 6:45:00 PM 65 0.3543 1580 6 0.3851 13.83 7          903              
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Table 5-6. Worksheet with Traffic Data and Impact Travel Time Calculations for 

Incident Conditions 

 

 

 

Table 5-7. Sample Incident Parameters 

Inc No ExVHrs AddTT ImpTime ImpSpace NIDensity NIVol NISpd Weekday Peak 

42 145.41 1.2085 75 1.71 16 961 61 0 0 

 

tot v-h add v-h vpmpl vphpl vph mph vmt

360.1     153.3   24.86       896          4,873  45.5         12,530     

Seq ID tTime  Av Spd  Seg TT  Seg Vol Diff TT Time seg FMS DistanceDensity Lanes Volume (phpl)

72 5:30:00 PM 65 0.3427 1211 -0.0252 1 0.3712     14.90 5 969

72 5:45:00 PM 60 0.3712 1142 0.0133 2 0.3712     15.23 5 914

72 6:00:00 PM 50 0.4455 1107 0.0903 3 0.3712     17.71 5 886

72 6:15:00 PM 48 0.4640 1002 0.1068 4 0.3712     16.70 5 802

72 6:30:00 PM 56 0.3977 1131 0.0405 5 0.3712     16.16 5 905

72 6:45:00 PM 64 0.3480 1064 -0.0078 6 0.3712     13.30 5 851

73 5:30:00 PM 64 0.4515 1119 -0.0424 1 0.4817     13.99 5 895

73 5:45:00 PM 64 0.4515 1083 -0.0433 2 0.4817     13.54 5 866

73 6:00:00 PM 44 0.6568 1034 0.1653 3 0.4817     18.80 5 827

73 6:15:00 PM 37 0.7810 949 0.2882 4 0.4817     20.52 5 759

73 6:30:00 PM 57 0.5070 1025 0.0149 5 0.4817     14.39 5 820

73 6:45:00 PM 64 0.4515 1003 -0.0387 6 0.4817     12.54 5 802

74 5:30:00 PM 62 0.2179 1287 -0.0147 1 0.2253     16.61 5 1030

74 5:45:00 PM 42 0.3217 1123 0.0983 2 0.2253     21.39 5 898

74 6:00:00 PM 23 0.5875 1169 0.3647 3 0.2253     40.66 5 935

74 6:15:00 PM 24 0.5630 1049 0.3382 4 0.2253     34.97 5 839

74 6:30:00 PM 33 0.4094 1279 0.1855 5 0.2253     31.01 5 1023

74 6:45:00 PM 61 0.2215 1088 -0.0030 6 0.2253     14.27 5 870

75 5:30:00 PM 55 0.2738 1472 -0.0204 1 0.2510     21.41 5 1178

75 5:45:00 PM 23 0.6546 1193 0.3816 2 0.2510     41.50 5 954

75 6:00:00 PM 13 1.1582 1137 0.8891 3 0.2510     69.97 5 910

75 6:15:00 PM 20 0.7528 1190 0.4831 4 0.2510     47.60 5 952

75 6:30:00 PM 34 0.4428 1464 0.1749 5 0.2510     34.45 5 1171

75 6:45:00 PM 52 0.2896 1281 0.0260 6 0.2510     19.71 5 1025

76 5:30:00 PM 60 0.3850 1899 0.0255 1 0.3851     18.09 7 1085

76 5:45:00 PM 14 1.6502 1188 1.2955 2 0.3851     48.49 7 679

76 6:00:00 PM 13 1.7771 1154 1.4264 3 0.3851     50.73 7 659

76 6:15:00 PM 15 1.5402 1267 1.1835 4 0.3851     48.27 7 724

76 6:30:00 PM 41 0.5635 2007 0.2133 5 0.3851     27.97 7 1147

76 6:45:00 PM 58 0.3983 1701 0.0440 6 0.3851     16.76 7 972
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5.2.4 Fuel Consumption and Vehicle Emissions 

Simulation of fuel consumption and emissions can be performed by popular 

software packages, of which EPA‟s Motor Vehicle Emission Simulator (MOVES) is the 

most widely used in the United States. Song et al. (2009) conducted a study to compare 

two simulation software, EMFAC and MOVES, in terms of the production of green 

house gases in Los Angeles County. The paper compared the characteristics of both 

software and highlighted the fact that the use of speed bins in MOVES made it a superior 

analysis tool when compared to the use of Speed Correction Factor in EMFAC.  

Therefore the MOVES model is used to estimate the vehicle emissions and fuel 

consumptions for each incident and the corresponding non-incident scenario in this study. 

A smaller sample size (116 incidents) was used for the MOVES runs due to fact that the 

simulation process was very time-consuming. The run-time varies depending upon the 

number of segments and time periods and the processing speed of the computer. For 

example, for one incident with 2.5 hours‟ impact period and 11 segments took around 90 

minutes for one run. The following section describes the data used for the estimation of 

fuel consumption and vehicle emissions using MOVES.  

5.2.4.1 About MOVES 

MOVES was developed by EPA‟s Office of Transportation and Air Quality. It is 

an open source software written in JAVA and MySQL. MOVES can be used to estimate 

national, state, county and project level emissions and consumption. MOVES has been 

designed to aid in estimating vehicle emissions from different types and ranges of 

vehicles under user defined conditions. It is an improvement over EPA‟s previous model 
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MOBILE6, with a feature allowing for analysis on a project level, which fits the 

requirements for the research at hand.  

5.2.4.2 Data for Emissions and Fuel Consumption Estimation using MOVES 

A MOVES run is performed by creating a run specification (RunSpec) file to 

define the run details such as place, time, vehicle, road type, fuel etc. The RunSpec file is 

an XML file type and can be edited and executed either manually or with the use of the 

MOVES GUI. The data required by MOVES for project-level analyses include: 

 Traffic data: Speeds and Volumes 

 Geometry: Segment Lengths and Grades 

 Meteorology: Temperature and Humidity 

 Fuel information 

 Vehicle fleet/population  

 Vehicle age distribution 

Traffic data- Speeds and Volumes: 

 Traffic data for each incident from Dashboard is used as input in MOVES. Speeds 

and volumes for each segment and time period are provided in the input file for every 

MOVES run. 

Geometry- Segment Lengths and Grades: 

The length of each segment is available from the RCT data. The grades of the 

individual segments are needed in order for MOVES to compute the emission and fuel 

consumption estimates, since acceleration and deceleration are major contributing factors. 

Since this information was not readily available from any source, field measurements of 

elevations are conducted with the help of Global Positioning System (GPS). In this study, 
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Garmin‟s eTrex Legend C GPS receiver units are used for measuring the elevation 

(Figure 5-7). The unit was set to record GPS data, including elevations, at 3 second 

intervals. In order to improve data accuracy, five GPS runs were made and for each 

location the elevation was calculated as the average of the elevations from the five runs. 

 

Figure 5-7. Garmin eTrex Legend C handheld GPS unit (Source: www.garmin.com) 

 

The formulas used are shown below: 

miles
EE

Rise startend

5280


          (5-3) 

        

%100
gthSegmentLen

Rise
deSegmentGra        (5-4) 

Where: 

startE    : elevation of the segment start point in feet 

endE    : elevation of the segment end point in feet 

gthSegmentLen : length of segment in miles 

Meteorology data: 

Another data requirement for MOVES is the temperature and humidity 

corresponding to the time and location of the facility being modeled. For this study, this 

data was acquired from the National Oceanic and Atmospheric Administration‟s (NOAA) 

http://www.garmin.com/
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National Climatic Data Center
1
. Data for the year 2010 for Clark County, Nevada, which 

is the site of the study, was downloaded in Excel format. The sources of this data are the 

recordings at McCarran International Airport, Las Vegas. The data from NCDC 

contains the temperatures and dew points recorded for every hour of the day. From the 

temperature and dew point, the humidity is computed by first calculating the saturated 

vapor pressure and actual vapor pressure, as shown below (Humidity Formulas, n.d.): 

   










 T

T

SaturatedVP 7.237
*5.7

10*11.6      (5-5) 

      










 D

D

ActualVP 7.237
*5.7

10*11.6      (5-6) 

Relative Humidity = 
Saturated

Actual

VP

VP
      (5-7) 

        Where: 

T   = Temperature in degree Celsius 

D   = Dew point in degree Celsius 

SaturatedVP  = Saturated Vapor Pressure in Pascal 

ActualVP   = Actual Vapor Pressure in Pascal 

Fuel information 

 There are two subsets of information entered under the fuel section: fuel type and 

fuel formulation. The fuel type specifies the kind of fuel (gasoline, electricity, diesel fuel 

etc.) used. In this study, diesel and gasoline are used. Fuel formulation is a set of data on 

the characteristics of a fuel subtype such as its sulfur level, benzene content, olefin 

content etc. The default data for Clark County from the MOVES database is used for fuel 

                                                           
1
http://gis.ncdc.noaa.gov/map/viewer/#app=cdo&cfg=cdo&theme=hourly&layers=00000001&extent=-

139.2:12.7:-50.4:57.8&node=gis) - URL 

http://gis.ncdc.noaa.gov/map/viewer/#app=cdo&cfg=cdo&theme=hourly&layers=00000001&extent=-139.2:12.7:-50.4:57.8&node=gis
http://gis.ncdc.noaa.gov/map/viewer/#app=cdo&cfg=cdo&theme=hourly&layers=00000001&extent=-139.2:12.7:-50.4:57.8&node=gis
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formulation. This data has been collected and compiled from multiple US counties over 

the years by EPA. 

Vehicle fleet/population: 

The various types of vehicles (called Source Types) and their corresponding 

codes that can be entered in MOVES are shown in Table 5-8. The distribution of vehicle 

population during the time of the run is required by MOVES for every segment. 

 

Table 5-8. MOVES Vehicle Type Classification 

Code Vehicle Type Highway Performance Monitoring 

System Vehicle Class 

Axles 

11  Motorcycle  Motorcycle 2 

21  Passenger Car  Passenger Car 2 

31  Passenger Truck  Other Two-Axle/Four Tire, Single Unit 2,3 

32  Light Commercial Truck  Other Two-Axle/Four Tire, Single Unit 2,3 

41  Intercity Bus  Bus 2 

42  Transit Bus  Bus 2,3 

43  School Bus  Bus 2 

51  Refuse Truck  Single Unit 2 

52  Single Unit Short-Haul Truck  Single Unit 2 

53  Single Unit Long-Haul Truck  Single Unit 3,4 

54  Motorhome  Single Unit 4 

61  Combination Short-Haul Truck  Combination 5 

62  Combination Long-Haul Truck Combination 6 or more 

 

The distribution of vehicle types for this study is adopted from NDOT vehicle 

classification report for the years 2010 and 2011 (shown in Table 5-9). The data for 2012 

is estimated from this using the growth rate between the previous two years. This data is 

matched with the MOVES requirements in Table 5-8 according to the standard FHWA 

axle and vehicle classification, as shown in the last column of Table 5-8.
2
 The appropriate 

AADTs are then obtained to give the percent distribution in Table 5-10. The same 

process is used for the other two segments Flamingo to US-95 and US-95 to Speedway. 

                                                           
2
 http://www.fhwa.dot.gov/policy/ohpi/vehclass.htm 

http://www.fhwa.dot.gov/policy/ohpi/vehclass.htm
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Table 5-9. NDOT Vehicle Classification Report, 2011 

 

 

 

Table 5-10. Vehicle percent distribution St. Rose-Flamingo, 2011 

AADT

2010 Avg Wtd AADT PC-AADT MC Buses 2ax 3+ax 4ax 5ax 6+ax TruckAADT Year

1       st rose 728 silver 60,000       St Rose Pk Intch. Flamingo Rd Intch. 167,167               160,017         350 600 425 640 210 4,550 375  6,800       2009

2       silver 5340 blue 104,000     

3       blue 453 i215 139,000     

4       i215 1021 russ 225,000     

5       russ 52 trop 220,000     

6       trop 61 flam 255,000     

7       flam 67 spr.mou 257,000     Falmingo Rd. Intch. Spring Mtn Rd Intch. 257,000               249,230         380 575 450 575 235 4,565 350 265 50 325 6,750       E 

8       spr.mou 74 sahara 257,000     Spring Mtn Rd Intch. Sahara Ave 257,000               248,985         400 600 450 500 260 4,575 325 320 75 510 6,710       E 

9       sahara 1210 char 254,000     Sahara Ave L.V. Ex Intch. 252,500               244,295         450 550 425 550 275 4,700 365 300 100 490 6,865       E 

10     char 92 us95 251,000     

254,750               247,503         410    575      442    542     257    4,613     347    295    75     442    

11     us95 98 wash 158,000     L.V. Ex Intch. Lake Mead Intg 157,000               149,075         400 575 425 575 300 5,200 450 7,525       E 

12     wash 424 l.mead 156,000     

13     l.mead 1230 chey 125,000     Lake Mead Intg Speedway-Hollywood 61,400                  52,445           375 600 500 980 600 5,000 900  8,580       2010

14     chey 387 craig 78,000       

15     craig 378 lamb 38,000       

16     lamb 1451 XX 33,000       

17     XX 843 speed 33,000       

109,200               100,760         388    588      463    778     450    5,100     675    265    126   418    8,053       1,005    

Light trucks Heavy Trucks

St. Rose - Flamingo ( 2011) 

linkID sourceTypeID sourceTypeHourFraction 

  1 11 267 0.002 

1 21 1,53,997 0.937 

1 32 3,026 0.018 

1 41 839 0.005 

1 52 751 0.005 

1 53 4,598 0.028 

1 54 307 0.002 

1 61 362 0.002 

1 62 203 0.001 

  1,64,350 1.000 
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Vehicle age distribution: 

 This input lists the fraction of distribution of the vehicle ages for each segment. 

MOVES stores a default dataset for the national average age distribution from numerous 

US counties.  Owing to lack of data availability from the local DMV and DOT, the 

default database is used for this input criterion.  

5.2.4.3 Data Preparation for MOVES 

All the input data for MOVES are required to be arranged in a specific template 

and format in order to run and be processed by the software without any errors. The 

default database structure from MOVES is used to obtain the format for each type of 

input and the data is rearranged to suit the template as required by MOVES. For example, 

Table 5-8 shows the input format for the meteorology data arranged in the format 

specified by MOVES. The month ID, zone ID and hour ID gives the details of incident 

regarding the month, location (county) and time of the incident along with the 

temperature and relative humidity. 

 

Table 5-11. Sample MOVES Input Format: Meteorology 

monthID zoneID hourID temperature relHumidity 

2 320030 15 62.7 25.3 

 

5.2.4.4 Creation of Input files 

As explained in the data description for MOVES (Section 5.2.3), the input file 

needs to be in a specific format. Although two separate runs are performed for the 

incident and non-incident, the input file is the same for both except for traffic parameters, 

since all the remaining conditions such as geometry and location are the same. The file 

has two separate sheets for incident and non-incident with their respective traffic data. 
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Figure 5-8 presents a snapshot of the MOVES data entry GUI. The list of steps to enter 

the input and run MOVES and the detailed procedure can be obtained from the MOVES 

user manual on the EPA website.
3
 

 

 

Figure 5-8. MOVES Data Entry Window 

 

MOVES runs are repeated for incident and non-incident conditions for all the 

incidents in the sample set. Figure 5-9 shows the final database with the excess fuel 

consumption and vehicle emissions for each incident using the output from MOVES. 

 

                                                           
3
 MOVES User Guide URL- http://www.epa.gov/otaq/models/moves/documents/420b12001b.pdf 

http://www.epa.gov/otaq/models/moves/documents/420b12001b.pdf
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Figure 5-9. Fuel Consumption and Vehicle Emissions: Partial Data  

(Excess fuel consumption and vehicle emissions in gallons and grams, respectively) 

Incident NoCO2 CO NO NOx PM10 Fuel CO2 CO NOx PM10 Fuel CO2 CO NOx PM10 SO2 Fuel

3 634,192       2,761      603       685       16       64       747,745       3,488      841       17     64       12,109       (141)      (15)      2       0      4      

5 786,746       3,348      779       885       18       80       396,542       1,799      453       9       80       (9,304)        (263)      (24)      (0)     (0)    (0)    

7 8,395,826    29,921    7,406    8,414    233     841     4,833,846    17,067    5,285    120  841     2,013,917 7,388    1,436 75     35    206 

8 1,661,540    6,133      1,550    1,762    42       168     835,814       3,029      909       20     168     101,474     479       65       5       3      19    

10 5,862,279    27,385    5,265    5,983    146     585     3,876,057    16,405    4,189    90     585     1,207,296 7,683    952     38     22    123 

14 2,641,294    8,674      2,110    2,420    94       264     2,334,407    7,990      2,227    82     264     56,742       (172)      (46)      3       1      7      

15 2,432,486    10,389    2,207    2,508    60       240     2,090,256    9,042      2,294    48     240     228,311     854       89       9       5      21    

17 8,143,856    36,737    7,170    8,147    202     817     7,216,114    33,911    7,888    162  817     1,245,160 4,318    606     47     22    128 

19 7,983,225    37,555    6,526    7,413    196     801     7,875,417    37,953    8,112    175  801     1,631,809 6,946    871     55     28    168 

22 8,172,894    35,338    7,373    8,378    202     817     7,870,791    34,877    8,595    179  817     798,433     2,660    325     34     13    82    

25 5,056,775    23,048    4,566    5,189    122     504     4,035,096    19,324    4,387    90     504     422,718     856       151     19     8      45    

26 17,706,788 82,168    15,747 17,888 446     1,770 13,276,818 65,689    14,797 294  1,770 2,968,527 9,248    1,462 120  51    303 

32 546,338       1,845      535       608       22       56       520,450       1,751      578       20     56       1,516          12          3          1       (0)    6      

34 1,924,988    6,503      1,782    2,024    72       192     1,545,443    5,073      1,680    54     192     215,688     892       166     12     4      24    

35 6,176,623    23,387    5,447    6,186    173     617     4,223,693    16,351    4,709    101  617     1,309,311 4,544    759     57     22    128 

36 7,148,707    33,999    6,303    7,162    173     713     5,588,195    28,319    6,001    123  713     682,463     1,230    218     31     12    64    

38 9,627,262    35,916    8,753    9,944    260     961     8,355,307    33,449    9,283    198  961     2,563,525 7,638    2,096 93     46    257 

40 2,950,064    9,974      2,599    2,953    101     296     2,322,368    7,837      2,571    73     296     673,110     2,290    432     29     12    69    

45 952,112       3,240      916       1,041    27       96       1,273,541    4,319      1,388    36     96       0                  11          3          0       1      0      

46 1,075,334    3,632      1,019    1,172    36       104     1,043,930    3,494      1,188    33     104     111,579     406       75       6       1      8      

50 676,156       2,318      562       644       19       64       712,934       2,610      695       21     64       (14,832)      (212)      (30)      (1)     0      (6)    

53 857,378       2,917      748       849       19       88       855,386       3,217      869       19     88       (21,562)      (389)      (44)      (1)     (0)    (2)    

56 4,487,156    15,934    3,917    4,449    126     448     4,839,225    17,612    4,938    132  448     83,590       (92)        (44)      6       2      11    

57 2,785,387    11,733    2,357    2,703    55       280     2,587,047    11,222    2,551    50     280     7,538          (317)      (36)      1       (1)    5      

59 5,662,832    19,506    4,861    5,519    133     569     5,623,762    19,814    5,623    128  569     128,837     8            (14)      7       3      17    

60 668,802       2,789      630       716       19       64       672,173       2,941      726       19     64       (9,057)        (177)      (16)      (0)     (1)    (1)    

65 4,639,041    16,054    3,617    4,149    139     464     4,211,989    15,406    4,108    123  464     667,776     1,528    276     23     11    72    

70 253,687       1,220      214       243       5          24       486,560       2,442      488       9       24       19,491       45          8          1       1      1      

71 898,882       3,443      811       921       26       88       827,465       3,409      866       24     88       (15,151)      (323)      (36)      (1)     0      (0)    

73 3,367,998    16,019    3,056    3,472    66       336     3,367,481    16,585    3,536    65     336     5,939          (539)      (58)      1       0      1      

Excess (grams)incident non-incident
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CHAPTER 6  

DATA DESCRIPTION AND COLLECTION FOR LONG-TERM IMPACT 

ANALYSIS 

6.1 Introduction 

The analysis for long-term impacts of incidents also uses traffic and incident data 

from the RTC Dashboard website. Since the concept of reliability is of importance mostly 

for commuter traffic, analysis is done only for weekdays namely Monday, Tuesday, 

Wednesday and Thursday. Fridays are not included in the study sample because they 

typically involve a lot of tourist traffic from out of state. Holidays and night time analysis 

(9 PM to 5 AM) are again avoided due to construction activities. Also, data for one 

calendar year, 2011, is used due to availability of data for the complete year. The study 

area, I-15 NB corridor from I-215 in the South to US-95 (Spaghetti Bowl) in the North, 

was chosen owing to the busy traffic and the high crash rates typically experienced on 

that section. This section is about 8 miles long and has a maximum of 6 lanes.  

6.2 Data Description for Long Term Impacts of Incidents 

6.2.1 Incident Data 

The sample set for long term analysis is comprised of all the incidents that 

occurred on I-15 NB in the calendar year of 2011. The list of the incidents is tabulated by 

the day-of-week and time-of-day. Each hour of a weekday is a data point. There are a 

total of 686 recorded incidents in the RTC database for 2011. Specific incident details 

computed include the number of incidents in each hour, the average and maximum 

number of lanes blocked, the average incident duration, average and maximum lane-

minutes of blockage (product of number of lanes and incident duration) and the average 
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distance of the incidents from the base point, I-215 (Figure 6-1). Incidents that are very 

close to I-215 do not have as much influence on travel time reliability as those incidents 

further north in the segment.  

 

 

Figure 6-1. Average Distance of Incidents from I-215  

 

The number of incidents is tabulated for each day of week and hour of day. 

Similar spreadsheets for the other incident characteristics including average and 

maximum lanes blocked, average and maximum lane-minutes of blockage are also 

created. 

US-95 

I-215 

I-15 
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6.2.2 Traffic Data 

The methodology explained in section 3.3.2 is employed in compiling the study 

data. The traffic data, namely, speeds, volumes, and travel times for every Monday, 

Tuesday, Wednesday and Thursday is collected. Table 6-1 presents hourly averages of 

travel times for all Thursdays in 2011. These values are the averages of four 15-minute 

periods forming the „mixed‟ data. The empty cells in Table 6-1 have either a workzone or 

a holiday. Similar tables for speeds, volumes and densities are prepared.  

Table 6-2 shows the number of incidents for all Thursdays. Using this information 

the influence of a crash is determined as shown in Table 6-3. Every two hours following 

an incident is assumed to have the presence of the incident. Table 6-4 shows the average 

incident durations for the incidents shown in Table 6-2. The hours with the presence or 

influence of an incident is excluded from the mixed travel time data in Table 6-1. The 

non-incident travel times are developed as shown in Table 6-4. The empty cells in Table 

6-4 either have an incident or followed an incident or are holidays/workzone activities.  

Using the mixed and non-incident travel times, the reliability indices namely, 95
th

 

percentile, buffer/planning time and buffer index are computed for both. For Thursday, 

Tables 6-6 a, b and c show the analysis data for each hour of the year. 

For the chosen segment (I-15 N between I-215 and US-95), Tables 6-7 and 6-8 

show the final data used for performing the statistical analyses on travel time reliability.  
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Table 6-1. Aggregated Mixed Travel Time data (Thursday) 

 

 

 

 

 

Date Non Week 5       6          7       8          9       10     11     12       13       14       15       16       17       18       19     20     

1/6/2011 W - - 1           

1/13/2011 -   - 1     2           7.25 7.33    7.47 7.69    7.47 7.44 7.50 7.43    7.49    7.57    8.71    9.97    11.34 8.17    7.32 9.30 

1/20/2011 -   - 1     3           7.35 7.55    7.73 8.01    7.83 7.61 7.59 7.47    7.58    7.92    11.86 14.23 14.81 12.42 7.47 7.32 

1/27/2011 -   - 1     4           7.23 7.37    7.51 7.76    7.61 7.53 7.52 7.48    7.62    13.15 13.19 10.63 13.98 9.21    7.41 7.29 

2/3/2011 -   - 1     5           7.23 7.30    7.55 7.80    7.61 7.43 7.46 7.45    7.56    7.88    15.30 14.54 11.04 7.87    7.36 7.27 

2/10/2011 -   - 1     6           7.28 7.36    7.66 7.90    7.79 7.57 7.61 7.60    7.65    8.42    9.33    9.99    11.03 9.23    8.10 7.40 

2/17/2011 -   - 1     7           7.22 8.04    8.98 7.83    7.75 7.54 7.56 7.57    7.83    8.46    9.83    12.71 13.21 10.75 7.85 7.37 

2/24/2011 -   - 1     8           7.30 7.36    7.65 7.88    7.99 7.63 7.60 7.55    7.74    9.30    13.39 11.78 11.08 9.51    7.56 7.33 

3/3/2011 -   - 1     9           7.31 7.34    7.54 7.72    7.68 7.92 8.03 7.81    8.16    10.08 11.18 11.84 11.74 10.12 8.16 7.55 

3/10/2011 -   - 1     10         7.29 7.29    7.64 7.94    7.95 7.83 8.02 7.81    7.98    9.72    10.71 11.48 11.78 9.15    7.68 7.35 

3/17/2011 -   - 1     11         7.35 8.44    8.20 7.97    8.03 7.94 8.14 7.79    8.11    8.53    9.89    11.64 12.33 8.83    7.89 7.58 

3/24/2011 -   - 1     12         7.26 7.43    7.72 7.81    7.71 7.65 7.65 7.70    7.72    8.42    10.95 10.67 10.28 8.08    7.58 7.48 

3/31/2011 -   - 1     13         8.34 11.22 7.79 7.67    7.73 7.72 7.65 7.65    7.90    9.51    11.87 10.91 11.12 8.80    7.62 7.48 

4/7/2011 -   1     1     14         7.30 7.43    7.98 8.62    8.97 7.87 7.90 7.90    8.19    8.60    9.90    8.86    10.04 7.73    7.60 7.52 

4/14/2011 -   - 1     15         7.42 7.46    8.10 8.91    8.51 7.98 8.15 8.17    8.42    10.05 11.42 11.78 12.29 8.60    7.71 7.65 

4/21/2011 -   - 1     16         7.32 7.29    7.71 8.08    7.95 7.87 7.88 8.15    10.34 10.22 12.04 9.97    9.52    9.81    9.39 7.73 

4/28/2011 -   - 1     17         7.32 7.40    7.88 8.02    8.15 7.96 8.04 8.03    8.58    12.63 12.80 11.65 11.44 8.48    7.50 7.54 

5/5/2011 -   - 1     18         7.32 7.30    7.72 8.39    8.06 7.81 7.90 8.10    8.20    9.70    10.39 11.06 10.05 9.03    7.93 7.50 

5/12/2011 -   - 1     19         7.26 7.34    7.86 8.68    8.20 7.71 7.91 7.87    8.15    9.10    10.12 10.53 11.21 9.84    7.58 7.48 

5/19/2011 -   - 1     20         7.31 7.29    8.76 13.71 8.67 7.60 9.59 10.32 7.80    8.44    9.19    9.48    10.20 7.54    7.35 7.44 

5/26/2011 -   - 1     21         7.25 7.45    8.80 7.82    7.68 7.62 7.71 7.70    7.95    10.08 11.77 10.68 11.16 8.31    7.68 7.37 

6/2/2011 W - - 22         

6/9/2011 W - - 23         

6/16/2011 -   - 1     24         7.23 7.28    7.58 7.79    8.49 8.18 8.03 8.15    8.38    10.64 10.91 10.48 12.16 9.98    7.87 7.41 

6/23/2011 W - - 25         

6/30/2011 -   - 1     26         7.20 7.31    7.96 8.12    7.81 7.72 7.89 8.04    8.09    9.23    11.11 11.03 11.53 9.56    7.37 7.37 

7/7/2011 W - - 27         

7/14/2011 W - - 28         

7/21/2011 W - - 29         

7/28/2011 W - - 30         

8/4/2011 W - - 31         

8/11/2011 W - - 32         

8/18/2011 W - - 33         

8/25/2011 W - - 34         

9/1/2011 -   - 1     35         7.45 7.33    7.59 7.64    7.59 7.64 7.59 7.53    7.68    8.32    9.63    9.51    10.40 8.83    7.50 7.55 

9/8/2011 -   - 1     36         7.47 7.42    7.59 7.70    7.62 7.72 7.64 7.65    7.73    8.14    9.08    9.31    10.32 8.12    7.53 7.49 

9/15/2011 -   - 1     37         7.48 7.41    7.45 7.45    7.53 7.55 7.59 7.47    7.58    7.92    12.47 9.85    8.26    7.44    7.56 7.44 

9/22/2011 -   - 1     38         8.26 8.36    7.62 7.54    7.60 7.63 7.55 7.57    7.67    7.73    7.65    7.85    7.90    7.54    7.54 7.39 

9/29/2011 -   - 1     39         7.71 7.55    7.58 7.63    7.63 7.67 7.70 7.64    7.74    7.91    11.66 9.97    14.35 10.75 7.65 7.47 

10/6/2011 W - - 40         

10/13/2011 W - - 41         

10/20/2011 W - - 42         

10/27/2011 W - - 43         

11/3/2011 -   - 1     44         7.30 7.49    7.56 7.64    7.58 7.57 7.58 8.63    7.67    7.92    9.61    11.15 11.27 8.25    7.67 7.42 

11/10/2011 -   - 1     45         7.37 7.35    7.49 7.50    7.55 7.55 7.57 9.37    16.98 8.61    8.39    8.58    10.59 11.44 8.58 8.96 

11/17/2011 -   - 1     46         7.42 7.43    7.46 7.53    7.54 7.52 7.47 7.60    7.68    11.19 12.70 10.16 11.15 8.60    7.37 7.29 

11/24/2011 H - - 47         

12/1/2011 -   - 1     48         7.53 7.60    8.13 7.93    7.67 7.86 7.79 7.75    7.84    8.00    8.09    9.19    10.84 8.27    7.47 7.40 

12/8/2011 -   - 1     49         7.38 7.34    7.39 7.44    7.50 7.39 7.42 7.44    7.55    7.87    14.15 12.69 11.43 8.09    7.31 7.23 

12/15/2011 -   - 1     50         7.36 7.29    7.38 7.43    7.41 7.43 7.43 7.54    9.33    7.82    12.73 11.50 11.04 9.16    7.27 7.20 

12/22/2011 -   - 1     51         7.33 7.31    7.39 7.39    7.41 7.50 7.56 13.48 13.77 8.51    8.83    9.56    9.60    9.03    7.46 7.26 

12/29/2011 H - - 52         

1     34   

Mean 7.40 7.57    7.78 8.03    7.83 7.68 7.77 8.04    8.43    9.05    10.91 10.74 11.19 9.02    7.67 7.52 

Std Ev 0.25 0.70    0.40 1.07    0.37 0.19 0.39 1.12    1.89    1.36    1.82    1.46    1.46    1.14    0.41 0.43 

Hours
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Table 6-2. Number of Incidents for Thursdays - Aggregated 

 

 

Date Non Week 5       6       7       8       9       10     11     12     13     14     15     16     17     18     19     20     

1/6/2011 W -    - 1           -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

1/13/2011 -    1     2           -   -   -   -   -   -   -   -   -   -   1       -   -   -   -   2       

1/20/2011 -    1     3           -   -   -   -   -   -   -   -   -   1       -   -   2       -   -   -   

1/27/2011 -    1     4           -   -   -   -   -   -   -   -   1       1       -   -   1       -   -   -   

2/3/2011 -    1     5           -   -   -   1       -   -   -   1       -   1       -   -   -   -   -   -   

2/10/2011 -    1     6           -   -   -   -   -   -   -   -   -   -   -   -   -   1       -   -   

2/17/2011 -    1     7           -   1       -   -   -   -   -   -   -   -   1       2       -   1       -   -   

2/24/2011 -    1     8           -   -   -   -   -   -   -   -   -   2       1       -   1       -   -   -   

3/3/2011 -    1     9           -   -   -   -   1       1       -   -   -   1       -   1       -   -   -   -   

3/10/2011 -    1     10         -   -   -   -   -   -   -   -   -   -   1       -   -   -   -   -   

3/17/2011 -    1     11         -   -   -   -   -   -   -   -   -   -   -   1       -   -   -   -   

3/24/2011 -    1     12         -   -   -   -   -   -   -   -   -   -   1       -   -   -   -   -   

3/31/2011 -    1     13         1       -   -   -   -   -   -   -   -   -   1       -   1       -   -   -   

4/7/2011 1        1     14         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

4/14/2011 -    1     15         -   -   -   -   -   -   -   -   -   -   -   1       -   -   -   -   

4/21/2011 -    1     16         -   -   -   -   -   -   -   -   -   -   -   -   -   2       -   -   

4/28/2011 -    1     17         -   -   -   -   -   -   -   -   1       1       -   -   -   -   -   -   

5/5/2011 -    1     18         -   -   -   -   -   -   -   -   -   -   1       -   1       1       -   -   

5/12/2011 -    1     19         -   -   -   1       -   -   -   -   -   -   -   -   -   1       1       -   

5/19/2011 -    1     20         -   -   1       -   -   -   1       -   -   -   -   -   -   -   -   -   

5/26/2011 -    1     21         -   -   -   -   -   -   -   -   -   -   -   -   1       -   -   -   

6/2/2011 W -    - 22         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

6/9/2011 W -    - 23         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

6/16/2011 -    1     24         -   -   -   -   1       -   -   -   1       -   -   2       -   -   -   -   

6/23/2011 W -    - 25         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

6/30/2011 -    1     26         -   -   -   -   -   -   1       -   -   -   -   -   -   1       -   -   

7/7/2011 W -    - 27         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

7/14/2011 W -    - 28         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

7/21/2011 W -    - 29         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

7/28/2011 W -    - 30         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

8/4/2011 W -    - 31         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

8/11/2011 W -    - 32         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

8/18/2011 W -    - 33         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

8/25/2011 W -    - 34         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

9/1/2011 -    1     35         -   -   -   -   -   -   -   -   -   -   1       -   -   -   -   -   

9/8/2011 -    1     36         -   -   -   -   1       -   -   -   -   -   1       -   -   -   -   -   

9/15/2011 -    1     37         -   -   1       -   -   -   -   -   -   1       -   -   -   -   -   -   

9/22/2011 -    1     38         -   -   -   -   -   -   -   -   -   -   -   1       -   -   -   -   

9/29/2011 -    1     39         -   -   -   -   -   -   -   -   -   -   2       1       -   -   -   -   

10/6/2011 W -    - 40         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

10/13/2011 W -    - 41         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

10/20/2011 W -    - 42         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

10/27/2011 W -    - 43         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

11/3/2011 -    1     44         -   -   -   -   -   -   -   1       -   -   1       1       -   -   2       -   

11/10/2011 -    1     45         1       -   -   -   -   -   -   1       -   -   -   -   -   -   1       -   

11/17/2011 -    1     46         1       -   -   -   -   -   -   -   -   1       -   -   -   -   -   -   

11/24/2011 H -    - 47         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

12/1/2011 -    1     48         -   -   -   -   -   -   -   -   -   -   -   -   1       -   -   -   

12/8/2011 -    1     49         -   -   -   -   -   -   -   -   -   1       1       -   -   -   -   -   

12/15/2011 -    1     50         -   -   -   -   -   -   -   1       -   -   1       -   -   -   -   -   

12/22/2011 -    1     51         -   -   -   -   -   -   1       1       1       -   1       -   -   -   -   -   

12/29/2011 H -    - 52         -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   

Total 3 1 2 2 3 1 3 5 4 9 14 8 7 6 3 1

8.82 2.94 5.88 5.88 8.82 2.94 8.82 14.71 11.76 26.47 41.18 23.53 20.59 17.65 8.82 2.94Avg inc/hr (%)

Hours
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Table 6-3. Presence or Influence of an Incident (Thursday) 

 

 

 

 

 

 

Date Non Week 5        6        7        8        9        10     11     12     13     14     15     16     17     18     19     20     

1/6/2011 W -    - 1           

1/13/2011 -    1     2           2 1 1 2

1/20/2011 -    1     3           2 1 1 2 1 1

1/27/2011 -    1     4           2 2 1 1 2 1 1

2/3/2011 -    1     5           2 1 1 2 1 2 1 1

2/10/2011 -    1     6           2 1 1

2/17/2011 -    1     7           2 1 1 2 2 1 2 1 1

2/24/2011 -    1     8           2 2 1 2 1 1

3/3/2011 -    1     9           2 2 1 1 2 1 2 1 1

3/10/2011 -    1     10         2 1 1

3/17/2011 -    1     11         2 1 1

3/24/2011 -    1     12         2 1 1

3/31/2011 -    1     13         2 1 1 2 1 2 1 1

4/7/2011 1        1     14         

4/14/2011 -    1     15         2 1 1

4/21/2011 -    1     16         2 1 1

4/28/2011 -    1     17         2 2 1 1

5/5/2011 -    1     18         2 1 2 2 1 1

5/12/2011 -    1     19         2 1 1 2 2 1

5/19/2011 -    1     20         2 1 1 2 1 1

5/26/2011 -    1     21         2 1 1

6/2/2011 W -    - 22         

6/9/2011 W -    - 23         

6/16/2011 -    1     24         2 1 1 2 1 1 2 1 1

6/23/2011 W -    - 25         

6/30/2011 -    1     26         2 1 1 2 1 1

7/7/2011 W -    - 27         

7/14/2011 W -    - 28         

7/21/2011 W -    - 29         

7/28/2011 W -    - 30         

8/4/2011 W -    - 31         

8/11/2011 W -    - 32         

8/18/2011 W -    - 33         

8/25/2011 W -    - 34         

9/1/2011 -    1     35         2 1 1

9/8/2011 -    1     36         2 1 1 2 1 1

9/15/2011 -    1     37         2 1 1 2 1 1

9/22/2011 -    1     38         2 1 1

9/29/2011 -    1     39         2 2 1 1

10/6/2011 W -    - 40         

10/13/2011 W -    - 41         

10/20/2011 W -    - 42         

10/27/2011 W -    - 43         

11/3/2011 -    1     44         2 1 1 2 2 1 1 2 1

11/10/2011 -    1     45         2 1 1 2 1 1 2 1

11/17/2011 -    1     46         2 1 1 2 1 1

11/24/2011 H -    - 47         

12/1/2011 -    1     48         2 1 1

12/8/2011 -    1     49         2 2 1 1

12/15/2011 -    1     50         2 1 1 2 1 1

12/22/2011 -    1     51         2 2 2 1 2 1 1

12/29/2011 H -    - 52         

Total 3 4 6 5 7 5 6 8 10 14 22 25 23 19 14 9

Hours

1 presence of incident in previous hour or two 

2 presence of incident in subject hour 
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Table 6-4. Average Incident Duration 2011 incidents (Thursday) 

 

Date Non Week 5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20  

1/6/2011 W - - 1           2       

1/13/2011 -   - 1     2           19.0 56.0 -   

1/20/2011 -   - 1     3           35.0 20.0 2       

1/27/2011 -   - 1     4           16.0 15.0 17.0 1       

2/3/2011 -   - 1     5           43.0 64.0 90.0 -   

2/10/2011 -   - 1     6           66.0 2       

2/17/2011 -   - 1     7           77.0 41.0 15.0 3.0 2       

2/24/2011 -   - 1     8           9.0 14.0 21.0 4       

3/3/2011 -   - 1     9           7.0 39.0 54.0 16.0 3       

3/10/2011 -   - 1     10         22.0 -   

3/17/2011 -   - 1     11         18.0 3       

3/24/2011 -   - 1     12         17.0 -   

3/31/2011 -   - 1     13         84.0 32.0 52.0 2       

4/7/2011 -   1     1     14         2       

4/14/2011 -   - 1     15         39.0 1       

4/21/2011 -   - 1     16         11.5 5       

4/28/2011 -   - 1     17         38.0 8.0 -   

5/5/2011 -   - 1     18         6.0 25.0 17.0 -   

5/12/2011 -   - 1     19         9.0 11.0 59.0 2       

5/19/2011 -   - 1     20         56.0 83.0 -   

5/26/2011 -   - 1     21         22.0 1       

6/2/2011 W - - 22         1       

6/9/2011 W - - 23         -   

6/16/2011 -   - 1     24         2.0 32.0 30.5 2       

6/23/2011 W - - 25         -   

6/30/2011 -   - 1     26         34.0 19.0 3       

7/7/2011 W - - 27         2       

7/14/2011 W - - 28         -   

7/21/2011 W - - 29         -   

7/28/2011 W - - 30         -   

8/4/2011 W - - 31         -   

8/11/2011 W - - 32         -   

8/18/2011 W - - 33         -   

8/25/2011 W - - 34         -   

9/1/2011 -   - 1     35         29.0 -   

9/8/2011 -   - 1     36         4.0 16.0 2       

9/15/2011 -   - 1     37         24.0 6.0 5       

9/22/2011 -   - 1     38         46.0 -   

9/29/2011 -   - 1     39         27.5 19.0 -   

10/6/2011 W - - 40         -   

10/13/2011 W - - 41         -   

10/20/2011 W - - 42         -   

10/27/2011 W - - 43         4       

11/3/2011 -   - 1     44         15.0 14.0 37.0 31.5 6       

11/10/2011 -   - 1     45         53.0 79.0 64.0 2       

11/17/2011 -   - 1     46         67.0 24.0 -   

11/24/2011 H - - 47         3       

12/1/2011 -   - 1     48         41.0 8       

12/8/2011 -   - 1     49         20.0 53.0 1       

12/15/2011 -   - 1     50         88.0 27.0 3       

12/22/2011 -   - 1     51         92.0 7.0 10.0 54.0 1       

12/29/2011 H - - 52         -   

1     34   #

Mean 68.0 77.0 40.0 26.0 4.3 39.0 69.7 50.6 24.0 29.0 26.5 27.6 28.3 21.2 51.5 56.0

Std. Ev. 15.5 - 22.6 24.0 2.5 - 31.2 37.3 13.2 27.5 14.5 12.1 13.1 22.6 17.5 -

Hours
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Table 6-5. Aggregated Non-Incident Travel Time data (Thursday) 

 

 

 

 

 

Date Non Week 5       6       7       8       9       10     11     12     13       14       15       16       17       18       19     20     

1/6/2011 W - - 1           

1/13/2011 -   - 1     2           7.25 7.33 7.47 7.69 7.47 7.44 7.50 7.43 7.49    7.57    8.17    7.32 

1/20/2011 -   - 1     3           7.35 7.55 7.73 8.01 7.83 7.61 7.59 7.47 7.58    7.32 

1/27/2011 -   - 1     4           7.23 7.37 7.51 7.76 7.61 7.53 7.52 7.48 7.29 

2/3/2011 -   - 1     5           7.23 7.30 7.55 7.46 11.04 7.87    7.36 7.27 

2/10/2011 -   - 1     6           7.28 7.36 7.66 7.90 7.79 7.57 7.61 7.60 7.65    8.42    9.33    9.99    11.03 

2/17/2011 -   - 1     7           7.22 7.75 7.54 7.56 7.57 7.83    8.46    

2/24/2011 -   - 1     8           7.30 7.36 7.65 7.88 7.99 7.63 7.60 7.55 7.74    7.33 

3/3/2011 -   - 1     9           7.31 7.34 7.54 7.72 8.16    8.16 7.55 

3/10/2011 -   - 1     10         7.29 7.29 7.64 7.94 7.95 7.83 8.02 7.81 7.98    9.72    9.15    7.68 7.35 

3/17/2011 -   - 1     11         7.35 8.44 8.20 7.97 8.03 7.94 8.14 7.79 8.11    8.53    9.89    7.89 7.58 

3/24/2011 -   - 1     12         7.26 7.43 7.72 7.81 7.71 7.65 7.65 7.70 7.72    8.42    8.08    7.58 7.48 

3/31/2011 -   - 1     13         7.67 7.73 7.72 7.65 7.65 7.90    9.51    7.48 

4/7/2011 -   1     1     14         7.30 7.43 7.98 8.62 8.97 7.87 7.90 7.90 8.19    8.60    9.90    8.86    10.04 7.73    7.60 7.52 

4/14/2011 -   - 1     15         7.42 7.46 8.10 8.91 8.51 7.98 8.15 8.17 8.42    10.05 11.42 7.71 7.65 

4/21/2011 -   - 1     16         7.32 7.29 7.71 8.08 7.95 7.87 7.88 8.15 10.34 10.22 12.04 9.97    9.52    

4/28/2011 -   - 1     17         7.32 7.40 7.88 8.02 8.15 7.96 8.04 8.03 11.44 8.48    7.50 7.54 

5/5/2011 -   - 1     18         7.32 7.30 7.72 8.39 8.06 7.81 7.90 8.10 8.20    9.70    

5/12/2011 -   - 1     19         7.26 7.34 7.86 7.91 7.87 8.15    9.10    10.12 10.53 11.21 

5/19/2011 -   - 1     20         7.31 7.29 7.60 8.44    9.19    9.48    10.20 7.54    7.35 7.44 

5/26/2011 -   - 1     21         7.25 7.45 8.80 7.82 7.68 7.62 7.71 7.70 7.95    10.08 11.77 10.68 7.37 

6/2/2011 W - - 22         

6/9/2011 W - - 23         

6/16/2011 -   - 1     24         7.23 7.28 7.58 7.79 8.15 7.87 7.41 

6/23/2011 W - - 25         

6/30/2011 -   - 1     26         7.20 7.31 7.96 8.12 7.81 7.72 9.23    11.11 11.03 11.53 

7/7/2011 W - - 27         

7/14/2011 W - - 28         

7/21/2011 W - - 29         

7/28/2011 W - - 30         

8/4/2011 W - - 31         

8/11/2011 W - - 32         

8/18/2011 W - - 33         

8/25/2011 W - - 34         

9/1/2011 -   - 1     35         7.45 7.33 7.59 7.64 7.59 7.64 7.59 7.53 7.68    8.32    8.83    7.50 7.55 

9/8/2011 -   - 1     36         7.47 7.42 7.59 7.70 7.65 7.73    8.14    8.12    7.53 7.49 

9/15/2011 -   - 1     37         7.48 7.41 7.55 7.59 7.47 7.58    8.26    7.44    7.56 7.44 

9/22/2011 -   - 1     38         8.26 8.36 7.62 7.54 7.60 7.63 7.55 7.57 7.67    7.73    7.65    7.54 7.39 

9/29/2011 -   - 1     39         7.71 7.55 7.58 7.63 7.63 7.67 7.70 7.64 7.74    7.91    7.65 7.47 

10/6/2011 W - - 40         

10/13/2011 W - - 41         

10/20/2011 W - - 42         

10/27/2011 W - - 43         

11/3/2011 -   - 1     44         7.30 7.49 7.56 7.64 7.58 7.57 7.58 

11/10/2011 -   - 1     45         7.50 7.55 7.55 7.57 8.39    8.58    10.59 11.44 

11/17/2011 -   - 1     46         7.53 7.54 7.52 7.47 7.60 7.68    11.15 8.60    7.37 7.29 

11/24/2011 H - - 47         

12/1/2011 -   - 1     48         7.53 7.60 8.13 7.93 7.67 7.86 7.79 7.75 7.84    8.00    8.09    9.19    7.40 

12/8/2011 -   - 1     49         7.38 7.34 7.39 7.44 7.50 7.39 7.42 7.44 7.55    8.09    7.31 7.23 

12/15/2011 -   - 1     50         7.36 7.29 7.38 7.43 7.41 7.43 7.43 9.16    7.27 7.20 

12/22/2011 -   - 1     51         7.33 7.31 7.39 7.39 7.41 7.50 9.03    7.46 7.26 

12/29/2011 H - - 52         

1     34   

Mean 7.36 7.45 7.73 7.84 7.80 7.66 7.70 7.72 7.95    8.81    9.91    9.81    10.55 8.52    7.56 7.41 

Std Ev. 0.20 0.27 0.30 0.35 0.34 0.16 0.21 0.24 0.56    0.83    1.46    0.84    0.99    0.98    0.22 0.12 

Hours
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Table 6-6. Reliability Measures due to Incidents - Thursday 

 

(a) Mixed data 

 

 

 

(b) Non-incident data 

 

 

 

(c) Impacts of Incidents 

 

 

5          6         7          8           9          10         11         12       13          14          15          16          17          18          19       20       

Mean 7.395 7.572 7.778 8.028   7.832 7.681   7.771   8.042 8.431    9.047    10.908 10.741 11.191 9.016    7.674 7.524 

Std Ev. 0.252 0.702 0.400 1.065   0.373 0.186   0.387   1.122 1.888    1.356    1.816    1.455    1.461    1.141    0.409 0.426 

95th Percentile TT 7.901 8.391 8.777 8.763   8.569 7.968   8.143   9.701 11.539 11.693 13.656 13.243 14.109 10.991 8.310 8.158 

Buffer Time 0.506 0.819 0.999 0.735   0.737 0.286   0.372   1.660 3.108    2.646    2.748    2.502    2.919    1.975    0.637 0.634 

Buffer Index 0.068 0.108 0.128 0.092   0.094 0.037   0.048   0.206 0.369    0.292    0.252    0.233    0.261    0.219    0.083 0.084 

5          6         7          8           9          10         11         12       13          14          15          16          17          18          19       20       

Mean 7.364 7.447 7.733 7.844   7.796 7.662   7.695   7.722 7.954    8.808    9.910    9.812    10.547 8.515    7.560 7.412 

Std Ev 0.198 0.274 0.305 0.346   0.343 0.164   0.215   0.236 0.564    0.830    1.457    0.845    0.985    0.983    0.225 0.120 

95th Percentile TT 7.621 8.018 8.176 8.526   8.402 7.954   8.102   8.154 8.384    10.089 11.893 10.889 11.487 9.840    7.903 7.577 

Buffer Time 0.257 0.571 0.444 0.682   0.606 0.291   0.406   0.432 0.431    1.281    1.982    1.077    0.940    1.325    0.343 0.165 

Buffer Index 0.035 0.077 0.057 0.087   0.078 0.038   0.053   0.056 0.054    0.145    0.200    0.110    0.089    0.156    0.045 0.022 

5          6         7          8           9          10         11         12       13          14          15          16          17          18          19       20       

Mean 0.031 0.125 0.045 0.184   0.036 0.019   0.076   0.320 0.477    0.239    0.998    0.929    0.644    0.500    0.113 0.112 

95th Percentile TT 0.280 0.373 0.600 0.237   0.167 0.014   0.041   1.547 3.154    1.604    1.763    2.354    2.622    1.151    0.407 0.581 

Buffer Time 0.249 0.248 0.555 0.053   0.131 (0.005) (0.034) 1.227 2.677    1.365    0.765    1.425    1.978    0.650    0.294 0.469 

Buffer Index 0.034 0.031 0.071 0.005   0.016 (0.001) (0.005) 0.150 0.314    0.147    0.052    0.123    0.172    0.064    0.038 0.062 
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Table 6-7. Reliability Analysis Dataset (Monday and Tuesday) 

 

Diff in 

95% TT

Diff in 

Buffer 

Time

Diff in 

Buffer 

Index

Mixed 

95% TT

Mixed 

Buffer 

Time

Mixed 

Buffer 

Index

Number 

of Inc

Rate of 

Inc

Avg 

LNMin of 

Blockage

Max 

LnMin of 

Blockage

Avg 

Lanes 

Blocked

Avg 

Clearanc

e Time

Avg Dist 

from I-

215 NI Speed

NI 

Volume 

(Vphpl)

NI 

Density 

(Vpmpl)

-0.0219 -0.0147 -0.0018 8.6181    0.7178 0.0909 1.00 1.00 3.57 15.00 1.00 15.00 4.94 62.44 283.49 4.56

-0.0161 -0.0097 -0.0011 8.6751    0.6011 0.0744 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61.37 276.35 4.55

0.2264 0.1960 0.0241 8.6801    0.6163 0.0764 1.00 1.00 3.57 50.00 1.00 50.00 2.69 62.46 247.84 3.99

0.0243 -0.0274 -0.0039 8.0762    0.3697 0.0480 0.00 0.00 0.00 0.00 0.00 0.00 0.00 62.77 239.10 3.83

0.2133 0.1759 0.0228 8.0766    0.4021 0.0524 3.00 1.00 14.29 52.33 1.67 28.33 4.59 62.19 245.90 3.98

0.1674 0.1469 0.0192 7.9181    0.2873 0.0376 2.00 1.00 7.14 41.50 1.50 23.00 5.06 62.18 253.57 4.11

0.1257 0.1041 0.0136 7.8563    0.2572 0.0338 5.00 1.25 17.86 72.63 1.50 42.88 3.33 60.86 266.11 4.42

0.1223 0.1170 0.0152 7.9503    0.2733 0.0356 8.00 1.33 28.57 53.75 1.17 43.17 5.08 57.06 292.23 5.28

-0.0729 -0.0527 -0.0066 8.2095    0.3173 0.0402 2.00 1.00 7.14 23.50 1.00 23.50 3.34 54.01 292.33 5.81

0.1207 0.1078 0.0134 8.5973    0.5994 0.0749 3.00 1.00 10.71 59.67 2.00 30.67 3.01 52.88 288.79 5.86

-0.0210 -0.0766 -0.0100 8.5910    0.5340 0.0663 5.00 1.00 17.86 27.80 1.20 26.60 5.44 50.28 283.99 6.44

0.2067 0.2150 0.0272 8.8582    0.9151 0.1152 2.00 1.00 7.14 68.00 1.50 50.00 6.01 60.40 242.17 4.12

0.4823 0.4661 0.0576 9.1111    1.0360 0.1283 0.00 0.00 0.00 0.00 0.00 0.00 0.00 63.28 198.30 3.16

-0.0555 -0.0401 -0.0047 9.1859    0.9949 0.1215 0.00 0.00 0.00 0.00 0.00 0.00 0.00 64.01 175.96 2.77

-0.0584 -0.0306 -0.0038 8.1306    0.3496 0.0449 4.00 1.00 11.43 28.67 1.50 17.50 4.89 61.44 289.91 4.76

1.2377 1.1590 0.1391 10.1407 1.8543 0.2238 3.00 1.00 8.57 123.50 1.33 68.33 4.71 59.68 280.42 4.97

1.0481 0.8195 0.0948 10.4061 2.1702 0.2635 2.00 1.00 5.71 75.00 1.50 40.50 4.07 60.54 252.36 4.38

0.6128 0.4375 0.0548 8.6184    0.7770 0.0991 1.00 1.00 2.86 8.00 2.00 4.00 3.87 61.90 237.93 4.05

0.0942 0.0218 0.0023 8.1172    0.4190 0.0544 1.00 1.00 2.86 0.00 0.00 0.00 0.00 62.26 245.68 4.09

0.2630 0.1555 0.0195 8.2175    0.4582 0.0591 3.00 1.00 8.57 28.00 1.00 25.33 5.30 62.11 255.49 4.24

1.1202 0.6467 0.0740 9.4931    1.2326 0.1492 9.00 1.29 20.00 28.60 1.07 28.57 5.30 61.34 271.26 4.57

3.8821 3.2787 0.3447 13.8304 4.5838 0.4957 10.00 1.11 25.71 16.75 1.30 31.17 5.14 57.66 296.32 5.39

0.2210 -0.1834 -0.0288 12.4579 2.3714 0.2351 7.00 1.00 22.86 21.00 1.25 29.71 4.70 53.02 302.18 6.12

1.6585 1.2033 0.1102 12.8608 2.4718 0.2379 15.00 1.15 37.14 49.33 1.25 39.36 4.78 51.74 294.34 6.18

3.1650 2.7586 0.2412 15.3315 4.1053 0.3657 9.00 1.00 25.71 68.67 1.11 39.78 4.14 48.57 287.20 6.60

3.4626 2.8634 0.3116 12.7075 3.7148 0.4131 7.00 1.00 20.00 9.67 1.50 32.43 6.15 58.77 253.53 4.79

0.3248 0.0573 0.0067 7.8913    0.2180 0.0284 0.00 0.00 0.00 0.00 0.00 0.00 0.00 63.80 207.66 3.44

0.0054 0.0361 0.0048 7.5122    0.0413 0.0055 1.00 1.00 2.86 59.00 1.00 59.00 4.11 63.57 184.57 2.90
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Table 6-8. Reliability Analysis Dataset (Wednesday and Thursday) 

 
 

Diff in 

95% TT

Diff in 

Buffer 

Time
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Buffer 

Index
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95% TT

Mixed 
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Time
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Buffer 

Index
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of Inc

Rate of 

Inc

Avg 

LNMin of 
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Blockage

Avg 

Lanes 

Blocked

Avg 

Clearanc

e Time

Avg Dist 

from I-

215 NI Speed

NI 

Volume 

(Vphpl)

NI 

Density 

(Vpmpl)

0.0000 0.0000 0.0000 8.1528    0.1347 0.0168 0.00 0.00 0.00 0.00 0.00 0.00 0.00 60.99 287.83 4.74

1.0494 0.9752 0.1168 9.8231    1.5138 0.1822 4.00 1.00 13.33 15.00 1.25 12.75 5.26 59.70 285.15 4.87

0.0164 -0.0050 -0.0010 8.9520    1.0325 0.1304 1.00 1.00 3.33 18.00 2.00 14.50 0.34 60.90 253.76 4.25

0.2029 0.1399 0.0175 8.3837    0.6432 0.0831 0.00 0.00 0.00 0.00 0.00 9.00 0.00 61.89 239.81 3.95

0.0943 0.0603 0.0074 8.3943    0.6173 0.0794 2.00 2.00 3.33 0.00 1.50 53.00 4.41 61.64 244.22 4.09

0.0661 0.0367 0.0043 8.6572    0.8505 0.1089 2.00 2.00 3.33 17.00 0.50 0.00 2.64 61.58 252.18 4.22

0.3765 0.3229 0.0392 9.1794    1.0641 0.1311 4.00 1.00 13.33 17.50 0.50 36.88 5.97 60.31 267.67 4.61

0.7094 0.4373 0.0405 11.7733 2.7591 0.3061 9.00 1.00 33.33 54.83 1.33 29.10 4.17 57.47 287.80 5.33

3.8668 3.1005 0.2700 17.2211 6.8418 0.6592 6.00 1.00 20.00 30.50 1.00 27.29 4.90 54.66 290.51 6.20

-0.1353 -0.4512 -0.0529 13.2226 2.7808 0.2663 8.00 1.14 23.33 72.90 1.50 32.31 3.93 52.00 291.53 6.46

-0.3484 -0.4247 -0.0401 14.7525 3.5034 0.3114 9.00 1.29 23.33 41.87 1.00 28.50 4.68 48.93 275.19 6.82

0.7433 0.5519 0.0537 12.8747 4.0279 0.4553 7.00 1.00 23.33 39.33 0.86 27.75 5.42 58.45 248.28 4.66

-0.5371 -0.4529 -0.0576 8.2104    0.5267 0.0685 1.00 1.00 3.33 160.00 2.00 80.00 5.44 62.40 209.14 3.41

0.1387 0.1725 0.0228 7.6857    0.1248 0.0165 0.00 0.00 0.00 0.00 0.00 0.00 0.00 63.25 191.58 3.02

0.6004 0.5553 0.0711 8.7766    0.9989 0.1284 2.00 1.00 5.88 0.00 1.00 24.00 4.57 61.71 283.46 4.68

0.2367 0.0528 0.0046 8.7626    0.7348 0.0915 2.00 1.00 5.88 26.00 1.00 26.00 3.89 60.41 282.42 4.70

0.1670 0.1306 0.0163 8.5692    0.7371 0.0941 3.00 1.00 8.82 7.00 0.67 4.33 1.71 61.32 252.26 4.19

0.0141 -0.0049 -0.0007 7.9679    0.2865 0.0373 1.00 1.00 2.94 39.00 1.00 23.50 2.13 61.98 233.48 3.88

0.0413 -0.0343 -0.0049 8.1428    0.3718 0.0479 3.00 1.00 8.82 0.00 1.00 61.50 4.08 61.58 240.14 3.99

1.5468 1.2272 0.1504 9.7012    1.6597 0.2064 5.00 1.00 14.71 64.00 1.00 64.00 4.17 61.12 244.66 4.29

3.1545 2.6771 0.3145 11.5389 3.1080 0.3686 4.00 1.00 11.76 46.00 1.33 32.75 4.23 59.02 257.50 5.08

1.6042 1.3650 0.1470 11.6929 2.6458 0.2924 10.00 1.11 26.47 50.17 0.93 30.62 6.02 56.50 278.99 5.63

1.7629 0.7651 0.0518 13.6556 2.7476 0.2519 15.00 1.07 41.18 24.71 0.75 21.14 5.41 49.40 283.63 6.49

2.3540 1.4253 0.1232 13.2435 2.5024 0.2330 10.00 1.25 23.53 24.00 0.71 23.70 5.22 48.83 292.63 6.69

2.6218 1.9783 0.1717 14.1092 2.9186 0.2608 8.00 1.14 20.59 31.00 1.00 23.38 4.91 47.89 276.57 6.75

1.1506 0.6503 0.0635 10.9908 1.9752 0.2191 7.00 1.17 17.65 35.50 1.33 29.75 3.85 56.26 245.66 4.67

0.4070 0.2937 0.0376 8.3101    0.6365 0.0830 4.00 1.33 8.82 59.00 0.00 59.00 6.15 62.51 204.04 3.55

0.5808 0.4689 0.0620 8.1577    0.6340 0.0843 2.00 2.00 2.94 83.00 1.50 56.00 5.72 63.57 183.93 3.01
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CHAPTER 7  

DESCRIPTIVE SUMMARY STATISTICS FOR SHORT TERM IMPACT ANALYSIS 

7.1 Introduction 

This chapter presents the descriptive summary statistics of the data for short term 

impacts of traffic incidents. Before embarking on the regression and model calibration, 

various variable summary statistics are generated to evaluate the distributions and trends 

between variables are intuitive. The histograms and box-plots presented are applicable to 

the corresponding variables mentioned when used separately and does not show the 

interaction and influence of the rest of the variables. 

7.2 Summary of Descriptive Statistics 

7.2.1 Incident Duration  

Figure 7-1 shows the histogram of incident durations for all the incidents in the 

sample set.  

 

 

Figure 7-1. Histogram of Incident Clearance Durations (minutes) 

(Mean = 29.35; Median = 25.5 minutes) 
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The distribution is positively skewed as can be expected in the real-world. The 

average and median durations are 29.35 and 26 minutes, respectively.  

7.2.2 Travel Time 

This section presents histograms and box-plots of the travel time impact variables 

for different values of number of blocked lanes and incident duration (duration of 

blockage). Figures 7-2 and 7-3 show the histograms of impacted vehicle-hours of travel 

and additional travel time, in minutes/vehicle. The distributions are skewed to the right 

following the expected trend that typically high-impact incidents are not as frequent as 

the medium and low impact incidents. The mean impact vehicle-hours of travel is 244.04 

per incident (median 134.67), while the mean additional travel time is 1.32 minutes per 

vehicle (median 1.05) in the primary direction. The latter represents the average 

additional travel time for all the vehicles that are impacted, i.e., those vehicles that are 

within the temporal and spatial extents of the incident. In the rubbernecking direction, the 

mean and median additional travel times are 0.06 and 0.01 minutes respectively.  

 

 

Figure 7-2. Histogram: Impact VHT 

(Mean = 244.04; Median = 134.7 veh-hrs/incident) 
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Figure 7-3. Histogram: Additional Travel Time per vehicle 

(Mean value = 1.32; Median = 1.05 minutes/vehicle) 

 

Figures 7-4 to 7-9 show box-plots of incident impacts for different numbers of 

blocked lanes. Box-plots show median values, quartiles and range of values. Upper and 

lower fences computed using the upper and lower fourth values and the interquartile 

range are used to signify the boundary limits. The individual points plotted above or 

below the lower and upper fences are statistically outliers. Zero blocked lanes means the 

incident occurred on the shoulder and no travel lanes were blocked.  

 

 
 

Figure 7-4. Box-plot: Primary Additional Travel Time (in minutes) Vs.  Number of 

Blocked Lanes 

 

Median 

Lower Fourth 

Upper Fourth 

Lower Fence 

Upper Fence 

Outlier 
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Figure 7-5. Box-plot: Rubbernecking Additional Travel Time (in minutes) Vs.  Number 

of Blocked Lanes 

 

Figure 7-6. Box-plot: Excess VHT Vs.  Number of Blocked Lanes 

 

Figure 7-7. Box-plot: Excess VHT per hour of Incident Impact Vs.  Number of Blocked 

Lanes 
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Figure 7-8. Box-plot: Temporal Impact (in minutes) Vs.  Number of Blocked Lanes 

 

Figure 7-9. Box-plot: Spatial Impact (in miles) Vs.  Number of Blocked Lanes 

 

It can be seen from Figures 7-4 to 7-9 that, as expected, the impacts of incident 

and also the temporal and spatial extents are higher for higher number of blocked lanes. 

For the rubbernecking additional travel time in Figure 7-5, the trend and the mean/median 

values are very mild. This indicates that the rubbernecking impacts on additional travel 

time do not have clear increase with increase in number of lanes blocked. 

Figure 7-10 shows that the average incident duration is higher for shoulder 

incidents (zero blocked lanes) than for one blocked lane. This may indicate a lower sense 

of urgency for clearing incidents that do not block travel lanes. Figures 7-11 to 7-16 show 
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box-plots of incident impacts for different values of duration of blockage of travel lanes. 

Incident durations are grouped into five categories 1, 2, 3, 4, and 5 corresponding to 

incident durations of 15 minutes or less, greater than 15 minutes up to 30, greater than 30 

minutes up to 45, greater than 45 minutes up to 60, and finally greater than 60 minutes, 

respectively. Longer incident durations on an average result in longer spatial and 

temporal extents and increased incident impacts. Additional travel time for rubbernecking 

direction (Figure 7-12) does not have a very high clear pattern. 

 

 

Figure 7-10. Box-plot: Incident Duration Vs.  Number of Blocked Lanes 

 

Figure 7-11. Box-plot:  Average Primary Additional Travel Time (in minutes/vehicle) Vs. 

Incident Duration 
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Figure 7-12. Box-plot:  Average Rubbernecking Additional Travel Time (in 

minutes/vehicle) Vs. Incident Duration 

 

Figure 7-13. Box-plot: Impact in VHT vs. Incident Duration 

 

Figure 7-14. Box-plot: Excess VHT per hour of incident impact vs. Incident Duration 
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Figure 7-15. Box-plot: Temporal Extent (in minutes) vs. Incident Duration 

 

Figure 7-16. Box-plot: Spatial Extent (in miles) Vs. Incident Duration  

 

7.2.3 Fuel Consumption 

Figure 7-17 shows a histogram of impacts in terms of fuel consumption (gallons). 

The histogram is positively skewed as expected, with majority of the cases with lower 

impacts. The mean excess fuel consumption is around 90.4 gallons per incident (median 

37.9). Figure 7-18 and 7-19 also display a general trend of increased impact on fuel 

consumption with increase in number of lanes blocked and incident duration.  
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Figure 7-17. Histogram:  Excess Fuel Consumption in gallons 

 

Figure 7-18. Box-plot:  Excess Fuel Consumption (in gallons) Vs. Number of Lanes 

Blocked  

 

Figure 7-19. Box-plot:  Excess fuel consumption (in gallons) Vs. Incident Duration  
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7.2.4 Vehicle Emissions 

The histograms in Figures 7-20 to 7-23 show the trends for emissions of CO2, CO, 

and NOx and PM10.  

 

 

Figure 7-20. Histogram: Excess CO2 Emissions in Tons 

 

Figure 7-21. Histogram: Excess CO Emissions in Kgs 
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Figure 7-22. Histogram: Excess NOx Emissions in grams 

 

Figure 7-23. Histogram: Excess PM10 Emissions in grams 

 

The box-plots in Figures 7-24 to 7-27 and Figures 7-28 to 7-31 show excess 

vehicle emissions for different numbers of blocked lanes and the incident duration used 

one at a time, respectively. In general, they all show an increase in impact on vehicle 

emissions with increase in number of blocked lanes and incident duration. The same 

categories for incident durations as in the case of fuel consumption are used for the 

following plots. 
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Figure 7-24. Box-plot: Excess CO2 emissions (in Tons) vs. Number of Blocked lanes  

 

Figure 7-25. Box-plot: Excess CO emissions (in Kgs) vs. Number of Blocked lanes  

 

Figure 7-26. Box-plot: Excess NOx emissions (in Grams) vs. Number of Blocked lanes 
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Figure 7-27. Box-plot: Excess PM10 emissions (in Grams) vs. Number of Blocked lanes 

 

Figure 7-28. Box-plot: Excess CO2 emissions (in Tons) vs. Incident Duration 

 

Figure 7-29. Box-plot: Excess CO emissions (in Kgs) vs. Incident Duration  
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Figure 7-30. Box-plot: Excess NOx emissions (in Grams) vs. Incident Duration  

 

Figure 7-31. Box-plot: Excess PM10 emissions (in Grams) vs. Incident Duration 

 

The mean excess vehicle emissions are 0.864 tons of CO2, 2.985 Kg of CO, 453 

grams of NOx and 33 grams of PM10 respectively for an incident. These include the 

emissions in the rubbernecking direction also.  
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7.3 Summary 

This chapter presented the descriptive summary statistics to observe the general 

trends among certain among certain incident characteristics and the short term impacts. 

The impacts of incidents in terms of travel time, fuel consumption and vehicle emissions 

show an increase with increase in incident duration and number of lanes blocked, as can 

be expected in the real-world.  It is to be noted that these summary statistics do not depict 

the inter-relationship and influence between other predictor variables and are only for 

understanding the general trend that can be further studied by statistical modeling. 

 

 



 

96 
 

CHAPTER 8  

DESCRIPTIVE SUMMARY STATISTICS FOR LONG TERM IMPACT ANALYSIS 

8.1 Introduction 

This chapter presents the descriptive summary statistics for long term impacts of 

incidents. As in the case of the previous chapter, all the plots used the specified variables 

alone without the interactions of the other predictor variables. 

8.2 Summary of Descriptive Statistics 

Figures 8-1 to 8-6 show the histograms of the TTR measures (95
th

 percentile 

travel time, buffer time and buffer index for mixed and also difference between mixed 

and non-incident). In general, they are all skewed to the right which is according to 

expectation. In real-world travel time distributions are typically log-normal (Susilawati et 

al., 2010). 

 

 

Figure 8-1. Histogram: 95
th

 percentile travel time (mixed) 
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Figure 8-2. Histogram: 95
th

 percentile travel time (difference) 

 

Figure 8-3. Histogram: Buffer Time (mixed) 

 

Figure 8-4. Histogram: Buffer Time (difference) 
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Figure 8-5. Histogram: Buffer Index (mixed) 

 

Figure 8-6. Histogram: Buffer Index (difference) 

 

For  Figures 8-7 to 8-12, for plotting purposes, the variable average lanes blocked 

is divided into categories since it is a continuous variable, representing the average 

number of lanes blocked for a subject hour. For mixed data, the trend is that the TTR 

measure increases, albeit mildly with increase in lanes blocked (Figures 8-7, 8-9 and 8-

11). For the difference between mixed and non-incident, the trends in general stay the 

same and there is no noticeable increase of the TTR measure with increase in number of 

lanes blocked (Figures 8-8, 8-10 and 8-12).  
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Figure 8-7. Box-plot: 95
th

 Travel Time (mixed) vs. Number of Lanes Blocked 

 

Figure 8-8. Box-plot: 95
th

 percentile TT vs. Number of Lanes Blocked - Difference 

 

Figure 8-9. Box-plot: Buffer Time (mixed) vs. Number of Lanes Blocked 
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Figure 8-10. Box-plot: Buffer Time vs. Number of Lanes Blocked- Difference 

 

Figure 8-11. Box-plot: Buffer Index (mixed) vs. Number of Lanes Blocked 

 

Figure 8-12. Box-plot: Buffer Index vs. Number of Lanes Blocked- Difference 
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The following box-plots show values of TTR measures with different ranges of 

incident durations (Figures 8-13 to 8-18). The categories used are the same as short term 

plots (15 minute bins). With TTR measures, the trend is not as expected. The plots show 

a general increase with increase in incident duration for incident durations of up to 45 

minutes but start to decrease afterward. The count of observations falling in each bin 

category is shown in boxes in Figure 8-13. This is contrary to the natural expectation that 

the TTR measures increase with increase in incident duration.  

 

 

Figure 8-13. Box-plot: 95
th

 percentile Travel Time (mixed) vs. Incident Duration 

categories 

 

Figure 8-14. Box-plot: 95
th

 percentile Travel Time (difference) vs. Incident Duration 

categories 

15 

19 

12 

6 
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Figure 8-15. Box-plot: Buffer Time (mixed) vs. Incident Duration categories 

 

Figure 8-16. Box-plot: Buffer Time (difference) vs. Incident Duration categories 

 

Figure 8-17. Box-plot: Buffer Index (mixed) vs. Incident Duration categories 
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Figure 8-18. Box-plot: Buffer Index (difference) vs. Incident Duration categories 

 

8.3 Summary 

The trends for the TTR measures are not entirely as expected. For the difference 

between incident and non-incident TTR, there is no noticeable increase in TTR measures 

with increase in incident characteristics. For the incident duration plots, the trends are 

only partially similar to what can be expected in the real-world. However, these summary 

statistics do not reflect the interaction of other predictor variables. Since regression 

modeling includes all the variables and their respective interactions, model results will 

show the exact relation even though the trends are not visible from these plots. Statistical 

modeling used to analyze this further is presented subsequently. 
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CHAPTER 9  

RESULTS OF STATISTICAL MODELING FOR SHORT TERM IMPACTS 

9.1 Introduction 

This chapter presents the statistical modeling results for the short term impacts of 

incidents. The statistical package used for modeling is R. The models calibrated include 

the OLS Linear Model, Log-transformed Linear Model, Gamma GLM, Gaussian GLM 

with Single-Log, and Gaussian GLM with Log-Log. Some response variables have non-

positive observations. A constant greater in magnitude than the most negative observed 

value is added to all the observed values, to make them positive. This step is required for 

the Gamma and Gaussian GLM models since they can only be used when the response 

variables are all positive (use of logarithms). 

9.2 Description of Response and Predictor Variables 

The list of the response and predictor variables used in the analysis of the short 

term incident impacts, their description and codes in R are presented in the following 

tables (Tables 9-1 and 9-2). Tables 9-3 and 9-4 show the correlation matrices for the 

predictor variables for travel time and fuel consumption and vehicle emissions. Though 

the predictor variables are the same, fuel and emissions have a different sample size from 

travel time. The highly correlated variables are highlighted by bold text in the correlation 

matrices. Since the speed for non-incident condition is correlated with density, it is not 

used in the models (only density and volume are used). As can be seen from the tables, 

the number of lanes blocked and ratio of lanes blocked are highly correlated, as are 

incident duration and lane-minutes of blockage.  
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Table 9-1. List of Response Variables for Short Term Impacts 

Variable Code Variable Name Explanation 

AddTT Additional Travel Time Excess travel time during the incident in 

minutes/incident 

SBAddTT Rubbernecking Additional 

Travel Time  

Excess travel time during the incident in 

minutes/incident in the rubbernecking direction 

ExVHrs Excess Vehicle Hours Excess vehicle-hours of travel experienced by all 

impacted vehicles in veh-hrs 

ExVHrsPerHour VHT per hour of Impact Time  Excess vehicle hours of travel normalized with the 

Temporal Impact in veh-hrs/hr 

ImpTime Impact Time Temporal Impact in minutes 

ImpSpace Impact Space Spatial Impact in miles 

NOx Excess Oxides of Nitrogen Excess NOx due to incident in grams  

PM10 Excess Particulate Matter <10 

microns 

Excess PM10 due to incident in grams  

CO2 Excess Carbon dioxide  Excess CO2 due to incident in Tons 

CO Excess Carbon monoxide  Excess CO due to incident in Kilograms 

Fuel Excess Fuel Consumption Excess Fuel consumption in gallons 

 

Table 9-2. List of Predictor Variables for Short Term Impacts 

Variable Code Variable Name Explanation 

Weekday Weekday Incident happened on a weekday (Yes = 1, No = 0)  

Peak Peak Incident happened in peak period  (Yes = 1, No = 0)  

ClrT Incident duration  Time taken to clear the incident 

LNSBLK1 1 Lane Blocked One travel lane blocked (Yes = 1, No = 0) 

LNSBLK2 2 Lanes Blocked Two travel lanes blocked (Yes = 1, No = 0) 

BlkLnMin Blocked Lane-Minutes Lanes minutes of blockage (product of “incident duration” 

and “number of lanes blocked”) 

LnLoc Location of Lanes Blocked Location of blocked lane(s) (Right = 0, Center/Left = 1)  

NIDensity Non-incident Density Density for non-incident condition in vpmpl  

NIVolume Non-incident Volume Volume for non-incident condition in vphpl 

NISpeed Non-incident Speed Speed for non-incident condition in mph 

   

RNIDensity Rubbernecking Non-

incident Density 

Density for non-incident condition in vpmpl, for 

Rubbernecking direction  

RNIVolume Rubbernecking Non-

incident Volume 

Volume for non-incident condition in vphpl, for 

Rubbernecking direction 

 

It is to be noted that in all the models, the number of lanes blocked is used as a 

dummy variable denoted by LNSBLK1 and LNSBLK2 as shown in Table 9-2. Zero lanes 

blocked (shoulder) has both LNSBLK1 and LNSBLK2 as zero. 
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Table 9-3. Correlation Matrix for Predictor Variables for Travel Time 

 

NIDensity NIVol NISpd Weekday Peak ClrT LnsBlk LnBlkRatio LnLoc BlkLnMin RNIDensity 

NIVol 0.102 

          (p-value) 0.149 

          NISpd -0.827 0.033 

           0.000 0.640 

         Weekday 0.369 0.183 -0.327 

          0.000 0.009 0.000 

        Peak 0.273 -0.062 -0.445 0.217 

         0.000 0.379 0.000 0.002 

       ClrT -0.089 0.004 0.110 -0.074 -0.132 

        0.208 0.959 0.118 0.297 0.060 

      LnsBlk -0.203 -0.007 0.136 -0.207 -0.046 0.161 

       0.004 0.921 0.053 0.003 0.512 0.022 

     LnBlkRatio -0.206 -0.060 0.122 -0.184 -0.039 0.173 0.903 

      0.003 0.391 0.083 0.009 0.580 0.014 0.000 

    LnLoc -0.176 0.169 0.185 0.058 0.008 -0.006 0.045 -0.004 

     0.012 0.016 0.008 0.412 0.909 0.937 0.525 0.956 

   BlkLnMin -0.171 0.041 0.162 -0.157 -0.123 0.786 0.651 0.613 0.018 

    0.015 0.558 0.021 0.025 0.081 0.000 0.000 0.000 0.803 

  RNIDensity 0.748 0.045 -0.548 0.288 0.056 -0.056 -0.222 -0.217 -0.188 -0.162 

   0.000 0.525 0.000 0.000 0.429 0.430 0.001 0.002 0.007 0.021 

 RNIVolume 0.755 0.067 -0.513 0.265 0.063 -0.056 -0.239 -0.232 -0.176 -0.182 0.911 

  0.000 0.342 0.000 0.000 0.369 0.425 0.001 0.001 0.012 0.009 0.000 
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Table 9-4. Correlation Matrix for Predictor Variables for Fuel and Emissions 

 

NIDensity NIVol NISpd Weekday Peak LnBlkRatio BlkLnMin ClrT LnsBlk RNIDensity 

NIVol 0.126                   

(p-value) 0.179                   

NISpd -0.795 0.056                 

  0.000 0.550                 

Weekday 0.362 0.142 -0.273               

  0.000 0.130 0.003               

Peak 0.291 -0.012 -0.459 0.240             

  0.002 0.902 0.000 0.010             

LnBlkRatio -0.283 -0.136 0.085 -0.238 -0.062           

  0.002 0.147 0.364 0.011 0.512           

BlkLnMin -0.243 0.004 0.172 -0.221 -0.175 0.626         

  0.009 0.970 0.065 0.017 0.062 0.000         

ClrT -0.185 0.009 0.182 -0.114 -0.179 0.303 0.862       

  0.048 0.927 0.052 0.225 0.055 0.001 0.000       

LnsBlk -0.233 -0.021 0.052 -0.255 -0.055 0.890 0.652 0.297     

  0.012 0.824 0.580 0.006 0.563 0.000 0.000 0.001     

RNIDensity 0.816 0.123 -0.552 0.286 0.101 -0.312 -0.224 -0.120 -0.276   

  0.000 0.190 0.000 0.002 0.282 0.001 0.016 0.202 0.003   

RNIVolume 0.779 0.149 -0.491 0.253 0.090 -0.313 -0.248 -0.154 -0.273 0.974 

  0.000 0.111 0.000 0.006 0.337 0.001 0.008 0.100 0.003 0.000 
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9.3 Model Results 

The results are arranged in the same format for all the response variables for 

short-term analysis. First, is a summary table with the important measures of all the 

functional forms modeled, followed by the coefficient estimates for the best model 

selected. The summary table presents the R
2
 (regular and adjusted, wherever applicable) 

and AIC for the Full (model with all predictor variables) and Nested model (model with 

only the significant predictor variable from stepwise regression). Also presented are the 

residual and normality plots for the nested models. It is to be noted that models with 

different functional forms cannot be compared. Also plotted are the plots of Cook‟s 

distances to determine the presence of outliers. The main criteria used for selecting the 

best model are the residual and normality plots, R
2
 and AIC and the list of significant and 

practically useful variables in the final nested model. The results are inclusive of primary 

and rubbernecking direction for all response variables except additional travel time. 

9.3.1 Additional Travel Time – Primary Direction 

The model results for the analysis for additional travel time per incident 

experienced by the impacted vehicles are shown in Table 9-5. The Gaussian Log-Log 

model has the best fit based on the residual plots, R
2
 and AIC measures. Also, since 

Gaussian log-log model has both incident duration and lanes blocked as significant 

variables, it is preferred over the Gaussian Single-log model with just the lane-minutes of 

blockage, though they have very close R
2
 and AIC. The model output with the coefficient 

estimates for the Gaussian Log-log model for additional travel time is presented in Table 

9-6 and the diagnostic plots in Figure 9-1. The final model form is presented in equation 

9-1. 
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Table 9-5. Results for Excess Additional Travel Time per Impacted Vehicle 

Category Linear 
Transformed Single 

Log 
Gamma Gaussian (Log) Gaussian (Log-Log) 

Variable: Additional Travel Time 

Full Model:      

R-sq (%) 26, 22.15 24.07, 20.12 23.87 24.07 23.34 

AIC 652.21 298.23 585.48 298.23 298.17 

Nested Model:      

R-sq (%) 22.31, 21.93 19.08, 18.68 22.60 19.08 20.96 

AIC 644.09 293.16 581.11 293.16 294.37 

Model Fit (P-

value) Accept Model 

p >0.05 
  0.497733 0.4867339 0.486634 

Residual Vs Fitted 

     

Standardized 

Residuals 

     

Significant 

Variables 

Lane-minutes of 

Blockage 

No. of Lanes Blocked, 

Incident duration 

No. of Lanes 

Blocked, 

Incident duration 

Lane-minutes of 

Blockage 

Non-incident Density 

No. of Lanes 

Blocked, 

Incident duration 
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Table 9-6. Best Model: Excess Additional Travel Time per Impacted Vehicle 

(Model Form: Gaussian log-log GLM) 

 

Final Nested Model: 

 
Call: 
glm(formula = lnoneplusTT ~ lnNIDensity + lnClrT + LNSBLK, family = 
gaussian(),  
    data = x) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-1.41450  -0.39787  -0.03462   0.37754   1.03566   
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.01756    0.36756  -2.768  0.00301 **  
lnNIDensity  0.26163    0.10528   2.485  0.00689 *   
lnClrT       0.18673    0.04194   4.453 0.71e-05 *** 
LNSBLK1      0.30416    0.14373   2.116  0.01779 *   
LNSBLK2      0.60272    0.15067   4.000 4.46e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 0.2412471) 
    Null deviance: 60.439  on 202  degrees of freedom 
Residual deviance: 47.767  on 198  degrees of freedom 
 
AIC: 294.37 
 
Number of Fisher Scoring iterations: 2  
 

AIC: 

294.37 

 

R-sq (%): 

20.96 
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The diagnostic plots for the additional travel time model are as follows: 

Diagnostic Plots: 

 
Figure 9-1. Diagnostic Plots: Excess Additional Travel Time per Impacted Vehicle 

 

Additional Travel Time = Exp {-1.0176 + 0.2616 * Ln (Non-incident Density)  

+ 0.1867 * Ln (Incident duration) + 0.3042 * 1 lane blocked +  

0.6027 * 2 lanes blocked} – 1       (9-1) 

 

Equation 9-1 gives the model form for this model using a constant A = 1 (to make 

the LHS positive). The coefficient estimates are all positive indicating that additional 

travel time increases with increase in the incident duration, number of lanes blocked and 
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the non-incident density of traffic. For number of lanes blocked, the coefficient for the 

dummy variable 2 lanes blocked is higher (approximately by a factor of 2) than for the 

dummy variable 1 lane blocked, indicating that, additional travel times are higher for an 

incident with 2 lanes blocked when compared to 1 lane blocked. This conforms to 

expectation and supports the trend presented in Chapter 7. 

9.3.2 Additional Travel Time – Rubbernecking Direction 

The model results for the analysis for additional travel time per incident 

experienced by the impacted vehicles in the rubbernecking direction are shown in Table 

9-7. The Gaussian Log-log model is the best as can be seen from Table 9-7, in terms of 

the R
2
 and the significant variables. To be noted is that this model does not have any 

incident related variables that are significant.  Coefficient estimates for the final model 

are presented in Table 9-8 and the diagnostic plots in Figure 9-2. The final model form is 

presented in equation 9-2. 

 

Rubbernecking Additional Travel Time = Exp {-1.324 +  

0.1269 * Ln (Non-incident Density) - 0.59055 * Ln (Rubbernecking Non-incident 

Density) + 0.54118 * Ln (Rubbernecking Non-incident Volume)} – 3   

              (9-2) 
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Table 9-7. Results for Excess Additional Travel Time per Impacted Vehicle in Rubbernecking Direction 

Category Linear 
Transformed Single 

Log 
Gamma Gaussian (Log) Gaussian (Log-Log) 

Variable: SB Additional Travel Time 

Full Model:      

R-sq (%) 10.54, 4.89 11.06, 5.44 11.9 11.06 12.75 

AIC 155.26 -217.51 198.87 -217.51 -223.41 

Nested Model:      

R-sq (%) 4.48, 3.48 7.48, 6.55 8.19 7.48 10.23 

AIC 148.66 -229.5 187.19 -229.5 -233.63 

Model Fit (P-value) 
Accept Model p >0.05 

  0.02482344 0.4867018 0.4866684 

Residual Vs Fitted 

     

Standardized 

Residuals 

     

Significant 

Variables 

NIDensity 

RNIDensity 

RNIDensity 

RNIVolume 

NIDensity 

RNIDensity 

RNIVolume 

RNIDensity 

RNIVolume 

NIDensity 

RNIDensity 

RNIVolume 
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Table 9-8. Best Model: Excess Rubbernecking Additional Travel Time per Impacted 

Vehicle 

(Model Form: Gaussian log-log GLM) 

 

Final Nested Model: 

 
Call: 
glm(formula = lnthreeplusTT ~ lnNIDensity + lnRNIDensity + lnRNIVolume,  
    family = gaussian(), data = x) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-1.22528  -0.02882  -0.01131   0.02735   0.50029   
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -1.32444    0.66950  -1.978 0.024641 *   
lnNIDensity   0.12690    0.05086   2.495 0.006702 *   
lnRNIDensity -0.59055    0.12905  -4.576 4.16e-06 *** 
lnRNIVolume   0.54118    0.14515   3.728 0.000126 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 0.01798647) 
 
    Null deviance: 3.9872  on 202  degrees of freedom 
Residual deviance: 3.5793  on 199  degrees of freedom 
AIC: -233.63 
 
Number of Fisher Scoring iterations: 2 
 

AIC: 

-233.63 

 

R-sq (%): 

10.23 
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The diagnostic plots for the additional travel time model are as follows: 

Diagnostic Plots: 

 
Figure 9-2. Diagnostic Plots: Excess Rubbernecking Additional Travel Time per 

Impacted Vehicle 

 

Equation 9-2 gives the model form for this model using a constant A = 3 (to make 

the LHS positive). The coefficient estimate for rubbernecking density is negative 

indicating that higher densities in the opposing direction of flow experience lower 

impacts of additional travel time. Although this is contrary to expectation, it is possible 
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that drivers cannot observe the incident in the opposing direction due to higher densities 

in their own direction of travel.     

9.3.3 Excess Vehicle Hours 

The model results for the analysis for total excess vehicle hours for all the 

impacted vehicles are shown in Table 9-9. This is followed by the coefficient estimates 

for the best model in Table 9-10 and diagnostics plots in Figure 9-3.  

From Table 9-9, Gaussian Log-Log model clearly has a better fit when compared 

to the other model in terms of the residual and normality plots. The R
2
 and AIC measures 

are lesser than the Single-log GLM. Owing to the better fit it provides in comparison to 

the other functional forms, the Gaussian Log-Log model is recommended for the excess 

VHT for impacted vehicles. 

The coefficient estimates of the model form in Equation 9-3 show that variable 

vehicle-hours of travel for the impacted vehicles increases with increase in incident 

duration, lanes blocked and non-incident traffic density. Incidents with 2 lanes blocked 

have a higher impact than 1 lane blocked, but not by a factor of 2 (As in the case of 

additional travel time). This is explored further in the marginal impacts presented in 

Chapter 11. 

 

Excess VHT = Exp {1.41944+ 0.66726 * Ln (Non-incident Density) +  

0.35164 * Ln (Incident duration) + 0.750316 * 1 lane blocked +  

1.05008 * 2 lanes blocked} – 50           (9-3) 
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Table 9-9. Results for Excess Vehicle Hours of Travel for Impacted Vehicles 

Category Linear 
Transformed (Single 

Log) 
Gamma Gaussian (Log) Gaussian (Log-Log) 

Variable: Excess Vehicle Hours 

Full Model:      

R-sq (%) 21.39, 16.42 27.29, 22.7 13.58 27.29 28.71 

AIC 2857.37 555.85 2679.7 555.85 549.85 

Nested Model:      

R-sq (%) 13.32, 12.46 15.88, 14.18 8.94 14.54 17.79 

AIC 2857.2 569.44 2688.4 568.65 564.79 

Model Fit (P-value) 
Accept Model p >0.05 

  0.5988775 0.4867013 0.4866341 

Residual Vs Fitted 

     

Standardized Residuals 

     

Significant Variables 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density 

No. of Lanes Blocked, 

Incident duration 

Non-incident Density 

No. of Lanes 

Blocked, 

Incident duration 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident 

Density 

No. of Lanes 

Blocked, 

Incident duration 
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Table 9-10. Best Model: Excess Vehicle Hours of Travel for Impacted Vehicles 

(Model Form: Gaussian log-log GLM) 

 

Final Nested Model: 
Call: 
glm(formula = lnExVHrsPlus50 ~ lnNIDensity + lnClrT + LNSBLK,  
    family = gaussian(), data = x) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-2.74623  -0.75976   0.05533   0.67780   2.37534   
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.41944    0.71547   1.984 0.024322 *   
lnNIDensity  0.66726    0.20494   3.256 0.000665 **  
lnClrT       0.35164    0.08163   4.308  1.3e-05 *** 
LNSBLK1      0.70316    0.27978   2.513 0.006380 *   
LNSBLK2      1.05008    0.29328   3.580 0.000216 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 0.9140856) 
 
    Null deviance: 220.15  on 202  degrees of freedom 
Residual deviance: 180.99  on 198  degrees of freedom 
AIC: 564.79 
Number of Fisher Scoring iterations: 2 
 

AIC: 

564.79 
 

R-sq (%): 

17.79 
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Diagnostic Plots: 

 
Figure 9-3. Diagnostic Plots: Excess Vehicle Hours of Travel for Impacted Vehicles 

 

9.3.4 Excess Vehicle Hours per Hour of Incident Impact 

The model results for excess vehicle hours for all impacted vehicles per hour of 

incident impact are shown in Table 9-11. The coefficient estimates and the diagnostic 

plots for the calibrated model are in Table 9-12 and Figure 9-4. 
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Table 9-11. Results for Excess Vehicle Hours per Hour of Incident Impact 

Category Linear 
Transformed (Single 

Log) 
Gamma Gaussian (Log) Gaussian (Log-Log) 

Variable: Excess Vehicle Hours Per Hour 

Full Model:      

R-sq (%) 21.65, 16.7 21.23, 16.25 21.09 21.22 21.02 

AIC 2495.8 144.81 2473.4 144.81 143.32 

Nested Model:      

R-sq (%) 14.65, 13.8 13.31, 12.44 13.17 13.31 15.48 

AIC 2493.2 144.25 2474.1 144.25 143.1 

Model Fit (P-value) 
Accept Model p >0.05 

  0.4292034 0.486701 0.4866337 

Residual Vs Fitted 

     

Standardized Residuals 

     

Significant Variables 

Non-incident Density, 

Lane-minutes of 

Blockage  

Non-incident Density, 

Lane-minutes of 

Blockage  

Non-incident Density, 

Lane-minutes of 

Blockage  

Non-incident Density, 

Lane-minutes of 

Blockage  

Non-incident Density 

No. of Lanes 

Blocked, 

Incident duration  
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The model selected for the excess VHT per hour of incident impact is the 

Gaussian Log-log model. In addition to having a high R
2
 and low AIC, the model has a 

good fit and has practically important predictor variables: incident duration and lanes 

blocked. In Table 9-10, though the dummy variable 1 lane blocked, is significant only at 

α = 0.1, this model is selected owing all the important variables being present and the fit 

being good. 

 

Table 9-12. Best Model: Excess Vehicle Hours per Hour of Incident Impact 

(Model Form: Gaussian log-log GLM) 

Final Nested Model: 

 
Call: 
glm(formula = lnExVHrsPerHrPlus200 ~ lnNIDensity + lnClrT + LNSBLK,  
    family = gaussian(), data = x) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-1.52191  -0.25469  -0.00106   0.24088   0.78586   
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  4.53825    0.25323  17.921  < 1e-16 *** 
lnNIDensity  0.23120    0.07253   3.188 0.000834 **  
lnClrT       0.11012    0.02889   3.811 0.000092 *** 
LNSBLK1      0.16837    0.09903   1.700 0.045326 .   
LNSBLK2      0.30868    0.10380   2.974 0.001654 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 0.1145087) 
 
    Null deviance: 26.824  on 202  degrees of freedom 
Residual deviance: 22.673  on 198  degrees of freedom 
AIC: 143.1 
 
Number of Fisher Scoring iterations: 2 
 

AIC: 

143.1 
 

R-sq (%): 

15.48 
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Diagnostic Plots: 

 
Figure 9-4. Diagnostic Plots: Excess Vehicle Hours per Hour of Incident Impact 

 

Excess VHT per Hour of Incident Impact = Exp {4.53825 +  

0.2312 * Ln (Non-incident Density) + 0.11012 * Ln (Incident duration) +  

0.16837 * 1 lane blocked + 0.30868 * 2 lanes blocked} – 50           (9-4) 

 

The coefficient estimates in Equation 9-4, indicate that the variable excess 

vehicle-hours of travel per hour of incident impact, increases with increase in incident 

duration, lanes blocked and non-incident traffic density.  
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9.3.5 Temporal Extent 

The model results for the analysis for average temporal extent of incidents are 

shown in Table 9-13. From these results, the final model recommended for the temporal 

extent of an incident is the Gaussian Single-log model owing to it‟s higher R
2
 and lower 

AIC than the log-log GLM. Also, the fit for the Single-log model is good in the 

diagnostic plots. The coefficient estimates for this model are summarized in Table 9-14 

and diagnostic plots in Figure 9-5. Equation 9-5 presents the form of the final model. 

The coefficient estimates are all positive, except non-incident volume, indicating 

that the temporal extent of incident impact increases with increase in incident duration, 

lanes blocked and non-incident traffic density. The coefficient for non-incident volume is 

negative but also very low. This means that for higher volumes, the impacts are lower 

which is contrary to expectation.  

 

Temporal Extent = Exp {3.244 + 0.02074 * Non-incident Density +  

0.00843 * Incident duration + 0.53700 * 1 lane blocked +  

0.71050 * 2 lanes blocked}        (9-5) 
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Table 9-13. Results for Temporal Extent 

Category Linear 
Transformed (Single 

log) 
Gamma Gaussian (Log) Gaussian (Log-Log) 

Variable: Impact Time 

Full Model:      

R-sq (%) 18.13, 12.96 21.71, 16.76 17.98 21.7 19.87 

AIC 2168.4 392.68 2108.7 392.68 395.39 

Nested Model:      

R-sq (%) 13.54, 11.34 16.98, 14.88 10.86 16.98 15.65 

AIC 2165.48 390.57 2108.8 390.57 393.81 

Model Fit (P-value) 
Accept Model p >0.05 

  0.3454944 0.4866008 0.4866004 

Residual Vs Fitted 

     

Standardized Residuals 

     

Significant Variables 

Non-incident Density,  

Non-incident 

Volume, 

No. of Lanes 

Blocked, 

Incident duration  

Non-incident Density,  

Non-incident Volume, 

No. of Lanes Blocked, 

Incident duration 

Non-incident Density,  

Non-incident 

Volume, 

No. of Lanes 

Blocked, 

Incident duration 

Non-incident Density,  

No. of Lanes 

Blocked, 

Incident duration 

Non-incident Density,  

No. of Lanes 

Blocked, 

Incident duration 
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Table 9-14. Best Model: Temporal Extent 

(Model Form: Gaussian Single-log GLM) 

Final Nested Model: 

 
Call: 
glm(formula = lnImpTime ~ NIDensity + NIVol + ClrT + LNSBLK,  
    family = gaussian(), data = x) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-1.60338  -0.31559   0.03039   0.43403   1.35017   
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  3.244e+00  2.570e-01  12.620  < 1e-16 *** 
NIDensity    2.074e-02  8.323e-03   2.492 0.006768 *   
NIVol       -1.283e-04  4.022e-05  -3.190 >0.05  
ClrT         8.425e-03  2.370e-03   3.555 0.000237 *** 
LNSBLK1      5.370e-01  1.823e-01   2.946 0.001802 **  
LNSBLK2      7.105e-01  1.901e-01   3.737 0.000122 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 0.3856351) 
 
    Null deviance: 91.512  on 202  degrees of freedom 
Residual deviance: 75.970  on 197  degrees of freedom 
AIC: 390.57 
 
Number of Fisher Scoring iterations: 2  
 

AIC: 

390.57 

 

R-sq (%): 

16.98 
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Diagnostic Plots: 

 
Figure 9-5. Diagnostic Plots: Temporal Extent 

 

9.3.6 Spatial Extent 

The summary of model results is shown in Table 9-15. The model chosen for the 

spatial extent of a incident is the Gaussian Single-log model since it has the best fit from 

the diagnostic plots. Also, it has a higer R
2
 and lower AIC than the log-log model. The 

significant variables are also as expected.  

 

Spatial Extent = Exp {-0.8622 + 0.035 * (Non-incident Density) +  

0.0102 * (Incident duration) + 0.7286 * 1 lane blocked + 0.8024 * 2 lanes blocked}   

(9-6) 
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Table 9-15. Results for Spatial Extent 

Category Linear 
Transformed (Single 

Log) 
Gamma Gaussian (Log) Gaussian (Log-Log) 

Variable: Impact Space 

Full Model:      

R-sq (%) 21.6, 16.64 21.39, 16.42 19.19 21.39 18.76 

AIC 756.86 460.11 680.84 460.11 464.79 

Nested Model:      

R-sq (%) 16.39, 15.13 16.85, 14.74 13.05 16.85 15.62 

AIC 751.91 457.51 681.72 453.23 460.49 

Model Fit (P-value) 
Accept Model p >0.05 

  0.1743228 0.4866004 0.4866003 

Residual Vs Fitted 

     

Standardized 

Residuals 

     

Significant 

Variables 

Non-incident Density,  

Non-incident Volume, 

Lane-minutes of 

Blockage 

Non-incident Density,  

Non-incident Volume, 

No. of Lanes Blocked, 

Incident duration 

Non-incident Density,  

No. of Lanes 

Blocked, 

Incident duration 

Non-incident Density,  

Non-incident Volume, 

No. of Lanes 

Blocked, 

Incident duration 

Non-incident Density,  

No. of Lanes Blocked, 

Incident duration 

 



 

128 
 

The results of the recommended model are shown in Table 9-16, Figure 9-6 and 

equation 9-6.  Since all the response variables are positive, there was no need for the use 

of a constant. The coefficient estimates are once again, all positive, except non-incident 

volume. Therefore, the spatial extent of incident impact increases with increase in 

incident duration, lanes blocked and non-incident traffic density.  

 

Table 9-16. Best Model: Spatial Extent 

(Model Form: Gaussian Single-log GLM) 

Final Nested Model: 
Call: 
glm(formula = lnImpSpace ~ NIDensity + NIVol + ClrT + LNSBLK,  
    family = gaussian(), data = x) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.4820  -0.3022   0.0864   0.4879   1.6842   
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -8.622e-01  3.031e-01  -2.844 0.002456 **  
NIDensity    3.501e-02  9.815e-03   3.567 0.000227 *** 
NIVol       -1.247e-04  4.743e-05  -2.630 >0.5  
ClrT         1.018e-02  2.795e-03   3.643 0.000173 *** 
LNSBLK1      7.286e-01  2.149e-01   3.390 0.000424 *** 
LNSBLK2      8.024e-01  2.242e-01   3.579 0.000217 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 0.536283) 
 
    Null deviance: 127.05  on 202  degrees of freedom 
Residual deviance: 105.65  on 197  degrees of freedom 
AIC: 457.51 
Number of Fisher Scoring iterations: 2  
 

AIC: 

453.23 

R-sq (%): 

16.85 
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Diagnostic Plots: 

 
Figure 9-6. Diagnostic Plots: Spatial Extent 

 

9.3.7 Excess Fuel Consumption 

Table 9-17 presents the comparison of the results for all the models for excess 

fuel consumption in gallons. For fuel, a constant A=35 is used to make LHS positive.  

 

Excess Fuel Consumption = Exp {3.36649 + 0.010554 * Lane-Minutes of Blockage + 

0.036113 * Non-incident Density} – 35          (9-7) 
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Table 9-17. Results for Excess Fuel Consumption 

Category Linear 
Transformed Single 

Log 
Gamma Gaussian (Log) Gaussian (Log-Log) 

Variable: Fuel 

Full Model:      

R-sq (%) 30.2, 22.75 28.44, 20.8 23.54 26.77 27.52 

AIC 1406.05 294.25 1315.2 292.91 293.72 

Nested Model:      

R-sq (%) 21.71 , 20.31 16.96 , 15.48 15.33 28.44 11.77 

AIC 1401.257 293.3693 1317.7 294.25 300.34 

Model Fit (P-

value) Accept Model 

p >0.05 
  0.7121132 0.482228 0.4822278 

Residual Vs 

Fitted 

     

Standardized 

Residuals 

     

Significant 

Variables 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident 

Density, 

Incident duration 
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The Gaussian Single-log model represents the excess fuel consumption (in gallons) 

the best as can be seen from the R
2
 and AIC measures. The model fit is also the best 

when compared to the rest of the models. The coefficient estimates for the best model are 

shown in Table 9-18, the diagnostic plots in Figure 9-7 and the model form in equation 9-

7. The significant variables in the model are lane-minutes of blockage and non-incident 

traffic density.  

 

Table 9-18. Best Model: Excess Fuel Consumption (gallons) 

(Model Form: Gaussian Single-log GLM) 

Final Nested Model: 

 
Call: 
glm(formula = lnFuelPlus35 ~ BlkLnMin + NIDensity, family = gaussian(),  
    data = fe) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-3.5452  -0.5659  -0.0015   0.5343   1.5915   
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 3.366490   0.311134  10.820  < 1e-16 *** 
BlkLnMin    0.010554   0.002301   4.586 0.59e-05 *** 
NIDensity   0.036113   0.014858   2.430   0.0084 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 0.7189439) 
 
    Null deviance: 96.967  on 114  degrees of freedom 
Residual deviance: 80.522  on 112  degrees of freedom 
AIC: 293.37 
 
Number of Fisher Scoring iterations: 2 
 

AIC: 

293.37 
 

R-sq (%): 

16.96 
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Diagnostic Plots: 

 

 
Figure 9-7. Diagnostic Plots: Excess Fuel Consumption (gallons) 

 

Lane-minutes of blockage is the product of incident duration and number of lanes 

blocked (for shoulder incidents, lane-minutes of blockage is zero). The model indicates a 

positive relationship, with the increase in lane-minutes of blockage and non-incident 

density leading to increased excess fuel consumption. 
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9.3.8 Excess CO2 Emissions 

Table 9-19 gives a summary of the results for excess carbon dioxide (CO2) in 

metric tons for the different modeling forms. All of the models do not have a very good 

fit for excess CO2 emissions (metric tons). Out of them, the Gaussian Single-Log GLM 

model provides the better fit where the outliers in the normality plots are a little closer to 

the normality line than the Gaussian log-log or Gamma. R
2
 is higher and AIC is lower for 

the Gaussian single-log when compared to the log-log.  

The coefficient estimates for the recommended model and diagnostics plots are 

summarized in Table 9-20 and Figure 9-8, respectively. Equation 9-8 gives the form of 

the final model. The significant variables in the model are lane-minutes of blockage and 

non-incident traffic density. The model indicates a positive relationship, with the increase 

in lane-minutes of blockage and non-incident density leading to increased excess CO2 

emissions due to incidents. 

 

Excess CO2 Emissions = Exp {3.38+ 0.00146* Non-incident Density +  

0.00050 * Lane-Minutes of Blockage} – 30          (9-8) 



 

 

1
3
4

 

Table 9-19. Results for total Excess CO2 Emissions 

 

Category Linear 
Transformed Single 

Log 
Gamma Gaussian (Log) Gaussian (Log-Log) 

Variable: CO2 Scaled to Tons 

Full Model:      

R-sq (%) 30.26, 22.81 30.59, 23.18 30.47 30.59 27.9 

AIC 341.92 -453.40 336.3 -453.4 -451.03 

Nested Model:      

R-sq (%) 23.61, 22.24 23.81, 22.44 23.56 23.8 17.09 

AIC 334.39 -460.68 329.41 -460.68 -451.81 

Model Fit (P-

value) Accept 

Model p >0.05 
  0.5555897 0.4822266 0.4821482 

Residual Vs 

Fitted 

     

Standardized 

Residuals 

     

Significant 

Variables 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Incident duration, Lane 

block ratio 
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Table 9-20. Best Model: Excess CO2 Emissions (Tons) 

(Model Form: Gaussian Single-Log GLM) 

Final Nested Model: 

 
Call: 
glm(formula = lnCO2TonsPlus30 ~ NIDensity + BlkLnMin, family = 
gaussian(),  
    data = fe) 
 
Deviance Residuals:  
      Min         1Q     Median         3Q        Max   
-0.065443  -0.019731  -0.007994   0.010539   0.119018   
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 3.383e+00  1.173e-02 288.550  < 1e-16 *** 
NIDensity   1.455e-03  5.600e-04   2.598   0.0053 *   
BlkLnMin    5.018e-04  8.673e-05   5.786 3.35e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 0.001021062) 
 
    Null deviance: 0.15009  on 114  degrees of freedom 
Residual deviance: 0.11436  on 112  degrees of freedom 
AIC: -460.68 
 
Number of Fisher Scoring iterations: 2 

 

AIC: 

-460.68 
 

R-sq (%): 

23.80 
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Diagnostic Plots: 

 
Figure 9-8. Diagnostic Plots: Excess CO2 Emissions (Tons) 

 

9.3.9 Excess CO Emissions 

Table 9-21 gives a summary of the results for excess carbon monoxide (CO) 

emissions for the different regression models. The Gaussian Single-Log model clearly 

has the better fit, R
2
 and AIC. The original data was scaled to kilograms. The results for 

the recommended model are presented in Table 9-22, Figure 9-9 and equation 9-9. 

 

Excess CO Emissions = Exp {0.511946 + 0.039209 * Non-incident Density +  

0.009008 * Lane-Minutes of Blockage} – 3        (9-9) 
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Table 9-21. Results for total Excess CO Emissions (Kg) 

Category Linear 
Transformed Single 

Log 
Gamma Gaussian (Log) Gaussian (Log-Log) 

Variable: CO Scaled to 1K 

Full Model:      

R-sq (%) 32.63, 25.44 36.86, 30.12 30.47 36.86 34.89 

AIC 662.52 194.75 561.66 194.75 196.3 

Nested 

Model: 
     

R-sq (%) 26.19, 24.87 28.52 , 27.24 17.39 28.52 23.57 

AIC 655.02 191.03 568.18 191.03 200.72 

Model Fit 

(P-value) 
Accept Model p 

>0.05 

  0.9105878 0.4822277 0.4821479 

Residual Vs 

Fitted 

     

Standardized 

Residuals 

     

Significant 

Variables 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Incident duration, Lane 

block ratio 
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Table 9-22. Best Model: Excess CO Emissions (Kgs) 

(Model Form: Gaussian Single-log GLM) 

Final Nested Model: 
Call: 
glm(formula = lnCOKgPlus3 ~ NIDensity + BlkLnMin, family = gaussian(),  
    data = fe) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-1.26781  -0.36017  -0.07009   0.32182   1.26871   
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 0.511946   0.199389   2.568   0.0058 *   
NIDensity   0.039209   0.009522   4.118 3.68e-05 *** 
BlkLnMin    0.009008   0.001475   6.108 0.75e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 0.2952593) 
 
    Null deviance: 46.262  on 114  degrees of freedom 
Residual deviance: 33.069  on 112  degrees of freedom 
AIC: 191.03 
Number of Fisher Scoring iterations: 2  

 

AIC: 

191.03 

R-sq (%): 

28.52 

 

The model uses a constant of A = 3 added to make LHS positive. The significant 

variables in the model are lane-minutes of blockage and non-incident traffic density. The 

model indicates a positive relationship, with the increase in lane-minutes of blockage and 

non-incident density leading to increased excess CO emissions. 
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Diagnostic Plots: 

 
Figure 9-9. Diagnostic Plots: Excess CO Emissions (Kgs) 

 

9.3.10 Excess NOx Emissions 

Table 9-23 gives a summary of results for excess NOx emissions for the different 

regression models. Based on the summary of results from Table 9-23, the Gaussian 

Single-log and log-log model have the best fit among all models. Of this, the Gaussian 

Single-log has the lower AIC and higher R
2
 and is therefore, recommended. The final 

model results are shown in Table 9-24, Figure 9-10 and equation 9-10.  

 

Excess NOx Emissions = Exp {5.03591 + 0.038019 * Non-incident Density +  

0.012057 * Lane-Minutes of Blockage} – 250     (9-10) 
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Table 9-23. Results for total Excess NOx Emissions (grams) 

Category Linear 
Transformed Single 

Log 
Gamma Gaussian (Log) Gaussian (Log-Log) 

Variable: NOx 

Full Model:      

R-sq (%) 39.02, 31.51 35.23,28.21 38.88 35.22 34.15 

AIC 1783.92 266.28 1691.7 266.28 266.17 

Nested Model:      

R-sq (%) 28.83, 27.56 25 , 23.66 29.06 25 19.50 

AIC 1783.695 265.14 1693.9 265.14 275.27 

Model Fit (P-

value) Accept 

Model p >0.05 
  0.771368 0.508903 0.5089433 

Residual Vs 

Fitted 

     

Standardized 

Residuals 

     

Significant 

Variables 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Incident duration, Lane 

block ratio 
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Table 9-24. Best Model: Excess NOx Emissions (grams) 

(Model Form: Gaussian Single-log GLM) 

Final Nested Model: 
Call: 
glm(formula = lnNOxPlus250 ~ NIDensity + BlkLnMin, family = gaussian(),  
    data = fe) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.7968  -0.4239  -0.0944   0.4826   1.4785   
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 5.035910   0.275194  18.299  < 1e-16 *** 
NIDensity   0.038019   0.013142   2.893  0.00230 **  
BlkLnMin    0.012057   0.002036   5.923 1.77e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 0.5624454) 
 
    Null deviance: 83.992  on 114  degrees of freedom 
Residual deviance: 62.994  on 112  degrees of freedom 
AIC: 265.14 
 
Number of Fisher Scoring iterations: 2 

 

AIC: 

265.14 

R-sq (%): 

25 

 

 The constant, used to make all the response variables positive, is A = 250. The 

significant variables in the model are lane-minutes of blockage and non-incident traffic 

density, similar to the previous two models. An increase in either of the two variables 

produces an increase in excess NOx emissions due to incidents. 
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Diagnostic Plots: 

 
Figure 9-10. Diagnostic Plots: Excess NOx Emissions (grams) 

 

9.3.11 Excess PM10Emissions 

Table 9-25 gives a summary of the results for PM10 emissions for the different 

regression models. Gaussian Single-log and log-log GLMs have the best fit. Both of these 

have R
2
 and AIC that is almost equal.  

 

Excess PM10 Emissions = Exp {3.399096 + 0.293358 * Weekday +  

0.008231* Lane-Minutes of Blockage} – 30     (9-11) 
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Table 9-25. Results for total Excess PM10 Emissions (grams) 

Category Linear 
Transformed Single 

Log 
Gamma Gaussian (Log) Gaussian (Log-Log) 

Variable: PM10 

Full Model:      

R-sq (%) 28.63 , 22.52 27.71 , 21.51 25.92 27.70 29.56 

AIC 1163.449 210.6274 1110.2 210.63 209.65 

Nested Model:      

R-sq (%) 21.31 , 19.9 20.16, 18.74 13.31 20.16 19.53 

AIC 1160.688 208.05 1113 208.05 208.95 

Model Fit (P-

value) Accept 

Model p >0.05 
  0.6885185  0.4822277 0.4822281 

Residual Vs 

Fitted 

     

Standardized 

Residuals 

     

Significant 

Variables 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident Density, 

Lane-minutes of 

Blockage 

Non-incident 

Density, 

Incident duration 
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The log-log model has no representation of the number of lanes blocked which is 

a very important incident characteristic for practical purposes. Therefore, Gaussian 

Single-log model is selected for recommendation for excess „PM10‟ emission owing to 

the variable lane-minutes of blockage in it. The model results are summarized in Table 9-

26, Figure 9-11 and equation 9-11. The constant used is A = 30. 

 

Table 9-26. Best Model: Excess PM10 Emissions (grams) 

(Model Form: Gaussian Single-log GLM) 

Final Nested Model: 

 
Call: 
glm(formula = lnPM10Plus30 ~ Weekday + BlkLnMin, family = gaussian(),  
    data = fe) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-2.93732  -0.33493  -0.06319   0.30781   1.27335   
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 3.399096   0.142301  23.887  < 1e-16 *** 
Weekday     0.293358   0.133757   2.193   0.0015 *   
BlkLnMin    0.008231   0.001580   5.210 4.34e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 0.3423557) 
 
    Null deviance: 48.027  on 114  degrees of freedom 
Residual deviance: 38.344  on 112  degrees of freedom 
AIC: 208.05 
 
Number of Fisher Scoring iterations: 2 
 

AIC: 

208.05 
 

R-sq (%): 

20.16 
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Diagnostic Plots: 

 

 
 

Figure 9-11. Diagnostic Plots: Excess PM10 Emissions (grams) 

 

The calibrated model has two significant variables, lane-minutes of blockage and 

a dummy variable indicating if the incident day happened on a weekday or weekend. 

Both of these variables have positive coefficients.  If an incident happened on a weekday, 

the impact on the excess PM10 emissions is more than on a weekend.  
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9.4 Summary 

All the models for short term incident impacts have positive coefficient estimates 

indicating that the short-term impacts of incidents (travel time, fuel consumption and 

vehicle emissions) increase with the increase in incident characteristics. This follows the 

logic that an incident of bigger magnitude (more number of lanes blocked and more 

incident duration experienced) will cause more short term impacts than an incident with 

lower incident duration and number of lanes blocked. The interpretation and marginal 

impacts of these models are discussed in Chapter 11.  
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CHAPTER 10  

STATISTICAL MODELING RESULTS FOR LONG TERM IMPACTS 

10.1 Introduction 

This chapter presents the statistical modeling results for the long term incident 

impacts. The response variables in this category are 95
th

 percentile travel time, buffer 

time and buffer index values for mixed data, and difference between mixed and non-

incident data. Similar to the previous chapter, a summary table for all the models are 

presented followed by coefficient estimation of the recommended nested model. Since 

many of the predictor variables had zeros, the Gaussian Log-Log GLM could not be 

modeled because logarithms do not apply for zeros. Therefore four functional forms 

Linear, Log-Transformed, Gamma GLM and Gaussian Single-log GLM are summarized. 

For GLMs, appropriate constants are used, as necessary, to make the modeling possible. 

10.2 Description of Response and Predictor Variables 

The list of the response and predictor variables used in the analysis of the long 

term impacts of incidents and their codes in R are presented in Tables 10-1 and 10-2. For 

the predictor variables in long term impacts, there was a lot of correlation among the 

variables, especially the previous hour, previous 2
nd

 hour and previous 2 hours as shown 

in Table 10-3. During stepwise regression, these sets of variables are modeled one at a 

time manually, and the best one is recommended.  
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Table 10-1. List of Response Variables for Long Term Impacts 

Variable Code Variable Name Explanation 

Mixed95%ile  Mixed 95
th

 TT 95
th

 percentile TT for mixed data 

95%ile  Diff 95
th

 TT Excess  95
th

 percentile TT due to incident 

MixedBufTime  Mixed Buffer Time Buffer time TTR  for mixed data 

BufTime  Diff Buffer Time Excess  buffer time TTR  measure due to incident  

MixedBufIndex  Mixed Buffer Index Buffer index TTR  for mixed data 

BufIndex  Diff Buffer Index Excess  buffer index TTR measure due to incident  

 

Table 10-2. List of Predictor Variables for Long Term Impacts 

Variable Code Variable Name Explanation 

TotNoOfInc                            Number of Incidents                            Total Number of incidents in the hour  

IncRate Rate of Incidents Rate of incidents - inc/hr in the hour  

 AvgLnMin  Average Lane-Minutes Average Lane minutes of blockage in the hour  

 MaxLnMin  Maximum Lane-Minutes  Maximum Lane minutes of blockage in the hour  

NoOfIncPrvHr  Incidents in previous hour Total Number of incidents in the previous hour  

IncRatePrvHr  

Rate of incidents in previous 

hour  Rate of incidents - inc/hr in the previous hour % 

AvgLnMinPrevHr  

Average Lane-Minutes in 

previous hour 

Average Lane minutes of blockage in the 

previous hour  

NoOfIncPrv2ndHr  Incidents in previous 2
nd

 hour 

Total Number of incidents in the previous 2nd 

hour  

IncRatePrv2ndHr  

Rate of incidents in previous 

2
nd

 hour  

Rate of incidents - inc/hr in the previous 2nd 

hour % 

AvgLnMinPrev2ndHr  

Average Lane-Minutes in 

previous 2
nd

 hour 

Average Lane minutes of blockage in the 

previous 2nd hour  

NoOfIncPrv2Hrs  Incidents in previous 2
 
hours 

Total Number of incidents in the previous 2 

hours combined  

IncRatePrv2Hrs  

Rate of incidents in previous 2 

hours  

Rate of incidents - inc/hr in the previous 2 hours 

combined % 

AvgLnMinPrev2Hrs  

Average Lane-Minutes in 

previous 2
 
 hours 

Average Lane minutes of blockage in the 

previous 2 hours combined  

AvgLnBlk  Average Lanes Blocked  Average number of lanes blocked  

MaxLnBlk Maximum Lanes Blocked Maximum number of lanes blocked 

 AvgClrT  Average Incident duration 

Average Incident duration of incidents in the 

hour  

 AvgDist   Average Distance  Average distance from 215.  

NISpeed  Non-incident Speed  Speed for non-incident scenario 

NIVolume  Non-incident Volume  Volume for non-incident scenario 

NIVolVphpl  Non-incident Volume -vphpl  Volume (vphpl) for non-incident scenario  

NIDensity  Non-incident Density  Density for non-incident scenario 

NIDensVpmpl  Non-incident Density -vpmpl  Density (vpmpl) for non-incident scenario  
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Table 10-3. Correlation Matrix for Predictor Variables for Long Term Impacts 
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IncRate 0.40                                       
(p-value) 0.00                                       

AvgLnMin 0.97 -0.09                                     

  0.00 0.53                                     

MaxLnMin -0.14 0.05 -0.12                                   

  0.38 0.74 0.45                                   

NoOfIncPrvHr 0.99 0.35 0.98 -0.15                                 
  0.00 0.01 0.00 0.35                                 

IncRatePrvHr 0.61 0.25 0.56 0.00 0.61                               

  0.00 0.09 0.00 0.99 0.00                               

AvgLnMinPrev -0.13 -0.09 -0.08 0.07 -0.14 -0.11                             
  0.42 0.56 0.64 0.68 0.36 0.47                             

NoOfIncPrv2n 0.40 0.09 0.38 0.22 0.38 0.78 0.02                           

  0.00 0.52 0.01 0.16 0.00 0.00 0.91                           

IncRatePrv2n 0.27 -0.03 0.29 0.09 0.25 0.57 -0.01 0.86                         
  0.06 0.83 0.07 0.59 0.09 0.00 0.97 0.00                         

AvgLnMinPrev -0.19 -0.09 -0.20 -0.15 -0.19 -0.19 0.15 -0.08 -0.07                       

  0.24 0.59 0.23 0.40 0.24 0.26 0.40 0.61 0.68                       

NoOfIncPrv2H 0.57 0.13 0.53 0.05 0.56 0.88 -0.06 0.93 0.88 -0.10                     
  0.00 0.35 0.00 0.78 0.00 0.00 0.72 0.00 0.00 0.51                     

IncRatePrv2H 0.55 0.12 0.52 0.08 0.54 0.89 -0.04 0.93 0.89 -0.09 0.99                   

  0.00 0.38 0.00 0.63 0.00 0.00 0.82 0.00 0.00 0.56 0.00                   

AvgLnMinPrev -0.09 -0.07 -0.06 -0.03 -0.09 -0.07 0.65 0.01 -0.06 0.86 -0.03 0.00                 
  0.54 0.64 0.69 0.84 0.54 0.67 0.00 0.92 0.72 0.00 0.85 0.99                 

AvgLnBlk 0.24 0.58 -0.08 0.31 0.26 0.17 0.02 0.08 0.07 0.04 0.11 0.12 0.05               

  0.07 0.00 0.59 0.04 0.05 0.25 0.90 0.55 0.65 0.83 0.43 0.38 0.72               

AvgClrT 0.22 0.52 -0.05 0.83 0.22 0.23 -0.04 0.21 0.01 -0.34 0.17 0.17 -0.24 0.51             
  0.10 0.00 0.72 0.00 0.11 0.12 0.79 0.13 0.97 0.03 0.24 0.23 0.10 0.00             

AvgDist 0.35 0.04 0.34 0.14 0.35 0.26 0.21 0.21 0.22 0.01 0.32 0.32 0.12 -0.19 0.29           

  0.02 0.78 0.02 0.38 0.02 0.10 0.23 0.15 0.17 0.94 0.03 0.04 0.46 0.21 0.05           

NISpeed -0.75 -0.25 -0.71 0.12 -0.75 -0.71 0.09 -0.55 -0.44 0.15 -0.67 -0.68 0.01 -0.22 -0.08 -0.12         

  0.00 0.07 0.00 0.43 0.00 0.00 0.57 0.00 0.00 0.35 0.00 0.00 0.95 0.11 0.58 0.41         

NIVolume 0.52 0.22 0.54 -0.32 0.54 0.27 -0.24 -0.11 -0.06 0.07 0.15 0.15 0.03 0.29 -0.04 0.01 -0.59       

  0.00 0.10 0.00 0.03 0.00 0.07 0.13 0.43 0.68 0.68 0.30 0.28 0.81 0.03 0.79 0.95 0.00       

NIVolVphpl 0.55 0.23 0.58 -0.34 0.58 0.32 -0.25 -0.05 -0.01 0.06 0.20 0.21 0.03 0.28 -0.04 0.03 -0.64 1.00     
  0.00 0.09 0.00 0.03 0.00 0.03 0.11 0.74 0.95 0.72 0.15 0.14 0.86 0.04 0.75 0.86 0.00 0.00     

NIDensity 0.74 0.27 0.73 -0.22 0.75 0.62 -0.14 0.35 0.27 -0.06 0.53 0.54 0.02 0.25 0.03 0.13 -0.94 0.81 0.85   

  0.00 0.05 0.00 0.15 0.00 0.00 0.37 0.01 0.06 0.70 0.00 0.00 0.87 0.06 0.83 0.40 0.00 0.00 0.00   

NIDensVpmpl 0.74 0.27 0.73 -0.22 0.75 0.62 -0.14 0.36 0.28 -0.06 0.53 0.54 0.02 0.25 0.03 0.13 -0.94 0.81 0.84 1.00 

  0.00 0.05 0.00 0.16 0.00 0.00 0.37 0.01 0.06 0.69 0.00 0.00 0.87 0.06 0.82 0.38 0.00 0.00 0.00 0.00 
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10.3 Model Results  

10.3.1 The 95
th

 Percentile Travel Time for Mixed Data 

Table 10-4 presents the results for the 95
th

 percentile travel time for mixed data. 

The Gaussian Single-log GLM is selected as the best model for the 95
th

 percentile travel 

time for mixed data since it has the best fit. The extreme values in the residual and 

normality plots are much closer to the normal line than the other models as seen in plots 

in Table 10-4. The coefficient estimates for the Single-log GLM are presented in Table 

10-5, the diagnostic plots in Figure 10-1 and the model form in Equation 10-1.  

The significant variables are average lane-minutes of blockage and the rate of 

incident in the previous hour. Both coefficients are positive showing that there is an 

increase in the 95
th

 percentile travel time (therefore, a decrease in travel time reliability) 

with increase in the average lane-minutes of blockage in the subject hour and the rate of 

incidents in the previous hour. 

 

95
th

 Percentile Travel Time Mixed = Exp {2.045 + 0.009 * Average Lane-Minutes of 

Blockage + 0.00882 * Rate of Incidents in Previous Hour}    (10-1) 

 

 

 

 



 

 
 

1
5
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Table 10-4. Results for 95
th

 Percentile Travel Time (Mixed) 

Category Linear Transformed Single Log Gamma Gaussian (Log) 

Full Model:     

R-sq (%) 71.35, 62.48 71.04, 62.07 74.76 71.04 

AIC 214.12 -56.25 196.59 -53.19 

Nested Model:     

R-sq (%) 67.33, 66.1 67.17, 65.93 68.96 67.17 

AIC 199.46 -68.16 183.35 -68.163 

Model Fit (P-value) 
Accept Model p >0.05 

  0.506291 0.4741632 

Residual Vs Fitted 

    

Standardized 

Residuals 

    

Significant Variables 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in Previous 

Hour 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in 

Previous Hour 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in Previous 

Hour 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in Previous 

Hour 
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Table 10-5. Best Model: 95
th

 Percentile TT - Mixed 

(Model Form: Gaussian Single-Log GLM) 

Final Nested Model with variables for PrevHr and Prev2ndHr: 

 
Call: 
glm(formula = lnMixed95th ~ AvgLnMin + IncRatePrvHr, family = 
gaussian(),  
    data = x) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-0.38824  -0.06357   0.00682   0.07832   0.32592   
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.044984   0.027343  74.789  < 1e-16 *** 
AvgLnMin     0.009064   0.002072   4.373 2.88e-05 *** 
IncRatePrvHr 0.008820   0.001900   4.642 1.16e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 0.01587711) 
 
    Null deviance: 2.56289  on 55  degrees of freedom 
Residual deviance: 0.84149  on 53  degrees of freedom 
AIC: -68.163 
 
Number of Fisher Scoring iterations: 2  
 

AIC: 

-68.163 

 

R-sq (%): 

67.17 
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Diagnostic Plots: 

 
Figure 10-1. Diagnostic Plots: 95

th
 Percentile Travel Time - Mixed 

 

10.3.2 Difference in 95
th

 Percentile Travel Time  

Table 10-6 presents a summary of the results for the difference in 95
th

 percentile 

travel time between mixed and non-incident data. For this case, the Gamma GLM model 

is recommended. It has a higher R
2
 and a very good fit in the normality and residual plots. 

The constant used is A=2 and the final model results are shown in Table 10-7, Figure 10-

2 and equation 10-2.  

Diff in 95
th

 percentile TT = {1/ (2.58 -0.00471 * Average Lane-Minutes of Blockage - 

0.00723 * Rate of Incidents in Previous Hour - 0.02519 * Non-incident Speed - 

0.00039 * Non-incident volume)} – 2      (10-2) 
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Table 10-6. Results for 95
th

 Percentile Travel Time - Difference 

Category Linear Transformed Single Log Gamma Gaussian (Log) 

Full Model:     

R-sq (%) 30.31, 8.73 26.52, 3.78 45.5 26.52 

AIC 170.62 52.13 139.46 52.13 

Nested Model:     

R-sq (%) 24.79, 18.89 21.49, 15.33 35.54 21.49 

AIC 156.89 37.84 127.95 37.84 

Model Fit (P-value) 
Accept Model p >0.05 

  0.3877355 0.4736602 

Residual Vs Fitted 

    

Standardized Residuals 

    

Significant Variables 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in 

Previous Hour, Non-

incidnet Speed, Non-

incident Volume 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in 

Previous Hour, Non-

incidnet Speed, Non-

incident Volume 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in Previous 

Hour, Non-incidnet Speed, 

Non-incident Volume 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in 

Previous Hour, Non-

incidnet Speed, Non-

incident Volume 
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The Gamma GLM model uses an inverse link function. Therefore, the negative 

signs in the coefficient estimates indicate an increase in difference in 95
th

 percentile for 

the significant variables, namely, average lane-minutes of blockage, the incident rate in 

the previous hour, non-incident speed and volume.  

 

Table 10-7. Best Model: 95
th

 percentile TT- Difference 

(Model Form: Gamma GLM) 

Final Nested Model: 
Call: 
glm(formula = TwoPlus95th ~ AvgLnMin + IncRatePrvHr + NISpeed +  
    NIVolume, family = Gamma(), data = x) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-0.87240  -0.20079  -0.03805   0.18544   0.66258   
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)   2.5812057  0.5665623   4.556 3.28e-05 *** 
AvgLnMin     -0.0047131  0.0023488  -2.007  0.01253 .   
IncRatePrvHr -0.0072320  0.0022504  -3.214  0.00057 **  
NISpeed      -0.0251897  0.0072574  -3.471  0.00027 **  
NIVolume     -0.0003917  0.0001491  -2.626  0.00569 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for Gamma family taken to be 0.09347843) 
 
    Null deviance: 7.3819  on 55  degrees of freedom 
Residual deviance: 4.9775  on 51  degrees of freedom 
 
AIC: 127.95 
Number of Fisher Scoring iterations: 5 
 

AIC: 

127.95 

R-sq (%): 

35.54 
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Diagnostic Plots: 

 
Figure 10-2. Diagnostic Plots: Difference in 95

th
 percentile TT 

 

10.3.3 Buffer Time for Mixed Data  

Table 10-8 shows the summary of results for buffer time for mixed data. The 

Gaussian Single-log GLM is the model selected for the Buffer Time owing to its better fit 

in the residual and normality plots. The results of the final model are shown in Table 10-9, 

Figure 10-3 and equation 10-3. 

 

Buffer Time Mixed = Exp {-3.00209 + 0.03583 * Average Lane-Minutes of Blockage + 

0.02607 * Rate of Incidents in Previous Hour}     (10-3) 
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Table 10-8. Results for Buffer Time (Mixed) 

Category Linear Transformed Single Log Gamma Gaussian (Log) 

Full Model:     

R-sq (%) 58.97, 46.27 49.78, 34.23 66.21 49.78 

AIC 175.83 154.52 135.77 154.52 

Nested Model:     

R-sq (%) 54.44, 52.72 45.74, 43.69 31.33 45.74 

AIC 159.69 136.86 127.55 136.86 

Model Fit (P-value) 
Accept Model p >0.05 

  0.4969493 0.6176565 

Residual Vs Fitted 

    

Standardized 

Residuals 

    

Significant Variables 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in Previous 

Hour 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in 

Previous Hour 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in Previous 

Hour 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in Previous 

Hour 
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The significant variables are average lane-minutes of blockage and the rate of 

incident in the previous hour. Equation 10-3 shows that buffer time increases with 

increase in the average lane-minutes of blockage in the subject hour and the rate of 

incidents in the previous hour. Increase in the buffer time measure corresponds to a 

decrease in travel time reliability and is therefore indicating that the incidents reduce 

travel time reliability. 

 

Table 10-9. Best Model: Buffer Time - Mixed 

(Model Form: Gaussian Single-log GLM) 

Final Nested Model for PrevHr, PRev2ndHr and α = 0.05: 
Call: 
glm(formula = lnMixedBufTime ~ AvgLnMin + IncRatePrvHr, family = 
gaussian(),  
    data = x) 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.3048  -0.4630   0.1895   0.4976   1.2747   
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -0.99912    0.17055  -5.858 1.52e-07 *** 
AvgLnMin      0.04093    0.01293   3.166  0.00128 **  
IncRatePrvHr  0.03099    0.01185   2.615  0.00580 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Dispersion parameter for gaussian family taken to be 0.6176565) 
 
    Null deviance: 60.328  on 55  degrees of freedom 
Residual deviance: 32.736  on 53  degrees of freedom 
 
AIC: 136.86 
Number of Fisher Scoring iterations: 2  
 

AIC: 

136.86 

R-sq (%): 

45.74 
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Diagnostic Plots: 

 
Figure 10-3. Diagnostic Plots: Buffer Time - Mixed 

 

10.3.4 Difference in Buffer Time  

The summary of results for the difference in buffer time between mixed and non-

incident data is shown in Table 10-10. The model selected is the Gamma GLM since it 

has the best normality plot of all the models and a high R
2
. The coefficient estimates and 

diagnostic plots are shown in Table 10-11 and Figure 10-4. The constant used to make 

the LHS positive is A=2. Equation 10-4 presents the form of the final model. 

 

Diff in Buffer Time = {1/ (2.34 -0.00421 * Average Lane-Minutes of Blockage - 0.0064 

* Rate of Incidents in Previous Hour - 0.02245 * Non-incident Speed - 0.00034 * 

Non-incident Volume)} – 2        (10-4) 
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Table 10-10. Results for Buffer Time - Difference 

Category Linear Transformed Single Log Gamma Gaussian (Log) 

Full Model:     

R-sq (%) 27.98, 5.69 25.42, 23.41 40.6 25.42 

AIC 152.75 37.40 123.87 37.405 

Nested Model:     

R-sq (%) 22.65, 16.58 19.25, 12.92 31.33 12.13 

AIC 138.75 23.86 112.31 24.59 

Model Fit (P-value) 
Accept Model p >0.05 

  0.4954747 0.4741625 

Residual Vs Fitted 

    

Standardized Residuals 

    

Significant Variables 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in 

Previous Hour, Non-

incidnet Speed, Non-

incident Volume 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in 

Previous Hour, Non-

incidnet Speed, Non-

incident Volume 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in Previous 

Hour, Non-incidnet Speed, 

Non-incident Volume 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in Previous 

Hour, Non-incidnet Speed, 

Non-incident Volume 
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Table 10-11. Best Model: Buffer Time - Difference 

(Model Form: Gamma GLM) 

Final Nested Model: 

 
Call: 
glm(formula = BufTimePlus2 ~ AvgLnMin + IncRatePrvHr + NISpeed +  
    NIVolume, family = Gamma(), data = x) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-0.68258  -0.18642  -0.03844   0.17390   0.64202   
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)   2.3435925  0.5437544   4.310 3.73e-05 *** 
AvgLnMin     -0.0042124  0.0022778  -1.849  0.03510 .   
IncRatePrvHr -0.0063994  0.0021718  -2.947  0.00242 **  
NISpeed      -0.0224492  0.0069712  -3.220  0.00112 **  
NIVolume     -0.0003374  0.0001418  -2.380  0.01055 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for Gamma family taken to be 0.07861903) 
 
    Null deviance: 5.6485  on 55  degrees of freedom 
Residual deviance: 3.9662  on 51  degrees of freedom 
 
AIC: 112.31 
 
Number of Fisher Scoring iterations: 5 
 

R-sq (%): 

31.33 

 

For the Gamma GLM, as explained in the previous section, negative signs in the 

coefficient estimates indicate an increase in difference in buffer time (therefore, a 

decrease in travel time reliability) for the significant variables, namely, average lane-

minutes of blockage, the incident rate in the previous hour, non-incident speed and 

volume.  
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Diagnostic Plots: 

 

Figure 10-4. Diagnostic Plots: Buffer Time - Difference 

 

10.3.5 Buffer Index for Mixed Data  

The summary of the results for the buffer index for mixed data is presented in 

Table 10-12. The Gaussian GLM with Single-log is chosen as the best model since it has 

the better normality plot. The coefficient estimates, diagnostic plots and model form are 

presented in Table 10-13 and Figure 10-5 and equation 10-5 respectively. 

 

Buffer Index Mixed = Exp {-0.99912 + 0.04093 * Average Lane-Minutes of Blockage + 

0.03099 * Rate of Incidents in Previous Hour}     (10-5) 
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Table 10-12. Results for Buffer Index (Mixed) 

Category Linear Transformed Single Log Gamma Gaussian (Log) 

Full Model:     

R-sq (%) 54.09, 39.88 45.3, 28.37 62.46 45.3 

AIC -77.46 149.52 -108.17 149.53 

Nested Model:     

R-sq (%) 47.27, 45.28 40.32, 38.07 22.69 40.32 

AIC -91.70 132.41 -117.52 132.41 

Model Fit (P-value) 
Accept Model p >0.05 

  0.444908 0.5704758 

Residual Vs Fitted 

    

Standardized 

Residuals 

    

Significant Variables 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in Previous 

Hour 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in Previous 

Hour 
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Previous Hour 
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The positive coefficients in equation 10-5 show an increase of buffer index 

(therefore, a decrease in travel time reliability) for the two significant variables, average 

lane-minutes of blockage and the incident rate in the previous hour. 

 

Table 10-13. Best Model: Buffer Index - Mixed  

(Model Form: Gaussian Single-log GLM) 

Final Nested Model with PrevHr and Prev2ndHr: 

 
Call: 
glm(formula = lnMixedBufIndex ~ AvgLnMin + IncRatePrvHr, family = 
gaussian(),  
    data = x) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.3034  -0.4340   0.1644   0.4932   1.2403   
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -3.00209    0.16390 -18.316  < 1e-16 *** 
AvgLnMin      0.03583    0.01242   2.885  0.00283 **  
IncRatePrvHr  0.02607    0.01139   2.289  0.01304 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for gaussian family taken to be 0.5704758) 
 
    Null deviance: 50.664  on 55  degrees of freedom 
Residual deviance: 30.235  on 53  degrees of freedom 
AIC: 132.41 
 
Number of Fisher Scoring iterations: 2  
 

AIC: 

132.41 

 

R-sq (%): 

40.32 
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Diagnostic Plots: 

 
 

Figure 10-5. Diagnostic Plots: Buffer Index - Mixed 

 

10.3.6 Difference in Buffer Index  

The summary of model results for the difference in buffer index as the response is 

summarized in Table 10-14. The Gamma GLM has marginally better residual plots and 

higher R
2
 when compared to all the models and is selected for recommendation. The 

Gamma GLM results are given in Table 10-15 and plots in Figure 10-6. Equation 10-6 

shows the model form using a constant A = 2 to make the LHS positive.  



 

 
 

1
6
6

 

Table 10-14. Results for Buffer Index - Difference 

Category Linear Transformed Single Log Gamma Gaussian (Log) 

Full Model:     

R-sq (%) 28, 5.7 27.66, 5.27 29.3 27.66 

AIC -104.82 -118.38 -108.94 -188.39 

Nested Model:     

R-sq (%) 21.85, 15.72 21.44, 15.28 22.68 21.44 

AIC -118.24 -201.77 -122 -201.77 

Model Fit (P-value) 
Accept Model p >0.05 

  0.5145734 0.473661 

Residual Vs Fitted 

    

Standardized Residuals 

    

Significant Variables 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in 

Previous Hour, Non-

incidnet Speed, Non-

incident Volume 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in 

Previous Hour, Non-

incidnet Speed, Non-

incident Volume 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in 

Previous Hour, Non-

incidnet Speed, Non-

incident Volume 

Average Lane-Minutes of 

Blockage, 

Rate of Incidents in Previous 

Hour, Non-incidnet Speed, 

Non-incident Volume 
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Table 10-15. Best Model: Buffer Index - Difference 

(Model Form: Gamma GLM) 

Final Nested Model: 

 
Call: 
glm(formula = BufIndexPlus2 ~ AvgLnMin + IncRatePrvHr + NISpeed +  
    NIVolume, family = Gamma(), data = x) 
 
Deviance Residuals:  
      Min         1Q     Median         3Q        Max   
-0.063890  -0.021259  -0.005933   0.018291   0.101388   
 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)   7.428e-01  8.212e-02   9.046 3.51e-12 *** 
AvgLnMin     -6.969e-04  3.809e-04  -1.830  0.07315 .   
IncRatePrvHr -7.556e-04  3.478e-04  -2.173  0.03446 *   
NISpeed      -3.044e-03  1.063e-03  -2.864  0.00605 **  
NIVolume     -4.066e-05  2.099e-05  -1.937  0.05831 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for Gamma family taken to be 0.001450574) 
 
    Null deviance: 0.094113  on 55  degrees of freedom 
Residual deviance: 0.072485  on 51  degrees of freedom 
AIC: -122 
 
Number of Fisher Scoring iterations: 4 
 

R-sq (%): 

22.68 

 



 

168 
 

Diagnostic Plots: 

 

Figure 10-6. Diagnostic Plots: Buffer Index - Difference 

 

Diff in Buffer Index = {-1/(0.7428 -0.0007 * Average Lane-Minutes of Blockage - 

0.0008 * Rate of Incidents in Previous Hour - 0.0030 * Non-incident Speed - 

0.00004 * Non-incident Volume)} – 2      (10-6) 

Negative signs in the coefficient estimates indicate an increase in difference in 

buffer time (therefore, a decrease in travel time reliability) for the significant variables, 

namely, average lane-minutes of blockage, the incident rate in the previous hour, non-

incident speed and volume (Since Gamma GLM uses an inverse link).  
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10.4 Summary 

In all the models for the TTR measures, the significant variables are lane-minutes 

of blockage, incident rate in the previous hour, non-incident speed and non-incident 

volume in combinations. The TTR measures have a positive trend with these variables 

and therefore increase with the corresponding increase in these variables. Since the TTR 

measures are a representation of travel time unreliability (or variability), increase in TTR 

measures results in decrease of travel time reliability. The interpretation and marginal 

impacts of these models are discussed in Chapter 12. 
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CHAPTER 11  

MARGINAL IMPACTS AND DISCUSSION OF RESULTS FOR SHORT TERM 

ANALYSIS 

11.1 Introduction 

This chapter describes the interpretation of the models selected for analysis of the 

marginal impacts of incident characteristics on the response variables. Marginal impact 

measures the effect on the response variable with a change in one of the predictor 

variables. Elasticity is defined as the rate of change in a dependent variable with a percent 

change in a predictor variable. This chapter describes the derivation of the effect of the 

predictor variable on the original response variable, after the addition of the constant for 

the Gamma, Gaussian Single-log and Gaussian Log-log GLMs.  

11.2 Derivation of Elasticity for Gamma GLM 

The interpretation of the Gamma GLM with an inverse link function, as in the 

case of the statistical modeling in this study, is given below. The Gamma model requires 

the response variables to be positive. Hence the interpretation for the model with the 

addition of a constant A on the left-hand side is as shown in the following derivation. 

Elasticity of a variable Y with respect to predictor variable Xj is given as 

εj = 








Y

X

dX

dY j

j

 

Here the response variable is A + Y 

The Gamma model is of then general form 

1

22110 )....()(  pp XXXYA 
    

(11-1) 

Taking the A to RHS, 
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AXY jj  1

0 )(   

Differentiating, 

jjj

j

X
dX

dY
  2

0 )(   

                      =  jAY  2)(
 

Hence,
 

  εj     = 
Y

AY
X jj

2)( 
         (11-2) 

where: 

Y is the response variable  

A is the constant added to make the LHS positive 

Xj are the predictor variables 

11.3 Derivation of Elasticity for Gaussian Single-Log GLM 

The functional form for the Gaussian Single-log model in this study is given by 

the following equation: 

pp XXXYA   ....)ln( 22110       (11-3) 

Where A is the constant used to make LHS positive. Taking exponentiation on 

both sides, 

jj XeYA
 

 0

 

         AeY jj X 
0

 

Differentiating, 

jj X

j

j

e
dX

dY 



 0
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            )( YAj    

         εj = 
Y

X
YA

j

j  )(         (11-4) 

For a dummy variable that takes the value of 0 or 1, the derivation for rate of 

change of Y with unit change in Xj is as follows: 
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0
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e
Y

A

Y

Y 
       (11-5) 

11.4 Derivation of Elasticity for Gaussian Log-Log GLM 

The functional form for the Gaussian log-log model in this study is given by the 

following equation: 

)(....)ln()ln()ln( 22110 pp XXXYA  
    

(11-6) 

Where A is the constant used to make LHS positive. Taking the exponentiation on 

both sides, 

)ln(0 jj X
eYA

 
  

                    AeY jj X


 )ln(0 
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Differentiating, 

)ln(0 jj X

j

j

j

e
XdX

dY  
  

         )( YA
X j

j



 

εj      = 
Y

X
YA

X

j

j

j
 )(

  

        









Y

A
j 1         (11-7) 

For a dummy variable, the derivation is the same as the previous section 

(Equation 11-3) since the log (Xj) in the log-log model only applies to the continuous 

variables. 

11.5 Marginal Impacts for Short Term Impacts of Incidents  

This section presents the marginal analysis results for each of the variables in this 

category as recommended in Chapter 9. Each of the chosen models for travel time, fuel 

and vehicle emissions are used to explain the marginal impacts of the incident 

characteristics on the corresponding response variable. 

11.5.1 Additional Travel Time 

The best model selected for this variable is the Gaussian Log-log model given by 

equation 9-1. The corresponding relationship for elasticity is given by equation 11-7. 

Based on the equation, the values of elasticity for different values of incident duration are 

plotted. Figure 11-1 (a) and (b) show the values of elasticities for different values of 

incident duration, with shoulder, one and two lanes blocked. The plots show that the 

elasticities of additional travel time are lower at higher incident durations.  
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The percent change in additional travel time for different numbers of lanes 

blocked – shoulder, 1 and 2 lanes blocked are shown in Figure 11-2. From the figure, at a 

incident duration of 20 minutes, a 1 minute change in incident duration will produce 

1.5% change in the additional travel time for a shoulder incident, 2.1% change in the 

additional travel time for an incident with 1 lane blocked and 4.2% change in the 

additional travel time for an incident with 2 lanes blocked. 

The rate of change of additional travel time with unit change in the number of 

lanes blocked is shown in Figure 11-3. The ratio of the excess impacts for 1 lane blocked 

to the impacts for shoulder incident is given by the blue line. In the same way the rate of 

change of additional ravel time with increase in number of lanes blocked from zero to 2 

and 1 to 2 are also calculated and shown in Figure 11-3.   

Table 11-1 presents the marginal impacts of each of the incident characteristics at 

the average values of the predictor variables. While computing the marginal impacts of 

one variable, all the values of the other predictor variables are kept at the same average 

values. For example, for a shoulder incident, if the average incident duration of 29.35 

minutes is decreased by 1 minute (a 3.41% decrease), the corresponding decrease in 

additional travel time per impacted vehicle is 2.2% which amounts to 0.012 minutes. 

Similarly for lanes blocked, if one lane is blocked instead of zero lanes, it results in a 

97% increase in additional travel time corresponding to 0.57 minutes. Similarly, if two 

lanes are blocked it results in a 196% increase corresponding to 1.28 minutes. 
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(a) Shoulder, 1 lane, 2 lanes blocked 

 

 

(b) 1 lane and 2 lanes blocked (zoomed) 

Figure 11-1. Elasticity of Additional Travel Time as a function of Incident Duration 
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Figure 11-2. Percent Change in Additional Travel Time for unit change in Incident 

Duration 

 

Figure 11-3. Percent Change in Additional Travel Time for unit change in Number of 

Lanes Blocked 

 

Table 11-1. Marginal Impacts for Additional Travel Time 

Variable BETA X0 Y0 ΔX 
%

X

X

 

%
Y

Y

(regression) 

%
Y

Y

(elasticity) 

Notes 

Intercept -0.324 
       

NIDensity 0.2763 18.15 
 

- 
    

ClrT 0.1334 29.35 0.53 (1.00) -3.41% -2.21% -2.18% Reduction of 1 minute of ClrT 

LNSBLK1 0.2034 0 0.53 1.00 N/A 107.75% 97.17% 
Change from Shoulder incident 

to 1 lane blocked 

LNSBLK2 0.4096 0 0.53 1.00 N/A 241.83% 195.68% 
Change from Shoulder incident 

to 2 lanes blocked 

 

4.2%  

2.1%  

1.5%  
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11.5.2 Excess Vehicle Hours 

The best model selected for this variable is also of the Gaussian Log-log GLM 

model form given by equation 9-2. Using the elasticity relationship given in equation 11-

7, Figure 11-4 (a and b) show the plots for the elasticites of incident duration for the 

model for zero, one and two lanes blocked.  

 

 

(a) Shoulder, 1 lane and 2 lanes blocked 

 

(b) 1 lane and 2 lanes blocked 

Figure 11-4. Elasticity of Excess VHT as a function of Incident Duration 
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The percent change in excess vehicle-hours of travel for all impacted vehicles 

with unit change in incident duration for different numbers of lanes blocked is shown in 

Figure 11-5. Figure 11-6 shows the elasticity of excess VHT with respect to number of 

lanes blocked from shoulder to 1 lane, 1 lane to 2 lanes and shoulder to 2 lanes. When a 

an incident changes from having zero lanes blocked (shoulder) to having 2 lanes blocked, 

the impact is much higher (as can be expected) compared to the change of shoulder to 2 

lanes blocked. For an incident with 2 lanes blocked instead of 1 lane, the rate of change is 

not as much compared to the 2 lanes instead of shoulder (about 1.5 higher than from zero 

to 1 lane blocked).  

Table 11-2 shows the marginal impacts for the excess VHT with a change in the 

values of predictor variables for the average conditions. From Table 11-2, if an incident 

blocks one lane, it would lead to a 218.3% increase in excess VHT with an estimated 

increase of 95.75 veh-hours of excess VHT when compared to a shoulder incident. 

 

 

Figure 11-5. Percent Change in Excess VHT for unit change in Incident Duration 
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Figure 11-6. Percent Change in Excess VHT for unit change in Number of Lanes 

Blocked 

 

Table 11-2. Marginal Impacts for Excess Vehicle Hours 

Variable BETA X0 Y0 ΔX %
X

X  %
Y

Y

(regression) 

%
Y

Y

(elasticity) 

Notes 

(Intercept) 1.419 
       

NIDensity 0.667 18.15 
 

- 
    

ClrT 0.352 29.35 43.86 -1 -3.41% -2.59% -2.56% Reduction of 1 minute of ClrT 

LNSBLK1 0.703 0 43.86 1 N/A 218.30% 150.5% 
Change from Shoulder incident to 

1 lane blocked 

LNSBLK2 1.050 0 43.86 1 N/A 397.58% 224.7% 
Change from Shoulder incident to 

2 lanes blocked 

         

 

11.5.3 Excess Vehicle Hours per Hour 

The best model for excess VHT per hour of incident impact is of the Gaussian 

log-log GLM form as presented in equation 9-3. Using the elasticity relation presented in 

equation 11-7, Figures 11-7 (a) and (b) show the plots for the elasticites of incident 

duration, for different number of lanes blocked.  These are point elasticities and 

applicable only to small changes in incident duration. The elasticity for shoulder lane is 

higher when compared to 1 and 2 lanes blocked, respectively.  
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(a) Shoulder, 1 lane and 2 lanes blocked 

 

(b) 1 lane and 2 lanes blocked 

Figure 11-7. Elasticity for predictor variables in Excess VHT per hour of incident impact 

model 

 

The percent change in excess VHT per impact hour for with 1 minute change in 

incident duration is shown in Figure 11-8. At an incident duration of 20 minutes the 

percent change in excess VHT per hour of incident impact is 2.7%, 1.7% and 1.3% for 

incident with shoulder, 1 lane blocked and 2 lanes blocked respectively. 
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For different values of number of blocked lanes, Figure 11-9 shows the 

corresponding percent changes in excess VHT per hour of incident impact. The trend is 

the same as before with the increase of number of blocked lanes from zero to two having 

a higher percent change than from zero to 1 and 1 to 2.  

 

 

Figure 11-8. Percent Change in Excess VHT per hour of incident impact for unit change 

in Incident Duration 

 

 

Figure 11-9. Percent Change in Excess VHT per hour of incident impact for unit change 

in Number of Lanes Blocked 
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Table 11-3 shows the marginal impacts for the excess VHT per hour of incident 

impact for the base scenario being the average incident conditions. If the incident 

duration is reduced by 1 minute under the average incident duration (29.35 minutes), it 

results in a 1.55% decrease in excess VHT per hour of incident impact amounting to 1.2 

excess veh-hours/hr. 

 

Table 11-3. Marginal Impacts for Excess Vehicle Hours per Hour 

Variable BETA X0 Y0 ΔX 
%

X

X

 

%
Y

Y

(regression) 

%
Y

Y

(elasticity) 

Notes 

(Intercept) 4.538 
       

NIDensity 0.231 18.15 
 

- 
    

ClrT 0.110 29.35 
65.2

1 
-1 -3.41% -1.55% -1.53% Reduction of 1 minute of ClrT 

LNSBLK1 0.168 0 
65.2

1 
1 N/A 74.58% 68.48% 

Change from Shoulder incident to 

1 lane blocked 

LNSBLK2 0.309 0 
65.2

1 
1 N/A 147.07% 125.54% 

Change from Shoulder incident to 

2 lanes blocked 

         
 

11.5.4 Temporal Extent 

The Gaussian Single-log GLM model is the functional form (equation 9-4) 

selected for the temporal extent of incidents. Since this model does not use a constant, the 

rate of change of temporal extent with change in a variable is given just by its coefficient 

(βj). From equation 11-4, if A=0, elasticity is βjXj.  For incident duration, βClrT of 0.84% 

is the percent change in Y. Table 11-4 shows the marginal impacts in the values of 

temporal extent while only the variable under consideration is changed and the rest are 

held constant. If the average incident duration is reduced by 1 minute (from 29.35 

minutes), temporal extent reduces by 0.84% (0.5 minutes, for 1 lane-blocked incident).  
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Table 11-4. Marginal Impacts for Temporal Extent 

Variable BETA X0 Y0 ΔX %
X

X
 

%
Y

Y

(regressi

on) 

%
Y

Y

(elasticity) 
Notes 

(Intercept) 3.244 
       

NIDensity 0.021 18.15 
 

- 
    

NIVol 0.000 1,507.56 
 

- 
    

ClrT 0.008 29.35 39.42 -1 -3.41% -0.84% -0.84% Reduction of 1 minute of ClrT 

LNSBLK1 0.537 0 39.42 1 N/A 71.09% 53.70% 
Change from Shoulder 

incident to 1 lane blocked 

LNSBLK2 0.711 0 39.42 1 N/A 103.50% 71.05% 
Change from Shoulder 
incident to 2 lanes blocked 

 

11.4.5 Spatial Impact 

For the spatial impact model also, the Gaussian Single-log GLM model (equation 

9-5) is the functional form calibrated. From equation 11-4, if A=0, elasticity is βjXj. For 

incident duration, βClrT is 1.02%. Table 11-5 gives the marginal impacts under the 

average incident conditions. For example, for a shoulder incident, if incident duration is 

decreased by 1 minute the spatial extent of incidents will be 0.88 miles (instead of 0.89 

miles). 

 

Table 11-5. Marginal Impacts for Spatial Extent 

Variable BETA X0 Y0 ΔX 
𝚫𝐗

𝑿
% 

%
Y

Y

(regressi

on) 

%
Y

Y

(elasticity) 

Notes 

(Intercept) -0.862 
       

NIDensity 0.035 18.15 
 

- 
    

NIVol 0.000 1,508 
 

- 
    

ClrT 0.010 29.35 0.89 -1 -3.41% -1.01% -1.02% Reduction of 1 minute of ClrT 

LNSBLK1 0.729 0 0.89 1 N/A 107.22% 72.86% 
Change from Shoulder incident to 1 
lane blocked 

LNSBLK2 0.802 0 0.89 1 N/A 123.09% 80.24% 
Change from Shoulder incident to 2 

lanes blocked 
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11.4.6 Fuel Consumption 

The model with the best fit for excess fuel consumption during an incident is the 

Gaussian Single-log model in equation 9-6. Using the elasticity relation in equation 11-4, 

Figure 11-10 presents the elasticities for different average lane-minutes of blockage. The 

plot shows that for higher values of lane-minutes of blockage, the elasticity is higher. 

Figure 11-11 shows the percent change in excess fuel consumption with 1 lane-

minute change in lane-minutes of blockage. This also shows higher rate of excess fuel 

consumption for higher values of lane-minutes of blockage, which suggests that, by 

reducing high incident durations (therefore reducing, lane-minutes), more fuel savings are 

generated. The marginal impacts of the incident-related predictor variables (in this case, 

only lane-minutes of blockage) for the average incident conditions are presented in the 

following Table 11-6. If, from the average conditions, lane-minutes of blockage is 

decreased by 1 lane-minute, the corresponding decrease in excess fuel consumed is 

1.82% (0.88 gallons).  

 

 

Figure 11-10. Elasticity for Lane-Minutes of Blockage in Excess Fuel Consumption 
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Figure 11-11. Percent Change in Excess Fuel Consumption for unit change in Lane-

Minutes of Blockage 

 

Table 11-6. Marginal Impacts for Excess Fuel Consumption 

Variable BETA X0 Y0 ΔX %
X

X  %
Y

Y

(regression) 

%
Y

Y

(elasticity) 

Notes 

(Intercept) 3.36649 
       

BlkLnMin 0.010554 38.77 48.38 -1 -2.58% -1.81% -1.82% 
Reduction of 1 lane-minute of 

BlkLnMin 

NIDensity 0.036113 17.94 48.38 
     

         

 

11.5.7 Carbon dioxide (CO2) Emissions 

Excess CO2 emissions are scaled to metric tons for this analysis. The model 

recommended for CO2 is the Gaussian Single-log GLM model shown in equation 9-7. 

Using the elasticity formula from equation 11-4, Figure 11-12 presents the various values 

of elasticity for different lane-minutes of blockage. Presented in Figure 11-13 are the 

percent changes in CO2 emissions for 1 lane-minute change.  
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Figure 11-12. Elasticity for Lane-Minutes of Blockage in Excess CO2 Emissions 

 

 

Figure 11-13. Percent Change in Excess CO2 Emissions for unit change in Lane-Minutes 

of Blockage 

 

The percent change of CO2 emissions are higher for higher lane-minutes of 

blockage showing that CO2 emissions can be reduced at a bigger scale by reducing high 

incident durations. The marginal impacts are presented in Table 11-7. With the use of 
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mean incident characteristics, decreasing the lane-minutes of blockage by 1 lane-minute 

results in reduction of CO2 emissions by 1.86% (0.015 Tons).  

 

Table 11-7. Marginal Impacts for Excess CO2 Emissions 

Variable BETA X0 Y0 ΔX %
X

X  %
Y

Y

(regression) 

%
Y

Y

(elasticity) 

Notes 

(Intercept) 3.38 
       

NIDensity 0.00146 17.94 0.83 
     

BlkLnMin 0.00050 38.77 0.83 -1 -2.58% -1.86% -1.86% Reduction of 1 lane-minute of BlkLnMin 

         

 

11.4.8 Carbon monoxide (CO) Emissions 

Excess CO emissions also has the Gaussian Single-log model form (equation 9-8).  

Figure 11-14 presents the various values of elasticity for different values of lane-minutes 

of blockage. Figure 11-15 gives the percent change in excess CO emissions for changes 

in lane-minutes of blockage by 1 lane-minute. The trend is similar to CO2 emissions with 

higher percent changes in CO excess for high lane-minutes of blockage.  

 

 

Figure 11-14. Elasticity for Lane-Minutes of Blockage in Excess CO Emissions 
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Figure 11-15. Percent Change in Excess CO Emissions for unit change in Lane-Minutes 

of Blockage 

 

The marginal impact of lane-minutes of blockage is shown in Table 11-8. If lane-

minutes of blockage is decreased by 1 lane-minute from the average conditions, the 

corresponding decrease in excess CO emissions is 2.41% amounting to 43 grams. 

 

Table 11-8. Marginal Impacts for CO 

Variable BETA X0 Y0 ΔX %
X

X  %
Y

Y

(regression) 

%
Y

Y

(elasticity) 

Notes 

(Intercept) 0.511946 
       

NIDensity 0.039209 17.94 
      

BlkLnMin 0.009008 38.77 1.78 -1 -2.58% -2.41% -2.42% Reduction of 1 lane-minute of BlkLnMin 

         

 

11.5.9 Oxides of Nitrogen (NOx) Emissions 

Using the Gaussian Single-log model shown in equation 9-9 and the elasticity 

formula from equation 11-4, the values of elaticities are plotted. Figure 11-16 shows the 

elasticity of lane-minutes of blockage for the NOx model. Figure 11-17 shows the percent 

change in NOx emissions with 1 lane-minute changes in lane-minutes of blockage. 
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Figure 11-16. Elasticity for Lane-Minutes of Blockage in Excess NOx Emissions 

 

Figure 11-17. Percent Change in Excess NOx Emissions for unit change in Lane-Minutes 

of Blockage 

 

Table 11-9 shows the marginal impact of the incident-related predictor variable, 

lane-minutes of blockage. From Table 11-9, if lane-minutes of blockage is decreased by 1 

lane-minute, the corresponding decrease in excess NOx emissions is 2.47% (5.8 grams of 

reduction for the base scenario using average incident characteristics).  
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Table 11-9. Marginal Impacts for Excess NOx Emissions 

Variable BETA X0 Y0 ΔX %
X

X  %
Y

Y

(regression) 

%
Y

Y

(elasticity) 

Notes 

(Intercept) 5.03591 
       

NIDensity 0.038019 17.94 
 

- 
    

BlkLnMin 0.012057 38.77 
235.5

7 
-1 -2.58% -2.47% -2.49% 

Reduction of 1 lane-minute of 
BlkLnMin 

         

 

11.5.10 Particulate matter (PM10)  

The model for estimating excess PM10 emissions in grams is also the Gaussian 

Single-log GLM (equation 9-10). The elasticity plot (Figure 11-18), percent change plot 

(Figure 11-19) and the marginal impacts (Table 11-10) are presented subsequently.  

For lane-minutes of blockage, a unit decrease (2.58%) causes a 30.2% decrease in 

excess PM10 emissions (0.34 grams) as shown in Table 11-10, which presents the 

marginal impacts under average incident conditions. 

 

 

Figure 11-18. Elasticity for Lane-Minutes of Blockage in Excess PM10 Emissions 
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Figure 11-19. Percent Change in Excess PM10 Emissions for unit change in Lane-

Minutes of Blockage 

 

Table 11-10. Marginal Impacts for PM10 

Variable BETA X0 Y0 ΔX %
X

X  %
Y

Y

(regression) 

%
Y

Y

(elasticity) 

Notes 

(Intercept) 3.399096 
       

Weekday 0.293358 - 11.19 - 
    

BlkLnMin 0.008231 38.77 11.19 -1 -2.58% -3.02% -3.03% 
Reduction of 1 lane-minute 

of BlkLnMin 

         

 

11.6 Use of the Calibrated Models 

The impacts of an average incident with one lane blocked are given in Table 11-

11. Also tabulated are the corresponding marginal impacts when the incident duration is 

altered by one minute. Table 11-12 provides a comparison of average impacts with those 

reported by other studies. Incident impacts reviewed from different studies for VHT, Fuel 

and the different emissions are tabulated. For emissions, the rate per mile comparison is 

shown. To be noted is that the assumptions and characteristics for each study are different.  
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Table 11-11. Impacts for a 1-lane incident - Average and Marginal (for 1 minute change 

in incident duration) 

Impact 
Average 

Impacts 

Marginal 

Impacts 
Units 

Additional Travel Time 1.10 0.01 Minutes 

Excess Vehicle Hours 139.61 2.30 Vehicle-Hours 

Excess Vehicle Hours per Hour of 

Incident Impact 
113.84 1.20 

Vehicle-

Hours/Hour 

Temporal Extent 67.44 0.57 Minutes 

Spatial Extent 1.85 0.02 Miles 

Excess Fuel Consumption 48.38 0.88 Gallons 

Excess CO2 Emissions 832.02 15.47 Kilograms 

Excess CO Emissions 1.78 0.04 Kilograms 

Excess NOx Emissions 235.57 5.82 Grams 

Excess PM10 Emissions 25.23 0.34 Grams 

 

Table 11-12. Comparison of Average Incident Impacts 

 

 

The calibrated models can be of use to transportation agencies during project 

evaluation for incident management strategies.  For example, if a proposed incident 
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management strategy is expected to result in 5-minute reduction of incident duration, the 

savings from marginal impacts of the calibrated models are presented in Table 11-13. 

 

Table 11-13. Savings in Marginal Impacts for Sample Proposed Incident Management 

Project with 5 min reduction in incident duration 

Impact Savings Unit 

Additional Travel Time 0.07 Minutes 

Excess Vehicle Hours 11.49 Vehicle-Hours 

Excess Vehicle Hours per Hour of Incident Impact 5.98 Vehicle-Hours/Hour 

Temporal Extent 2.83 Minutes 

Spatial Extent 0.09 Miles 

Excess Fuel Consumption 4.38 Gallons 

Excess CO2 Emissions 77.34 Kilograms 

Excess CO Emissions 0.21 Kilograms 

Excess NOx Emissions 29.10 Grams 

Excess PM10 Emissions 1.69 Grams 

 

 For savings in terms of monetary purposes, a value of $16.79 for every hour of 

excess VHT is used from the Texas Transportation Institute‟s Urban Mobility Report 

(Shrank, Lomax & Eisele, 2012). Therefore, from Table 11-12, the proposed reduction of 

incident duration by 5 minutes from the average results in an estimated 11.49 vehicle-

hours of delay or $192.86 in VHT savings for one incident.  

 Similarly, if a fuel pricing of $3.24 per gallon (American Automobile Association, 

2011) is used, the proposed project will result in 4.38 gallons or $14.18 in fuel savings 

per incident. 

11.7 Summary 

This chapter presents the analysis of the marginal impacts for the calibrated for 

short term impacts. These marginal impacts are presented in a form that can be used by 

agencies to see the effect of an incident management strategy that reduces the incident 

duration by a certain number of minutes. 



 

194 
 

CHAPTER 12  

MARGINAL IMPACTS AND DISCUSSION OF RESULTS FOR LONG TERM 

ANALYSIS 

12.1 Introduction 

In this chapter, the marginal impacts for the TTR measures are presented. The 

models are: 95
th

 percentile travel time, buffer time and buffer index for mixed data alone 

and difference in 95
th

 percentile travel times, difference in buffer times, difference in 

buffer indices. It is to be noted that these TTR measures quantify variability in travel 

times. Therefore, a decrease in the TTR measures used in this study indicates improved 

travel time reliability. 

12.2 Marginal Impacts for Long Term Impacts of Incidents 

12.2.1 The 95
th

 Percentile Travel Time for Mixed Data 

The Gaussian Single-log model is found to be the best fit for the 95
th

 percentile 

travel time for mixed data given in equation 10-1. For Gaussian Single-log model with no 

constant in equation 11-4, a percent change in Xj causes Xj * j  % change in Y. Using 

this for 95
th

 percentile travel time (mixed), the elasticity measurements under average 

incident conditions are  

i. decreasing average lane-minutes of blockage by 1 minute will cause a 

0.9% decrease; 

ii. decreased the rate of incidents in the previous hour by 1% will cause a 

0.882% decrease 

The marginal impacts of the predictor variables are shown in Table 12-1. Under 

average incident conditions, if the average lane-minutes of blockage is decreased by 1 
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lane-minute, one would need to plan for 0.9% of 10 minutes, which translates to a 

savings of 0.9 minutes of planned travel time.  

 

Table 12-1. Marginal Impacts for 95
th

 percentile TT - Mixed 

Variable BETA X0 Y0 ΔX %
X

X  
%

Y

Y

(regres

sion) 

%
Y

Y

(formula) 

Notes 

(Intercept) 2.045 
       

AvgLnMin 0.009 12.06 9.67 -1 -8.29% -0.90% -0.91% 
Reduction of 1 lane-minute of 

AvgLnMin 

IncRatePrvHr 0.009 13.03 9.67 -1 -7.67% -0.88% -0.88% 
Reduction of 1% of incident rate in 

previous hour 

 

12.2.2 Difference in 95
th

 percentile Travel Time 

The Gamma GLM model provides the best fit for the difference in 95
th

 percentile 

travel time response variable given in equation 10-2. For the Gamma GLM, using the 

elasticity formula in equation 11-2, elasticities are plotted for different values of X. 

Figures 12-1 (a) and (b) give the elasticity plots for average lane-minutes of blockage and 

rate of incidents in the previous hour (probability). For lane-minutes of 10 minutes and 

over, the elasticity (percent change in Y with small percent change in X) increases with 

increase in X. 

The percent changes in the difference of 95
th

 percentile travel time with unit 

increase in average lane-minutes of blockage and rate of incidents in the previous hour 

(probability) are shown in Figure 12-2 (a) and (b). For very high incident durations, the 

rate of savings in difference of 95
th

 percentile is not as high as that for lower incident 

durations. The marginal impact of the predictor variables are shown in the following table 

(Table 12-2). If the average lane-minutes of blockage is decreased by 1 minute from the 

average conditions overall, the 95
th

 percentile TT (difference) is decreased by 7.75% 

(0.025 minutes). Therefore if there was an incident, one needs plan 0.025 minutes lesser 
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than what he/she would have ordinarily, due to the reduction in the overall average lane-

minutes of blockage for the incident.  Contrarily, if the overall percentage of incidents in 

the segment is reduced by 1, the driver needs to plan 0.04 (11.8%) minutes lesser during 

an incident. 

 

 

(a) Average Lane-minutes of Blockage 

 

(b) Probability of Incidents in Previous Hour 

Figure 12-1. Elasticities of Incident Characteristics for Difference in 95
th

 Percentile 

Travel Time 
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(a) Average Lane-minutes of Blockage 

 

(b) Probability of Incidents in Previous Hour 

Figure 12-2.  Percent Change in Difference in 95
th

 percentile Travel Time with unit 

change in Incident Characteristics  

 

 

Table 12-2. Marginal Impacts for 95
th

 percentile TT - Difference 

Variable BETA X0 Y0 ΔX 

%
X

X  %
Y

Y

(regression) 

%
Y

Y

(formula) Notes 

(Intercept) 2.581206               

AvgLnMin -0.00471 12.06 0.32 
        

(1.00) -8.29% -7.75% -7.84% 
Reduction of 1 lane-minute 
of AvgLnMin 

IncRatePrvHr -0.00723 13.03 0.32 

        

(1.00) -7.67% -11.83% -12.03% 

Reduction of 1% of 

incident rate 

NISpeed -0.02519 58.91 0.32  -        

 

  

NIVolume -0.00039 1,318 0.32  -            
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12.2.3 Buffer Time for Mixed Data 

Similar to the 95
th

 percentile travel time for mixed data, the Gaussian Single-log 

model is the best fit for the Buffer Time reliability measure for mixed data (equation 10-

3). The elasticity measurements using elasticity from equation 11-4 (with A = 0) are:  

i. decreasing average lane-minutes of blockage by 1 minute will cause a 

3.58% decrease in mixed buffer time 

ii. decreased the rate of incidents in the previous hour by 1% will cause a 

2.61% decrease in mixed buffer time 

The marginal impacts of the predictor variables are shown in the following table 

(Table 12-3). So, if the rate of incidents in the previous hour is decreased by 1% overall 

(probability of incidents is reduced by 0.01), the mixed buffer time is decreased by 2.57% 

(0.003 minutes, with the base scenario being average incident and traffic characteristics).  

 

Table 12-3. Marginal Impacts for Buffer Time - Mixed 

Variable BETA X0 Y0 ΔX %
X

X  
%

Y

Y

(regres

sion) 

%
Y

Y

(formula) 

Notes 

(Intercept) -3.00209 
       

AvgLnMin 0.03583 12.06 0.11 -1 -8.29% -3.52% -3.58% 
Reduction of 1 lane-minute of 

AvgLnMin 

IncRatePrvHr 0.02607 13.03 0.11 -1 -7.67% -2.57% -2.61% 
Reduction of 1% of incident rate in 

previous hour 

         
 

12.2.4 Difference in Buffer Time 

The Gamma GLM model is selected for the difference in Buffer time TTR 

measure (equation 10-4). Figures 12-3 (a) and (b) give the elasticity plots for average 

lane-minutes of blockage and the incident rate in previous hour with a range of X values 

using equation 11-2. Once again, the elasticity values increase for higher values of the 
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incident characteristics. The percent changes of difference in buffer time for unit changes 

in the incident characteristics are plotted in Figures 12-4 (a) and (b). The percent changes 

in buffer time (difference) decrease with increase in lane-minutes of blockage and rate 

(probability) of incidents. 

 

 

(a) Average Lane-minutes of Blockage 

 

(b) Probability of Incidents in Previous Hour 

Figure 12-3.  Elasticities of Incident Characteristics for Difference in Buffer Time 
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(a) Average Lane-minutes of Blockage 

 

(b) Probability of Incidents in Previous Hour 

Figure 12-4. Percent Change in Difference in Buffer Time with unit change in Incident 

Characteristics 

 

The marginal impact of the predictor variables are shown in the Table 12-4. If the 

rate of incidents in the previous hour is reduced by 1% from the average conditions (the 

probability is reduced by 0.01), the Buffer Time (difference) is decreased by 12.3 % 

(0.021 minutes).  
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Table 12-4. Marginal Impacts for Buffer Time - Difference 

Variable BETA X0 Y0 
Δ

X 
%

X

X  %
Y

Y

(regression) 

%
Y

Y

(formula) Notes 

(Intercept) 2.3436 
       

AvgLnMin -0.00421 12.06 0.26 -1 -8.29% -8.18% -8.26% 
Reduction of 1 lane-minute of 

AvgLnMin 

IncRatePrvHr -0.0064 13.03 0.26 -1 -7.67% -12.37% -12.55% Reduction of 1% of incident rate 

NISpeed -0.02245 58.91 0.26 - 
    

NIVolume -0.00034 1,318 0.26 - 
    

 

12.2.5 Buffer Index for Mixed Data 

The Buffer Index for mixed data is also of the Gaussian Single-log GLM form 

(equation 10-5). The elasticity measurements using equation 11-4 for Gaussian Single-

log (with A=0) are:  

i. decreasing average lane-minutes of blockage by 1 minute will cause a 

4.09% decrease; 

ii. decreased the rate of incidents in the previous hour by 1% will cause a 

3.1% decrease 

Table 12-5 shows the marginal impacts for average incident conditions. From 

Table 12-5, if average lane-minutes of blockage is decreased by 1 minute, the buffer 

index (mixed) is decreased by 0.04 (with the base scenario being average incident and 

traffic characteristics).  

 

Table 12-5. Marginal Impacts for Buffer Index - Mixed 

Variable BETA X0 Y0 ΔX %
X

X  
%

Y

Y

(regres

sion) 

%
Y

Y

(formula) 

Notes 

(Intercept) -0.99912 
       

AvgLnMin 0.04093 12.06 0.90 -1 -8.29% -4.01% -4.09% 
Reduction of 1 lane-minute of 

AvgLnMin 

IncRatePrvHr 0.03099 13.03 0.90 -1 -7.67% -3.05% -3.10% 
Reduction of 1% of incident rate in 
previous hour 
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12.2.6 Difference in Buffer Index 

For the difference in Buffer Index, the Gamma GLM provides the best fit 

(equation 10-6). Figure 12-5 (a) and (b) give the elasticity plots for average lane-minutes 

of blockage and incident probability in previous hour and Figures 12-6 (a) and (b) give 

the percent changes in the buffer index (difference) with unit changes in the X values. 

 

 

(a) Average Lane-minutes of Blockage 

 

(b) Probability of Incidents in Previous Hour 

Figure 12-5. Elasticities of Incident Characteristics for Difference in Buffer Index 



 

203 
 

 

(a) Average Lane-minutes of Blockage 

 

(b) Probability of Incidents in Previous Hour 

Figure 12-6. Percent Change in Difference in Buffer Index with unit change in Incident 

Characteristics 

 

The marginal impact of the predictor variables are shown in Table 12-6. A 1 lane-

minute reduction in the average lane-minutes of blockage results in 8.5% reduction in the 

difference of buffer index between mixed and non-incident data (8.5% of buffer index 

difference of 0.034, resulting in 0.003 or 0.3%).  
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Table 12-6. Marginal Impacts for Buffer Index - Difference 

Variable BETA X0 Y0 ΔX 

%
X

X  %
Y

Y

(regression) 

%
Y

Y

(formula) Notes 

(Intercept) 0.7428               

AvgLnMin -0.0007 12.06 0.03 
-1 

-8.29% -8.48% -8.49% 

Reduction of 1 lane-minute of 

AvgLnMin 

IncRatePrvHr -0.0008 13.03 0.03 -1 -7.67% -9.19% -9.21% Reduction of 1% of incident rate 

NISpeed -0.0030 58.91 0.03           

NIVolume -0.00004 1,318 0.03           

                  

 

12.3 Use of the Calibrated Models 

Using the same hypothetical project mentioned in Section 11.6, the savings in 

terms of travel time reliability are summarized in Table 12-7.  

 

Table 12-7. Savings in Long Term Marginal Impacts for Sample Proposed Incident 

Management Project 

Impact Savings Unit 

95
th

 Percentile TT (Mixed) 0.44 Minutes 

95
th

 Percentile TT (Difference) 0.13 Minutes 

Buffer Time (Mixed) 0.02 Minutes 

Buffer Time (Difference) 0.11 Minutes 

Buffer Index (Mixed) 0.18 - 

Buffer Index (Difference) 0.01 - 

 

 Using a monetary value of travel time reliability of $23.5 per hour (Lam & Small, 

2001), the project will result in a travel time reliability savings of 0.44 minutes or $2.05 

per driver in 95
th

 percentile travel time. In other words, if the proposed project is 

implemented, each road user needs to plan 0.44 minutes lesser than before, saving $2.05 

per driver. 
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12.4 Summary 

This chapter presented the marginal impact analysis for the travel time reliability 

measures for the long term impacts of incidents. Models of this form can also be used to 

quantify the benefits of reducing the incident characteristics. These are long term benefits, 

which are accumulated over time unlike the short term impacts. Therefore the results in 

the form of benefits to uses while planning a trip, if the incident characteristics are 

improved overall. 
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CHAPTER 13  

CONCLUSIONS AND RECOMMENDATIONS 

13.1 Conclusions 

In this study, statistical models for the impact of freeway incidents on vehicle 

travel time, emissions and fuel consumption are calibrated. Two types of incident impacts 

are modeled: short term, and long term. The first objective of the study is to model the 

short term impacts that occur immediately during and after an incident. The short term 

impacts are quantified by excess travel time measures, fuel consumption and vehicle 

emissions produced due to the incident. Included in the short-term impacts are the 

rubbernecking impacts of the incident. The second objective is to calibrate models to 

relate the long term impacts of incidents to incident and traffic characteristics. Long-term 

impacts are accumulated over time due to incidents. They affect the travel time reliability 

and hence the user‟s perceived travel time. In this study, the different measures of travel 

time reliability are modeled as long term impacts.  

The I-15 freeway from St. Rose Parkway to Speedway Boulevard in Metropolitan 

Las Vegas, Nevada, is selected for the study. Archived field data from RTC‟s Dashboard 

is used to calibrate the statistical models. The incident database for I-15 for a twelve-

month period between March 2011 and March 2012 is used for analysis.  

13.1.2 Short-term Impacts 

For short-term impact analysis, models are calibrated for (i) excess travel time per 

vehicle (ii) total vehicle-hours of travel (iii) excess fuel consumption and (iv) excess 

vehicle emissions (CO2, CO, NOx and PM10) for all vehicles over the spatial and temporal 

extent of incidents. The predictor variables used are incident duration, number of lanes 
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blocked, lane-minutes of blockage, location of blocked lanes, ratio of lanes blocked, 

peak/off-peak period, day-of-week (weekday versus weekend), traffic volume, speed and 

density for non-incident conditions over the corresponding spatial and temporal extents 

of incidents. 

The statistical model results indicate, as expected, that the most significant 

predictor variables are the incident duration, number of lanes blocked and the non-

incident traffic density. In certain models, the incident duration and lanes blocked were 

replaced by the product of the two, namely, the lane-minutes of blockage. The resulting 

functional forms are the Gaussian Single-Log and Log-Log GLMs. Using the marginal 

impact analysis, these models can be used for benefit-cost analyses or effectiveness of 

incident management projects. For example, decreasing the incident duration by one 

minute results in a 1.7% reduction in additional travel time per vehicle, 2.59% decrease 

in total vehicle-hours of travel. In terms of fuel and emissions, the same 1 minute 

reduction in incident duration results in a 2.58% reduction in excess fuel consumption, 

1.86% in excess CO2, 2.41% in excess CO, 2.47% in excess NOx, and 3.02% in excess 

PM10 emissions.  

In terms of absolute values, decreasing the incident duration by 1 minute for an 

average incident with 1 lane blocked, results in a decrease of 2.3 vehicle-hours of travel. 

The models calibrated in the study can be used to estimate incident impacts on travel time, 

fuel consumption, and vehicle emissions and travel time reliability for any freeway 

region. For example, if a certain proposed incident management strategy such as a new 

highway patrol program is considered to be implemented, then the reduction of incident 

duration due to the proposed program can be used in the calibrated statistical models to 
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estimate the corresponding savings in quantities of travel time, fuel consumption and 

emissions. These estimates can be used to perform benefit-cost analyses of proposed 

incident management strategies and justify potential project implementation. 

13.1.2 Long-term Impacts 

For this analysis, models are calibrated for the travel time reliability measures, 

namely, excess and actual 95
th

 percentile travel time, buffer time and buffer index. The 

predictor variables used are average number of incidents per hour and average number of 

lanes and minutes of blockage for the subject hour, previous hour and previous 2
nd

 hour, 

average speed, volume, density and the location of incidents on the study segment. The 

resulting functional forms are the Gamma and Gaussian-Log GLM. 

Typically, the most significant characteristics of incidents affecting all the 

measures of travel time reliability for a subject hour are the average lane-minutes of 

blockage, rate of incidents in the previous hour and the traffic volume and speed under 

non incident conditions. The marginal impact of reducing the average lane-minutes of 

blockage for incidents by 1 lane-minute, causes a reduction of 0.9% in 95
th

 percentile 

travel time (mixed), 3.52% in Buffer Time (mixed), 4.09% in Buffer Index (mixed), 

0.58% in difference of 95
th

 percentile travel time between mixed and non-incident, 0.5% 

in Buffer Time and 3.02% in Buffer Index difference between mixed and non-incident 

scenarios. 

For additional 95
th

 percent travel time, 0.09 minutes in the savings when incident 

duration is reduced by 1 minute on an average. So, the benefit of improving average 

incident duration by 1 minute is that each driver on the segment can save 0.09 minutes of 

planned trip time. With respect to the long-term impacts the savings is users‟ planned 
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travel time (due to reduced 95
th

 travel time) can also be used to quantify economic 

benefits of proposed projects and their economic and/or financial feasibility. 

13.2 Contributions of this Research 

For the analysis of short-term impacts of incidents, the contribution of this 

research is the development of marginal impacts of incidents and its implications. The 

marginal impacts and the models are derived using archived real-world data for the Las 

Vegas. The models and their usefulness are demonstrated. For long-term impacts of 

incidents, this study presents models to relate travel time reliability measures to incident 

and characteristics unlike previous studies. The contributions of this study are the 

statistical models themselves, since calibration of models directly relating travel time 

reliability measures and incident characteristics have not been attempted before, to the 

best of our knowledge. Also, the marginal impacts for travel time reliability are computed. 

These can be used as an additional benefit of implementing incident management 

strategies.  

13.3 Recommendation for Future Research 

Some of the limitations of the current study and suggestions for future work in 

this topic are discussed in this section.  

The first recommendation for future research related to this study is in the data 

collection effort. This study uses data collected every 15 minutes. Using a shorter data 

collection interval can improve the accuracy of the calibrated models. 

Second, among the challenges encountered in the course of collecting and 

processing data for this study, the biggest issue is related to the accuracy of the incident 

durations or duration of blockage especially with respect to multiple lane blockages. In 
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these cases, this study has assumed that the start and end of blockage occur at the same 

time for all the blocked lanes. We know this is not always the case, as occasionally, the 

lanes may be cleared at different times. This lack of detail results in some overestimation 

of the blockage. However, the researchers are aware that, since the beginning of 2013, 

FAST has started keeping snapshot images of the incident scenes for most incidents. 

These images have the potential to provide more detail information related to the 

sequence and timing of lane blockages and incident durations during incidents. More 

accurate models can be calibrated using this more detailed data. 

The third recommendation is the need for more detailed work-zone database to 

ensure that their influence is not included in the analysis. In this study, the researchers are 

forced to exclude all night-time analysis as work-zone activities are typically scheduled 

after 9 PM, and due to unavailability of accurate work-zone data that would have helped 

in isolating impacts due to work-zones. 

Fourth, since secondary incidents occur as a result of primary incidents, this study 

adds the impact of a secondary incident to the primary incident. But the characteristics of 

the secondary incident itself are not included in the model. Future studies can address this 

issue by including the characteristics of the secondary incident in the analysis.  

Finally, for rubbernecking direction, the inclusion of parameters like median type, 

geometric location, incident location, and weather and pavement conditions is 

recommended, since they are not addressed in this study. 
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