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ABSTRACT 

 Mobile devices have limited resource, such as computation performance and 

battery life. Mobile cloud computing is gaining popularity as a solution to overcome 

these resource limitations by sending heavy computation to resourceful servers and 

receiving the results from these servers. Local mobile clouds comprised of nearby mobile 

devices are proposed as a better solution to support real-time applications.  Since network 

bandwidth and computational resource is shared among all the mobile devices, a 

scheduling scheme is needed to ensure that multiple mobile devices can efficiently 

offload tasks to local mobile clouds, satisfying the tasks’ time constraint while keeping 

low-energy consumption. Two critical challenges need to be solved: (1) estimation of the 

energy consumption and completion time for tasks to be scheduled, (2) schedule the tasks 

from multiple source nodes to an appropriate device to accomplish the computation and 

receive the results. 

In this thesis, the adaptive probabilistic task scheduler for local mobile clouds is 

proposed. The scheduler relies on periodic network messages to discover neighboring 

computation and network resources. It first estimates the completion time and energy 

consumption at each potential processing node. Next, it schedules the current task to the 

proper processing node in a probabilistic way and adaptively adjusts its time margin to 

improve performance under the unpredictable network condition. Comparing with other 

existing scheduling schemes, the experimental results confirm that the proposed 

scheduler achieves highest task completion rate and the lowest average energy per 

successful task. In addition, the proposed scheduler is able to accommodate different 

types of tasks and network scenarios.  
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CHAPTER 1 INTRODUCTION 

Mobile devices have become a crucial part of our daily life nowadays. More than 

1.99 billion mobile phones  and tablets will be sold worldwide in 2013, according to 

Gartner’s analysts [1]. As the capabilities of mobile devices advance (in terms of CPU 

power, network connectivity and sensors), people increasingly use them for the tasks 

such as emailing, web surfing, gaming etc. Although there have been many advances in 

technology, mobile devices will still be resource poor, as restrictions on weight, size, 

battery life, and heat dissipation impose limitations on computational resources and make 

mobile devices more resource constrained than their non-mobile counterparts. One 

solution to overcome these resource limitations is mobile cloud computing, which allows 

the mobile device to offload the tasks to more powerful resource devices (i.e., servers), as 

shown in Figure 1. 

 

 

Figure 1, Mobile cloud computing architecture 
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A. Overview of mobile cloud computing 

Offloading aims at augmenting the mobile device’s capabilities by using resource 

providers other than the mobile device itself to host the execution of mobile applications. 

Since offloading migrates computation to more resourceful computers, it involves 

making decisions regarding whether and what computation to offload. Therefore, the key 

challenge is to carry out a cost-benefit analysis to weigh the benefits of offloading against 

the cost of remote execution with user specific requirement. The decisions are usually 

made by analyzing parameters including bandwidths, server speeds, available memory, 

server loads and the amount of data exchanged between servers and mobile systems. 

To implement the offloading scheme, two components are used in the mobile 

device as introduced in [2]. One is profiler, the other one is scheduler. The profiler 

measures the device characteristics at initialization time, and it continuously monitors the 

device and network characteristics which can often change. A stale measurement may 

cause a wrong offloading decision. The scheduler uses the data collected by the profiler 

as input to a task scheduling problem to determine whether to offload the current task and 

which resource provider to choose. 

Offloading becomes an attractive solution for meeting stringent response time 

requirement in mobile systems as applications become increasingly complex. For 

example, in real-time moving object recognition and tracking system [3], a robot needs to 

recognize an object then adjust its speed and direction to track the object’s movement. If 

the robot’s processor is too slow, the recognition computation might not be able to be 

completed before the object moves out of the surveillance range. Much research has been 

done in mobile cloud to enable the mobile devices to run real-time applications such as 
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object recognition [4], augmented reality [5], disaster forecast [6], and real-time video 

coding [7]. 

Energy consumption is another factor which needs to be taken into consideration 

when designing mobile cloud systems. Even though battery technology has been steadily 

improving, it has not been able to keep up with the rapid growth of power consumption 

of these mobile systems. Energy is still a primary constraint for mobile systems. 

Therefore, offloading is also used to save energy by migrating the computation tasks with 

high energy consumption to servers. Many scheduling algorithms have been proposed to 

make offloading decisions to improve performance or save energy [8] [9]. 

B. Motivation 

One type of mobile cloud architecture is to connect the mobile device to the 

remote server, which is typically far away from the mobile user. A drawback of this 

architecture is that the high Wide Area Network (WAN) latency makes it unsuitable for 

real-time applications. Another type of mobile cloud architecture is to consider other 

mobile devices themselves also as resource providers of the cloud, forming a mobile 

peer-to-peer network. This network is built based on the Mobile Ad Hoc Network 

(MANET). An MANET does not rely on pre existing infrastructure, such as routers in 

wired network. Instead, each mobile node participates in routing by forwarding data for 

other nodes. To reduce the latency in offloading process in MANETs, it is preferred to 

offload tasks to nearby devices. Therefore the second type of mobile cloud architecture 

will be more suitable to support real-time applications, which demand faster 

responsiveness.  
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In this thesis, we refer to the second type of mobile cloud architecture as the ‘local 

mobile cloud’ as shown in Figure 2. Task scheduling schemes have been investigated in 

[5][6][10] to make offloading more beneficial in local mobile cloud. But existing 

scheduling schemes have several crucial constraints and limitations, including: (a) 

serving only one source node, instead of the entire network [5][11]; and (b) assuming that 

the detailed processing information of each participating mobile node, such as the status 

of local task queue and real-time resource utilization, is known to all the other nodes [12]. 

Furthermore, such a scheduler is also supposed to work in a decentralized manner and be 

able to dynamically adapt to the changes in the network through time. 

 

  

 

 

 

 

 

 

Figure 2, Local mobile cloud architecture 

 

The focus of this thesis is to propose a distributed task scheduling scheme which 

allows the source nodes to offload tasks to nearby devices in a local mobile cloud, 

satisfying the tasks’ time constraint while keeping low-energy consumption for real-time 

applications with soft time constraint. To develop such a scheduling scheme, two critical 

Source node

Processing node
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challenges need to be solved: (1) estimation of the energy consumption and completion 

time for tasks to be scheduled according to the current network condition, (2) schedule 

and assign the tasks from multiple users to appropriate devices to accomplish the 

computation.  

C. Introduction to this thesis 

In this thesis, the task scheduling problem under time constraint is investigated. A  

QoS OLSR-based scheme is used to disseminate the workload, computation ability and 

energy status of each potential target node periodically so that context change is updated 

on time. An adaptive probabilistic task scheduler is proposed, which is a promising 

approach for real-time applications due to its scalability and flexibility in local mobile 

cloud. The scheduler relies on periodic network messages to discover neighboring 

computation and network resources and keep track of topological changes as well as 

resource updates in the network. It first estimates the completion time and energy 

consumption at each potential processing node. Next, it schedules the current task to the 

proper processing node in a probabilistic way and adaptively adjusts its time margin to 

improve performance under the unpredictable network condition. A simulation model of 

local mobile clouds has been implemented on OMNET++ [13] to comprehensively 

evaluate the performance of the proposed scheduler and analyze the overhead cost and 

the improvement gained. 

This thesis is organized as follows. Chapter 2 summarizes the related work done 

for mobile clouds and also lists challenges to provide cloud services in MANET.  
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Chapter 3 first introduces the network model and task model. Then the task 

scheduling problem in local mobile clouds is formulized. A motivating example is given 

to explain the need for the efficient scheduler in local mobile clouds. 

In Chapter 4, the adaptive probabilistic scheduling scheme in local mobile clouds 

is proposed. It has two parts, 1) the resource discovery scheme, and 2) the adaptive 

probabilistic scheduling algorithm. Two parts are described separately. An illustrative 

example is given to demonstrate the difference between the proposed scheme and other 

scheduling algorithms. 

In Chapter 5, the simulation environment and parameter settings in our simulation 

is introduced. The performance results are presented to compare the proposed task 

scheduling scheme with other task scheduling schemes. Experiment 1 evaluates the 

overhead generated by the resource discovery and how the resource discovery scheme 

affects the performance of different schedulers in the local mobile cloud. Experiment 2 

shows how the number of the mobile nodes in the local mobile cloud affects the 

performance. Experiment 3 compares the performance of different schedulers in 

stationary scenario and in mobile scenario. Experiment 4 shows the performance of 

different schedulers with different types of the tasks. 

Chapter 6 concludes the thesis and suggests the future work. 
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CHAPTER 2 LITERATURE REVIEW 

In this chapter, the existing research on mobile cloud computing will be reviewed, 

including the following topics: mobile cloud architectures, task-scheduling in mobile 

cloud system and context awareness in mobile clouds. 

A. Mobile cloud architectures 

There are two typical types of mobile cloud architectures nowadays. The first one 

is to connect the mobile device to the remote cloud as in Figure 1. The remote cloud is 

defined as a powerful server or a cluster of computer hardware and software that offer the 

services to the mobile device users. By leveraging infrastructures such as Amazon’s EC2 

cloud [14] or Apple iCloud [15], computationally expensive tasks can be offloaded to the 

cloud so that the capabilities of mobile devices get improved. For example, Apple Siri 

[16] runs its sophisticated voice recognition feature remotely and then returns the result 

to the user. There is large amount of research regarding implementing this architecture [2] 

[17] [18]. However, as mentioned in Chapter 1, this architecture suffers from the long 

latency. A detailed analysis on why long WAN latencies are a fundamental obstacle in 

mobile clouds can be found in [19]. Another drawback of this architecture is that it relies 

on the Internet access. 3G and WLAN are two most popular ways that mobile devices 

connect to the internet. 3G covers larger area but consumes more energy while WLAN 

consumes less energy but the transmission range is limited [20]. It is not practical to 

expect that a good Internet connection is always available. Let alone in battle field, 

disaster scene and rural area where no Internet access is present but intensive 

computations are still needed. 
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 Therefore, a local mobile cloud would be a better alternative to the remote cloud. 

A local mobile cloud is defined as the collective resources of the various mobile devices 

in the local vicinity which are utilized as service providers. The advantages of offloading 

work with local nearby resources versus a remote cloud would be:  

• It does not rely on the Internet to connect to remote servers; 

• It can be easily deployed in different scenario; 

• Connection to nearby devices results in less latency. 

 Hyrax [10] explores the possibility of using a cluster of mobile phones as resource 

providers and shows the feasibility of such a local mobile cloud. It is implemented for the 

Android smartphones based on ported Hadoop [21]. In Hyrax, a central server is 

connected to each mobile device and coordinates data and tasks without doing any of the 

processing. The mobile devices communicate with each other on an isolated 802.11g 

network. Another framework based on Hadoop is presented in [22]. The system’s 

offloading manager module organizes sending and receiving tasks to and from processing 

nodes and creating virtual machines on them. The processing time is actually less than if 

executed on a single mobile device. Energy consumption is claimed to be reduced since 

energy consumption is proportional to the processing time. 

 A cloudlet architecture is presented in [5] that not only provides a fixed 

infrastructure with the WiFi access point, but also enables ad hoc discovery of devices in 

the vicinity to share resources among each other. The cloudlet infrastructure is not fixed, 

and devices can join and leave the cloudlet at runtime. A mobile device connects to the 

network can register as a service provider. The proposed cloudlet architecture provides a 

middleware framework to support real-time applications, which are managed at 
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component level. Each component is a part of codes need to be executed. When a 

performance constraint violation is detected, actions can be taken such as calculating a 

new deployment (i.e. offloading some resource-intensive components) or adapting 

component configurations (i.e. lowering component quality). The result shows that 

compared with connecting to a remote cloud, cloudlet is more suitable for the real-time 

applications. 

 In above work, there are two common methods related to offloading or/and 

sharing work from mobile devices, partitioning applications and Virtual Machine (VM) 

migration, which are introduced in [2][9][17], respectively. Partitioning applications into 

tasks or components increase the manageability and scheduling efficiency. VM migration 

refers to transferring the memory image of a VM from a source device to the destination 

server without stopping its execution [23]. These are the enabling techniques for 

offloading in mobile clouds. However, they are not the focus of this thesis. Our study is 

focused on the task scheduling under the premise that the application could be partitioned 

into independent ‘offloadable’ tasks. 

B. Task-scheduling in mobile cloud system 

a. Scheduler architecture overview 

 The architecture of a scheduler plays an important role in determining the 

scalability, autonomy, and performance of the system. Majorly there are two categories: 

centralized and decentralized. 

 In a centralized scheduling architecture, such as in [10], the scheduling decisions 

are made by a central controller based on the complete and reliable knowledge of all the 

participating nodes. The centralized scheduler suffers from the following problems: 
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• Single point failure problem; 

• link to the central node is shared among all participating nodes which causes the 

bottleneck problem; 

• unrealistic deployment of the central node in mobile scenarios. Only the mobile nodes 

within the transmission range of the central node can join the local mobile cloud, 

which limits the mobility of the network. 

 Thus, centralized scheduler is not adequate for the mobile cloud system because 

of the nature of the dynamic environment in local mobile clouds.  

  In contrast, decentralized schedulers negate the limitations of centralized 

schedulers with respect to scalability, autonomy, and most importantly the adequacy for 

the dynamic local mobile cloud. It does not rely on one single central node. The 

decentralized scheduler can work as long as a group of mobile nodes are connected, 

which make the deployment much easier. A decentralized scheduling approach assumes 

that each participating node is autonomous and has its own controller that derives its 

scheduling decision based on its policies. However, if the decisions are taken by several 

independent nodes, it might be the case that these units aim at optimizing their own 

objectives rather than the performance of the system as a whole. Such situations call for 

models and techniques that take the strategic behavior of individual units into account, 

and simultaneously keep an eye on the global performance of the system. 

b. Scheduling objective in mobile cloud system 

Generally, schedulers generate the mapping of tasks to resources based on some 

particular objectives. In a local mobile cloud, the assignment of computational tasks to 

different devices plays a vital role in energy conservation and performance 
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improvement. It is the task scheduler’s responsibility to make sure the mobile device 

could benefit from offloading. Various cost/benefit studies have different criteria on 

whether to offload computations to the server. The commonly used scheduling objectives 

in a mobile cloud computing environment are related to the tasks’ completion time and 

energy consumption. 

The Eqn. (1) has been used in different paper [3][24] as a condition for offloading 

to improve tasks completion time: ݏݓ௠ > ݀௜ܤ +  ௦ (1)ݏݓ

Suppose w is the amount of computation and ݀௜ is the size of data needs to be transmitted 

for remote execution. Let ݏ௠ be the speed of the mobile device and ݏ௦ be the speed of the 

server. B is bandwidth between the mobile device and the server. The left side is the time 

needed to execute the task on the mobile device itself. The right side is the time needed to 

execute the task on the server plus the transmission time. Offloading can improve 

performance when execution can be completed faster at the server. 

An analysis aiming to save energy is provided in [25]. Similar to Eqn. (1), 

suppose the task’s computation requires C instructions. Let S and M be the execution 

speed in instructions per second, of the cloud server and the mobile device, respectively. 

The server and mobile device exchange D bytes of data and the network bandwidth is B 

bps. The mobile device consumes, in watts, ௖ܲ for computing, ௜ܲ while being idle, and ௧ܲ௥ 

for sending and receiving data. When the server performs the computation, the amount of 

energy saved is given by 

௖ܲ × ܯܥ − ௜ܲ × ܥܵ − ௧ܲ௥ ×  (2) ܤܦ
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Different scheduling schemes with more complex criteria are proposed in several 

other papers. A customizable task scheduler is proposed in [11] using MapReduce 

framework for local mobile clouds. It is customizable because the user can optimize 

multiple objectives such as power consumption and (or) throughput through adjusting the 

corresponding coefficients in the objective function in Eqn. (3), where ߙଵ, ,ଶߙ ,ଷߙ ,ସߙ  ହߙ

are variable coefficients, ܨଵ is a function of the task processing time on node ݆, ܨଶ is a 

function of task queuing time on node ݆, ܨଷ is a function of the communication cost of 

sending a task from node ݅ to node ݆,	ܨସ is a function of battery level on node ݆, ܨହ is the 

energy consumption of sending a task from node ݅ to node ݆. ܨ(݅) = ଵߙ]݊݅ܯ × ଵ൫ܲܨ ௝ܶ൯ + ଶߙ × ଶ൫ܳ௝൯ܨ + ଷߙ × ([݆݅]݉݉݋ܥ)ଷܨ + ×ସߙ ,௝ܧସ൫ܨ ௝൯ܥ + ହߙ × ݎ݋݂ [([݆݅]݉݉݋ܥܧ)ହܨ ݅, ݆ = 1,2…݊, ݆ ≠ ݅ (3) 

Similar work has been done in [12]. The objective function has two parts: delay 

and energy consumption. Delay includes the task execution time and queuing time at the 

processing node and communication time. Energy consumption consists of computation 

energy consumed at the processing node and communication energy along the path. The 

scheduler can be delay constrained, energy constrained or delay/energy constrained. 

c. Scheduling algorithm 

However, the aforementioned work is only concerned with one mobile device 

connecting to one server scenario. In a local mobile cloud system, there could be multiple 

source devices and multiple servers. 

 In [26], a decentralized dynamic scheduling approach entitled the community 

aware scheduling algorithm (CASA) is introduced for mobile grids. It includes the task 

submission phase and the dynamic scheduling phase, which work together to ensure both 
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a rapid task distribution and an optimized rescheduling process. In the task submission 

phase, the scheduler sends the ‘offloading’ request containing the task information to 

nearby nodes. Nearby nodes which are able to execute this task will reply an ‘accept’ 

message to the source node, in which the response time of the task is included. In this 

paper, the task response time represents the time used between a task’s arrival time until 

the time when the execution result is received. Considering multiple requests from 

different source nodes could exist simultaneously, if all nodes greedily select the 

processing node offering the shortest task response time for the task assignment, then that 

processing node could receive an imbalanced amount of tasks within one CASA 

scheduling cycle, which might increase the response time for some received tasks. In 

order to avoid this effect, the CASA scheduler adopts a probabilistic approach, wherein 

nodes with better computing power are prone to have a chance of receiving more tasks, 

but nodes with less power still have the probability of being selected as the processing 

node. The rescheduling phase is to keep the previous scheduling decision optimized by 

allowing queued tasks to be rescheduled in accordance with the unexpected network 

delay, resource overhead, and task status modification. Comparing with the centralized 

scheduling scheme [27] and the greedy based scheduling algorithm [28], the use of 

CASA can lead to a 30%–61% better average task slowdown, and a 68%–86% shorter 

average task waiting time in a decentralized scheduling manner without requiring 

detailed real-time processing information from participating nodes. 

This work gives us the insight of how to handle multiple source devices. One 

thing not clear is that how each node can get the detailed information from the 

participating nodes to maximize the offloading benefit or to successfully offload. 
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C. Context awareness in mobile cloud 

 In this thesis, context means resource information of nearby nodes, such as power 

information, bandwidth and computational ability. The scheduler with context-awareness 

is able to use contextual information to make scheduling decision and automatically 

reconfigure their configurations to adapt to the context. Context awareness is more 

difficult to achieve in wireless ad hoc networks than in their wired counterparts, because 

the wireless bandwidth is shared among adjacent nodes and the network condition 

changes dynamically.  

 Within the field of local mobile clouds, there are, broadly, two different 

approaches to discover the context information. Reactive schemes request other nodes’ 

information when needed. A node trying to transmit a packet may have to wait for the 

completion of resource discovery. The mobile cloud systems in which source nodes send 

requests to processing nodes and wait for responses work in the reactive way, such as 

[12][26]. As mentioned in [29], a reactive scheme has small resource discovery 

overheads but a longer react time. On the other hand, proactive schemes determine the 

resource status of various nodes in the network in advance, so that the context 

information is already present whenever needed. Resource discovery overhead is large in 

such schemes as one has to send control messages to update all context information 

periodically. Scheduling decision making is faster as the context information is already 

present.  

There is a lot of research in reactive resource discovery scheme in Ad hoc 

network as introduced in [30]. However, considering the tight time constraint set by the 

application, a proactive way is very attractive because it is always ready to use whenever 
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needed. In [6], A QoS OLSR [31][32] based routing scheme is proposed to map 

computationally intensive real-time application to all nearby available resources which 

are heterogeneous and with limited computational capabilities. This work shows the 

feasibility of providing cloud services in MANET. The authors modified the original QoS 

OLSR by adding resource information including CPU type, CPU utilization percentage, 

the allocated memory and battery levels to control messages. Control message are 

broadcasted to the whole network periodically so that all nodes are aware of the resource 

information of other nodes. However, how frequent the routing messages are sent is not 

given in this paper. The context information is updated upon receiving the routing 

messages. The more frequent the routing messages are, the more accurate the context 

information is. A frequent context information update could be big overhead and the 

routing packets’ number and size have a major impact on the local mobile cloud’s 

performance. However, no detailed evaluation about the overhead is given in this work.  

To summarize, current research and implementation work have two crucial 

constraints and limitations, including: (a) scheduling for serving one source node, instead 

of the entire network; and (b) assuming the detailed resource information of each 

participating node, such as the status of local task queue and real-time resource utilization, 

is known. These impede the implementation of mobile cloud system. 
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CHAPTER 3 PROBLEM STATEMENT 

A. Notations and assumptions 

Table 1 lists the notations used in this thesis. 

 

Table 1, Notations 

Symbol Description ܸ Set of all wireless nodes in the local mobile cloud E Set of all wireless links in the local mobile cloud ܩ(ܸ,  in terms of millions of instructions ݑ ௨ Average processing speed of nodeݏ݌݅݉ Undirected topology graph that is composed of node set V and edge set E (ܧ
per second (mips) ݁௨ Average energy consumption per million instructions of node ݎ ݑ௧ Radio transmission range of node ܤ ݑ௨,௩ Bandwidth (in bps) between node ݑ and node ݒ ݁௧ Average energy consumption of node ݑ to transmit one byte ݁௥ Average energy consumption of node ݑ to receive one byte ݐ௤,௨ Queuing time of node ܬ ݑ Set of tasks arriving at ܸ ܦ௝  Data size of task j ܥ௝  Computation amount of task j in number of instructions ௝ܶ Time constraint set for task j ݐ௠௔௥௚௜௡ Time margin used when comparing the estimated task completion time
with ௝ܶ ܲ Set of all processing nodes in the local mobile cloud, ܲ ⊆ ܸ ܵ Set of all source nodes in the local mobile cloud, ܵ ⊆ ܸ 

 

Assumptions: 

1. The tasks are assumed to be computationally intensive, mutually independent, and 

can be executed at any participating processing mobile devices. As soon as a task arrives, 
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it must be assigned to one mobile device for processing. After a task is executed at the 

processing node, the result will be returned to the originating device. 

2. The size of data ܦ௝ needs to be transferred from the source node to the destination 

node is the same as the size of result returned from the destination.  

3. The IEEE 802.11g communication protocol is adopted. The transmission power ݁௧, 
the receiving power ݁௥ and the transmission range ݎ௧ are assumed to be the same among 

all the nodes. The maximum bandwidth ܤ௠௔௫ is 11Mbps and it is shared among adjacent 

nodes. 

4. All nodes in the local mobile cloud are randomly distributed. Any two nodes are 

connected either directly or in an ad hoc way.  

B. Network and task models 

• Network models 

Definition 1.A MANET that consists of a number of wireless nodes can be 

modeled by an undirected communication graph G(V, E). Given a node ݑ ∈ ܸ	 and a 

node ݒ ∈ ܸ , we have (ݑ, (ݒ ∈ ܧ , if and only if ݀݅ݑ)ݏ, (ݒ ≤ ௧ݎ , where ݀݅ݑ)ݏ,  is the (ݒ

Euclidean distance between node ݑ  and node ݒ . That is, to establish a direct 

communication between any two nodes, the distance between them has to be within their 

radio range ݎ௧.  
 The computational ability of the processing node ݑ is denoted by  ݉݅ݏ݌௨ (Million instructions per second). According to [33], Eqn. (4) gives that the power ݁ consumed by a CMOS processor, in watts, is equal to the activity factor ߙ of the system 

(percentage of gates that switch for each cycle, on average 50%) multiplied by the 

capacitance ܥ	of the CPU, the voltage ܸsquared, the frequency ݂.  
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݁ =  ଶ݂ (4)ܸܥߙ

However, historical data [34] suggests that power on modern processors is 

proportional to the square of the duty cycle. Therefore, for this thesis we will use the 

square relation in Eqn. (5), assuming that the CPU’s power consumption per instruction e௨is proportional to the square of its speed, ݉݅ݏ݌௨.  ݁௨ ∝ ௨ଶݏ݌݅݉ (5) 

In each node, t௤,௨is the queuing delay, which refers to the waiting time when the 

task is placed at the end of the queue until the moment the task is processed. 

• Task models 

݆ is a set of tasks arriving at different source nodes, for a task ܬ  ∈  it has the ,ܬ

following attributes: 

 ;௝, size of data to be transferred between the source node and the processing nodeܦ (1

 ;௝, amount of computations to be processedܥ (2

3) ௝ܶ, time constraint of task j. 

 All these attributes of task j are known to the source node when j arrives. 

C. Problem statement 

With the network model and task model, the energy consumption and completion 

time can be calculated. The energy consumption of executing a task includes two parts:  

1) Computation energy, which is the energy dissipated for executing the task by the 

processing node u; ݊݋݅ݐܽݐݑ݌݉݋ܥ ௝ݕ݃ݎ݁݊ܧ = ݁௨ ×  ௝ (6)ܥ

2) Communication energy, which is the energy consumed in communication for the 

offloading process. The communication energy dissipated is proportional to the amount 
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of data transmitted or received. ܪ(݆)  is the hop count from the source node to the 

processing node. ݊݋݅ݐܽܿ݅݊ݑ݉݉݋ܥ ௝ݕ݃ݎ݁݊ܧ = 2 × (݆)ܪ × (݁௧ + ݁௥) ×  ௝ (7)ܦ

 The total energy ܶܽ݇ݏ	ݕ݃ݎ݁݊ܧ௝  consumed by task j is the summation of these 

two types of energy: ܶܽ݇ݏ	ݕ݃ݎ݁݊ܧ௝ = ݊݋݅ݐܽݐݑ݌݉݋ܥ	 ௝ݕ݃ݎ݁݊ܧ +  ௝ (8)ݕ݃ݎ݁݊ܧ	݊݋݅ݐܽܿ݅݊ݑ݉݉݋ܥ

 The total energy consumed by all the n tasks is: 

ݕ݃ݎ݁݊ܧ	݈ܽݐ݋ܶ = ෍ܶܽ݇ݏ ௝௡ݕ݃ݎ݁݊ܧ
௝ୀଵ  (9) 

The completion time of a task contains three parts: 

 which is the waiting time before task can ,ݑ ௤,௨: queuing time at the processing nodeݐ •

be executed; 

௘௫௘௖௨௧௜௢௡ݐ  ;௘௫௘௖௨௧௜௢௡: the execution time for the task at the processing node uݐ • =  ௨ (10)ݏ݌݅݉/௝ܥ

 ௧௥௔௡௦௠௜௧௜௢௡: the time needed to transmit the data between the source and destinationݐ •

nodes. ݐ௧௥௔௡௦௠௜௧௜௢௡ = 2 × (݆)ܪ) − 1) ×  ௨,௩ (11)ܤ/௝ܦ

The completion time of the task j when it is offloaded to node u is the total of the 

three parts: ܶܽ݇ݏ	݊݋݅ݐ݈݁݌݉݋ܿ ௝݁݉݅ݐ = ௤,௨ݐ + ௘௫௘௖௨௧௜௢௡ݐ +  ௧௥௔௡௦௠௜௧௜௢௡ (12)ݐ

A task is successfully scheduled if it is completed before its deadline, satisfying 

Eqn. (13); otherwise, it is failed. 
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݇ݏܽܶ ݊݋݅ݐ݈݁݌݉݋ܿ ௝݁݉݅ݐ < ௝ܶ (13) 

Let n be the total number of tasks. We define the following two metrics to 

evaluate the task scheduling result. ݊݋݅ݐ݈݁݌݉݋ܥ	݁ݐܴܽ = ݎܾ݁݉ݑܰ ݂݋ ݈ݑ݂ݏݏ݁ܿܿݑܵ ݈ݑ݂ݏݏ݁ܿܿݑܵ		ݎ݁݌	ݕ݃ݎ݁݊ܧ	݁݃ܽݎ݁ݒܣ (14) ݊/ݏ݇ݏܽܶ ݇ݏܽܶ = ݈ܽݐ݋ܶ ݎܾ݁݉ݑܰݕ݃ݎ݁݊ܧ ݂݋  (15) ݏ݇ݏܽܶ	݈ݑ݂ݏݏ݁ܿܿݑܵ

We formulize the scheduling problem in a local mobile cloud as: Given the 

mobile network G(V, E) with a set of source nodes S a a set of tasks J to be scheduled, 

then schedule these tasks from one or multiple source nodes to processing nodes, with the 

objective of  

Minimize:                    ݁݃ܽݎ݁ݒܣ	ݕ݃ݎ݁݊ܧ	ݎ݁݌	݈ݑ݂ݏݏ݁ܿܿݑܵ	݇ݏܽܶ 

Subject to:                   ܤ௨,௩ ≤ ,௠௔௫ܤ ∀݁ = ,ݑ) (ݒ ∈ ෍ (16) ,ܧ ௝,௨௨∈௉ݔ = 1, ∀݆ ∈ ,ܬ ௝,௨ݔ ∈ (0,1) (17) 

ܲ ⊆ ܸ, ܵ ⊆ ܸ, ܲ ∩ ܵ = ∅, ܲ⋃ܵ = ܸ (18) 

 Constraint (16) ensures no link capacity is violated. Constraint (17) ensures that a 

task is scheduled only once. Constraint (18) states that a node in the local mobile cloud is 

either a processing node or a source node. 

D. Motivation example in local mobile clouds 

 

 

Figure 3, Sample local mobile cloud 
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s0 n2

n1

n3s1



 

21 
 

We use one simple example to illustrate the motivation for an effective scheduler 

in the local mobile cloud. Consider the case in Figure 3, there are two source nodes 

running real-time applications. The applications can be partitioned into tasks, which are 

computationally intensive and are executable in all processing nodes n0 to n3. The 

challenges are listed as follows. 

• Scheduling of tasks from multiple source nodes schedule to the same processing node 

Having the same context information about the network, it is possible that 

multiple source nodes schedule tasks to the same processing node when they make 

scheduling decision at the same time. Assuming all tasks need to be executed in 

processing node serially in a first come first serve way, this will cause the unpredictable 

completion time for the tasks which arrive later. In Figure 3, in terms of task completion 

time, ݐ(݊ଷ) < (ଶ݊)ݐ < (ଵ݊)ݐ <  ,If both s0 and s1 schedule their current task to n3 .(଴݊)ݐ

it is possible that n3 is only able to complete one task before deadline; therefore the 

second arrived task will not be finished in time. The scheduling scheme shall be designed 

to avoid this type of confliction. The probabilistic scheduling algorithm CASA [26] 

relieved this issue by choosing the processing node in a probabilistic way. In CASA, ݊௜ is 

chosen as the processing node with probability ߩ௜, which is proportional to 
ଵ௧(௡೔). Assume 

n3 and n2 are potential processing nodes, the source node still has the higher chance to 

schedule the current task to n3, but the probability that both source nodes schedule their 

current task to the same processing node is reduced to ߩଷଶ +  .ଶଶߩ

• Estimation of the bandwidth resource along the path 

According to Eqn. (1), bandwidth plays an important role when calculate the 

estimated transmission time. Considering the situation that s0 offloads task to n3 and s1 
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offloads to n4, the transmission path from n1 to n2 is shared. No matter the transmission 

works in FIFO fashion or multiple access technique is used here, at least one of the 

transmissions has to be delayed. This delay may also cause the task not to be finished 

before deadline. Therefore instead of using fixed bandwidth information, the scheduler 

should adapt to the constantly changing bandwidth condition. 

To summarize, without specifically considering an effective scheduling scheme 

for multiple sources and a method to get the context information, it is impossible to 

achieve intended improvement in local mobile clouds. The situation is even more 

complicated when the size of the local mobile cloud gets large. In this thesis, propose the 

adaptive probabilistic scheduler for local mobile clouds. It relies on the QoS OLSR 

routing scheme to provide periodic context information. It inherits the probabilistic 

scheduling algorithm but allows adaptive reconfiguration to improve performance under 

the unpredictable network condition.  
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CHAPTER 4 THE PROPOSED ADAPTIVE PROBABILISTIC TASK SCHEDULER 

To solve the above task scheduling problem, we propose a distributive adaptive 

probabilistic scheduler which consists of two phases, namely the resource discovery 

phase and the adaptive probabilistic scheduling phase. In the resource discovery phase, 

source nodes are able to get the context information about the nearby processing nodes. 

In the adaptive probabilistic scheduling phase, the scheduler will choose one processing 

node to execute the task j. These two phases work together to ensure the performance in 

local mobile clouds gets improved.  

A. Phase I: Resource discovery phase 

 The proposed resource discovery scheme is based on QoS OLSR [31].  There are 

two kinds of control messages carrying resource information: 

• Modified Hello Messages, which are sent locally (i.e. broadcasted to one-hop 

neighbors) to enable a node to discover its local neighborhood (as HELLO messages 

in the QoS OLSR protocol [31] );  

• Modified Topology Control (TC) Message, which are sent to the entire network 

through Multipoint Relay (MPR) nodes [32] to allow the distribution of the topology 

and context information to all the nodes (as TC messages in the QoS OLSR protocol 

[31]). 

 Note that both two types of messages are sent periodically. The emission interval 

should be a variable related to how fast the network changes. The faster the network 

changes, the shorter the emission interval should be. According to [32], the emission 

intervals for the original Hello massages and the original TC massages are 2s and 5s. The 

emission intervals of the Modified Hello Messages and the Modified TC massages are 
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going to be short considering the tight time constraint set by the applications. How the 

emission intervals affect the performance in local mobile cloud is to be evaluated in 

Chapter 5. 

 Our proposal is toward an extension of the routing table by adding the following 

parameters of each neighbor node into the two types of control messages: 

• Device parameter: indicate the processing speed ݉݅ݏ݌௨  and energy consumption 

coefficient ݁௨ of node ݑ. 

• Queue length: current queue time ݐ௤,௨ at node ݑ. 

The basic layout of any packet in QoS OLSR is as follows (omitting IP and UDP 

headers): 

       0               1               2               3 
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |         Packet Length         |    Packet Sequence Number     | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |  Message Type |     Vtime     |         Message Size          | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |                      Originator Address                       | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |  Time To Live |   Hop Count   |    Message Sequence Number    | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |                                                               | 
      :                            MESSAGE                            : 
      |                                                               | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |  Message Type |     Vtime     |         Message Size          | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |                      Originator Address                       | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |  Time To Live |   Hop Count   |    Message Sequence Number    | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |                                                               | 
      :                            MESSAGE                            : 
      |                                                               | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      :                                                               : 

 

 The description of each field can be found in [35]. The ‘MESSAGE’ field carries 

the control message. The difference between original control messages and modified 

control messages are given below: 
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Original Hello Message: 

       0               1               2               3 
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |          Reserved             |     Htime     |  Willingness  | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |   Link Code   |   Reserved    |       Link Message Size       | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |                  Neighbor Interface Address                   | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |                  Neighbor Interface Address                   | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      :                             .  .  .                           : 
      :                                                               : 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |   Link Code   |   Reserved    |       Link Message Size       | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |                  Neighbor Interface Address                   | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |                  Neighbor Interface Address                   | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      :                             .  .  .                           : 
       

 This is sent as the data-portion of the general packet format with the "Message 

Type" set to HELLO_MESSAGE and the Time to Live (TTL) field set to 1. 

Modified Hello Message: 

       0               1               2               3   
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |          Reserved             |   Htime       |  Willingness  |  
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |   Link Code   |   Reserved    |       Link Message Size       | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |        Device parameter       |       Queue Length            | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |                  Neighbor Interface Address                   | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |                  Neighbor Interface Address                   | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      :                             .  .  .                           : 
      :                                                               : 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |   Link Code   |   Reserved    |       Link Message Size       | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |                  Neighbor Interface Address                   |  
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |                  Neighbor Interface Address                   |  
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      :                             .  .  .                           : 

 

By adding device type and queue length, the current context information of the 

node can be updated at its neighboring nodes.               
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Original Topology Control (TC) Message: 

       0               1               2               3 
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |              ANSN             |           Reserved            | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |               Advertised Neighbor Main Address                | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |               Advertised Neighbor Main Address                | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      :                             .  .  .                           : 

       
This is sent as the data-portion of the general message format with the "Message 

Type" set to TC_MESSAGE. The TC Message can be diffused into the entire network. 

By varying the TTL value, the size of the network can be controlled. Only those 

processing nodes chosen to be MPR nodes will send and relay the TC message. 

‘Advertised Neighbor Main Address’ field contains the main address of a neighbor node.  

Modified Topology Control Message: 

       0               1               2               3 
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |              ANSN             |           Reserved            | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |        Device parameter       |       Queue Length            | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |               Advertised Neighbor Main Address                | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |        Device parameter       |       Queue Length            |     
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      |               Advertised Neighbor Main Address                | 
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
      :                             .  .  .                           : 

 
The modified TC Messages not only tell who its neighbors are but also carry its 

neighbors’ context information. Having the modified control messages, each node can 

find other nodes’ information by using a distributed algorithm shown in Figure 4. After 

executing the algorithm listed in Figure 4, all nodes in the network shall obtain a neighbor 

table in its local memory. 
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Resource Discovery Algorithm 

Input: Control messages(Hello message or  TC message) 
Output: Neighbor table(The table storing the node parameter for each node) 
Function: Handle control messages and update the neighbor table at node u 
Procedure body: 
{ 
initialize the neighbor table 
listen control messages 
if (Message Type== HELLO_MESSAGE) 
{ 
               update the neighbor table 
               if (node u is an MPR node) 
                        construct/update TC message 
 } 
if (Message Type == TC_MESSAGE) 
{ 
               update neighbor table 
               if (node u is an MPR node) 
                        forward the TC message to all of its neighbors 
 } 
} 
 

Figure 4, Resource discovery algorithm 

 

B. Phase II: Adaptive probabilistic scheduling phase 

Each time a source node ݑ  receives a task ݆  submitted by its local user, it 

estimates the energy consumption ܶܽ݇ݏ	ݕ݃ݎ݁݊ܧ௝,௩  and the completion time ܶܽ݇ݏ	݊݋݅ݐ݈݁݌݉݋ܿ	݁݉݅ݐ௝,௩ of task j on every potential processing node ݒ ∈ ܲ. These two 

variables are obtained according to Eqn. (8) and Eqn.(12), respectively. 

The scheduler keeps a set ܲ’ of processing nodes which satisfy Eqn. (19). The 

scheduler will randomly choose one processing node from the set. The probability that 

node ݒ ∈ ܲ′ is chosen to be the processing node is ߩ௩. 
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݊݋݅ݐ݈݁݌݉݋ܿ	݇ݏܽܶ ௝,௩݁݉݅ݐ < ௝ܶ −  ௠௔௥௚௜௡ (19)ݐ

௩ߩ  = ௝௝,௩ݕ݃ݎ݁݊ܧ	݇ݏ1ܶܽ /෍ ݇ݏ1ܶܽ ௝௝,௩௩∈஼ݕ݃ݎ݁݊ܧ  (20) 

 In the dynamic wireless environment, the tasks cannot be guaranteed to be 

completed before deadline. The reasons could be 1) there is still some chance that 

multiple source nodes schedule tasks to one processing at the same time; 2) the 

bandwidth of certain network connection is shared among multiple transmissions while 

Eqn. (11) gives an  optimistic estimation of the transmission time; 3) unexpected network 

event, such as node’s movement changes the routing path of the network or the 

processing node ran out of battery before finishing execution of the task.  

When failure happens, the scheduler can adjust its ௠௔௥௚௜௡ݐ  value to avoid 

continuous future failures. When ܽଵ consecutive failed tasks occur, the time margin will 

be increased by ∆ݐଵ. After receiving aଶ consecutive successful tasks, the scheduler will 

lower the time margin by ∆tଶ. That means when the network condition is degrading, the 

scheduler tends to choose the more powerful processing node at the cost of increasing 

energy consumption. The adaptive probabilistic scheduling algorithm running at each 

source node is given in Figure 5. 

 In this thesis, the proposed scheduling algorithm is compared with other 

scheduling schemes, including: 

• Round robin scheduler: The scheduler assigns tasks in a round robin way. When the 

first task arrives, it is scheduled to the first node in ܲ. It schedules the second task to 

the second node in ܲ, and so on.  
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Adaptively Probabilistic Scheduling Algorithm 
Input: (1) Neighbor table from Phase I, (2) task set J 
Output: Scheduling (Mapping) 
Function: Schedule the tasks to processing node in local mobile cloud 
Procedure Body: 
Set the number of consecutive successful tasks ݊௦ = 0 
Set the number of consecutive failed tasks ݊௙ = 0 
Task ݆ ∈ J arrives at source node u, record current time ݐݎܽݐݏ_ݐ௝. P′ ← ∅ 
//Step 1: find eligible processing nodes 
for each	ݒ ∈ ܲ 
௝,௩݁݉݅ݐ	݊݋݅ݐ݈݁݌݉݋ܿ	݇ݏܽݐ	݀݁ݐܽ݉݅ݐݏܧ          } = ௤,௩ݐ + ௘௫௘௖௨௧௜௢௡ݐ +  ௧௥௔௡௦௠௜௧௜௢௡ݐ

௝,௩ݕ݃ݎ݁݊ܧ	݇ݏܽܶ       = ௝,௩ݕ݃ݎ݁݊ܧ	݊݋݅ݐܽݐݑ݌݉݋ܥ	 +  ௝,௩ݕ݃ݎ݁݊ܧ	݊݋݅ݐܽܿ݅݊ݑ݉݉݋ܥ
       if (݀݁ݐܽ݉݅ݐݏܧ	݇ݏܽݐ	݊݋݅ݐ݈݁݌݉݋ܿ	݁݉݅ݐ௝,௩ < ௖ܶ௢௡௦௧௥௔௜௡௧ −   (௠௔௥௚௜௡ݐ
                                                   ܲ′ = ܲ′ ∪  ݒ
 } 
//Step 2: calculate probability that the eligible processing node being chosen as the processing node. 
for each ݒ ∈ ܲ′ 
௩ߩ                    } = భ೅ೌೞೖ	ಶ೙೐ೝ೒೤ೕ,ೡ∑ భ೅ೌೞೖ	ಶ೙೐ೝ೒೤ೕ,ೡೡ∈ುᇲ  

 } 
Randomly select processing node w based on probability ρ୵ 
//Step 3: schedule j to processing node w and update estimated queue time on node w 
Send j	to ݐ ݓ௤,௪ = ௤,௪ݐ +  ௪ݏ݌௝݉݅ܥ

//Step 4:  
Receive result of task j from the processing node w, record current time ݁ݐ݈݁݉݋ܿ_ݐ௝. ܶܽ݇ݏ	݊݋݅ݐ݈݁݌݉݋ܿ	݁݉݅ݐ௝ = ௝݁ݐ݈݁݉݋ܿ_ݐ −  ௝ݐݎܽݐݏ_ݐ
if (ܶܽ݇ݏ	݊݋݅ݐ݈݁݌݉݋ܿ	݁݉݅ݐ௝ ≤ ௝ܶ){ nୱ++; n୤ = 0; 
} 
else { n୤++; nୱ = 0; 
} 
//Step 5: adaptively adjust ݐ௠௔௥௚௜௡ 
if (n୤ 	> ܽଵ) { ݐ௠௔௥௚௜௡ = ௠௔௥௚௜௡ݐ + ∆tଵ; 
       n୤ = 0; 
} 
If (nୱ > 	ܽଶ) { ݐ௠௔௥௚௜௡ = ௠௔௥௚௜௡ݐ − ∆tଶ; nୱ = 0; 
} 
 

Figure 5, Adaptively probabilistic scheduling algorithm 
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• Greedy scheduler: The scheduler always sends the task to the most energy efficient 

node with the estimated completion time within the time constraint. 

• Probabilistic scheduler: The scheduler keeps a set ܲ′ of the processing nodes 

satisfying	ܶܽ݇ݏ	݊݋݅ݐ݈݁݌݉݋ܿ	݁݉݅ݐ௝,௩ < ௝ܶ. The scheduler will randomly choose one 

processing node from the set ܲ′. The probability that node ݒ ∈ ܲ′is chosen to be 

processing node is calculated according to Eqn. (20). 

 Note that the round robin scheduler does not rely on the context information. As 

mentioned in Chapter 2, most existing greedy schedulers in local mobile cloud didn’t 

consider the context information, for comparison purpose, we use the same proposed 

resource discovery scheme for the greedy scheduler. Probabilistic scheduler is based on 

CASA [26]. The difference between the probabilistic scheduler and the proposed 

adaptive probabilistic scheduler is the former does not have ݐ௠௔௥௚௜௡ .The probabilistic 

scheduler does not adjust itself when failed tasks occur.  

C. An illustrative example 

 We use Figure 6 as an example to demonstrate the difference between different 

schedulers. Related parameters are listed in Table 2. 

 

 

Figure 6, Sample local mobile cloud 
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Table 2, Parameter settings of the illustrative example 

Parameter Value 

Task arrival intervals 0.5s 

Task data size 1000B 

Task computation amount 200 million instructions(MI) 

Task time constraint 1s ݁௡଴/݁௡ଵ/݁௡ଶ/݁௡ଷ 0.25/0.16/0.09/0.04  J/MI ݉݅ݏ݌௡଴/݉݅ݏ݌௡ଵ/݉݅ݏ݌௡ଶ/݉݅ݏ݌௡ଷ 500/400/300/200 MI/s 

  

 At the start time t = 0, two source nodes s0 and s1 start receiving tasks. There is 

one task arriving at each source node every 0.5s. For the proposed adaptive probabilistic 

scheduler, ݐ௠௔௥௚௜௡ is initialized to 0s. If one task is unsuccessfully scheduled ݐ௠௔௥௚௜௡ is 

increased by 0.5s; otherwise, ݐ௠௔௥௚௜௡ is decreased by 0.5s. 

 Since communication energy is very small comparing to computation energy, we 

ignore the communication energy in this example. We also ignore the transmission time 

for simplicity. The energy consumption for task at the processing nodes n0, n1, n2 and n3 

is 50J, 32J, 18J and 8J according to Eqn. (4), respectively.  

 Figure 7 shows the results of four schedulers. Tasks from different source are 

represented in lines with different colors. Solid line is the execution time while dashed 

line is the waiting time at the processing node. The length of each line is the completion 

time of the task. If the duration of the line is longer than 1s, the task is failed. The 

completion rate and the energy per successful task are listed for each scheduler.  
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Figure 7, Results of the illustrative example 
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CHAPTER 5 NUMERICAL RESULT 

To evaluate the performance of various scheduling algorithms in local mobile 

clouds, extensive simulations are conducted in OMNET++. 

A. Simulation setup 

The simulated local mobile cloud contains a group of nodes, each of which is 

capable of transmitting radio signals up to approximately 40 meters over an 11Mbps 

802.11g wireless channel. Two network scenarios (with different node densities) are 

simulated. The first scenario, referred to as the small network, is created by randomly 

placing 10 nodes in a	200m × 200m area. Among these 10 nodes, 2 nodes are source 

nodes and 8 nodes are processing nodes. The second scenario, referred to as the large 

network, is created by randomly placing 20 nodes in a	200m × 200m area. Among these 

20 nodes, 4 nodes are source nodes and 16 nodes are processing nodes. 

There are two mobility patterns: the first one is the stationary network in which all 

nodes are stationary. The second one is the mobile network in which every mobile node ݑ ∈ ܸ moves within the area according to the following pattern. It moves along a straight 

line for a certain period of time before it makes a turn. This moving period is a random 

number, normally distributed with average of 5 seconds and standard deviation of 0.1 

second. When it makes a turn, the new direction (angle) in which it will move is a 

normally distributed random number with average equal to the previous direction and 

standard deviation of 30 degrees. Its speed is also a normally distributed random number 

ranging from 1 to 3 (m/s). A new such random number is picked as its speed when it 

makes a turn. All nodes can move to a random direction within the area with a speed 

uniformly distributed between 1 m/s and 3 m/s. All nodes have the same initial battery 
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level. The energy of a node is only consumed when the node processes a task or when the 

node transmits/receives a message, which can be calculated using Eqn. (6)-(8). The 

energy consumed in moving is ignored here. 

Tasks are generated on each source node. The task arrival event is a Poisson 

process. Source nodes cannot be chosen to be the MPR nodes or processing nodes. 

Parameters are listed in Table 3. 

 

Table 3, Parameter settings in simulation 

Parameter Value 

Topology Random 

Network area 200m*200m 

Network size Small: 10 nodes /Large: 20 nodes 

Communication range Approximately 40 meters 

Task data size Varying from 1000 B to 8000 B  

Task computation amount Varying from 50 MI to 350 MI 

Task time constraint 0.5s 

Task arrival interval Exponential distribution λ = 0.2s 
Task arrival duration 200s 

Computation ability of node u ݉݅ݏ݌௨ Normal distribution in (1000,300) mips 

Computation energy per MI of node u 10ି଼ ×  ௨ଶ Jݏ݌݅݉

Maximum bandwidth 11Mbps 

 

In the simulation experiments, the performance of the proposed task scheduling 

scheme was compared among different algorithms in terms of the following metrics.  
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• Completion rate: the ratio of the number of tasks finished within time constraint to the 

total number of tasks in Eqn.(14). 

• Task waiting time: the duration between a task’s arrival time at the processing node 

and its execution start time at the processing node.  

• Average energy per successful task: the ratio of the total energy consumption to the 

number of successful tasks given in Eqn.(15). 

In each experiment, 10 different random network topologies are generated. The 

simulation results are plotted using the average values derived from these 10 simulations. 

B. Effect of varying Topology Control message interval 

 As introduced in Chapter 3, we modified the QoS OLSR by adding extra bytes to 

control messages. The influence of the modification is going to be evaluated in this 

section. In the original QoS OSLR, by default the Hello message interval is 2s and TC 

message interval is 5s.In the modified QoS OLSR scheme, the Hello message’s interval 

is half of the TC message interval. The reason is that TC message is sent to the whole 

network with neighbor information updated at least once. Considering the tight time 

constraints (0.5s), we expect the control messages to be more frequently sent so the 

context information can be updated on time. 

 In order to gauge the overhead, we measure the number of bytes in the control 

messages, including HELLO messages and TC messages, in a small network. The 

average overhead traffic is defined as the number of bytes in the control messages 

transmitted per second in the whole network. The average overhead traffic shows how 

much network bandwidth is used for overhead messages. Figure 8 plots the average 
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overhead traffic of the original QoS OLSR and the proposed modified QoS OLSR vs. 

varying TC message interval.  

 

 

Figure 8, Average overhead traffic 

 

The average overhead traffic increase almost exponentially as TC message get 

more frequent, when the TC messages interval reaches 0.2s, the traffic is nearly 600KB/s. 

The traffic of modified QoS OLSR increase only slightly comparing to the original QoS 

OLSR (up to 2%). The reason is that only 4 bytes are added to each Hello Message. In 

the TC message, though 4 bytes are added to each neighbor node, the neighbor list in TC 

messages is quite limited in a small network.  

Next we investigate the performance of different schedulers under different TC 

message interval in a small network with 2 source nodes and 8 processing nodes. Figure 9 
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when the TC message interval reaches 0.2s. The reason is that with a long TC message 

interval, there are not enough control messages carrying context information, the 

schedulers are not able to get an accurate picture of nearby nodes. When control 

messages get more frequent, the context information is updated at the scheduler more 

frequently. As such, better scheduling results are obtained; the task completion rate 

becomes higher. However, when the overhead massages occupy large amount of network 

bandwidth (at TC interval of 0.2s), schedulers are unable to predict the accurate 

transmission time to the target processing node as in Eqn. (11). The scheduling results are 

significantly impacted, especially for greedy and probabilistic schedulers, which result in 

dramatic drop of the task completion rates. 

The round robin scheduler does not rely on the control messages. It sends tasks to 

nearby nodes one after another. Thus its task completion rate remains the same. The 

proposed adaptive probabilistic scheduler has the highest completion rate for most cases. 

It has 16.6% and 3.6% higher completion rate than the greedy scheduler and the 

probabilistic scheduler, respectively. The reason is that with an increased ݐ௠௔௥௚௜௡, the 

scheduler will send tasks to a more computationally powerful node. Thus it has better 

chance to complete tasks before the time constraint. This result is further explained by 

Figure 10. 
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Figure 9, Task completion rate vs. TC message interval 
 

 In Figure 10, the simulation result shows the average waiting time per task at the 

processing node of the greedy scheduler is much higher than other schedulers. It is 

because both source nodes always tried to offload tasks to the most energy efficient node. 
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time caused the task not to be able to finish before their deadline. The probabilistic 

scheduler and the adaptive probabilistic scheduler alleviate this problem by randomly 
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offload to a more powerful node so that it has an even lower average waiting time, which 
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achieved. Thus the schedulers are less possible to send the tasks to a node which already 

has long waiting queue. 

 

 

Figure 10, Average waiting time per task vs. TC message interval 
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Figure 11, Average energy per successful task vs. TC message interval 

 

C. Different size of network 

 The size of the network also affects the performance of the schedulers. In this 

experiment, the 0.4s TC message interval is adopted. A large network consists of 4 

source nodes and 16 processing nodes. Figure 12 and Figure 13 show that in a large 

network the completion rate is lower but more energy can be saved. The task completion 

rate is 5% lower on average for all four schedulers in a large network. This is due to two 

reasons. The first reason is that the large network requires more hops between the source 

and the potential processing node. The increased hop count increases the unpredictability 

of the transmission time. The second reason is that 4 source nodes increase the workload 

of the network as more tasks need be scheduled at the same time. It makes the efficient 

scheduling even harder. This is confirmed by the fact that the greedy scheduler has an 

8.73% lower task completion rate in large network while the probabilistic scheduler and 

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

1 0.8 0.6 0.4 0.2

Round Robin
Scheduler

Greedy Scheduler

Probabilistic
Scheduler

Adaptive Probabilistic
Scheduler

Topology control messages intervals (s)

Av
er

ag
e 

en
er

gy
 p

er
 su

cc
es

sf
ul

 ta
sk

 (J
)



 

41 
 

the adaptive probabilistic scheduler both only have about 5%. With 4 source nodes, there 

is a higher chance for the greedy schedulers to send tasks to the same processing node. 

 

 

Figure 12, Task completion rate in small and large network 
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Figure 13, Average energy per successful task in small and large network 
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Figure 14, Task completion rate in stationary and mobile network 
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Figure 15, Average energy per successful task in stationary and mobile network 

 

E. The impact of different task type 
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Table 4, Three different workload scenarios 

  Average computation amount 
(million Instructions) 

Data size 
(bytes) 

Low workload 100 1000 
Medium workload 200 1000 

High workload 300 1000 
 

 Figure 16 shows that the task completion rate drops with the increasing workload 

for all four schedulers. The task completion rate of the round robin scheduler drops 

abruptly under heavy workload. The reason is that the round robin scheduler does not 

check the context information. This impacts the scheduling results for tasks with heavy 

computation amount which require more computation time at processing nodes. The 

greedy scheduler drops linearly. The probabilistic scheduler and the adaptive 

probabilistic scheduler drop more slowly.  

 

 

Figure 16, Task completion rate in different workload scenarios 
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 Figure 17 shows that the average energy per successful task increases for all four 

schedulers . The average energy per successful task of the round robin scheduler in heavy 

workload scenario is 4.33 times as in low workload scenario. The average energy per 

successful task of the other three schedulers in heavy workload scenario is over 8 times 

as in low workload scenario. It is related to the square relation between the computational 

energy consumption and computation size in Eqn. (5). 

 

 

Figure 17, Average energy per successful task in different workload scenarios 
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Table 5, Three different data size scenarios 

 Average data size 
(bytes) 

 Average computation amount 
(million Instructions) 

Small data 1000 100 
Medium data 4000 100 

High data 8000 100 
 
 

Figure 18 shows that the task completion rate drops when data size increases.  All 

four schedulers have the similar trend. The reason is with a larger data size, tasks need to 

wait longer time for other tasks finish transmitting because of the shared transmission 

medium. The inaccuracy of the estimated transmission time in Eqn. (11) increases. From 

the medium data size to the large data size, the task completion rate of the adaptive 

probabilistic scheduler only decreases by 9.8%.  The task completion rate of the round 

robin scheduler, the greedy scheduler and the probabilistic scheduler decreases by 12.1%, 

16.5% and 12.1%, respectively. 

 

 

 

Figure 18, Task completion rate vs. different data size 
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 Figure 19 shows that with increasing data size, the average energy per successful 

task of all four schedulers is also increased. This is attributed to the decreased task 

completion rate and the increased communication energy. From the small data size to the 

large data size, the average energy per successful task of the round robin scheduler is 

increased 13.87% from small data size to large data size. The greedy scheduler, the 

probabilistic scheduler and the adaptive probabilistic scheduler have increase of 20.53%, 

23.07% and 25.66%, respectively. The adaptive probabilistic scheduler has the greatest 

energy increase because it tends to choose the more powerful processing nodes to 

improve the task completion rate when failed tasks occur, which explains why in Figure 

18  the adaptive probabilistic scheduler has the smallest decrease in task completion rate. 

 

 

Figure 19, Average energy per successful task vs. different data size 
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clouds with different network scenarios is evaluated. Then the influence of different task 

types on performance of four schedulers is investigated.  

The round robin scheduler does not rely on the context information. It assigns 

tasks evenly to all nearby processing nodes which yield to a high completion rate as well 

as high energy consumption. When the computation workload increases, the completion 

rate of the round robin scheduler drops abruptly. By adjusting the frequency of the 

control messages which carry the context information, the improvement is obtained in the 

other three schedulers. The greedy scheduler suffers from low task completion rate 

because multiple tasks tend to be scheduled to the same processing node. This situation is 

even more obvious as the number of source nodes increases. The probabilistic scheduler 

provides higher task completion rate than the greedy scheduler. For most cases it also 

achieves a low average energy per task compared to the greedy scheduler. It reduces the 

possibility that more than one task is assigned to the same processing node. The adaptive 

probabilistic scheduler further improves the task completion rate by dynamically 

adjusting the set of potential processing nodes. It achieves highest task completion rate 

and the lowest average energy per successful task, which makes it an efficient task 

scheduler in local mobile clouds. 
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CHAPTER 6 CONCLUSION AND FUTURE WORK 

A. Conclusion 

In this thesis, we propose an adaptive probabilistic task scheduler for real-time 

applications in local mobile clouds. Based on QoS OLSR, source nodes receive 

periodical control messages to discover and update nearby resource information. The 

scheduler first estimates the task completion time and energy consumption at each 

potential processing node based on the context information collected through the 

modified QoS OLSR. Next, it schedules the current task to the proper processing node in 

a probabilistic way. Then it adaptively adjusts its time margin parameter to improve 

performance under the unpredictable network conditions. 

Overall, the observed experimental results confirm that the adaptive probabilistic 

scheduler is able to reduce the average energy per successful task while maintain a high 

task completion rate.  Furthermore, the performance benefit is more significant when the 

number of source nodes increases. In addition, the proposed scheduler can adjust itself to 

work for both stationary and mobile network scenarios. It also shows high adaptability 

with different task types. The adaptive probabilistic scheduler is a promising approach for 

real-time applications due to its scalability and flexibility in local mobile cloud. 

B. Future work  

Future work will include experiments using the more complex computation model 

at processing nodes. For example, each processing node may have multiple cores so that 

multiple tasks can be executed on one processing node simultaneously. How to utilize the 

parallel computation resources to further improve the scheduling performance is an 

interesting topic to be investigated. 
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Each task is only allowed to be scheduled once in the thesis. Future study could 

be explored to improve the performance of local mobile clouds by adding a rescheduling 

phase for tasks with high failure probability. By doing so, we could expect a higher task 

completion rate.  
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