
UNLV Theses, Dissertations, Professional Papers, and Capstones

5-1-2014

An Energy-Efficient, Time-Constrained Scheduling Scheme in local An Energy-Efficient, Time-Constrained Scheduling Scheme in local

mobile cloud mobile cloud

Ting Shi
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Repository Citation Repository Citation
Shi, Ting, "An Energy-Efficient, Time-Constrained Scheduling Scheme in local mobile cloud" (2014). UNLV
Theses, Dissertations, Professional Papers, and Capstones. 2141.
http://dx.doi.org/10.34917/5836160

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/5836160
mailto:digitalscholarship@unlv.edu

AN ENERGY-EFFICIENT, TIME-CONSTRAINED SCHEDULING

SCHEME IN LOCAL MOBILE CLOUD

by

Ting Shi

Bachelor of Engineering in Electrical Engineering

Tianjin University

2008

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Engineering – Electrical Engineering

Department of Electrical and Computer Engineering

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

January 2014

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Ting Shi

entitled

An Energy-Efficient, Time-Constrained Scheduling Scheme in Local
Mobile Cloud

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

Mei Yang, Ph.D., Committee Chair

Yingtao Jiang,Ph.D.,Committee Member

EbrahimSaberinia, Ph.D., Committee Member

Hui Zhao, Ph.D., Graduate College Representative

Kathryn HausbeckKorgan, Ph.D., Interim Dean of the Graduate College

May 2014

iii

ABSTRACT

 Mobile devices have limited resource, such as computation performance and

battery life. Mobile cloud computing is gaining popularity as a solution to overcome

these resource limitations by sending heavy computation to resourceful servers and

receiving the results from these servers. Local mobile clouds comprised of nearby mobile

devices are proposed as a better solution to support real-time applications. Since network

bandwidth and computational resource is shared among all the mobile devices, a

scheduling scheme is needed to ensure that multiple mobile devices can efficiently

offload tasks to local mobile clouds, satisfying the tasks’ time constraint while keeping

low-energy consumption. Two critical challenges need to be solved: (1) estimation of the

energy consumption and completion time for tasks to be scheduled, (2) schedule the tasks

from multiple source nodes to an appropriate device to accomplish the computation and

receive the results.

In this thesis, the adaptive probabilistic task scheduler for local mobile clouds is

proposed. The scheduler relies on periodic network messages to discover neighboring

computation and network resources. It first estimates the completion time and energy

consumption at each potential processing node. Next, it schedules the current task to the

proper processing node in a probabilistic way and adaptively adjusts its time margin to

improve performance under the unpredictable network condition. Comparing with other

existing scheduling schemes, the experimental results confirm that the proposed

scheduler achieves highest task completion rate and the lowest average energy per

successful task. In addition, the proposed scheduler is able to accommodate different

types of tasks and network scenarios.

iv

TABLE OF CONTENTS

ABSTRACT .. iii

TABLE OF CONTENTS .. iv

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

CHAPTER 1 INTRODUCTION ... 1

A. Overview of mobile cloud computing ... 2

B. Motivation .. 3

C. Introduction to this thesis ... 5

CHAPTER 2 LITERATURE REVIEW .. 7

A. Mobile cloud architectures .. 7

B. Task-scheduling in mobile cloud system .. 9

C. Context awareness in mobile cloud ... 14

CHAPTER 3 PROBLEM STATEMENT .. 16

A. Notations and assumptions .. 16

B. Network and task models ... 17

C. Problem statement ... 18

D. Motivation example in local mobile clouds ... 20

CHAPTER 4 THE PROPOSED ADAPTIVE PROBABILISTIC TASK SCHEDULER 23

A. Phase I: Resource discovery phase .. 23

v

B. Phase II: Adaptive probabilistic scheduling phase .. 27

C. An illustrative example .. 30

CHAPTER 5 NUMERICAL RESULT .. 33

A. Simulation setup ... 33

B. Effect of varying Topology Control message interval.. 35

C. Different size of network .. 40

D. The impact of node mobility ... 42

E. The impact of different task type .. 44

F. Summary .. 48

CHAPTER 6 CONCLUSION AND FUTURE WORK... 50

A. Conclusion ... 50

B. Future work .. 50

REFERENCE ... 52

CV .. 56

vi

LIST OF TABLES

Table 1, Notations ... 16

Table 2, Parameter settings of the illustrative example .. 31

Table 3, Parameter settings in simulation ... 34

Table 4, Three different workload scenarios .. 45

Table 5, Three different data size scenarios .. 47

vii

LIST OF FIGURES

Figure 1, Mobile cloud computing architecture .. 1

Figure 2, Local mobile cloud architecture .. 4

Figure 3, Sample local mobile cloud .. 20

Figure 4, Resource discovery algorithm ... 27

Figure 5, Adaptively probabilistic scheduling algorithm ... 29

Figure 6, Sample local mobile cloud .. 30

Figure 7, Results of the illustrative example .. 32

Figure 8, Average overhead traffic ... 36

Figure 9, Task completion rate vs. TC message interval .. 38

Figure 10, Average waiting time per task vs. TC message interval 39

Figure 11, Average energy per successful task vs. TC message interval 40

Figure 12, Task completion rate in small and large network .. 41

Figure 13, Average energy per successful task in small and large network 42

Figure 14, Task completion rate in stationary and mobile network 43

Figure 15, Average energy per successful task in stationary and mobile network 44

Figure 16, Task completion rate in different workload scenarios 45

Figure 17, Average energy per successful task in different workload scenarios 46

Figure 18, Task completion rate vs. different data size .. 47

Figure 19, Average energy per successful task vs. different data size 48

1

CHAPTER 1 INTRODUCTION

Mobile devices have become a crucial part of our daily life nowadays. More than

1.99 billion mobile phones and tablets will be sold worldwide in 2013, according to

Gartner’s analysts [1]. As the capabilities of mobile devices advance (in terms of CPU

power, network connectivity and sensors), people increasingly use them for the tasks

such as emailing, web surfing, gaming etc. Although there have been many advances in

technology, mobile devices will still be resource poor, as restrictions on weight, size,

battery life, and heat dissipation impose limitations on computational resources and make

mobile devices more resource constrained than their non-mobile counterparts. One

solution to overcome these resource limitations is mobile cloud computing, which allows

the mobile device to offload the tasks to more powerful resource devices (i.e., servers), as

shown in Figure 1.

Figure 1, Mobile cloud computing architecture

2

A. Overview of mobile cloud computing

Offloading aims at augmenting the mobile device’s capabilities by using resource

providers other than the mobile device itself to host the execution of mobile applications.

Since offloading migrates computation to more resourceful computers, it involves

making decisions regarding whether and what computation to offload. Therefore, the key

challenge is to carry out a cost-benefit analysis to weigh the benefits of offloading against

the cost of remote execution with user specific requirement. The decisions are usually

made by analyzing parameters including bandwidths, server speeds, available memory,

server loads and the amount of data exchanged between servers and mobile systems.

To implement the offloading scheme, two components are used in the mobile

device as introduced in [2]. One is profiler, the other one is scheduler. The profiler

measures the device characteristics at initialization time, and it continuously monitors the

device and network characteristics which can often change. A stale measurement may

cause a wrong offloading decision. The scheduler uses the data collected by the profiler

as input to a task scheduling problem to determine whether to offload the current task and

which resource provider to choose.

Offloading becomes an attractive solution for meeting stringent response time

requirement in mobile systems as applications become increasingly complex. For

example, in real-time moving object recognition and tracking system [3], a robot needs to

recognize an object then adjust its speed and direction to track the object’s movement. If

the robot’s processor is too slow, the recognition computation might not be able to be

completed before the object moves out of the surveillance range. Much research has been

done in mobile cloud to enable the mobile devices to run real-time applications such as

3

object recognition [4], augmented reality [5], disaster forecast [6], and real-time video

coding [7].

Energy consumption is another factor which needs to be taken into consideration

when designing mobile cloud systems. Even though battery technology has been steadily

improving, it has not been able to keep up with the rapid growth of power consumption

of these mobile systems. Energy is still a primary constraint for mobile systems.

Therefore, offloading is also used to save energy by migrating the computation tasks with

high energy consumption to servers. Many scheduling algorithms have been proposed to

make offloading decisions to improve performance or save energy [8] [9].

B. Motivation

One type of mobile cloud architecture is to connect the mobile device to the

remote server, which is typically far away from the mobile user. A drawback of this

architecture is that the high Wide Area Network (WAN) latency makes it unsuitable for

real-time applications. Another type of mobile cloud architecture is to consider other

mobile devices themselves also as resource providers of the cloud, forming a mobile

peer-to-peer network. This network is built based on the Mobile Ad Hoc Network

(MANET). An MANET does not rely on pre existing infrastructure, such as routers in

wired network. Instead, each mobile node participates in routing by forwarding data for

other nodes. To reduce the latency in offloading process in MANETs, it is preferred to

offload tasks to nearby devices. Therefore the second type of mobile cloud architecture

will be more suitable to support real-time applications, which demand faster

responsiveness.

4

In this thesis, we refer to the second type of mobile cloud architecture as the ‘local

mobile cloud’ as shown in Figure 2. Task scheduling schemes have been investigated in

[5][6][10] to make offloading more beneficial in local mobile cloud. But existing

scheduling schemes have several crucial constraints and limitations, including: (a)

serving only one source node, instead of the entire network [5][11]; and (b) assuming that

the detailed processing information of each participating mobile node, such as the status

of local task queue and real-time resource utilization, is known to all the other nodes [12].

Furthermore, such a scheduler is also supposed to work in a decentralized manner and be

able to dynamically adapt to the changes in the network through time.

Figure 2, Local mobile cloud architecture

The focus of this thesis is to propose a distributed task scheduling scheme which

allows the source nodes to offload tasks to nearby devices in a local mobile cloud,

satisfying the tasks’ time constraint while keeping low-energy consumption for real-time

applications with soft time constraint. To develop such a scheduling scheme, two critical

Source node

Processing node

5

challenges need to be solved: (1) estimation of the energy consumption and completion

time for tasks to be scheduled according to the current network condition, (2) schedule

and assign the tasks from multiple users to appropriate devices to accomplish the

computation.

C. Introduction to this thesis

In this thesis, the task scheduling problem under time constraint is investigated. A

QoS OLSR-based scheme is used to disseminate the workload, computation ability and

energy status of each potential target node periodically so that context change is updated

on time. An adaptive probabilistic task scheduler is proposed, which is a promising

approach for real-time applications due to its scalability and flexibility in local mobile

cloud. The scheduler relies on periodic network messages to discover neighboring

computation and network resources and keep track of topological changes as well as

resource updates in the network. It first estimates the completion time and energy

consumption at each potential processing node. Next, it schedules the current task to the

proper processing node in a probabilistic way and adaptively adjusts its time margin to

improve performance under the unpredictable network condition. A simulation model of

local mobile clouds has been implemented on OMNET++ [13] to comprehensively

evaluate the performance of the proposed scheduler and analyze the overhead cost and

the improvement gained.

This thesis is organized as follows. Chapter 2 summarizes the related work done

for mobile clouds and also lists challenges to provide cloud services in MANET.

6

Chapter 3 first introduces the network model and task model. Then the task

scheduling problem in local mobile clouds is formulized. A motivating example is given

to explain the need for the efficient scheduler in local mobile clouds.

In Chapter 4, the adaptive probabilistic scheduling scheme in local mobile clouds

is proposed. It has two parts, 1) the resource discovery scheme, and 2) the adaptive

probabilistic scheduling algorithm. Two parts are described separately. An illustrative

example is given to demonstrate the difference between the proposed scheme and other

scheduling algorithms.

In Chapter 5, the simulation environment and parameter settings in our simulation

is introduced. The performance results are presented to compare the proposed task

scheduling scheme with other task scheduling schemes. Experiment 1 evaluates the

overhead generated by the resource discovery and how the resource discovery scheme

affects the performance of different schedulers in the local mobile cloud. Experiment 2

shows how the number of the mobile nodes in the local mobile cloud affects the

performance. Experiment 3 compares the performance of different schedulers in

stationary scenario and in mobile scenario. Experiment 4 shows the performance of

different schedulers with different types of the tasks.

Chapter 6 concludes the thesis and suggests the future work.

7

CHAPTER 2 LITERATURE REVIEW

In this chapter, the existing research on mobile cloud computing will be reviewed,

including the following topics: mobile cloud architectures, task-scheduling in mobile

cloud system and context awareness in mobile clouds.

A. Mobile cloud architectures

There are two typical types of mobile cloud architectures nowadays. The first one

is to connect the mobile device to the remote cloud as in Figure 1. The remote cloud is

defined as a powerful server or a cluster of computer hardware and software that offer the

services to the mobile device users. By leveraging infrastructures such as Amazon’s EC2

cloud [14] or Apple iCloud [15], computationally expensive tasks can be offloaded to the

cloud so that the capabilities of mobile devices get improved. For example, Apple Siri

[16] runs its sophisticated voice recognition feature remotely and then returns the result

to the user. There is large amount of research regarding implementing this architecture [2]

[17] [18]. However, as mentioned in Chapter 1, this architecture suffers from the long

latency. A detailed analysis on why long WAN latencies are a fundamental obstacle in

mobile clouds can be found in [19]. Another drawback of this architecture is that it relies

on the Internet access. 3G and WLAN are two most popular ways that mobile devices

connect to the internet. 3G covers larger area but consumes more energy while WLAN

consumes less energy but the transmission range is limited [20]. It is not practical to

expect that a good Internet connection is always available. Let alone in battle field,

disaster scene and rural area where no Internet access is present but intensive

computations are still needed.

8

 Therefore, a local mobile cloud would be a better alternative to the remote cloud.

A local mobile cloud is defined as the collective resources of the various mobile devices

in the local vicinity which are utilized as service providers. The advantages of offloading

work with local nearby resources versus a remote cloud would be:

• It does not rely on the Internet to connect to remote servers;

• It can be easily deployed in different scenario;

• Connection to nearby devices results in less latency.

 Hyrax [10] explores the possibility of using a cluster of mobile phones as resource

providers and shows the feasibility of such a local mobile cloud. It is implemented for the

Android smartphones based on ported Hadoop [21]. In Hyrax, a central server is

connected to each mobile device and coordinates data and tasks without doing any of the

processing. The mobile devices communicate with each other on an isolated 802.11g

network. Another framework based on Hadoop is presented in [22]. The system’s

offloading manager module organizes sending and receiving tasks to and from processing

nodes and creating virtual machines on them. The processing time is actually less than if

executed on a single mobile device. Energy consumption is claimed to be reduced since

energy consumption is proportional to the processing time.

 A cloudlet architecture is presented in [5] that not only provides a fixed

infrastructure with the WiFi access point, but also enables ad hoc discovery of devices in

the vicinity to share resources among each other. The cloudlet infrastructure is not fixed,

and devices can join and leave the cloudlet at runtime. A mobile device connects to the

network can register as a service provider. The proposed cloudlet architecture provides a

middleware framework to support real-time applications, which are managed at

9

component level. Each component is a part of codes need to be executed. When a

performance constraint violation is detected, actions can be taken such as calculating a

new deployment (i.e. offloading some resource-intensive components) or adapting

component configurations (i.e. lowering component quality). The result shows that

compared with connecting to a remote cloud, cloudlet is more suitable for the real-time

applications.

 In above work, there are two common methods related to offloading or/and

sharing work from mobile devices, partitioning applications and Virtual Machine (VM)

migration, which are introduced in [2][9][17], respectively. Partitioning applications into

tasks or components increase the manageability and scheduling efficiency. VM migration

refers to transferring the memory image of a VM from a source device to the destination

server without stopping its execution [23]. These are the enabling techniques for

offloading in mobile clouds. However, they are not the focus of this thesis. Our study is

focused on the task scheduling under the premise that the application could be partitioned

into independent ‘offloadable’ tasks.

B. Task-scheduling in mobile cloud system

a. Scheduler architecture overview

 The architecture of a scheduler plays an important role in determining the

scalability, autonomy, and performance of the system. Majorly there are two categories:

centralized and decentralized.

 In a centralized scheduling architecture, such as in [10], the scheduling decisions

are made by a central controller based on the complete and reliable knowledge of all the

participating nodes. The centralized scheduler suffers from the following problems:

10

• Single point failure problem;

• link to the central node is shared among all participating nodes which causes the

bottleneck problem;

• unrealistic deployment of the central node in mobile scenarios. Only the mobile nodes

within the transmission range of the central node can join the local mobile cloud,

which limits the mobility of the network.

 Thus, centralized scheduler is not adequate for the mobile cloud system because

of the nature of the dynamic environment in local mobile clouds.

 In contrast, decentralized schedulers negate the limitations of centralized

schedulers with respect to scalability, autonomy, and most importantly the adequacy for

the dynamic local mobile cloud. It does not rely on one single central node. The

decentralized scheduler can work as long as a group of mobile nodes are connected,

which make the deployment much easier. A decentralized scheduling approach assumes

that each participating node is autonomous and has its own controller that derives its

scheduling decision based on its policies. However, if the decisions are taken by several

independent nodes, it might be the case that these units aim at optimizing their own

objectives rather than the performance of the system as a whole. Such situations call for

models and techniques that take the strategic behavior of individual units into account,

and simultaneously keep an eye on the global performance of the system.

b. Scheduling objective in mobile cloud system

Generally, schedulers generate the mapping of tasks to resources based on some

particular objectives. In a local mobile cloud, the assignment of computational tasks to

different devices plays a vital role in energy conservation and performance

11

improvement. It is the task scheduler’s responsibility to make sure the mobile device

could benefit from offloading. Various cost/benefit studies have different criteria on

whether to offload computations to the server. The commonly used scheduling objectives

in a mobile cloud computing environment are related to the tasks’ completion time and

energy consumption.

The Eqn. (1) has been used in different paper [3][24] as a condition for offloading

to improve tasks completion time: ݏݓ௠ > ݀௜ܤ + ௦ (1)ݏݓ

Suppose w is the amount of computation and ݀௜ is the size of data needs to be transmitted

for remote execution. Let ݏ௠ be the speed of the mobile device and ݏ௦ be the speed of the

server. B is bandwidth between the mobile device and the server. The left side is the time

needed to execute the task on the mobile device itself. The right side is the time needed to

execute the task on the server plus the transmission time. Offloading can improve

performance when execution can be completed faster at the server.

An analysis aiming to save energy is provided in [25]. Similar to Eqn. (1),

suppose the task’s computation requires C instructions. Let S and M be the execution

speed in instructions per second, of the cloud server and the mobile device, respectively.

The server and mobile device exchange D bytes of data and the network bandwidth is B

bps. The mobile device consumes, in watts, ௖ܲ for computing, ௜ܲ while being idle, and ௧ܲ௥

for sending and receiving data. When the server performs the computation, the amount of

energy saved is given by

௖ܲ × ܯܥ − ௜ܲ × ܥܵ − ௧ܲ௥ × (2) ܤܦ

12

Different scheduling schemes with more complex criteria are proposed in several

other papers. A customizable task scheduler is proposed in [11] using MapReduce

framework for local mobile clouds. It is customizable because the user can optimize

multiple objectives such as power consumption and (or) throughput through adjusting the

corresponding coefficients in the objective function in Eqn. (3), where ߙଵ, ,ଶߙ ,ଷߙ ,ସߙ ହߙ

are variable coefficients, ܨଵ is a function of the task processing time on node ݆, ܨଶ is a

function of task queuing time on node ݆, ܨଷ is a function of the communication cost of

sending a task from node ݅ to node ݆,	ܨସ is a function of battery level on node ݆, ܨହ is the

energy consumption of sending a task from node ݅ to node ݆. ܨ(݅) = ଵߙ]݊݅ܯ × ଵ൫ܲܨ ௝ܶ൯ + ଶߙ × ଶ൫ܳ௝൯ܨ + ଷߙ × ([݆݅]݉݉݋ܥ)ଷܨ + ×ସߙ ,௝ܧସ൫ܨ ௝൯ܥ + ହߙ × ݎ݋݂ [([݆݅]݉݉݋ܥܧ)ହܨ ݅, ݆ = 1,2…݊, ݆ ≠ ݅ (3)

Similar work has been done in [12]. The objective function has two parts: delay

and energy consumption. Delay includes the task execution time and queuing time at the

processing node and communication time. Energy consumption consists of computation

energy consumed at the processing node and communication energy along the path. The

scheduler can be delay constrained, energy constrained or delay/energy constrained.

c. Scheduling algorithm

However, the aforementioned work is only concerned with one mobile device

connecting to one server scenario. In a local mobile cloud system, there could be multiple

source devices and multiple servers.

 In [26], a decentralized dynamic scheduling approach entitled the community

aware scheduling algorithm (CASA) is introduced for mobile grids. It includes the task

submission phase and the dynamic scheduling phase, which work together to ensure both

13

a rapid task distribution and an optimized rescheduling process. In the task submission

phase, the scheduler sends the ‘offloading’ request containing the task information to

nearby nodes. Nearby nodes which are able to execute this task will reply an ‘accept’

message to the source node, in which the response time of the task is included. In this

paper, the task response time represents the time used between a task’s arrival time until

the time when the execution result is received. Considering multiple requests from

different source nodes could exist simultaneously, if all nodes greedily select the

processing node offering the shortest task response time for the task assignment, then that

processing node could receive an imbalanced amount of tasks within one CASA

scheduling cycle, which might increase the response time for some received tasks. In

order to avoid this effect, the CASA scheduler adopts a probabilistic approach, wherein

nodes with better computing power are prone to have a chance of receiving more tasks,

but nodes with less power still have the probability of being selected as the processing

node. The rescheduling phase is to keep the previous scheduling decision optimized by

allowing queued tasks to be rescheduled in accordance with the unexpected network

delay, resource overhead, and task status modification. Comparing with the centralized

scheduling scheme [27] and the greedy based scheduling algorithm [28], the use of

CASA can lead to a 30%–61% better average task slowdown, and a 68%–86% shorter

average task waiting time in a decentralized scheduling manner without requiring

detailed real-time processing information from participating nodes.

This work gives us the insight of how to handle multiple source devices. One

thing not clear is that how each node can get the detailed information from the

participating nodes to maximize the offloading benefit or to successfully offload.

14

C. Context awareness in mobile cloud

 In this thesis, context means resource information of nearby nodes, such as power

information, bandwidth and computational ability. The scheduler with context-awareness

is able to use contextual information to make scheduling decision and automatically

reconfigure their configurations to adapt to the context. Context awareness is more

difficult to achieve in wireless ad hoc networks than in their wired counterparts, because

the wireless bandwidth is shared among adjacent nodes and the network condition

changes dynamically.

 Within the field of local mobile clouds, there are, broadly, two different

approaches to discover the context information. Reactive schemes request other nodes’

information when needed. A node trying to transmit a packet may have to wait for the

completion of resource discovery. The mobile cloud systems in which source nodes send

requests to processing nodes and wait for responses work in the reactive way, such as

[12][26]. As mentioned in [29], a reactive scheme has small resource discovery

overheads but a longer react time. On the other hand, proactive schemes determine the

resource status of various nodes in the network in advance, so that the context

information is already present whenever needed. Resource discovery overhead is large in

such schemes as one has to send control messages to update all context information

periodically. Scheduling decision making is faster as the context information is already

present.

There is a lot of research in reactive resource discovery scheme in Ad hoc

network as introduced in [30]. However, considering the tight time constraint set by the

application, a proactive way is very attractive because it is always ready to use whenever

15

needed. In [6], A QoS OLSR [31][32] based routing scheme is proposed to map

computationally intensive real-time application to all nearby available resources which

are heterogeneous and with limited computational capabilities. This work shows the

feasibility of providing cloud services in MANET. The authors modified the original QoS

OLSR by adding resource information including CPU type, CPU utilization percentage,

the allocated memory and battery levels to control messages. Control message are

broadcasted to the whole network periodically so that all nodes are aware of the resource

information of other nodes. However, how frequent the routing messages are sent is not

given in this paper. The context information is updated upon receiving the routing

messages. The more frequent the routing messages are, the more accurate the context

information is. A frequent context information update could be big overhead and the

routing packets’ number and size have a major impact on the local mobile cloud’s

performance. However, no detailed evaluation about the overhead is given in this work.

To summarize, current research and implementation work have two crucial

constraints and limitations, including: (a) scheduling for serving one source node, instead

of the entire network; and (b) assuming the detailed resource information of each

participating node, such as the status of local task queue and real-time resource utilization,

is known. These impede the implementation of mobile cloud system.

16

CHAPTER 3 PROBLEM STATEMENT

A. Notations and assumptions

Table 1 lists the notations used in this thesis.

Table 1, Notations

Symbol Description ܸ Set of all wireless nodes in the local mobile cloud E Set of all wireless links in the local mobile cloud ܩ(ܸ, in terms of millions of instructions ݑ ௨ Average processing speed of nodeݏ݌݅݉ Undirected topology graph that is composed of node set V and edge set E (ܧ
per second (mips) ݁௨ Average energy consumption per million instructions of node ݎ ݑ௧ Radio transmission range of node ܤ ݑ௨,௩ Bandwidth (in bps) between node ݑ and node ݒ ݁௧ Average energy consumption of node ݑ to transmit one byte ݁௥ Average energy consumption of node ݑ to receive one byte ݐ௤,௨ Queuing time of node ܬ ݑ Set of tasks arriving at ܸ ܦ௝ Data size of task j ܥ௝ Computation amount of task j in number of instructions ௝ܶ Time constraint set for task j ݐ௠௔௥௚௜௡ Time margin used when comparing the estimated task completion time
with ௝ܶ ܲ Set of all processing nodes in the local mobile cloud, ܲ ⊆ ܸ ܵ Set of all source nodes in the local mobile cloud, ܵ ⊆ ܸ

Assumptions:

1. The tasks are assumed to be computationally intensive, mutually independent, and

can be executed at any participating processing mobile devices. As soon as a task arrives,

17

it must be assigned to one mobile device for processing. After a task is executed at the

processing node, the result will be returned to the originating device.

2. The size of data ܦ௝ needs to be transferred from the source node to the destination

node is the same as the size of result returned from the destination.

3. The IEEE 802.11g communication protocol is adopted. The transmission power ݁௧,
the receiving power ݁௥ and the transmission range ݎ௧ are assumed to be the same among

all the nodes. The maximum bandwidth ܤ௠௔௫ is 11Mbps and it is shared among adjacent

nodes.

4. All nodes in the local mobile cloud are randomly distributed. Any two nodes are

connected either directly or in an ad hoc way.

B. Network and task models

• Network models

Definition 1.A MANET that consists of a number of wireless nodes can be

modeled by an undirected communication graph G(V, E). Given a node ݑ ∈ ܸ	 and a

node ݒ ∈ ܸ , we have (ݑ, (ݒ ∈ ܧ , if and only if ݀݅ݑ)ݏ, (ݒ ≤ ௧ݎ , where ݀݅ݑ)ݏ, is the (ݒ

Euclidean distance between node ݑ and node ݒ . That is, to establish a direct

communication between any two nodes, the distance between them has to be within their

radio range ݎ௧.
 The computational ability of the processing node ݑ is denoted by ݉݅ݏ݌௨ (Million instructions per second). According to [33], Eqn. (4) gives that the power ݁ consumed by a CMOS processor, in watts, is equal to the activity factor ߙ of the system

(percentage of gates that switch for each cycle, on average 50%) multiplied by the

capacitance ܥ	of the CPU, the voltage ܸsquared, the frequency ݂.

18

݁ = ଶ݂ (4)ܸܥߙ

However, historical data [34] suggests that power on modern processors is

proportional to the square of the duty cycle. Therefore, for this thesis we will use the

square relation in Eqn. (5), assuming that the CPU’s power consumption per instruction e௨is proportional to the square of its speed, ݉݅ݏ݌௨. ݁௨ ∝ ௨ଶݏ݌݅݉ (5)

In each node, t௤,௨is the queuing delay, which refers to the waiting time when the

task is placed at the end of the queue until the moment the task is processed.

• Task models

݆ is a set of tasks arriving at different source nodes, for a task ܬ ∈ it has the ,ܬ

following attributes:

 ;௝, size of data to be transferred between the source node and the processing nodeܦ (1

 ;௝, amount of computations to be processedܥ (2

3) ௝ܶ, time constraint of task j.

 All these attributes of task j are known to the source node when j arrives.

C. Problem statement

With the network model and task model, the energy consumption and completion

time can be calculated. The energy consumption of executing a task includes two parts:

1) Computation energy, which is the energy dissipated for executing the task by the

processing node u; ݊݋݅ݐܽݐݑ݌݉݋ܥ ௝ݕ݃ݎ݁݊ܧ = ݁௨ × ௝ (6)ܥ

2) Communication energy, which is the energy consumed in communication for the

offloading process. The communication energy dissipated is proportional to the amount

19

of data transmitted or received. ܪ(݆) is the hop count from the source node to the

processing node. ݊݋݅ݐܽܿ݅݊ݑ݉݉݋ܥ ௝ݕ݃ݎ݁݊ܧ = 2 × (݆)ܪ × (݁௧ + ݁௥) × ௝ (7)ܦ

 The total energy ܶܽ݇ݏ	ݕ݃ݎ݁݊ܧ௝ consumed by task j is the summation of these

two types of energy: ܶܽ݇ݏ	ݕ݃ݎ݁݊ܧ௝ = ݊݋݅ݐܽݐݑ݌݉݋ܥ	 ௝ݕ݃ݎ݁݊ܧ + ௝ (8)ݕ݃ݎ݁݊ܧ	݊݋݅ݐܽܿ݅݊ݑ݉݉݋ܥ

 The total energy consumed by all the n tasks is:

ݕ݃ݎ݁݊ܧ	݈ܽݐ݋ܶ = ෍ܶܽ݇ݏ ௝௡ݕ݃ݎ݁݊ܧ
௝ୀଵ (9)

The completion time of a task contains three parts:

 which is the waiting time before task can ,ݑ ௤,௨: queuing time at the processing nodeݐ •

be executed;

௘௫௘௖௨௧௜௢௡ݐ ;௘௫௘௖௨௧௜௢௡: the execution time for the task at the processing node uݐ • = ௨ (10)ݏ݌݅݉/௝ܥ

 ௧௥௔௡௦௠௜௧௜௢௡: the time needed to transmit the data between the source and destinationݐ •

nodes. ݐ௧௥௔௡௦௠௜௧௜௢௡ = 2 × (݆)ܪ) − 1) × ௨,௩ (11)ܤ/௝ܦ

The completion time of the task j when it is offloaded to node u is the total of the

three parts: ܶܽ݇ݏ	݊݋݅ݐ݈݁݌݉݋ܿ ௝݁݉݅ݐ = ௤,௨ݐ + ௘௫௘௖௨௧௜௢௡ݐ + ௧௥௔௡௦௠௜௧௜௢௡ (12)ݐ

A task is successfully scheduled if it is completed before its deadline, satisfying

Eqn. (13); otherwise, it is failed.

20

݇ݏܽܶ ݊݋݅ݐ݈݁݌݉݋ܿ ௝݁݉݅ݐ < ௝ܶ (13)

Let n be the total number of tasks. We define the following two metrics to

evaluate the task scheduling result. ݊݋݅ݐ݈݁݌݉݋ܥ	݁ݐܴܽ = ݎܾ݁݉ݑܰ ݂݋ ݈ݑ݂ݏݏ݁ܿܿݑܵ ݈ݑ݂ݏݏ݁ܿܿݑܵ		ݎ݁݌	ݕ݃ݎ݁݊ܧ	݁݃ܽݎ݁ݒܣ (14) ݊/ݏ݇ݏܽܶ ݇ݏܽܶ = ݈ܽݐ݋ܶ ݎܾ݁݉ݑܰݕ݃ݎ݁݊ܧ ݂݋ (15) ݏ݇ݏܽܶ	݈ݑ݂ݏݏ݁ܿܿݑܵ

We formulize the scheduling problem in a local mobile cloud as: Given the

mobile network G(V, E) with a set of source nodes S a a set of tasks J to be scheduled,

then schedule these tasks from one or multiple source nodes to processing nodes, with the

objective of

Minimize: ݁݃ܽݎ݁ݒܣ	ݕ݃ݎ݁݊ܧ	ݎ݁݌	݈ݑ݂ݏݏ݁ܿܿݑܵ	݇ݏܽܶ

Subject to: ܤ௨,௩ ≤ ,௠௔௫ܤ ∀݁ = ,ݑ) (ݒ ∈ ෍ (16) ,ܧ ௝,௨௨∈௉ݔ = 1, ∀݆ ∈ ,ܬ ௝,௨ݔ ∈ (0,1) (17)

ܲ ⊆ ܸ, ܵ ⊆ ܸ, ܲ ∩ ܵ = ∅, ܲ⋃ܵ = ܸ (18)

 Constraint (16) ensures no link capacity is violated. Constraint (17) ensures that a

task is scheduled only once. Constraint (18) states that a node in the local mobile cloud is

either a processing node or a source node.

D. Motivation example in local mobile clouds

Figure 3, Sample local mobile cloud

n0

s0 n2

n1

n3s1

21

We use one simple example to illustrate the motivation for an effective scheduler

in the local mobile cloud. Consider the case in Figure 3, there are two source nodes

running real-time applications. The applications can be partitioned into tasks, which are

computationally intensive and are executable in all processing nodes n0 to n3. The

challenges are listed as follows.

• Scheduling of tasks from multiple source nodes schedule to the same processing node

Having the same context information about the network, it is possible that

multiple source nodes schedule tasks to the same processing node when they make

scheduling decision at the same time. Assuming all tasks need to be executed in

processing node serially in a first come first serve way, this will cause the unpredictable

completion time for the tasks which arrive later. In Figure 3, in terms of task completion

time, ݐ(݊ଷ) < (ଶ݊)ݐ < (ଵ݊)ݐ < ,If both s0 and s1 schedule their current task to n3 .(଴݊)ݐ

it is possible that n3 is only able to complete one task before deadline; therefore the

second arrived task will not be finished in time. The scheduling scheme shall be designed

to avoid this type of confliction. The probabilistic scheduling algorithm CASA [26]

relieved this issue by choosing the processing node in a probabilistic way. In CASA, ݊௜ is

chosen as the processing node with probability ߩ௜, which is proportional to
ଵ௧(௡೔). Assume

n3 and n2 are potential processing nodes, the source node still has the higher chance to

schedule the current task to n3, but the probability that both source nodes schedule their

current task to the same processing node is reduced to ߩଷଶ + .ଶଶߩ

• Estimation of the bandwidth resource along the path

According to Eqn. (1), bandwidth plays an important role when calculate the

estimated transmission time. Considering the situation that s0 offloads task to n3 and s1

22

offloads to n4, the transmission path from n1 to n2 is shared. No matter the transmission

works in FIFO fashion or multiple access technique is used here, at least one of the

transmissions has to be delayed. This delay may also cause the task not to be finished

before deadline. Therefore instead of using fixed bandwidth information, the scheduler

should adapt to the constantly changing bandwidth condition.

To summarize, without specifically considering an effective scheduling scheme

for multiple sources and a method to get the context information, it is impossible to

achieve intended improvement in local mobile clouds. The situation is even more

complicated when the size of the local mobile cloud gets large. In this thesis, propose the

adaptive probabilistic scheduler for local mobile clouds. It relies on the QoS OLSR

routing scheme to provide periodic context information. It inherits the probabilistic

scheduling algorithm but allows adaptive reconfiguration to improve performance under

the unpredictable network condition.

23

CHAPTER 4 THE PROPOSED ADAPTIVE PROBABILISTIC TASK SCHEDULER

To solve the above task scheduling problem, we propose a distributive adaptive

probabilistic scheduler which consists of two phases, namely the resource discovery

phase and the adaptive probabilistic scheduling phase. In the resource discovery phase,

source nodes are able to get the context information about the nearby processing nodes.

In the adaptive probabilistic scheduling phase, the scheduler will choose one processing

node to execute the task j. These two phases work together to ensure the performance in

local mobile clouds gets improved.

A. Phase I: Resource discovery phase

 The proposed resource discovery scheme is based on QoS OLSR [31]. There are

two kinds of control messages carrying resource information:

• Modified Hello Messages, which are sent locally (i.e. broadcasted to one-hop

neighbors) to enable a node to discover its local neighborhood (as HELLO messages

in the QoS OLSR protocol [31]);

• Modified Topology Control (TC) Message, which are sent to the entire network

through Multipoint Relay (MPR) nodes [32] to allow the distribution of the topology

and context information to all the nodes (as TC messages in the QoS OLSR protocol

[31]).

 Note that both two types of messages are sent periodically. The emission interval

should be a variable related to how fast the network changes. The faster the network

changes, the shorter the emission interval should be. According to [32], the emission

intervals for the original Hello massages and the original TC massages are 2s and 5s. The

emission intervals of the Modified Hello Messages and the Modified TC massages are

24

going to be short considering the tight time constraint set by the applications. How the

emission intervals affect the performance in local mobile cloud is to be evaluated in

Chapter 5.

 Our proposal is toward an extension of the routing table by adding the following

parameters of each neighbor node into the two types of control messages:

• Device parameter: indicate the processing speed ݉݅ݏ݌௨ and energy consumption

coefficient ݁௨ of node ݑ.

• Queue length: current queue time ݐ௤,௨ at node ݑ.

The basic layout of any packet in QoS OLSR is as follows (omitting IP and UDP

headers):

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Packet Length | Packet Sequence Number |
 +-+
 | Message Type | Vtime | Message Size |
 +-+
 | Originator Address |
 +-+
 | Time To Live | Hop Count | Message Sequence Number |
 +-+
 | |
 : MESSAGE :
 | |
 +-+
 | Message Type | Vtime | Message Size |
 +-+
 | Originator Address |
 +-+
 | Time To Live | Hop Count | Message Sequence Number |
 +-+
 | |
 : MESSAGE :
 | |
 +-+
 : :

 The description of each field can be found in [35]. The ‘MESSAGE’ field carries

the control message. The difference between original control messages and modified

control messages are given below:

25

Original Hello Message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+
 | Reserved | Htime | Willingness |
 +-+
 | Link Code | Reserved | Link Message Size |
 +-+
 | Neighbor Interface Address |
 +-+
 | Neighbor Interface Address |
 +-+
 : . . . :
 : :
 +-+
 | Link Code | Reserved | Link Message Size |
 +-+
 | Neighbor Interface Address |
 +-+
 | Neighbor Interface Address |
 +-+
 : . . . :

 This is sent as the data-portion of the general packet format with the "Message

Type" set to HELLO_MESSAGE and the Time to Live (TTL) field set to 1.

Modified Hello Message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+
 | Reserved | Htime | Willingness |
 +-+
 | Link Code | Reserved | Link Message Size |
 +-+
 | Device parameter | Queue Length |
 +-+
 | Neighbor Interface Address |
 +-+
 | Neighbor Interface Address |
 +-+
 : . . . :
 : :
 +-+
 | Link Code | Reserved | Link Message Size |
 +-+
 | Neighbor Interface Address |
 +-+
 | Neighbor Interface Address |
 +-+
 : . . . :

By adding device type and queue length, the current context information of the

node can be updated at its neighboring nodes.

26

Original Topology Control (TC) Message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ANSN | Reserved |
 +-+
 | Advertised Neighbor Main Address |
 +-+
 | Advertised Neighbor Main Address |
 +-+
 : . . . :

This is sent as the data-portion of the general message format with the "Message

Type" set to TC_MESSAGE. The TC Message can be diffused into the entire network.

By varying the TTL value, the size of the network can be controlled. Only those

processing nodes chosen to be MPR nodes will send and relay the TC message.

‘Advertised Neighbor Main Address’ field contains the main address of a neighbor node.

Modified Topology Control Message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ANSN | Reserved |
 +-+
 | Device parameter | Queue Length |
 +-+
 | Advertised Neighbor Main Address |
 +-+
 | Device parameter | Queue Length |
 +-+
 | Advertised Neighbor Main Address |
 +-+
 : . . . :

The modified TC Messages not only tell who its neighbors are but also carry its

neighbors’ context information. Having the modified control messages, each node can

find other nodes’ information by using a distributed algorithm shown in Figure 4. After

executing the algorithm listed in Figure 4, all nodes in the network shall obtain a neighbor

table in its local memory.

27

Resource Discovery Algorithm

Input: Control messages(Hello message or TC message)
Output: Neighbor table(The table storing the node parameter for each node)
Function: Handle control messages and update the neighbor table at node u
Procedure body:
{
initialize the neighbor table
listen control messages
if (Message Type== HELLO_MESSAGE)
{
 update the neighbor table
 if (node u is an MPR node)
 construct/update TC message
 }
if (Message Type == TC_MESSAGE)
{
 update neighbor table
 if (node u is an MPR node)
 forward the TC message to all of its neighbors
 }
}

Figure 4, Resource discovery algorithm

B. Phase II: Adaptive probabilistic scheduling phase

Each time a source node ݑ receives a task ݆ submitted by its local user, it

estimates the energy consumption ܶܽ݇ݏ	ݕ݃ݎ݁݊ܧ௝,௩ and the completion time ܶܽ݇ݏ	݊݋݅ݐ݈݁݌݉݋ܿ	݁݉݅ݐ௝,௩ of task j on every potential processing node ݒ ∈ ܲ. These two

variables are obtained according to Eqn. (8) and Eqn.(12), respectively.

The scheduler keeps a set ܲ’ of processing nodes which satisfy Eqn. (19). The

scheduler will randomly choose one processing node from the set. The probability that

node ݒ ∈ ܲ′ is chosen to be the processing node is ߩ௩.

28

݊݋݅ݐ݈݁݌݉݋ܿ	݇ݏܽܶ ௝,௩݁݉݅ݐ < ௝ܶ − ௠௔௥௚௜௡ (19)ݐ

௩ߩ = ௝௝,௩ݕ݃ݎ݁݊ܧ	݇ݏ1ܶܽ /෍ ݇ݏ1ܶܽ ௝௝,௩௩∈஼ݕ݃ݎ݁݊ܧ (20)

 In the dynamic wireless environment, the tasks cannot be guaranteed to be

completed before deadline. The reasons could be 1) there is still some chance that

multiple source nodes schedule tasks to one processing at the same time; 2) the

bandwidth of certain network connection is shared among multiple transmissions while

Eqn. (11) gives an optimistic estimation of the transmission time; 3) unexpected network

event, such as node’s movement changes the routing path of the network or the

processing node ran out of battery before finishing execution of the task.

When failure happens, the scheduler can adjust its ௠௔௥௚௜௡ݐ value to avoid

continuous future failures. When ܽଵ consecutive failed tasks occur, the time margin will

be increased by ∆ݐଵ. After receiving aଶ consecutive successful tasks, the scheduler will

lower the time margin by ∆tଶ. That means when the network condition is degrading, the

scheduler tends to choose the more powerful processing node at the cost of increasing

energy consumption. The adaptive probabilistic scheduling algorithm running at each

source node is given in Figure 5.

 In this thesis, the proposed scheduling algorithm is compared with other

scheduling schemes, including:

• Round robin scheduler: The scheduler assigns tasks in a round robin way. When the

first task arrives, it is scheduled to the first node in ܲ. It schedules the second task to

the second node in ܲ, and so on.

29

Adaptively Probabilistic Scheduling Algorithm
Input: (1) Neighbor table from Phase I, (2) task set J
Output: Scheduling (Mapping)
Function: Schedule the tasks to processing node in local mobile cloud
Procedure Body:
Set the number of consecutive successful tasks ݊௦ = 0
Set the number of consecutive failed tasks ݊௙ = 0
Task ݆ ∈ J arrives at source node u, record current time ݐݎܽݐݏ_ݐ௝. P′ ← ∅
//Step 1: find eligible processing nodes
for each	ݒ ∈ ܲ
௝,௩݁݉݅ݐ	݊݋݅ݐ݈݁݌݉݋ܿ	݇ݏܽݐ	݀݁ݐܽ݉݅ݐݏܧ } = ௤,௩ݐ + ௘௫௘௖௨௧௜௢௡ݐ + ௧௥௔௡௦௠௜௧௜௢௡ݐ

௝,௩ݕ݃ݎ݁݊ܧ	݇ݏܽܶ = ௝,௩ݕ݃ݎ݁݊ܧ	݊݋݅ݐܽݐݑ݌݉݋ܥ	 + ௝,௩ݕ݃ݎ݁݊ܧ	݊݋݅ݐܽܿ݅݊ݑ݉݉݋ܥ
 if (݀݁ݐܽ݉݅ݐݏܧ	݇ݏܽݐ	݊݋݅ݐ݈݁݌݉݋ܿ	݁݉݅ݐ௝,௩ < ௖ܶ௢௡௦௧௥௔௜௡௧ − (௠௔௥௚௜௡ݐ
 ܲ′ = ܲ′ ∪ ݒ
 }
//Step 2: calculate probability that the eligible processing node being chosen as the processing node.
for each ݒ ∈ ܲ′
௩ߩ } = భ೅ೌೞೖ	ಶ೙೐ೝ೒೤ೕ,ೡ∑ భ೅ೌೞೖ	ಶ೙೐ೝ೒೤ೕ,ೡೡ∈ುᇲ

 }
Randomly select processing node w based on probability ρ୵
//Step 3: schedule j to processing node w and update estimated queue time on node w
Send j	to ݐ ݓ௤,௪ = ௤,௪ݐ + ௪ݏ݌௝݉݅ܥ

//Step 4:
Receive result of task j from the processing node w, record current time ݁ݐ݈݁݉݋ܿ_ݐ௝. ܶܽ݇ݏ	݊݋݅ݐ݈݁݌݉݋ܿ	݁݉݅ݐ௝ = ௝݁ݐ݈݁݉݋ܿ_ݐ − ௝ݐݎܽݐݏ_ݐ
if (ܶܽ݇ݏ	݊݋݅ݐ݈݁݌݉݋ܿ	݁݉݅ݐ௝ ≤ ௝ܶ){ nୱ++; n୤ = 0;
}
else { n୤++; nୱ = 0;
}
//Step 5: adaptively adjust ݐ௠௔௥௚௜௡
if (n୤ 	> ܽଵ) { ݐ௠௔௥௚௜௡ = ௠௔௥௚௜௡ݐ + ∆tଵ;
 n୤ = 0;
}
If (nୱ > 	ܽଶ) { ݐ௠௔௥௚௜௡ = ௠௔௥௚௜௡ݐ − ∆tଶ; nୱ = 0;
}

Figure 5, Adaptively probabilistic scheduling algorithm

30

• Greedy scheduler: The scheduler always sends the task to the most energy efficient

node with the estimated completion time within the time constraint.

• Probabilistic scheduler: The scheduler keeps a set ܲ′ of the processing nodes

satisfying	ܶܽ݇ݏ	݊݋݅ݐ݈݁݌݉݋ܿ	݁݉݅ݐ௝,௩ < ௝ܶ. The scheduler will randomly choose one

processing node from the set ܲ′. The probability that node ݒ ∈ ܲ′is chosen to be

processing node is calculated according to Eqn. (20).

 Note that the round robin scheduler does not rely on the context information. As

mentioned in Chapter 2, most existing greedy schedulers in local mobile cloud didn’t

consider the context information, for comparison purpose, we use the same proposed

resource discovery scheme for the greedy scheduler. Probabilistic scheduler is based on

CASA [26]. The difference between the probabilistic scheduler and the proposed

adaptive probabilistic scheduler is the former does not have ݐ௠௔௥௚௜௡ .The probabilistic

scheduler does not adjust itself when failed tasks occur.

C. An illustrative example

 We use Figure 6 as an example to demonstrate the difference between different

schedulers. Related parameters are listed in Table 2.

Figure 6, Sample local mobile cloud

n0

s0 n2

n1

n3s1

31

Table 2, Parameter settings of the illustrative example

Parameter Value

Task arrival intervals 0.5s

Task data size 1000B

Task computation amount 200 million instructions(MI)

Task time constraint 1s ݁௡଴/݁௡ଵ/݁௡ଶ/݁௡ଷ 0.25/0.16/0.09/0.04 J/MI ݉݅ݏ݌௡଴/݉݅ݏ݌௡ଵ/݉݅ݏ݌௡ଶ/݉݅ݏ݌௡ଷ 500/400/300/200 MI/s

 At the start time t = 0, two source nodes s0 and s1 start receiving tasks. There is

one task arriving at each source node every 0.5s. For the proposed adaptive probabilistic

scheduler, ݐ௠௔௥௚௜௡ is initialized to 0s. If one task is unsuccessfully scheduled ݐ௠௔௥௚௜௡ is

increased by 0.5s; otherwise, ݐ௠௔௥௚௜௡ is decreased by 0.5s.

 Since communication energy is very small comparing to computation energy, we

ignore the communication energy in this example. We also ignore the transmission time

for simplicity. The energy consumption for task at the processing nodes n0, n1, n2 and n3

is 50J, 32J, 18J and 8J according to Eqn. (4), respectively.

 Figure 7 shows the results of four schedulers. Tasks from different source are

represented in lines with different colors. Solid line is the execution time while dashed

line is the waiting time at the processing node. The length of each line is the completion

time of the task. If the duration of the line is longer than 1s, the task is failed. The

completion rate and the energy per successful task are listed for each scheduler.

32

Figure 7, Results of the illustrative example

(d) Adaptive Probabilistic Scheduler
3s 2.5s 2s 1.5s1s0.5s0s

n3

n2

n1

n0
n1

n2

n3

n0

3s2.5s2s 1.5s 1s 0.5s 0s

n3

n2

n1

n0

3s 2.5s 2s 1.5s1s0.5s0s

n3

n2

n1

n0

3s2.5s2s 1.5s 1s0.5s 0s

(c) Probabilistic Scheduler

 (b) Greedy Scheduler

(a) Round Robin

33

CHAPTER 5 NUMERICAL RESULT

To evaluate the performance of various scheduling algorithms in local mobile

clouds, extensive simulations are conducted in OMNET++.

A. Simulation setup

The simulated local mobile cloud contains a group of nodes, each of which is

capable of transmitting radio signals up to approximately 40 meters over an 11Mbps

802.11g wireless channel. Two network scenarios (with different node densities) are

simulated. The first scenario, referred to as the small network, is created by randomly

placing 10 nodes in a	200m × 200m area. Among these 10 nodes, 2 nodes are source

nodes and 8 nodes are processing nodes. The second scenario, referred to as the large

network, is created by randomly placing 20 nodes in a	200m × 200m area. Among these

20 nodes, 4 nodes are source nodes and 16 nodes are processing nodes.

There are two mobility patterns: the first one is the stationary network in which all

nodes are stationary. The second one is the mobile network in which every mobile node ݑ ∈ ܸ moves within the area according to the following pattern. It moves along a straight

line for a certain period of time before it makes a turn. This moving period is a random

number, normally distributed with average of 5 seconds and standard deviation of 0.1

second. When it makes a turn, the new direction (angle) in which it will move is a

normally distributed random number with average equal to the previous direction and

standard deviation of 30 degrees. Its speed is also a normally distributed random number

ranging from 1 to 3 (m/s). A new such random number is picked as its speed when it

makes a turn. All nodes can move to a random direction within the area with a speed

uniformly distributed between 1 m/s and 3 m/s. All nodes have the same initial battery

34

level. The energy of a node is only consumed when the node processes a task or when the

node transmits/receives a message, which can be calculated using Eqn. (6)-(8). The

energy consumed in moving is ignored here.

Tasks are generated on each source node. The task arrival event is a Poisson

process. Source nodes cannot be chosen to be the MPR nodes or processing nodes.

Parameters are listed in Table 3.

Table 3, Parameter settings in simulation

Parameter Value

Topology Random

Network area 200m*200m

Network size Small: 10 nodes /Large: 20 nodes

Communication range Approximately 40 meters

Task data size Varying from 1000 B to 8000 B

Task computation amount Varying from 50 MI to 350 MI

Task time constraint 0.5s

Task arrival interval Exponential distribution λ = 0.2s
Task arrival duration 200s

Computation ability of node u ݉݅ݏ݌௨ Normal distribution in (1000,300) mips

Computation energy per MI of node u 10ି଼ × ௨ଶ Jݏ݌݅݉

Maximum bandwidth 11Mbps

In the simulation experiments, the performance of the proposed task scheduling

scheme was compared among different algorithms in terms of the following metrics.

35

• Completion rate: the ratio of the number of tasks finished within time constraint to the

total number of tasks in Eqn.(14).

• Task waiting time: the duration between a task’s arrival time at the processing node

and its execution start time at the processing node.

• Average energy per successful task: the ratio of the total energy consumption to the

number of successful tasks given in Eqn.(15).

In each experiment, 10 different random network topologies are generated. The

simulation results are plotted using the average values derived from these 10 simulations.

B. Effect of varying Topology Control message interval

 As introduced in Chapter 3, we modified the QoS OLSR by adding extra bytes to

control messages. The influence of the modification is going to be evaluated in this

section. In the original QoS OSLR, by default the Hello message interval is 2s and TC

message interval is 5s.In the modified QoS OLSR scheme, the Hello message’s interval

is half of the TC message interval. The reason is that TC message is sent to the whole

network with neighbor information updated at least once. Considering the tight time

constraints (0.5s), we expect the control messages to be more frequently sent so the

context information can be updated on time.

 In order to gauge the overhead, we measure the number of bytes in the control

messages, including HELLO messages and TC messages, in a small network. The

average overhead traffic is defined as the number of bytes in the control messages

transmitted per second in the whole network. The average overhead traffic shows how

much network bandwidth is used for overhead messages. Figure 8 plots the average

36

overhead traffic of the original QoS OLSR and the proposed modified QoS OLSR vs.

varying TC message interval.

Figure 8, Average overhead traffic

The average overhead traffic increase almost exponentially as TC message get

more frequent, when the TC messages interval reaches 0.2s, the traffic is nearly 600KB/s.

The traffic of modified QoS OLSR increase only slightly comparing to the original QoS

OLSR (up to 2%). The reason is that only 4 bytes are added to each Hello Message. In

the TC message, though 4 bytes are added to each neighbor node, the neighbor list in TC

messages is quite limited in a small network.

Next we investigate the performance of different schedulers under different TC

message interval in a small network with 2 source nodes and 8 processing nodes. Figure 9

shows that except the round robin scheduler, the task completion rates of the other three

schedulers first increase as the TC message interval gets shorter but decrease significantly

0

100

200

300

400

500

600

700

5 2 1 0.8 0.6 0.4 0.2

Original QoS OLSR

Modified QoS OLSR

Av
er

ag
e

ov
er

he
ad

 tr
af

fic
 (

KB
/s

)

Topology control message interval (s)

37

when the TC message interval reaches 0.2s. The reason is that with a long TC message

interval, there are not enough control messages carrying context information, the

schedulers are not able to get an accurate picture of nearby nodes. When control

messages get more frequent, the context information is updated at the scheduler more

frequently. As such, better scheduling results are obtained; the task completion rate

becomes higher. However, when the overhead massages occupy large amount of network

bandwidth (at TC interval of 0.2s), schedulers are unable to predict the accurate

transmission time to the target processing node as in Eqn. (11). The scheduling results are

significantly impacted, especially for greedy and probabilistic schedulers, which result in

dramatic drop of the task completion rates.

The round robin scheduler does not rely on the control messages. It sends tasks to

nearby nodes one after another. Thus its task completion rate remains the same. The

proposed adaptive probabilistic scheduler has the highest completion rate for most cases.

It has 16.6% and 3.6% higher completion rate than the greedy scheduler and the

probabilistic scheduler, respectively. The reason is that with an increased ݐ௠௔௥௚௜௡, the

scheduler will send tasks to a more computationally powerful node. Thus it has better

chance to complete tasks before the time constraint. This result is further explained by

Figure 10.

38

Figure 9, Task completion rate vs. TC message interval

 In Figure 10, the simulation result shows the average waiting time per task at the

processing node of the greedy scheduler is much higher than other schedulers. It is

because both source nodes always tried to offload tasks to the most energy efficient node.

A waiting queue is easily present in the targeting processing node and the long waiting

time caused the task not to be able to finish before their deadline. The probabilistic

scheduler and the adaptive probabilistic scheduler alleviate this problem by randomly

choosing the processing node to reduce the chance that multiple tasks are offloaded to the

same processing node. When confliction does happen, the latter has a better chance to

offload to a more powerful node so that it has an even lower average waiting time, which

is 2-4 times shorter than the greedy scheduler. The round robin scheduler has the shortest

waiting time because it sends the tasks to nearby processing node evenly.

 Figure 10 also demonstrated how TC message interval affects the scheduler’s

performance. With a shorter TC messages interval, more accurate context information is

50.00%
55.00%
60.00%
65.00%
70.00%
75.00%
80.00%
85.00%
90.00%
95.00%

100.00%

1 0.8 0.6 0.4 0.2

Round Robin
Scheduler

Greedy Scheduler

Probabilistic
Scheduler

Adaptive Probabilistic
Scheduler

Topology control messages intervals (s)

Ta
sk

 c
om

pl
es

tio
n

Ra
te

 (%
)

39

achieved. Thus the schedulers are less possible to send the tasks to a node which already

has long waiting queue.

Figure 10, Average waiting time per task vs. TC message interval

 Figure 11 shows that the average energy per successful task result is correlated

with the task completion rate result. Except for round robin scheduler, the average energy

per task of the other three schedulers first decreases as the TC message interval is

reduced but increases significantly when the TC message interval reaches 0.2s. Among

all four schedulers, the average energy per task of the adaptive probabilistic scheduler is

the best. When the TC message interval is 0.4s, the adaptive probabilistic scheduler has

the highest completion rate 95.14% and the lowest energy per successful task 1.60 J.

0

0.05

0.1

0.15

0.2

0.25

1 0.8 0.6 0.4 0.2

Round Robin
Scheduler

Greedy Scheduler

Probabilistic Scheduler

Adaptive Probabilistic
Scheduler

Topology Control Messages intervals (s)

Av
er

ag
e

W
ai

tin
g

tim
e

pe
r T

as
k

(s
)

40

Figure 11, Average energy per successful task vs. TC message interval

C. Different size of network

 The size of the network also affects the performance of the schedulers. In this

experiment, the 0.4s TC message interval is adopted. A large network consists of 4

source nodes and 16 processing nodes. Figure 12 and Figure 13 show that in a large

network the completion rate is lower but more energy can be saved. The task completion

rate is 5% lower on average for all four schedulers in a large network. This is due to two

reasons. The first reason is that the large network requires more hops between the source

and the potential processing node. The increased hop count increases the unpredictability

of the transmission time. The second reason is that 4 source nodes increase the workload

of the network as more tasks need be scheduled at the same time. It makes the efficient

scheduling even harder. This is confirmed by the fact that the greedy scheduler has an

8.73% lower task completion rate in large network while the probabilistic scheduler and

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

1 0.8 0.6 0.4 0.2

Round Robin
Scheduler

Greedy Scheduler

Probabilistic
Scheduler

Adaptive Probabilistic
Scheduler

Topology control messages intervals (s)

Av
er

ag
e

en
er

gy
 p

er
 su

cc
es

sf
ul

 ta
sk

 (J
)

41

the adaptive probabilistic scheduler both only have about 5%. With 4 source nodes, there

is a higher chance for the greedy schedulers to send tasks to the same processing node.

Figure 12, Task completion rate in small and large network

 In Figure 13, the average energy per task is 12.5% higher on average for all four

schedulers in the large network. The main reasons are greater transmission energy and

decreased completion rate. The advantage of the adaptive probabilistic scheduler in large

network is more significant. Comparing with other schedulers, the adaptive probabilistic

scheduler reduced 29.3% energy per task on average in the large network while 10.9% in

the small network. The reason is that there are more energy efficient nodes in the large

network. Thus the adaptive probabilistic scheduler can adjust its parameter to choose a

target processing node from a larger set of processing nodes to avoid confliction.

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Round Robin
Scheduler

Greedy
Scheduler

Probabilistic
Scheduler

Adaptive
Probabilistic

Scheduler

Network 1

Network 2

Ta
sk

 c
om

pl
es

tio
n

ra
te

 (%
)

42

Figure 13, Average energy per successful task in small and large network

D. The impact of node mobility

 This experiment explains how the performance is affected by the mobility of the

network. Figure 14 shows that all four schedulers have a lower task completion rate in the

mobile network than in the stationary network. Again, the adaptive probabilistic

scheduler has the highest task completion rate in both stationary and mobile networks due

to its ability to adjust to the changing context. The reason is mobility increase the context

change.

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Round Robin
Scheduler

Greedy
Scheduler

Probabilistic
Scheduler

Adaptive
Probabilistic

Scheduler

Network 1

Network 2

Av
er

ag
e

en
er

gy
 p

er
 su

cc
es

sf
ul

 ta
sk

 (J
)

43

Figure 14, Task completion rate in stationary and mobile network

 Similar situation happens to the average energy per task. The round robin

scheduler consumes 1.4% more energy in the mobile network than in the stationary

network. The greedy scheduler consumes 6.57% more. The probabilistic scheduler

consumes almost the same amount of energy in both networks. The adaptive probabilistic

scheduler consumed 1% less energy in the mobile network. This result shows that the

average energy per task is not heavily affected by the node mobility as to the task

completion rate.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Round Robin
Scheduler

Greedy
Scheduler

Probabilistic
Scheduler

Adaptive
Probabilistic

Scheduler

Staionary

Mobility

Ta
sk

 c
om

pl
es

tio
n

ra
te

 (%
)

44

Figure 15, Average energy per successful task in stationary and mobile network

E. The impact of different task type

 In this experiment, we investigate the performance of these four schedulers with

different task type. First we fix the task data size then vary the computation amount.

There are three workload scenarios: low, medium, and high workload. In low workload

case, the task computation amount is uniformly distributed in [50..150] million

instructions. In medium and high workload cases, the task computation amount in

uniformly distributed in[150..250] million instructions and [250..350] million instructions,

respectively. The average computation amount grows linearly from low workload to high

workload.

1

1.2

1.4

1.6

1.8

2

2.2

Round Robin
Scheduler

Greedy
Scheduler

Probabilistic
Scheduler

Adaptive
Probabilistic

Scheduler

Staionary

Mobility

Av
er

ag
e

En
er

gy
 p

er
 S

uc
ce

ss
fu

l T
as

k
(J)

45

Table 4, Three different workload scenarios

 Average computation amount
(million Instructions)

Data size
(bytes)

Low workload 100 1000
Medium workload 200 1000

High workload 300 1000

 Figure 16 shows that the task completion rate drops with the increasing workload

for all four schedulers. The task completion rate of the round robin scheduler drops

abruptly under heavy workload. The reason is that the round robin scheduler does not

check the context information. This impacts the scheduling results for tasks with heavy

computation amount which require more computation time at processing nodes. The

greedy scheduler drops linearly. The probabilistic scheduler and the adaptive

probabilistic scheduler drop more slowly.

Figure 16, Task completion rate in different workload scenarios

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Light workload Medium
workload

Heavy workload

Round Robin
Scheduler
Greedy Scheduler

Probabilistic
Scheduler
Adaptive Probabilistic
Scheduler

Ta
sk

 C
om

pl
es

tio
n

Ra
te

 (%
)

46

 Figure 17 shows that the average energy per successful task increases for all four

schedulers . The average energy per successful task of the round robin scheduler in heavy

workload scenario is 4.33 times as in low workload scenario. The average energy per

successful task of the other three schedulers in heavy workload scenario is over 8 times

as in low workload scenario. It is related to the square relation between the computational

energy consumption and computation size in Eqn. (5).

Figure 17, Average energy per successful task in different workload scenarios

 Next we vary the task data size and fix the computation amount. There are three

types of data size: small, medium, and large data size. In small data size case, the task

data size is uniformly distributed in [500..1500] bytes. In medium and high workload

cases, the task computation amount in uniformly distributed in [3500..4500] bytes and

[7500..8500] bytes, respectively.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Light workload Medium workload Heavy workload

Round Robin
Scheduler
Greedy Scheduler

Probabilistic Scheduler

Adaptive Probabilistic
Scheduler

Av
er

ag
e

en
er

gy
 p

er
 su

cc
es

sf
ul

 ta
sk

 (J
)

47

Table 5, Three different data size scenarios

 Average data size
(bytes)

 Average computation amount
(million Instructions)

Small data 1000 100
Medium data 4000 100

High data 8000 100

Figure 18 shows that the task completion rate drops when data size increases. All

four schedulers have the similar trend. The reason is with a larger data size, tasks need to

wait longer time for other tasks finish transmitting because of the shared transmission

medium. The inaccuracy of the estimated transmission time in Eqn. (11) increases. From

the medium data size to the large data size, the task completion rate of the adaptive

probabilistic scheduler only decreases by 9.8%. The task completion rate of the round

robin scheduler, the greedy scheduler and the probabilistic scheduler decreases by 12.1%,

16.5% and 12.1%, respectively.

Figure 18, Task completion rate vs. different data size

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Small data size Medium data
size

Large data size

Round Robin
Scheduler
Greedy Scheduler

Probabilistic
Scheduler
Adaptive Probabilistic
Scheduler

Ta
sk

 C
om

pl
es

tio
n

Ra
te

 (%
)

48

 Figure 19 shows that with increasing data size, the average energy per successful

task of all four schedulers is also increased. This is attributed to the decreased task

completion rate and the increased communication energy. From the small data size to the

large data size, the average energy per successful task of the round robin scheduler is

increased 13.87% from small data size to large data size. The greedy scheduler, the

probabilistic scheduler and the adaptive probabilistic scheduler have increase of 20.53%,

23.07% and 25.66%, respectively. The adaptive probabilistic scheduler has the greatest

energy increase because it tends to choose the more powerful processing nodes to

improve the task completion rate when failed tasks occur, which explains why in Figure

18 the adaptive probabilistic scheduler has the smallest decrease in task completion rate.

Figure 19, Average energy per successful task vs. different data size

F. Summary

First, the results in this chapter show how control message frequency affects the

performance of four schedulers. Next the performance of four schedulers in local mobile

0

0.5

1

1.5

2

2.5

Small data size Medium data size Large data size

Round Robin
Scheduler
Greedy Scheduler

Probabilistic Scheduler

Adaptive Probabilistic
Scheduler

Av
er

ag
e

En
er

gy
 p

er
 S

uc
ce

ss
fu

l T
as

k
(J)

49

clouds with different network scenarios is evaluated. Then the influence of different task

types on performance of four schedulers is investigated.

The round robin scheduler does not rely on the context information. It assigns

tasks evenly to all nearby processing nodes which yield to a high completion rate as well

as high energy consumption. When the computation workload increases, the completion

rate of the round robin scheduler drops abruptly. By adjusting the frequency of the

control messages which carry the context information, the improvement is obtained in the

other three schedulers. The greedy scheduler suffers from low task completion rate

because multiple tasks tend to be scheduled to the same processing node. This situation is

even more obvious as the number of source nodes increases. The probabilistic scheduler

provides higher task completion rate than the greedy scheduler. For most cases it also

achieves a low average energy per task compared to the greedy scheduler. It reduces the

possibility that more than one task is assigned to the same processing node. The adaptive

probabilistic scheduler further improves the task completion rate by dynamically

adjusting the set of potential processing nodes. It achieves highest task completion rate

and the lowest average energy per successful task, which makes it an efficient task

scheduler in local mobile clouds.

50

CHAPTER 6 CONCLUSION AND FUTURE WORK

A. Conclusion

In this thesis, we propose an adaptive probabilistic task scheduler for real-time

applications in local mobile clouds. Based on QoS OLSR, source nodes receive

periodical control messages to discover and update nearby resource information. The

scheduler first estimates the task completion time and energy consumption at each

potential processing node based on the context information collected through the

modified QoS OLSR. Next, it schedules the current task to the proper processing node in

a probabilistic way. Then it adaptively adjusts its time margin parameter to improve

performance under the unpredictable network conditions.

Overall, the observed experimental results confirm that the adaptive probabilistic

scheduler is able to reduce the average energy per successful task while maintain a high

task completion rate. Furthermore, the performance benefit is more significant when the

number of source nodes increases. In addition, the proposed scheduler can adjust itself to

work for both stationary and mobile network scenarios. It also shows high adaptability

with different task types. The adaptive probabilistic scheduler is a promising approach for

real-time applications due to its scalability and flexibility in local mobile cloud.

B. Future work

Future work will include experiments using the more complex computation model

at processing nodes. For example, each processing node may have multiple cores so that

multiple tasks can be executed on one processing node simultaneously. How to utilize the

parallel computation resources to further improve the scheduling performance is an

interesting topic to be investigated.

51

Each task is only allowed to be scheduled once in the thesis. Future study could

be explored to improve the performance of local mobile clouds by adding a rescheduling

phase for tasks with high failure probability. By doing so, we could expect a higher task

completion rate.

52

REFERENCE

[1] Gartner: the world's leading information technology research and advisory company.
[Online]. http://www.gartner.com/

[2] Eduardo Cuervo et al., "MAUI: making smartphones last longer with code offload," in
Proceedings of the 8th international conference on Mobile systems, applications, and
services, 2010, pp. 49-62.

[3] Yamini Nimmagadda, Karthik Kumar, Yung-Hsiang Lu, and C. S. George Lee, "Real-time
Moving Object Recognition and Tracking Using Computation," in The 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2010, pp. 2449-2455.

[4] Roelof Kemp et al., "eyeDentify: Multimedia Cyber Foraging from a Smartphone," in ISM '09
Proceedings of the 2009 11th IEEE International Symposium on Multimedia, 2009, pp. 392-
399.

[5] Tim Verbelen, Pieter Simoens, De Turck Filip, and Dhoedt Bart, "Cloudlets: Bringing the
Cloud to the Mobile User," in Proceedings of the third ACM workshop on Mobile cloud
computing and services, 2012, pp. 29-36.

[6] Romano Fantacci, Daniele Tarchi, and Andrea Tassi, "A novel routing algorithm for mobile
pervasive computing," in Global Telecommunication Conferrence, 2010, pp. 1-5.

[7] Shu Shi, Cheng-Hsin Hsu, Klara Nahrstedt, and Roy Campbell, "Using graphics rendering
contexts to enhance the real-time video coding for mobile cloud gaming," in MM '11
Proceedings of the 19th ACM international conference on Multimedia, 2011, pp. 103-112.

[8] Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava, "A Survey of Computation
Offloading for Mobile Systems," in Mobile Networks and Applications, 2013, pp. 129-140.

[9] Asaf Cidon, Tomer M London, Sachin Katti, Christos Kozyrakis, and Mendel Rosenblum,
"MARS: adaptive remote execution for multi-threaded mobile devices," in MobiHeld '11
Proceedings of the 3rd ACM SOSP Workshop on Networking, Systems, and Applications on
Mobile Handhelds, Article No. 1.

[10] E.E. Marinelli, "Hyrax: cloud computing on mobile devices using MapReduce," in Masters
Thesis, Carnegie Mellon University, 2009.

[11] Suraj Sindia et al., "MobSched: Customizable Scheduler for Mobile Cloud Computing," in
45th Southeastern Symposium on System Theory, 2013, pp. 129-134.

53

[12] Xiaoshuang Lu, Hossam Hassanein, and Selim Akl, "Energy aware dynamic task allocation in
mobile ad hoc networks," in International Conference on Wireless Networks
Communications and Mobile Computing, 2005, pp. 534-539.

[13] Omnet++ community site. [Online]. http://www.omnetpp.org/

[14] Amazon elastic compute cloud (EC2). [Online]. http://aws.amazon.com/ec2/

[15] Apple iCloud. [Online]. https://www.icloud.com/

[16] Apple Siri. [Online]. http://www.apple.com/ios/siri/

[17] Gonzalo Huerta-Canepa and Dongman Lee, "A virtual cloud computing provider for mobile
devices," in Proceeding MCS '10 Proceedings of the 1st ACM Workshop on Mobile Cloud
Computing & Services: Social Networks and Beyond, Article No. 6, 2010.

[18] Emiliano Miluzzo, Ramón Cáceres, and Yih-Farn Chen, "Vision:mClouds – Computing on
Clouds of Mobile Devices," in MCS '12 Proceedings of the third ACM workshop on Mobile
cloud computing and services, June 2012, pp. 9-14.

[19] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies, "The Case for
VM-Based Cloudlets in Mobile Computing," IEEE Pervasive Computing, vol. 8, no. 4, pp. 14-
23, October 2009.

[20] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani, "Energy
consumption in mobile phones: a measurement study and implications for network
applications," in IMC '09 Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement conference, 2009, pp. 280-293.

[21] Apache. Hadoop. [Online]. http://hadoop.apache.org/

[22] Gonzalo Huerta-Canepa and Dongman Lee, "A virtual cloud computing provider for mobile
devices," in MCS '10 Proceedings of the 1st ACM Workshop on Mobile Cloud Computing &
Services: Social Networks and Beyond, 2010.

[23] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti,
"CloneCloud: elastic execution between mobile device and cloud," in EuroSys '11
Proceedings of the sixth conference on Computer systems, 2011, pp. 301-314.

54

[24] Tolga Soyata, Rajani Muraleedharan-Sreekumaridevi, Colin Funai, Minseok Kwon, and
Wendi Heinzelman, "Cloud-Vision: Real-time Face Recognition Using a Mobile-Cloudlet-
Cloud Acceleration Architecture," in 17th IEEE Symposium on Computers and
Communications, 2012, pp. 59-66.

[25] Karthik Kumar and Yung-Hsiang Lu, "Cloud Computing for Mobile Users: Can Offloading
Computation Save Energy?," Computer, vol. 43, no. 4, pp. 51 - 56, April 2010.

[26] Ye Huang, Nik Bessies, Peter Norrington, Pierre Kuonen, and Beat Hirsbrunner, "Exploring
decentralized dynamic scheduling for grids and clouds using the community-aware
scheduling algorithm," Future Generation Computer Systems, vol. 29, no. 1, pp. 402-415,
January 2011.

[27] Volker Hamscher, Uwe Schwiegelshohn, Achim Streit, and Ramin Yahyapour, "Evaluation of
Job-Scheduling Strategies for Grid Computing," in GRID '00 Proceedings of the First
IEEE/ACM International Workshop on Grid Computing, 2000, pp. 191-202.

[28] Vijay Subramani, Rajkumar Kettimuthu, Srividya Srinivasan, and P Sadayappan, "Distributed
job scheduling on computational Grids using multiple simultaneous requests," in
Proceedings of 11th IEEE International Symposium on High Performance Distributed
Computing , 2002, pp. 359 - 366.

[29] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta Jetcheva, "A
performance comparison of multi-hop wireless ad hoc network routing protocols," in
MobiCom '98 Proceedings of the 4th annual ACM/IEEE international conference on Mobile
computing and networking, 1998, pp. 85-97.

[30] Ahmed Helmy, "Efficient Resource Discovery in Wireless AdHoc Networks: Contacts Do
Help," in Resource Management in Wireless Networking.: New York : Springer, 2005, vol.
16, pp. 419-471.

[31] Hakim Badis and Khaldoun Al Agha, "QOLSR, QoS routing for ad hoc wireless networks using
OLSR," Wiley European Transactions on Telecommunications, vol. 15, no. 4, pp. 427-442,
2005.

[32] T Clausen and P Jacquet. (2003, October) Optimized link state routing protoco (OLSR).
[Online]. http://www.ietf.org/rfc/rfc3626.txt

[33] Ahmad Afsahi Ryan E. Grant, "Power-Performance Efficiency of Asymmetric
Multiprocessors for Multi-threaded Scientific Applications," in IPDPS'06 Proceedings of the
20th international conference on Parallel and distributed processing, 2006, pp. 25-29.

55

[34] Murali Annavaram, Ed Grochowski, and John Shen, "Mitigating Amdahl's Law through EPI
Throttling," in Proceedings of the 32nd annual international symposium on Computer
Architecture, 2005, pp. 298-309.

[35] P. Jacquet T. Clausen. (2003, October) Optimized Link State Routing Protocol (OLSR).
[Online]. http://www.ietf.org/rfc/rfc3626.txt

[36] Christian Frank and Holger Karl, "Consistency challenges of service discovery in mobile ad
hoc networks," in MSWiM '04 Proceedings of the 7th ACM international symposium on
Modeling, analysis and simulation of wireless and mobile systems, 2004, pp. 105-114.

[37] Stefanos Zachariadis, Cecilia Mascolo, and Wolfgang Emmerich, "The SATIN Component
System-A Metamodel for Engineering Adaptable Mobile Systems," IEEE Transactions on
Software Engineering, vol. 32, no. 11, pp. 910-927, November 2006.

[38] Trevor Mudge, "Power: A First-Class Architectural Design Constraint," Computer, vol. 34,
no. 4, pp. 52-58, April 2001.

[39] C Lee, A Helal, N Desai, and B Arslan, "Konark: A System and Protocols for Device
Independent, Peer-to-Peer Discovery and Delivery of Mobile Services," the IEEE Transaction
on Systems, Man and Cybernatics, vol. 33, no. 6, pp. 682-696, November 2003.

[40] M. Reza Rahimi, Nalini Venkatasubramanian, Sharad Mehrotra, and Athanasios V. Vasilakos,
"MAPCloud: Mobile Applications on an Elastic and Scalable 2-Tier Cloud Architecture," in
UCC '12 Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and
Cloud Computing, 2012, pp. 83-90.

[41] Mahadev Satyanarayanan, "Mobile computing: the next decade," in MCS '10 Proceedings of
the 1st ACM Workshop on Mobile Cloud Computing & Services: Social Networks and
Beyond, Article No. 5, 2010.

56

CV

Ting Shi

Degrees

2014 University of Nevada, Las Vegas (UNLV)
 Master of Science (M.S.) in Electrical Engineering

Major in Electrical and Computer Engineering

2008 Tianjin University (TJU), Tianjin, China
Bachelor of Science (B.S.) in Engineering
Major in Electriconic Engineering

Honors and Awards

The Academic Success Center Employee Award Outstanding Graduate Assistant (2014)

Work Experience

2011~2013 Graduate Teaching Assistant, University of Nevada Las Vegas

2008~2010 3G Wireless Engineer, Huawei Technologies Co., Ltd

Thesis title

An Energy-Efficient, Time-Constrained Scheduling Scheme In Local Mobile Cloud

Thesis Examination Committee

Chair, Mei Yang, Ph.D
Committee member, Yingtao Jiang, Ph.D
Committee member, Ebrahim Saberinia, Ph.D
Graduate College Faculty Representative, Hui Zhao, Ph.D

	An Energy-Efficient, Time-Constrained Scheduling Scheme in local mobile cloud
	Repository Citation

	Microsoft Word - Thesis v5 print 4 copies revision

