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ABSTRACT 

Modern to late Pleistocene stable isotope 
climatology of Alaska 

By 

Alison R. Sloat 

Dr. Matthew Lachniet, Examination Committee Chair 
Associate Professor of Geoscience 
University of Nevada, Las Vegas 

Understanding modern controls on climate is necessary to interpret past climatic 

conditions. This project investigated the modern controls on 18O and D values in 

Alaskan surface waters to interpret the controls on Late Pleistocene climate variability. 

ArcGIS was used to develop an isoscape of modern 18O and D values of over 400 

surface water samples collected across Alaska and the Yukon. It was found that winter 

temperature and precipitation have the greatest controls on 18O and D values in Alaska, 

resulting in high 18O values along the coast of the Gulf of Alaska and low values inland 

toward Central Alaska. This isoscape can be applied to paleoenvironmental, modern, and 

future records to determine isotope-precipitation-temperature values. This is a useful tool 

in determining paleotemperatures of Alaska which is necessary for the interpretation of 

the magnitude, timing, and patterns of past response to climatic change. 

Previous work suggested ancient preserved ice wedges in the CRREL Permafrost 

Tunnel formed syngenetically during Marine Isotope Stage 3 (MIS 3). However, a new 

method of determining the timing of ice wedge and pool ice formation using radiocarbon-

dated DOC and CO2 reveals that the features are much younger than previously thought 

and are epigenetic in origin. At least five freeze events and one melt event are apparent in 
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the tunnel, with likely ages between 26 and 12.9 cal ka BP, during MIS 2. The prevalence 

of inversions in the radiocarbon ages indicates that carbon may persist for as long as 

17,000 years within permafrost environments, potentially providing anomalous age dates 

when dating carbon in permafrost.  

To better constrain the timing and climatic conditions during ice wedge 

formation, eight ice wedges and seven ice pools were sampled at high temporal resolution 

for stable isotopes and were combined with 14C ages of DOC from within the ice to 

estimate the timing of formation and climatic conditions under which they formed. Four 

intervals of cooling and one interval of warming were recorded in the ice wedge and pool 

ice, with 18O values ranging from -28.9‰ to -20.4‰. These values range between -6.6 

below and +1.9‰ above the modern snow 18O value of -22.3‰, suggesting that some of 

the ice wedges formed during colder-than-modern conditions. Paleo-winter temperatures 

ranged from -41.6 to -11.2°C, while paleo-mean annual temperatures (MAT) ranged from 

-14.1 to 1.4°C, consistent with paleotemperature fluctuations observed in the Bering Sea 

SST and Greenland ice core records. Based on a visual correlation to the Bering Sea SST 

record within the ice age limits described in Chapter 3, it is suggested here that Freeze 

event 1 likely occurred during cooling of -12.3 to -1.2°C between 26.5 - 25.3 cal ka BP, 

coinciding with Heinrich event 2, while Freeze event 2 occurred during cooling of -8.8 to 

-2.8°C between 21.0 - 20.5 cal ka BP. One warming interval, M1, when clear pool ice 

formed in a melt horizon above the F1 and F2 wedges, may have occurred as paleo-MAT 

ranged between -9.9 and -1.2°C between 19.1 - 18.8 cal ka BP. Freeze event 3 represents 

the lowest (coldest) 18O values. These values suggest that paleo-MAT ranged between -

14.1 and -9.2°C, which is correlated to the coldest regional climate interval when the 
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Laurentide Ice Sheet reached its local maximum extent in the Yukon between 17.3 - 17.0 

cal ka BP, coinciding with Heinrich event 1. Freeze event 4 has high 18O values that are 

similar to those of a late Holocene ice wedge in the nearby Vault Creek permafrost 

tunnel; that wedge was radiocarbon-dated to ca. 3.9 cal ka, and represents the warmest 

ice-wedge-forming thermal event when paleo-MAT likely ranged between -1.4 and 

1.4°C. The combination of low-resolution and low-fidelity radiocarbon dating, high 

resolution 18O data, and paleotemperature estimates allow for more robust age 

constraints when compared with the well-dated Bering Sea temperature record, 

suggesting that ice wedges in Central Alaska formed in response to North Atlantic DO- 

and H-type millennial forcing of climate.  
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CHAPTER 1 

DISSERTATION OVERVIEW 

Purpose 

 Understanding modern controls on climate is necessary to interpret past climatic 

conditions. This project investigated the modern controls on 18O and D values in 

surface waters in Alaska in order to interpret the controls on Late Pleistocene climate 

variability. This dissertation is divided into three sections: Chapter 2: Modern isotope 

climatology of Alaska; Chapter 3: Thermal stratigraphy of the Fox Permafrost Tunnel; 

and Chapter 4: High resolution 18O record of late Pleistocene climate in Central Alaska.  

Chapter 2 synopsis 

 Chapter 2 investigates the spatial trends of stable isotopes from over 400 surface 

water samples collected across Alaska and the Yukon. ArcGIS was used to develop an 

isoscape of modern 18O and D values of Alaska. It was found that winter temperature 

and precipitation amount exhibit the strongest correlation to 18O and D values in 

Alaska, resulting in high 18O values along the coast of the Gulf of Alaska and low values 

inland toward Central Alaska. This isoscape can be applied to paleoenvironmental, 

modern, and future records to determine isotope-precipitation-temperature values. This is 

a useful tool for determining paleotemperatures of Alaska, which is necessary not only 

for the interpretation of the magnitude, timing, and patterns of past response to climatic 

change, but also for the correlation of global climate models to obtain predictions of 

future impacts of climate change to the Arctic. 
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Chapter 3 synopsis 

Chapter 3 investigates the age of ancient preserved ice wedges preserved in the 

CRREL Permafrost Tunnel. Previous work suggested that ancient preserved ice wedges 

formed syngenetically (growing simultaneously during sediment aggradation) during 

Marine Isotope Stage 3 (MIS 3). However, a new method of determining the timing of 

ice wedge and pool ice formation using radiocarbon-dated DOC and CO2 reveals that the 

features are much younger than previously thought and are epigenetic (growing after 

sediment aggradation) in origin. At least five freeze events and one melt event are 

apparent in tunnel ice deposits, with likely ages between ca. 26 and 13 cal ka BP, around 

the time of full glacial and subsequent deglaciation of the Northern Hemisphere. The 

prevalence of age-distance inversions in the radiocarbon data indicates that carbon may 

persist for as long as 17,000 years within permafrost environments. This observation 

highlights the need for the combined stable isotope analyses and 14C dating of DOC 

within ice in permafrost environments to constrain climatic perturbations in Central 

Alaska.  

Chapter 4 synopsis 

Chapter 4 investigates the high resolution stable isotopes of ice wedges from the 

CRREL Permafrost Tunnel to better constrain the timing and climatic conditions during 

ice wedge formation. Eight ice wedges and seven ice pools were sampled at high spatial- 

and temporal resolution for stable isotopes and were combined with 14C ages of DOC 

from within the ice to estimate the timing of formation and climatic conditions under 

which they formed. Four intervals of cooling and one interval of warming were recorded 

in the ice wedge and pool ice 18O record, with 18O values ranging from -28.9‰ to -
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20.4‰. These values range between -6.6 below and +1.9‰ above the modern snow 18O

value of -22.3‰, which suggests that some of the ice wedges formed during colder-than-

modern conditions. Paleo-winter temperatures ranged from -41.6 to -11.2°C, while paleo-

mean annual temperatures (MAT) ranged from -14.1 to 1.4°C, consistent with 

paleotemperature fluctuations observed in the Bering Sea SST and Greenland ice core 

records. Based on a visual correlation to the Bering Sea SST record within the ice age 

limits described in Chapter 3, it is suggested here that Freeze event 1 likely occurred 

during cooling of -12.3 to -1.2°C between 26.5 - 25.3 cal ka BP, coinciding with Heinrich 

event 2, while Freeze event 2 occurred during cooling of -8.8 to -2.8°C between 21.0 - 

20.5 cal ka BP. One warming interval, M1, when clear pool ice formed in a melt horizon 

above the F1 and F2 wedges, may have occurred as paleo-MAT ranged between -9.9 and 

-1.2°C between 19.1 - 18.8 cal ka BP. Freeze event 3 represents the lowest (coldest) 18O

values. These values suggest that paleo-MAT ranged between -14.1 and -9.2°C, which is 

correlated to the coldest regional climate interval when the Laurentide Ice Sheet reached 

its local maximum extent in the Yukon between 17.3 - 17.0 cal ka BP, coinciding with 

Heinrich event 1. Freeze event 4 has high 18O values that are similar to those of a late 

Holocene ice wedge in the nearby Vault Creek permafrost tunnel. That ice wedge was 

radiocarbon-dated to ca. 3.9 cal ka and represents the warmest ice-wedge-forming 

thermal event as paleo-MAT likely ranged between -1.4 and 1.4°C. The combination of 

low-resolution and low-fidelity radiocarbon dating, high resolution 18O data, and 

paleotemperature estimates allow for more robust age constraints when compared with 

the well-dated Bering Sea temperature record. These data suggest that ice wedges in 
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Central Alaska formed in response to North Atlantic DO- and H-type millennial forcing 

of climate.  
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CHAPTER 2 

MODERN SURFACE WATER ISOTOPE CLIMATOLOGY OF ALASKA 

Abstract 

 An understanding of modern isotopes in meteoric waters across Alaska is 

necessary to interpret past changes in climate. The isotopic composition of precipitation 

is not well understood because of the scarcity of isotopic information in precipitation 

across Alaska. Over 400 surface water samples were collected across Alaska and the 

Yukon. I analyzed these samples for stable isotopes of oxygen ( 18O) and hydrogen ( D). 

Surface water 18O values range from -8.1 to -25.9‰ and average -19.4‰, with the 

highest values occurring along the coast of the Gulf of Alaska, and the lowest values 

occurring in the rainshadow of the Saint Elias Mountains in the Yukon. 18O values 

become more negative moving inland toward Central Alaska, a process controlled by 

rainout occurring during Rayleigh distillation. The main controls on 18O in modern 

Alaskan surface waters include winter (DJF) precipitation and temperature. An isoscape 

of stable isotope values was derived with ArcGIS using the surface water 18O and D 

values, winter precipitation amounts, and winter temperatures. This isoscape can be 

applied to paleoenvironmental, modern, and future records to determine isotope-

precipitation-temperature values. To determine past 18O-Temperature ( 18O-T) 

relationships, the modern 18O-T relationship of 0.55‰ increase in 18O with 1°C 

increase in MAT was determined. This is a useful tool in determining paleotemperatures 

of Alaska which is necessary not only for the interpretation of the magnitude, timing, and 

patterns of past response to climatic change, but also for the correlation of global climate 

models to obtain predictions of future impacts of climate change to the Arctic. 
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Introduction 

 An understanding of modern isotopes in meteoric water across Alaska and the 

Yukon is necessary for interpretation of past changes in climate preserved in the geologic 

record. Few rain gauge stations exist across Alaska, and the isotopic composition of 

precipitation across this mountainous yet sometimes arid, permafrost-dominated, high 

latitude environment is not well understood. In the absence of precipitation sampling 

networks, stream waters may provide a record of the isotopic composition of 

precipitation (Fritz et al., 1981; Lachniet and Patterson, 2009) because of the integration 

of the precipitation both spatially and temporally over the drainage basin (Gat, 1996; 

Kendall and Coplen, 2001).  

 Those spatial and temporal characteristics of precipitation can be explained 

through the process of Rayleigh distillation, whereby air masses undergo isotopic 

partitioning during adiabatic cooling. As air masses cool and move over continents, 

higher latitudes, or higher altitudes, water vapor is lost to precipitation. During this 

"rainout" process, distillation separates the heavier isotopes from the water vapor. The 

isotopically heavier precipitation falls as the air mass becomes progressively enriched in 

lighter isotopes. Equilibrium fractionation ( ) between the air mass water vapor and 

condensate produced is controlled by temperature and the fraction of moisture removed 

from the air mass (f) and can be modeled using the equation 

 R = Ro f ( -1)

where R is the isotopic ratio after rainout and Ro is the initial isotopic ratio (Clark and 

Fritz, 1997). However, temperature and vapor fraction alone cannot explain rainout 

processes over landmasses. As temperature decreases and rainout occurs over 
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landmasses, other factors such as re-evaporation, atmospheric mixing, and moisture 

source can influence 18O values in precipitation. The effects of latitude, distance from 

the coast, altitude, and seasonality must also be considered when evaluating isotopic 

spatial and temporal patterns. 

 It is expected that climatic change in response to future global warming will be 

more pronounced in the northern high latitude regions, as already observed in the Arctic 

(Ahmed et al., 2013; Alley and Clark, 1999; Hinzman et al., 2005; Miller et al., 2010; 

Osterkamp et al., 2009; Schuur et al., 2008; Serreze et al., 2000; Wiles et al., 2004). 

Global climate models are limited in accurately representing the water isotope cycle in 

their relatively coarse resolution for regional studies. Regional models consistently 

improve the spatial details of simulated climate compared to standard global models; 

however, few high resolution regional circulation models exist in the high latitude region 

(Lynch et al., 1995) because of a lack of high resolution climatic data. These high 

resolution data are needed to not only better constrain climatic controls and feedbacks in 

the high latitudes, but also to predict future climate change in those regions. Until now, 

interpolation between the sparsely-spaced Global Network of Isotopes in Precipitation 

(GNIP) stations in Alaska has been the standard for determining the spatial variation in 

18O in precipitation (Bowen and Wilkinson, 2002).  

 To improve the spatial resolution of high latitude isotopes in meteoric waters, I 

used surface water 18O and D data from over 400 stream waters collected in Alaska and 

the Yukon to create a high resolution isoscape of surface waters. These data were used to 

test the hypothesis that Rayleigh distillation controls 18O values from the Gulf of Alaska 

to the Arctic Ocean. This study also identified spatial trends, moisture sources, and 
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physiographic controls of modern climate in the region. This information provides a basis 

for modeling future changes in climate and identifying past changes in climate.   

Physiography and climate of Alaska 

 The Aleutian Low (AL) pressure system controls moisture and precipitation 

patterns in southern Alaska, and has shifted both in strength and position over decadal 

and millennial time scales (Clegg and Hu, 2010; Overland et al., 1999). A strong AL 

carries warmer and moister storms along a meridional trajectory from the south to the 

north, while a weak AL shuttles colder and drier storms along a zonal trajectory from the 

west and northwest eastward (Rodionov et al., 2005). Precipitation is strongly 

continental, controlled by the Alaska Range to the south, the Kuskokwim Mountains to 

the west, and the Brooks Range to the north, creating a rain shadow effect over much of 

Central Alaska (Mock et al., 1998). Central Alaska is characterized by a continental 

climate with long, cold winters and short, warm summers influenced by air masses 

originating in the Arctic, Gulf of Alaska, and Bering Sea (Kokorowski et al., 2008; Mock 

et al., 1998; Streten, 1974). Mean annual precipitation in Fairbanks is 276 mm, typically 

falling in the form of rain during the months of June, July, and August (Muhs et al., 

2001). 

Methods 

 Water samples were collected during the summers of 2009-2011 from 

approximately 400 springs and streams spanning 58°-70° N latitude and 135°-151° W 

longitude in Alaska and the Yukon Territory (Figure 2.1 and Appendix A). Water 

samples were collected at easily accessible pullouts or from roadway bridges using a 

plastic bucket attached to a rope. Samples were immediately transferred to 30-mL 
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Nalgene bottles with no head space and sealed with electrical tape. Each sampling 

location was photographed and recorded using Geographic Positioning System (GPS) 

coordinates. Vegetation and water color characteristics were recorded. Samples were 

shipped to the Las Vegas Isotope Science (LVIS) laboratory for isotopic analyses.  

 Oxygen and hydrogen isotope ratios of water samples were measured with a 

ThermoElectron high temperature conversion elemental analyzer (TC/EA) by reaction 

with glassy carbon at 1,450°C in a helium carrier gas stream to produce H2 and CO gases. 

Isotopic ratios of oxygen ( 18O) and deuterium ( D) were determined on a 

ThermoElectron Delta V Plus isotope ratio mass spectrometer relative to two internal 

standards calibrated to SLAP (Standard Light Antarctic Precipitation) ( 18O = -55.5‰, 

D = -428.0‰) and VSMOW (Vienna Standard Mean Ocean Water) ( 18O = 0.0‰, D = 

0.0‰) and reported in per mil (‰) concentrations. Precisions were better than 0.3‰ for 

18O and 3‰ for D. Deuterium excess (d) values were calculated using  

 d = D - 8 x 18O.  

 Isotopic values and climatic variables were plotted and analyzed using ArcGIS 

version 10.0 to determine spatial patterns of 18O values. A 300-m resolution digital 

elevation model (DEM) (USGS, 1997) in ArcGIS was used to determine physiographic 

variables, including catchment latitude, catchment longitude, catchment altitude, 

catchment area, and distance to the Pacific Ocean. Using the Watershed tool in ArcGIS, 

the catchment of each sampled location was delineated. The area, latitude, longitude, 

altitude, and distance to the Pacific Ocean of the midpoint of each catchment was 

determined using the Identify tool in ArcGIS. Climatic variables, including mean annual 

temperature (MAT), winter (December, January, and February) average temperature 
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(DJF T), summer (June, July, and August) average temperature (JJA T), mean annual 

precipitation (MAP), cumulative mean annual precipitation (CumMAP), winter 

precipitation (DJF P), and summer precipitation (JJA P), were determined for each 

sampling location in ArcGIS (Appendix B) using the WorldClim dataset layers (Hijmans 

et al., 2005). This dataset contains weather station temperature and precipitation data 

spanning the years 1961 - 1990 that was interpolated and modeled at a higher resolution 

of 30-arc-seconds or 1 km2 to produce GIS data layers of monthly total precipitation and 

monthly mean temperature. Mean annual temperature (MAT) is the average of the 

monthly temperature values, while the mean annual precipitation (MAP) is the sum of the 

monthly average precipitation amounts for the years 1961 - 1990 (Hijmans et al., 2005). 

Cumulative MAP was calculated in ArcGIS by adding grid cells of MAP in south to 

north longitudinal transects similar to the trajectories of storms originating in the Gulf of 

Alaska (Mock et al., 1998). Subset rasters of each WorldClim layer were created in 

ArGIS including MAP (Figure 2.2), DJF P (Figure 2.3), JJA P (Figure 2.4), Cumulative 

MAP (Figure 2.5), MAT (Figure 2.6), DJF T (Figure 2.7), and JJA T (Figure 2.8) that 

were later used in the multiple regression derivation of the isoscape, discussed below.  

The statistical significance of physical parameters on 18O surface water values 

was analyzed by linear and multiple regression techniques using MatLab (MathWorks, 

2005). A linear regression correlation was performed in MatLab to test the strength of 

correlation between 18O and temperature, precipitation, and other physiographic 

variables. High correlation (r = 1.00) between 18O and a physiographic variable 

indicates 18O is strongly influenced by that variable. Weak correlation (r = 0.00) 

indicates 18O is not strongly influenced by the variable.  



11

 To test for the significance of several independent variables on the dependent 

variable 18O, multiple regression was performed. In multiple linear regression, 

individual physiographic parameters are measured to determine the strongest controls on 

18O values. Correlation matrices of samples (n) and variables (p) were constructed with 

p-values <0.05 to determine the multiple regression equation of 

 Y = b0 + b1X1 + b2X2 + b3X3 + … + bXXn

where Y is the predicted dependent variable ( 18O), b0 to bX are partial regression 

coefficients, and X1 to Xn are independent variables (Brown, 1998). Using the Raster 

Calculator tool in ArcGIS, the rasters of MAP, DJF P, JJA P, Cumulative MAP, MAT, 

DJF T, and/or JJA P were combined in the multiple regression equation, resulting in the 

output of an isoscape of surface water 18O values.  

Results and Interpretation 

Isoscape of Alaskan surface waters 

Isoscape derivation 

The isotopic results of the water samples collected are listed in Appendix A and 

are displayed in Figure 2.9. The results of the linear correlations are shown in Table 2.2, 

and correlations range from the highest (r = 0.82) to the lowest (r = -0.02). Surface water 

18O is most strongly correlated to MAP (r = 0.82), DJF P (r = 0.82), MAT (r = 0.78), 

DJF T (r = 0.77), and catchment latitude (r = -0.68).  

As expected, this indicates that precipitation, temperature, and latitude have the 

greatest influence on 18O values in Alaska. Interestingly, winter precipitation (r = 0.82) 

is more strongly correlated with 18O than is summer precipitation (r = 0.60). This is 

explained by higher winter precipitation amounts along the Gulf of Alaska and lower 
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precipitation amounts in the interior of Alaska. Similarly, winter temperature (r = 0.77) 

has a greater control on 18O values than do summer temperatures (r = 0.15), as 

precipitation and temperature are collinearly related. 

A simple analysis of the linear correlation between 18O and MAP does not, 

however, account for the variability in 18O during rainout that occurs during Rayleigh 

distillation. To determine the influence of Rayleigh distillation on 18O and to simulate 

the rainout process from a moisture source originating over the Gulf of Alaska, 

cumulative MAP was calculated along south-to-north longitudinal transects. Cumulative 

MAP was found to have a weaker influence on 18O (r = -0.24) compared to MAP (r = 

0.82). Rainout occurring during Rayleigh distillation accounts for only 24% of the 

variability in 18O values in Alaska. Cumulative MAP captures the spatial distribution of 

MAP, whereas MAP does not, since cumulative MAP is dependent on temperature, 

latitude, and distance from the Pacific. 

The influence of physiographic controls such as latitude and altitude from other 

variables in the correlation matrix was identified using the multiple linear regression 

analysis. The statistically best fit multiple regression equation included catchment 

latitude, catchment longitude, catchment altitude, MAP, cumulative MAP, DJF P, JJA P, 

MAT, DJF P, and JJA P coefficients (r2 = 0.74) (Table 2.3). However, because of the 

colinear relationship between many of these variables such as latitude, altitude, and 

temperature, the physiographic relationships between the parameters were separated 

during multiple linear regression analysis.  

Two multiple linear regression equations were determined when the colinear 

physiographic parameters were separated: 
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18O = (0.0102247 x DJF P) + (0.0090214 x DJF T) - 19.6118 (Equation 1) 

18O = (2.04114 x 10-8 x Cum MAP) + (0.0089869 x DJF P)  

 + (0.0252606 x MAT) - 20.1991    (Equation 2) 

Although the R2 for Equation 2 is higher (0.71) than for Equation 1 (R2 = 0.68), Equation 

1 is simpler because only precipitation and temperature are included. Therefore, Equation 

1, incorporating DJF P and DJF T, was used in ArcGIS to derive the isoscape of Alaskan 

18O surface water values (Figure 2.10).  

 The isoscape modeled 18O values that range between -13‰ and -26‰, with the 

highest values occurring along the Gulf of Alaska and the lowest values occurring at high 

elevations and in the interior of the continent (Figure 2.10). Coastal areas controlled by 

higher precipitation amounts and higher temperatures are characterized by more positive 

18O values near Glacier Bay up through the Kenai Peninsula. The extent of the control 

of precipitation and temperature is apparent in the rapid decrease of 18O values moving 

from the Gulf of Alaska over the mountain ranges and into the interior of the continent. 

The mountain ranges in Alaska and the Yukon are visible in Figure 2.10 as low 18O (-

26‰ to -24‰) values, including from south to north the Chugach - St. Elias Mountains, 

the Wrangell Mountains, the Alaska Range, and the Brooks Range. The most negative 

18O values occur as expected in the Brooks Range. This high-resolution isoscape 

provides a more accurate tool for determining isotope-temperature-precipitation 

relationships in the subarctic to Arctic region, compared to past global lower resolution 

models.  
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Isoscape residuals 

 To test the fit of the isoscape modeled 18O values compared to the measured 

18O values, the residual 18O values were calculated using the equation: 

 Residual = 18Omodeled - 18Omeasured

The residual values are listed in Appendix C and are displayed in Figure 2.11 in 0.5‰ 

contoured intervals. Residual values range from -6.4‰ to +5.1‰ and average 1.2‰. The 

highest and lowest residual values are centered around high altitude catchment locations 

on the leeward (northern) side of the Wrangell and St. Elias mountain ranges. When a 

linear regression correlation was performed on the residual values and physiographic 

parameters, variability in the residuals occurred primarily because of catchment altitude 

(r = 0.20). All other parameters such as distance from the Pacific and type of catchment 

watershed (e.g., glacial, permafrost, non-glacial), were not significant at the p > 0.05 

level. The inclusion of catchment altitude within the regression equation did not improve 

the overall r2 values. However, the results of the multiple linear regression indicate that 

68% of the variability in surface water 18O values of Alaska can be explained by winter 

precipitation and temperature, which are colinear with altitude. 

Spatial variability in surface water stable isotopes 

To test whether the Alaskan surface water samples are representative of Alaskan 

precipitation, the 18O/ D values of surface water samples were plotted to obtain a 

regression surface water line (SWL) (Figure 2.12). The Alaska SWL of D = 8.0 x 18O + 

6.8 (r2 = 0.97) was compared to the Global Meteoric Water Line (GMWL) of D = 8 x 

18O + 10 (Dansgaard, 1964). The similarity in the relationships suggests that the surface 

waters in Alaska may provide a proxy for Alaskan precipitation.  
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Surface water 18O values range from -8.1 to -25.9‰, averaging -19.4‰. The D 

values range from -63.1 to -197.8‰, averaging -147.9‰ (Figure 2.12). The highest 

values occur along the coast of the Gulf of Alaska, and the lowest values occur in the 

rainshadow of the Saint Elias Mountains in the Yukon. 18O values become more 

negative moving inland toward Central Alaska. Surface waters collected in the 

rainshadow of the Chugach in the Copper River Valley plot below the SWL (Figure 

2.12). The d values range from -13.6 to 17.0‰, averaging 7.3‰ (Appendix A). 

To examine the spatial effects of MAP and MAT on 18O values, average annual, 

summer, and winter temperature and precipitation values for each stream catchment were 

determined (Appendix B). The spatial range and average MAT and MAP are shown in 

Table 2.1. For the catchments sampled in this study, the spatially averaged MAT ranged 

from -12.7 to 4.8°C (average -2.7°C), winter temperature ranged from -29.5 to -1.9°C 

(average -16.3°C), and summer temperature ranged from 2.9 to 11.6°C (average 9.4°C). 

The spatially averaged MAP ranged from 0.158 to 1.922 m (average 0.672 m), winter 

precipitation ranged from 0.010 to 0.751 m (average 0.277), and summer precipitation 

ranged from 0.029 to 0.468 m (average 0.093 m).  

Temperature effect 

Decreasing temperatures in air masses drive rainout and the depletion of 18O

during Rayleigh distillation, but the 18O-T relationship for Alaska has not been well-

established. To determine how MAT affects 18O values in Alaska, the 18O-T 

relationship was examined. As shown in Figure 2.13, 18O values change according to the 

equation  

18O = 0.55 x MAT - 17.9 
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(r2 = 0.61) indicating that for every 1°C decrease in MAT, 18O values decrease by 

0.55‰. This change is consistent with worldwide values of 0.60‰ per 1°C change in 

temperature (Dansgaard, 1964; Rozanski et al., 1992) and western Canadian values of 

0.49‰ per 1°C change in temperature (Clark and Fritz, 1997). The most negative 

Alaskan 18O values are associated with the lowest MAT values (Figure 2.13), which is 

an expected result of Rayleigh distillation and the continental effect. Rainout and isotopic 

evolution occurs quickly as air masses move over Alaska and encounter topographic 

highs such as the Chugach and Wrangell mountains and associated temperature lows in 

those regions. Sampling locations located in Central Alaska far inland from the 

moderating effects of the Pacific Ocean exhibit more temperature extremes compared to 

sampling locations located closer to marine sources along the coast. As a result of this 

continental effect, the 18O values in Central Alaska are more negative than those found 

along the Gulf of Alaska.  

Cumulative precipitation amount effect 

 As with MAT, the 18O values are dependent on precipitation amount. However, 

simple MAP cannot explain 18O variability across Alaska. The cumulative precipitation 

amount effect displays Rayleigh distillation (Figure 2.14) according to the equation  

18O = -0.0325 x MAP - 13.3 

where cumulative MAP is in meters and the r2 = 0.61. As an air mass moves from the 

moisture source region of the Pacific Ocean in the Gulf of Alaska over the continent 

toward the north, progressive rainout occurs during Rayleigh distillation, as indicated by 

the negative correlation between cumulative MAP and 18O values. As an air mass moves 

farther away from its moisture source, it becomes progressively depleted in moisture, and 
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the 18O values become more negative. The most positive 18O values occur closer to the 

moisture source along the Pacific Coast before rainout depletes the air mass, while the 

most negative 18O values occur in regions farthest from the moisture source along with 

the lowest MAP and highest cumulative MAP. Regions of high MAP occur along the 

Gulf of Alaska coast and over the coastal mountain ranges, while the zones of lower 

MAP occur inland in Central Alaska and near the North Slope. Regions of high 

cumulative MAP correspond to regions of low 18O near the North Slope, while areas of 

low cumulative MAP correspond to regions of high 18O.

Altitude and latitude effect 

 Because of the 18O-T relationship, 18O values generally decrease with 

increasing altitude through Rayleigh distillation processes. As altitude and latitude 

increase, temperature decreases. To determine how Alaskan isotope values vary with 

altitude and latitude, the average latitude and altitude of the sampled catchments was 

determined using the DEM in GIS. The highest 18O values occur in the lowest 

catchment altitudes along the coast, but the very weak correlation (r2 = 0.13) between 

18O and altitude (Figure 2.15) indicate a nonlinear relationship and that altitude is not a 

factor determining 18O variability. However, this nonlinear relationship characterizes all 

of the sampled catchments across Alaska and does not take into account regional 18O-

altitude trends within individual mountain ranges. When considered regionally, the 18O

values of the Chugach mountains, Wrangell mountains, and Brooks Range are more 

closely correlated with altitude, which will be discussed in detail in a separate paper to 

follow.    
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 Catchment latitude and altitude accounts for 68% and 39%, respectively, of the 

variability in the 18O values (Table 2.2), which is not surprising since air temperature 

decreases with increasing latitude and altitude. North American 18O values decrease by 

about 0.6‰ per degree of increasing latitude because of extreme temperature changes 

during Rayleigh distillation (Clark and Fritz, 1997). Alaskan surface water 18O values 

decrease with increasing latitude and altitude along a curvilinear gradient (Figure 2.16). 

The highest 18O values occur at the lower latitudes (58° to 62°N) and altitudes, follow a 

steep trend that flattens along latitudes 62° to 66°N, and then the lowest 18O values 

occur at the higher latitudes (66° to 71°N). Extreme temperature changes over the lower 

latitude mountain ranges and subsequent altitude changes suggest that rainout during 

Rayleigh distillation is responsible for the steep 18O-latitude-altitude gradient. 

Fractionation of the air mass as rainout occurs over the high mountain ranges causes 

more negative 18O precipitation values to fall over the mountains. The lower slope of the 

18O-latitude curve in the central latitudes of Alaska indicates that continued rainout and 

fractionation has produced more negative 18O values. However, topographical controls 

are visible in the 18O-latitude-altitude curve (Figure 2.16) as 18O values increase with 

decreasing altitude and decrease with increasing altitude, following the topography from 

south to north.   

Distance from the Pacific Ocean effect 

 To better visualize the effect of these mountain ranges and corresponding 

temperature differences on 18O values in Alaska, a topographic profile of a south-north 

transect was constructed (Figure 2.17). The transect begins in Valdez in the south and 

extends to Prudhoe Bay to the north. The Chugach Mountains, Alaska Range, and Brooks 
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Range are visible in the profile. To investigate the rainout effect over the south-north 

transect, the 18O values were plotted against distance from the Pacific. The value d,

which is an indicator of moisture cycling, evaporation, and humidity, was also plotted 

against distance from the Pacific coast. Variations in 18O appear to be dominated by 

latitude, distance from the Pacific, and altitude, with highest values occurring near the 

coasts and in lowest elevations, and the lowest values occurring inland at the highest 

elevations. The highest 18O values along the coast indicate that the moisture source of 

the surface waters is the Gulf of Alaska, with values becoming more negative as rainout 

occurs over the continent and distance from the moisture source increases. The 18O

values decrease from -15‰ at the Gulf of Alaska to -25‰ in the interior at the crest of 

the Brooks Range.   

 As expected, the high 18O values occur at the coastal moisture source, and the 

values gradually decrease as distance from the coast increases. Under equilibrium 

conditions without local evaporation or advection of vapor from outside the system, 

Rayleigh distillation causes a progressive decrease in 18O values. Equilibrium conditions 

are confirmed because d values do not show an evaporative effect or advection of 

additional moisture sources. An increase in the d values could indicate recycling of 

moisture in the interior of the continent from sources other than the Pacific Ocean, such 

as the evaporation of rain, sublimation of ice, or evapotranspiration. However, when 

considering large rivers or catchments over 100 km2, there is no increase or trend in d

from south to north. This indicates that large rivers to the north of Fairbanks, such as the 

Yukon and Sagavanirktok with large catchment areas, likely do not contribute sufficient 

amounts of moisture that is recycled to the atmosphere to change d values in the interior 
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of Alaska. Rather, d values appear to be controlled by local topography and 

microclimates, as d values in similar regions vary greatly. 

 Variations in local topography are most evident in the plots of 18O, MAP, and 

MAT along the south-north transect (Figure 2.18). The imprint of the Chugach 

Mountains, Alaska Range, and Brooks Range is apparent in the MAP plot, with MAP 

increasing as rainout occurs over the higher altitudes. The 18O values decrease with 

increasing altitude over the Alaska Range, exhibiting continental rain-out effects in the 

interior of Alaska near Fairbanks. As water vapor with high 18O values moves north 

from the Gulf of Alaska into Alaska, it is orographically lifted and adiabatically cooled 

over the Chugach Mountains and St. Elias Mountains in the southern portion of Alaska. 

Rayleigh distillation causes an inverse relation between 18O and elevation, with 18O

values decreasing with increasing altitude and distance from the Pacific. 

As air masses move into Alaska from the Pacific and traverse the Chugach, 

Wrangells, and Alaska Range, the 18O values decrease from rainout of precipitation 

(Figure 2.18). As air masses move into the drier interior of Alaska near Fairbanks, the 

18O values flatten out, likely because the air masses have become depleted of moisture 

during rainout processes. The 18O values decrease over the Brooks Range, driven by 

temperature decreases over the mountain range.  

An alternative hypothesis to explain the decreasing 18O values over the Brooks 

Range is that a second moisture source originates in the Arctic Ocean. If a cold air mass 

from the Arctic Ocean supplied moisture to the region north of the Brooks Range, low 

18O values and shifting d values would be expected from the addition of moisture from a 

different source. If the addition of moisture from such a source was occurring, d values 



21

would also increase, but d values show no trend in this region (Figure 2.17). The Arctic 

Ocean may provide some moisture to the area, but because MAP in the region is so low, 

detection of changes in the values is difficult. As Pacific air masses continue to move 

north to the Brooks Range, the majority of the air parcels have been depleted of moisture. 

As a result, low rainfall amounts are typical of the region on the south side of the Brooks 

Range (Figure 2.18) (Mock et al., 1998). The low 18O values and the low MAP on the 

north side of the Brooks Range confirm that the Arctic Ocean is not a significant source 

of moisture to the region (Mock et al., 1998).    

Implications for paleoclimatic reconstructions 

The modern surface water 18O change with altitude and latitude by Rayleigh 

distillation of an air mass under near equilibrium conditions can be applied to 

paleoclimatic reconstructions, assuming that air masses formed under similar temperature 

and humidity conditions. The extent of continental ice sheets lowered sea levels during 

the Last Glacial Maximum (LGM) (Clark et al., 2009), creating a strong continental 

climate in Central Alaska. Additionally, perpetual sea ice cover (Bartlein et al., 1998) 

likely prevented the Arctic Ocean from providing moisture to the North Slope of Alaska. 

Using the modern patterns in 18O values presented here as an analogue for past 

conditions, paleo-precipitation was likely sourced from the south in the Pacific Ocean, 

and surface water 18O would have undergone similar to modern changes during rainout 

and northward transport across Alaska. The modern latitude-altitude- 18O relationship 

can be applied to paleoenvironmental records to determine past MAP and MAT values. 

To determine past 18O-Temperature ( 18O-T) relationships, the modern 18O-T 
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relationship is needed. Data from this study indicate a 0.55‰ increase in 18O with each 

1°C increase in MAT, which is useful for determining paleotemperatures of Alaska.  

 Correlation between 18O and the source of surface waters (i.e., glacial, non-

glacial, or permafrost) was low (Table 2.2). A recent study by (Derksen and Brown, 

2012) suggests that snow cover extent in the Arctic in May and June has been low during 

2008-2012, the years during which my water samples were collected. For this reason, my 

samples are representative of MAP, and not snowmelt or glacial runoff. This is also 

apparent in the closely matched SWL to the GMWL (Figure 2.12) and the low correlation 

(r = -0.24) between 18O and glacial/non-glacial/permafrost source areas in the linear 

regression (Table 2.2).  

Conclusion 

  An understanding of the variability in the isotopic composition of meteoric water 

across Alaska and the Yukon today provides a means to define the factors determining 

that variability and its relationship to modern climate. This then provides a tool to 

interpret the geologic record. The scarcity of high-resolution Arctic GNIP data requires 

the use of surface water 18O as a proxy for precipitation 18O values in Alaska. Surface 

water 18O values range from -8.1 to -25.9‰ and average -19.4‰, with the highest 

values occurring along the coast of the Gulf of Alaska, and the lowest values occurring in 

the rainshadow of the Saint Elias Mountains in the Yukon. 18O values generally become 

more negative with distance inland toward Central and Northern Alaska, as the result of 

Rayleigh distillation driving precipitation. Strong correlations between 18O, MAT, 

winter precipitation, and cumulative MAP confirm that Rayleigh distillation controls 

18O values as air masses originating in the Gulf of Alaska become progressively 
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depleted in 18O as they traverse the major mountain ranges northward from the coast. 

The modern Cumulative MAP-DJF P-MAT relationship used to derive a high-resolution 

isoscape of 18O surface water values can be applied to paleoenvironmental, modern, and 

future records to determine isotope-precipitation-temperature values. To determine past 

18O-Temperature ( 18O-T) relationships, the modern 18O-T relationship of 0.55‰ 

increase in 18O with 1°C increase in MAT was determined, along with a 0.28‰ increase 

in 18O with every 1°C increase in DJFT. This is a useful tool for determining 

paleotemperatures of Alaska, which is necessary not only for the interpretation of the 

magnitude, timing, and patterns of past response to climatic change, but also for the 

regional calibration of global climate models to obtain predictions of future impacts of 

climate change to the Arctic.   
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Figure 2.1. Map of Alaska sampling locations. Base map is a USGS 300-m Digital 
Elevation Model (DEM) (USGS, 1997). 
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Figure 2.2. Mean annual precipitation (MAP). Map of Alaska and the Yukon showing 
MAP in millimeters (mm) from the WorldClim database spanning the years 1961 - 1990 
(Hijmans et al., 2005). Precipitation amounts range from 5077 mm along the Gulf of 
Alaska to 122 mm along the North Slope. 
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Figure 2.3. DJF precipitation. Map of Alaska and the Yukon showing precipitation in 
millimeters (mm) during the months of December, January, and February (DJF) from the 
WorldClim database spanning the years 1961 - 1990 (Hijmans et al., 2005). Precipitation 
amounts range from 1518 mm along the Gulf of Alaska to 12 mm along the North Slope. 
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Figure 2.4. JJA precipitation. Map of Alaska and the Yukon showing precipitation in 
millimeters (mm) during the months of June, July, and August (JJA) from the WorldClim 
database spanning the years 1961 - 1990 (Hijmans et al., 2005). Precipitation amounts 
range from 968 mm along the Gulf of Alaska to 61 mm along the North Slope. 
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Figure 2.5. Cumulative MAP. Map of Alaska and the Yukon showing cumulative MAP 
in millimeters (mm). Cumulative precipitation amounts were calculated along south-to-
north longitudinal transects using the WorldClim database's MAP spanning the years 
1961 - 1990 (Hijmans et al., 2005). Precipitation amounts range from 944 mm along the 
Gulf of Alaska to 1,283,374 mm along the Arctic Ocean. 



29

Figure 2.6. Mean Annual Temperature (MAT). Map of Alaska and the Yukon showing 
MAT from the WorldClim database spanning 1961 - 1990 (Hijmans et al., 2005). Plotted 
temperatures are reported in °C*10, so MAT range from +7.4°C to -26.7°C.  
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Figure 2.7. DJF temperatures. Map of Alaska and the Yukon showing average December, 
January, and February (DJF) temperatures from the WorldClim database spanning 1961 - 
1990 (Hijmans et al., 2005). Plotted temperatures are reported in °C*10, so DJF T range 
from +3.1°C to -37.1°C.  
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Figure 2.8. JJA temperatures. Map of Alaska and the Yukon showing average June, July, 
and August (JJA) temperatures from the WorldClim database spanning 1961 - 1990 
(Hijmans et al., 2005). Plotted temperatures are reported in °C*10, so JJA T range from 
+15.3°C to -13.7°C. 



0

Fi
gu

re
 2

.9
. 

18
O

 v
al

ue
s o

f s
ur

fa
ce

 w
at

er
 sa

m
pl

es
. S

ur
fa

ce
 w

at
er

 
18

O
 v

al
ue

s r
an

ge
 fr

om
 -8

.1
‰

 to
 -2

5.
9‰

, a
ve

ra
gi

ng
 -1

9.
4‰

. T
he

 
ba

se
 m

ap
 is

 a
 U

SG
S 

30
0-

m
 D

ig
ita

l E
le

va
tio

n 
M

od
el

 (D
EM

) (
U

SG
S,

 1
99

7)
.

32



33

Figure 2.10. Isoscape of Alaska and the Yukon. Map showing isoscape of modeled 18O
values in surface waters. Modeled 18O values range from -13‰ to -26‰, with the less 
negative values occurring along the Gulf of Alaska where temperature and precipitation 
amounts are higher, and the more negative values occurring at higher altitudes and in the 
interior where temperature and precipitation amounts are lower.  



34

Figure 2.11. Map of isoscape residuals. Map showing the difference between measured 
and modeled 18O values in surface waters across Alaska and the Yukon. Residual values 
are contoured in 0.5‰ contours, ranging from -2‰ on the Kenai Peninsula to +3.5‰ in 
the rainshadow of the Wrangells, averaging +1.2‰. 
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Figure 2.12. 
18

O and D surface water values. Plot showing 18O, D, Surface Water 
Line (SWL, solid black line), and Global Meteoric Water Line (GMWL, dashed line). 
The SWL and GMWL are similar, suggesting surface waters can be used as proxies for 
precipitation 

18
O values. 
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Figure 2.13. MAT and 18O values. Mean Annual Temperature (MAT) of sampled 
catchments and 

18
O values decrease at a rate of 0.55‰ per 1°C drop in MAT. Rayleigh 

distillation driven by temperature decreases over the Chugach Mountains and the Alaska 
Range causes rainout and the progressive depletion of 

18
O values over the continent. 
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Figure 2.14. 18O with cumulative MAP. Plot showing the change in 
18

O with 
cumulative MAP and logarithmic relationship. The cumulative MAP is calculated 
starting in the south at the Gulf of Alaska (0 m) and concludes in the north at the Arctic 
Ocean (270 m). As air masses in the Pacific Ocean move inland, progressive loss of the 
heavier isotopes results in precipitation that becomes increasingly more negative with 
distance north.   
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Figure 2.15. 
18

O change with catchment altitude. The calculated linear relationship 
sugggests that values of 

18
O decrease by 2.6‰ per km

-1
; however, the lack of correlation 

(R2) indicates that the catchment altitude is not a controlling factor in 18O composition. 
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Figure 2.16. 
18

O change with catchment latitude. The average 
18

O values (open circles) 
separated into 1-degree latitudinal groups (black squares) with one  error bars show a 
regional curvilinear decrease with latitude, indicating Rayleigh distillation during rainout 
over the continent controls isotopic values in Alaskan precipitation.   
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Figure 2.17. South to north transect of surface water 18O values in Alaska. Plot showing 
surface water d values (triangles), 18O values (circles), and topography (profile) from the 
Gulf of Alaska (left; 0 km) to the Arctic Ocean (right, 1,280 km). From south-north, the 
Chugach Mountains, Alaska Range, and Brooks Range are visible. 18O values decrease 
at a rate of 4‰ per 1000 km distance from the Pacific, indicating increasing fractions of 
moisture removal from air masses as they move north across the continent.  
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Figure 2.18. South to north transect of MAT, MAP, and 18O. Topographic profile 
showing the south-north transect of Mean Annual Temperature (MAT) (diamonds), Mean 
Annual Precipitation (MAP) (triangles), and surface water 18O values (circles). The 
progressive rainout of heavy isotopes from the south to the north during Rayleigh 
distillation is apparent in the decreasing 18O values and temperatures, the high MAP 
over the mountains, and the low MAP values in the interior. 
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Table 2.1. Average temperature and precipitation for sampled catchments. 
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CHAPTER 3 

THERMAL STRATIGRAPHY OF THE FOX PERMAFROST TUNNEL 

Abstract 

The persistence of old carbon in permafrost environments is problematic in 

establishing ages of ice formation used to constrain climatic perturbations during the late 

Pleistocene. Previous work in the CRREL Permafrost Tunnel has suggested that ancient 

preserved ice wedges formed syngenetically during Marine Isotope Stage 3 (MIS 3). 

However, a new method of determining the timing of ice wedge and pool ice formation 

using radiocarbon-dated DOC and CO2 reveals that the features are much younger than 

previously thought and are epigenetic in origin. At least five freeze events and one melt 

event are apparent in the tunnel. Large ice wedges from the tunnel likely formed between 

26 – 22 cal ka BP, or possibly during Heinrich event 2. The formation of these Freeze 

event 1 wedges was followed by secondary wedges that formed during Freeze event 2. 

These events were truncated by Melt event 1, which likely occurred between 22 - 18 cal 

ka BP, as indicated by pool ice and thaw features apparent in the tunnel. Ice wedges in 

Freeze event 3 likely formed between 18 - 13 cal ka BP, or possibly during Heinrich 

event 1, after the melt event. Inconclusive radiocarbon ages from a fourth interval of ice 

wedge formation, Freeze event 4, prohibit precise dating of ice wedge formation. 

However, the stratigraphic location of the Freeze event 4 wedges indicates that the 

wedges likely formed after 18 cal ka BP, possibly around 15 cal ka BP. A final freeze 

event, Freeze event 5, may have occurred prior to the onset of the Younger Drays cold 

event, but wedges from this interval were not sampled. The prevalence of inversions in 
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the radiocarbon ages indicates that carbon may persist for as long as 17,000 years within 

permafrost environments, potentially providing anomalous age dates when dating carbon 

in permafrost. This highlights the importance of combining stable isotope analyses with 

14C dating of DOC within ice in permafrost environments to constrain the age of climatic 

perturbations in Central Alaska.  

Introduction 

 Because ice wedges form in winter by thermal contraction cracking and infilling 

of snow meltwater in spring (French, 2007; Lachenbruch, 1962), they have been used as 

potential proxies for paleoclimate and records of the isotopic value of winter precipitation 

in Siberia (Popp et al., 2006; Rozanski et al., 1997; Wetterich et al., 2011), Antarctica 

(Raffi and Stenni, 2011), and Alaska (Meyer et al., 2010b). The previous year’s cracking 

creates zones of weakness in the ice, allowing for preferential cracking along the 

weakened areas, usually in the middle of the wedge (Mackay, 1975). When the ground 

contracts again the next winter, loess, silt, and macroscopic organic debris (macros) blow 

into the crack, forming an organic-rich layer, or folia, in between each cracking event 

(French and Shur, 2010). Spring meltwater once again flows into and refreezes as it fills 

the crack, recording that year's climatic information (Meyer et al., 2002). As the process 

continues each winter and spring, annual sub-vertical layers of spring meltwater and 

organic debris form a wedge shape, recording hundreds to thousands of years of climatic 

signals (Vasil'chuk, 2013). Cracking typically occurs near the center of the wedge, with 

the youngest ice near the center of the wedge progressively becoming older toward the 

outside of the wedge (Opel et al., 2011).  
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 Varying environmental conditions produce two different types of ice wedges. 

Sediment accumulation occurring synchronously with thermal contraction of frozen 

ground typically produces syngenetic ice wedges, which theoretically should contain ages 

similar to those of the host sediment because the sediment deposition, peat accumulation, 

burial, or mass movement of the material occurs at the same time (French and Shur, 

2010). These wedges may be up to 3 – 5 m wide near the surface and extend down to 10 

m as growth occurs over long periods of continuous sedimentation with repeated frost 

cracking (Harry and Gozdzik, 1988). Epigenetic ice wedges, however, form within 

existing sediments and should have ages younger than the surrounding sediments 

(Mackay, 1990). Epigenetic wedge size is limited by the mean depth of frost cracking, 

resulting in smaller (1-1.5 m wide and up to 4 m in height) wedges (Harry and Gozdzik, 

1988).  

 Constraining the timing of frost cracking in both epigenetic and syngenetic ice 

wedges using conventional radiocarbon dating of particulate organic carbon (POC) has 

been problematic, providing ages out of stratigraphic order (Hamilton et al., 1988) and 

anomalously old ages within the wedge (Griffing, 2011; Hamilton et al., 1988). Although 

there has been some success with Accelerator Mass Spectrometer (AMS) 14C dating of 

POC within Siberian and Alaskan ice wedges (Meyer et al., 2010a; Opel et al., 2011), age 

inversions are also common (Hamilton et al., 1988; Shur et al., 2004). Inactive or relict 

ice wedges preserved in the CRREL Permafrost Tunnel near Fairbanks, Alaska (Figure 

3.1) had been assigned an age of Marine Isotope Stage (MIS) 3 based on POC 14C ages 

(Hamilton et al., 1988; Sellmann, 1967), but a significantly younger 14C age of 24,884 + 

139 14C yr BP (29,770 + 230 cal yr BP) was determined from methane extracted from an 
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ice wedge in the tunnel (Katayama et al., 2007), bringing into question the true age of ice 

wedges and timing of events in Central Alaska.  

 Lachniet et al. (2012) investigated this age disparity in a single wedge (50S) from 

the CRREL Permafrost Tunnel and found that the persistence of old carbon in the 

environment and the contribution of that old organic matter into an ice wedge during 

formation caused anomalously old ages when dating POC. The ice wedge had previously 

been assigned an age of MIS 3 based on 14C dates on POC from within the ice and 

sediments surrounding it (Hamilton et al., 1988), but 14C dating of dissolved organic 

carbon (DOC) and occluded CO2 gas within the ice enabled Lachniet et al. (2012) to 

model the age of CO2 by calculating the fraction of respired CO2 and the age of respired 

CO2. The modeled ages, although younger than the CO2 age, were near the DOC ages, 

indicating that the DOC age can be used to approximate the timing of ice formation. 

Because it is only possible to contaminate the currently forming ice wedge folia of wedge 

ice with older, not younger, organic material, these DOC ages were used as an estimate 

for the timing of ice wedge formation. This DOC and CO2 dating method established a 

maximum limiting age of ice wedge formation, suggesting that the ice wedge formed 

between 28 and 22 cal ka BP during MIS 2, perhaps even during Heinrich event 2 

(Lachniet et al., 2012). This new 14C dating improved upon previous work that had 

investigated oxygen ( 18O) and hydrogen ( D) stable isotopes. Radiocarbon dating of 

POC from the same ice wedge had suggested that it had formed during Heinrich event 3 

(Griffing, 2011).  

 My research tests the hypothesis that ice wedge freezing and melt occurred in the 

Permafrost Tunnel during and after MIS 2, and it further refines the thermal event 
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chronology by additional 14C dating of carbon associated with sediments and ice. This 

paper uses the novel approach of using DOC and CO2
14C dated ice wedges to provide a 

new chronology of thermal events in Central Alaska during the past ca. 30,000 years.   

Tunnel geology 

Tunnel stratigraphy 

 The CRREL Permafrost Tunnel in Fox, Alaska (Figure 3.1) lies within the zone 

of discontinuous permafrost in Central Alaska. The 120-meter long main tunnel and side 

winze were excavated from the frozen sediments of the Late Quaternary Goldstream 

Formation (Hamilton et al., 1988; Sellmann, 1967) (Figure 3.2). A general stratigraphic 

column with radiocarbon-dated sediment and ice was established by Sellmann (1967) and 

Hamilton et al. (1988) (Figure 3.3). At the base of the tunnel, the stratigraphy consists of 

the 1 m thick Birch Creek Schist bedrock overlain by the Fox Gravel. The Fox Gravel is 

3-4 m thick, consisting of imbricated sandy gravel with angular to subangular clasts of 

schist, quartz, gneiss, and granite with lenses of silt and sand. These 20 cm thick by 1-2 

m long lenses contain 10-cm diameter willow wood stumps and wood fragments 

(Hamilton et al., 1988). Tree logs dated by liquid scintillation counting rooted in the Fox 

Gravel indicate that deposition occurred 43,410 + 240 14C yr BP (46,320 + 350 cal yr BP) 

(Long and Pewe, 1996). This age was similar to Hamilton et al.'s (1988) 14C age of 

43,300 + 1600 (46,930 + 1390 cal yr BP) of willow wood from the same location. 

However, both ages are near the limit for radiocarbon dating (Reimer et al., 2009) 

andrecord the possible timing of tree growth, not of deposition. Because of these 

potentially infinite ages, the true age of the Fox Gravel is unknown.  



50

 The Fox Gravel is unconformably overlain by a lower 4-5 m thick unit consisting 

of coarse and medium silt that Hamilton et al. (1988) classified as eolian in origin. Large 

2-4 m wide ice wedges extend vertically 3-4 m in the lower silt unit and are truncated by 

a thaw unconformity. Thaw features, which were first interpreted as melt ponds 

(Sellmann, 1967) and later as thermokarst cave ice (Douglas et al., 2011; Kanevskiy et 

al., 2008; Shur et al., 2004), extend above the thaw unconformity as 2-6 m wide by 0.5-

2.0 m deep lenses. An upper 8-11 m thick unit consisting of coarse and medium silt 

contains smaller 0.2-1 m wide wedges that extend vertically 1-2 m into the tunnel. The 

upper silt unit is overlain by debris fan deposits of subangular quartz and schist in silty 

sand (Hamilton et al., 1988). Sellmann (1967) described a separate unconformity in the 

upper 1-2 m  consisting of reddish brown organic silt with oxidized zones above reddish 

brown to gray silt. This unconformity is exposed in a now-inaccessible vertical 

ventilation shaft at the rear of the tunnel.  

Tunnel 14C ages 

 Efforts to determine the timing of deposition of sediments and ice wedge 

formation in the tunnel have been problematic because of multiple age inversions and the 

persistence of old carbon in permafrost environments. Sellmann (1967) first attempted to 

determine the timing of tunnel sediment deposition and ice wedge formation using gas 

proportional counting 14C dating. For the current study, radiocarbon ages were calibrated 

to calendar years before present (cal yr BP) using the OxCal 4.2 program (Bronk 

Ramsey, 2009) and the IntCal09 calibration (Reimer et al., 2009). Radiocarbon ages from 

wood fragments, peat, bone, and fibrous plant material from tunnel sediments ranged 

from 6,970 + 135 14C yr BP (7,810 + 1200 cal yr BP) in the ventilation shaft to 33,700 + 
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2500 14C yr BP (39,170 + 2920 cal yr BP) in the lower silt unit (Sellmann, 1967). 

Additional radiocarbon ages from willow wood and organic fragments of wood and grass 

rootlets from the lower silt unit led Hamilton et al. (1988) to conclude that deposition 

occurred between 36,200 + 2500 14C yr BP (41,460 + 2700 cal yr BP) and 30,160 + 160 

14C yr BP (34,780 + 130 cal yr BP).  

 Hamilton et al. (1988) also concluded that the interval during MIS 3 was a period 

of ice wedge growth because radiocarbon ages from organic residue and amorphous plant 

organic material extracted from lower unit melted ice wedges overlapped surrounding 

sediments and ranged from 31,400 + 2900/2100 14C yr BP (37,270 + 3780 cal yr BP) to 

32,300 + 2000/1600 14C yr BP (37,610 + 2390) (Sellmann, 1967). However, age 

inversions such as the older radiocarbon ages of 32,790 + 560 14C yr BP (37,525 + 680 

cal yr BP) and 35,500 + 2400 14C yr BP (40,760 + 2660 cal yr BP) (Hamilton et al., 

1988) from peat mats above the dated wedge and lower silt unit suggested that the 

sediments had been reworked during thaw processes (Shur et al., 2004). Additional 

evidence for reworking of sediments included a much younger 14C age of methane of 

24,880 + 140 14C yr BP (29,770 + 230 cal yr BP) extracted from lower unit ice wedge 

50S (Katayama et al., 2007), although the details of this dating technique were not 

published.  

 These age inversions and apparent wedge growth during interstadial, not stadial, 

periods led Lachniet et al. (2012) to use AMS dating of wedge 50S and an adjacent ice 

lens from the thaw unconformity using POC, DOC, and occluded CO2 gas from within 

the ice. POC from within the ice ranged in age from 28,260 + 180 to 37,040 + 410 cal yr 

BP, similar to ages of sediments surrounding the wedge. This led to the conclusion that 
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the POC from the sediments and within the wedge was of similar origin, and possibly 

entered the wedge with melt water seeping through the active layer surface during spring 

thaw. This process helps explain the age inversions apparent within the tunnel as older 

particulate carbon was incorporated into stratigraphically lower ice wedges. In contrast to 

the POC ages, analyses of CO2 gas and DOC from wedge 50S returned ages between 28 

and 23 ka cal yr BP for the wedge and 21,470 + 200 cal yr BP for an ice lens 

stratigraphically above the wedge. This suggested that ice wedges in the lower silt unit of 

the tunnel formed during MIS 2, earlier than previously suggested.  

 Ice wedges in the upper silt unit are stratigraphically constrained by an age of 

12,570 + 390 14C BP (14,880 + 730 cal yr BP) from peat at the contact between the upper 

silt unit and the debris fan (Hamilton et al., 1988). However, reworking of sediments 

during deposition of this debris fan could have caused age inversions. The youngest date 

of 11,000 + 280 14C yr BP (12,900 + 280 cal yr BP) from a wood log appears near the 

tunnel entrance and upper stratigraphic section of the tunnel (Sellmann, 1967). To 

complete the chronological thermal history of Central Alaskan paleoclimate, additional 

dating following the method of Lachniet et al. (2012) is needed to constrain the timing of 

the upper and lower unit ice wedges and thaw features in the tunnel.  

Methods 

 To refine the ages of thermal events in central Alaska, ice wedge and pool ice 

samples were collected from the CRREL Permafrost Tunnel for isotopic subsampling. Ice 

wedges in the tunnel contained air bubbles and fine organic matter and silt that formed 

vertical and parallel to folia at the center of the wedge. Folia became more angled toward 

the outside and base of the wedges. Wedges ranged in size from 2 cm wide up to 3 m 
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wide and from 1 m to over 6 m in height. Clear pool ice or lens ice was found above the 

large wedges in the lower silt unit. 

 Ice wedges and pools of various sizes and from various stratigraphic positions 

were identified for sampling in the main tunnel and named according to their distance in 

meters from the tunnel entrance on the north (N) or south (S) tunnel wall. Sample 

names/distances in this study differed by approximately -8 m compared to posted 

distances inside the tunnel because the zero point in this study started at the tunnel door 

entrance. Ice wedges and pools were photographed, measured, and sketched in detail to 

document stratigraphic position in the tunnel and distinguishing features. Sample blocks 

from eight ice wedges (1N, 14.9S Winze, 18N, 35S, 45S, 50S, 52.5S, and 58N) and seven 

ice pools (31N-Pool, 34S-Pool, 45N-Pool, 50S-Pool A, 50S-Pool L, 51S-Pool, and 70N-

Pool) within both stratigraphic units in the main tunnel were collected. Ice wedges and 

pools were swept clean of silt and debris. Samples were cut from the wedges in 

approximately 30-cm-tall blocks for the width of the entire wedge using an electric chain 

saw and removed by cracking the block ice face with chisels. Samples from the ice pools 

were cut in approximately 30-cm by 30-cm blocks with an electric chain saw and 

removed with chisels. Green sedge Carex aquatilis (B. Lichvar, personal communication, 

October 26, 2011) material from one of the ice pools was also sampled for radiocarbon 

analyses. Blocks were measured, labeled, and packed into coolers for transport to the 

CRREL cold room at Ft. Wainwright, AK.  

 The cold room facility at Ft. Wainwright, AK consisted of a -5°C temperature-

controlled Butcher Boy freezer. Each ice block was removed from its cooler and scraped 

clean of silt from the tunnel using aluminum ice scraping tools. Once cleaned of silt and 
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debris, each block was measured, hand-sketched in detail to show cross-cutting and other 

important features, and photographed. Approximately 10-cm slices of ice were cut from 

the wedge blocks with a chain saw, with extreme care taken while sampling to avoid 

contamination of the samples with modern carbon. Each slice was packaged separately 

and double bagged in Ziploc bags to prevent cross-contamination. Samples were packed 

in coolers with ice and cold packs, and shipped overnight via FedEx to the Las Vegas 

Isotope Science (LVIS) laboratory at the University of Nevada, Las Vegas. Samples were 

transferred to a freezer in the laboratory. They were later transported to the Scripps 

Institute of Oceanography in California and the University of Arizona, where CO2 was 

isolated from the ice blocks via melting in an evacuated chamber. 

 Because of the possibility of carbonate-rich silt dissolving in water and producing 

CO2 gas during melting, Wilson (1998) used a sublimating rather than a melting method 

of isolating the CO2 gas from ground ice. The Tanana and Yukon Rivers were a source of 

carbonate loess to the Fairbanks region during the late Pleistocene, so tests to determine 

the presence of carbonates in residual organic material from melted wedge ice and 

surrounding sediments were conducted with 10% HCl solution. The organic residue and 

the sediments showed no reaction with the HCl, suggesting an absence of carbonate loess 

in the permafrost tunnel. This indicates that the loess was likely of Nenana River origin 

or that the calcium carbonate leached out of the loess before deposition (Beget, 1990; 

Muhs and Budahn, 2006). For this reason, a melting rather than sublimating method was 

used to extract the CO2 gas from the ice wedges. 

 Dating of the ice blocks was conducted using a gas-extraction-by-ice-melting 

method. By melting the ice in an evacuated closed system, gas originally trapped within 
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the bubbles in the ice was extracted and measured for CO2 and DOC. Using a modified 

method of Wilson (Wilson, 1998), an approximately 10-cm x 10-cm ice block was placed 

in a glass vessel, and the system was evacuated to remove atmospheric gas from the 

vessel. The block was left to melt over several hours and water vapor, CO2, and other 

atmospheric gases were separated cryogenically using an evacuated extraction line. The 

CO2 was collected in glass ampoules and converted to graphite. The DOC was collected 

by evaporating the melted ice and separating the POC from the detrital silt. The CO2 and 

DOC were analyzed for 13C via AMS at the University of Arizona NSF Radiocarbon 

Facility in Tucson, Arizona. The 13C values were reported in ‰ relative to the Vienna 

Pee Dee Belemnite (‰ VPDB) standard. The 13C were used to estimate organic matter 

carbon sources. The OxCal 4.2 program (Bronk Ramsey, 2009) and the IntCal09 

calibration (Reimer et al., 2009) were used to convert 14C ages to calendar years before 

present (cal yr BP) (present = 1950 A.D.) and to determine age probability distributions 

at the 68.2% probability level. The ages were reported as median ages + one sigma 

uncertainty (Table 3.1). 

Results 

Ice wedge and pool ice stratigraphy 

 Although previous research established the general sediment stratigraphy of the 

tunnel (Bray et al., 2006; Hamilton et al., 1988; Sellmann, 1967), the detailed thermal 

stratigraphy of the ice wedge and pool ice has not been established with enough detail to 

determine timing and extent of ice formation relevant to interpreting paleoclimate in 

central Alaska. This is in part due to anomalous 14C ages, but also because thaw 

structures such as slumps, refrozen thaw pools, and debris fan deposits complicate the 
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stratigraphic placement of thermal events within the tunnel. In addition, not all ice 

wedges, ice pools, and thaw features appear in one continuous section of the tunnel, so 

the thermal stratigraphy must be pieced together based on relative position in the tunnel. 

To better classify the relative age of the thermal events in the tunnel, the general 

stratigraphic sequence of host sediments, ice wedges, ice pools, thaw features, and ice 

wedge truncating features was documented with photographs and sketches from the main 

adit of the tunnel. The general sediment stratigraphy of the main adit consists of the Fox 

Creek Gravel at the base of the tunnel overlain by a lower silt unit, an upper silt unit 

above the lower silt, and a debris fan deposit that is visible in the ceiling near the tunnel 

entrance (Hamilton et al., 1988). Within this sediment stratigraphy, the thermal 

stratigraphy consists of 'freeze' and 'melt' events. Because ice wedges form as a result of 

freezing climatic conditions, ice wedges within the tunnel were classified as 'freeze' 

events. In the absence of additional evidence to the contrary, the clear ice above the ice 

wedges was interpreted to reflect pools of standing water that formed as a result of 

melting water that later refroze, thus assigning the generic term of ‘pool’ ice within a 

'melt' event herein. The origin of the water in the pools is required to test between a 

‘pond’ and ‘thermokarst cave ice’ origin, and such data will be discussed in Chapter 4. At 

least five distinct freeze events and one melt event that formed pools or thermokarst cave 

ice were identified (Figure 3.4). Freeze and melt events were enumerated according to 

their relative stratigraphic position in the tunnel and apparent sequence of formation, 

beginning with Freeze event 1 at the base of the tunnel (Wedges 28N, 35S, 45N, 45S, 

50S, 58N, 60S, 67N, 70N), Freeze event 2 (35S secondary wedge), Melt event 1 (28N 

Pool, 31N Pool, 34S Pool, 45N Pool, 50S Pool, 51S Pool, 60S Pool, 70N Pool), Freeze 
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event 3 (Wedges 18N and 50N), Freeze event 4 (Wedges 14.9S, 50S, 52.5S), and Freeze 

event 5 (Wedges 45N, 52.5N, 60S, 64S) (Figure 3.4). 

Freeze event 1 (F1) includes at least nine 1 - 2 m wide ice wedges exposed in the 

same apparent stratigraphic section in the lower silt unit at the base of the tunnel, about 

12 – 13 m below the ground surface (bgs) (Figure 3.4). These F1 ice wedges, named 

because they appear to be in the lowest stratigraphic section of the tunnel and likely 

formed before the other wedges, consist of near vertical and parallel silt rich folia and ice 

bubbles (Figure 3.5A). Above F1, a small secondary wedge crosscuts the top of a single 

F1 wedge (35S) around 12 m bgs, suggesting it formed after F1 during Freeze event 2 

(F2) (Figure 3.5A). The top of the F2 wedge lies within the lower silt unit and is 

truncated, along with F1 wedges, by an apparent period of thaw, or Melt event 1 (M1) 

(Figure 3.5B) (Figure 3.4). This M1 event appears to have occurred after F2, as 

evidenced by thaw features such as clear ice that appears ponded above the wedges with 

slumped organic-rich soil horizons that lie stratigraphically above the F2 wedge around 

11 m bgs. The ice pools within M1 range in size from 0.3 m to 2.0 m wide and consist of 

silty to clear non-foliated ice (Figure 3.5B), which suggests that warmer conditions 

existed during this event, permitting liquid water to persist. This melt event was followed 

by a third Freeze event (F3), characterized by small 0.2 – 0.8 m wide wedges in the 

lowest section of the upper silt unit (Figure 3.5C). The F3 wedges appear 

stratigraphically above the M1 features at around 10 m bgs, suggesting that they formed 

after the M1 event (Figure 3.4). Narrow wedges appearing around 8 m bgs and above the 

F3 wedges likely formed during Freeze event 4 (F4) (Figure 3.4). These narrow wedges 

cut through both the M1 and F1 events, extending down the tunnel to about 13 m bgs 
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(Figure 3.5A and 3.5D). Ice wedges exposed in the tunnel ceiling and extending down to 

about 7 m bgs above the F4 wedges make up Freeze event 5 (F5) (Figure 3.4). Because 

the tops of these wedges extend up into the tunnel ceiling, the height of the wedge tops is 

unknown (Figure 3.5E).  

Ice wedge and pool ice 14C dating 

 Although the stratigraphic position of these freeze and thaw features constrains 

the relative order of formation, the determination of the timing of events is not possible 

without radiocarbon dating. Previous research established the age of the Permafrost 

Tunnel host sediments from rootlets, wood logs, and organic material frozen within the 

silt (Hamilton et al., 1988; Lachniet et al., 2012; Sellmann, 1967), so this study focused 

on determining the timing of freeze and melt events using the 14C ages of DOC and CO2

within the ice. The radiocarbon analyses included 19 14C ages of DOC and seven 14C ages 

of CO2 gas within the wedge and pool ice, and one AMS age from macro-sized sedge 

vegetation. The 14C ages of the CO2 within the ice wedges ranged from 27,990 + 270 to 

35,830 + 440 cal yr BP, while the CO2 within the pool ice returned an age of 31,140 + 

140 cal yr BP (Table 1). The 14C ages of the DOC from organic material in the ice wedge 

samples ranged from 17,910 + 210 to 35,690 + 450 cal yr BP and from 21,470 + 200 to 

31,890 + 380 cal yr BP within the pool ice (Table 3.1). The youngest DOC ages are 

significantly younger than CO2  from the same subsample.  

In addition to the 14C analyses, 13C values were used to detect the presence of 

respired CO2 from ancient organic matter in the ice. The 13C values in the wedge ice 

ranged from -14.4 to -21.5‰ in the CO2 samples and from -24.7 to -26.7‰ in the DOC 

samples (Table 3.1). The pool ice CO2
13C value was-9.7‰, and ranged from -25.4 to -
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26.1‰ in the DOC samples (Table 3.1). The 13C values were compared to the modern 

value of atmospheric CO2 ( 13C = -6.8‰) and to the value of organic material ( 13C = -

27‰). With the exception of the 34S Pool sample with a 13C of -9.7‰, the other 

samples had mean 13C values of -16.8‰, intermediate between modern atmospheric 

values and organic material values. These intermediate values indicate that organic 

material older than the age of the wedge or atmospheric CO2 likely contributed carbon to 

the sample, thus returning ages of respired CO2 much older than of wedge formation 

(Lachniet et al., 2012).  

 The presence of older organic material incorporated into the ice wedges during 

cracking events is also apparent in the 14C ages of the DOC and CO2 within the wedges. 

Under ideal cracking conditions, the age of the ice wedge material should be younger 

near the center of the wedge and older toward the outer edge of the wedge as the wedge 

continues to grow and incorporate younger and younger material. However, none of the 

wedges sampled exhibit this pattern. The reverse pattern of younger to older dates 

moving inward from the edge of the wedge to the center is apparent in the F1 wedges 

(Figure 3.6). Both DOC and CO2 were analyzed within the wedges in an effort to 

determine an age/width relationship. Within the following wedges, the number (N) of 

DOC and/or CO2 samples analyzed was as follows: 1N (3), 14.9S Winze (1), 18N (2), 

35S (1), 50S (8), 52.5S (1), and 58N (6). Despite efforts to obtain high resolution 

radiocarbon ages of individual folia within each wedge, the scatter in the ages within 

each wedge prohibits determining when individual cracking events occurred in the 

wedge. The 14C ages of DOC within wedge 50S ranged from 25,870 cal yr BP near the 

outer edge to 34,550 cal yr BP near the center of the wedge. Similarly, wedge 58N also 
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exhibited age scatter throughout the wedge from 26,700 to 30,540 cal yr BP near the 

center of the wedge. This scatter in ages highlights the problematic incorporation and 

persistence of older organic carbon into the ice wedges, making the determination of 

timing of formation difficult.  

Timing of freeze and melt events 

The range of DOC and CO2 ages from each sampled freeze and melt event were 

used to develop the relative timing of ice wedge growth and ice pool formation for Freeze 

event 1 (Wedges 35S, 45S, 50S, 58N), Freeze event 2 (35S Secondary Wedge), Melt 

event 1 (34S Pool, 50S Pool, 51S Pool), Freeze event 3 (Wedge 18N), Freeze event 4 

(Wedges 14.9S Winze and 52.5S), and Freeze event 5 (Figure 3.7). The stratigraphic 

position of one sampled wedge, 1N, could not be visualized because of the tunnel portal 

support beams and structure that obstructed the view of the sediments surrounding the 

wedge. Therefore, wedge 1N was not classified in to a freeze event. However, it may 

represent an additional freeze event. Host sediment ages from both the lower and upper 

sections of the tunnel were used to constrain both the oldest and youngest possible ages 

of thermal event timing. 

 The first 14C ages used to constrain the timing of Freeze event 1 are from 

previously reported ages of 41,020 + 880 cal yr BP from silty peat (Hamilton et al., 1988) 

and 40,800 + 410 cal yr BP from wood (Lachniet et al., 2012) in the lower host sediments 

surrounding the large F1 wedges in the lower silt unit (Figure 3.7). These host sediment 

ages are older than the 14C ages of DOC within the F1 ice wedges that range from 25,870 

+ 270 to 34,970 + 460 cal yr BP (Figure 3.7). Because the host sediment ages are at least 

6,000 years older than the F1 ages, and as much as 15 kyr older, the lower host sediments 
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were likely in place prior to the formation of the F1 and subsequent wedges (Figure 

3.5A). Therefore, the freeze and melt events are likely significantly younger than 41 cal 

ka BP (Figure 3.7).  

 Further evidence for a 41 cal ka BP maximum age of the freeze and melt events is 

provided by the range of 14C ages of DOC within the F1 ice wedges, which range from 

25,870 + 270 to 34,970 + 460 cal yr BP (Figure 3.7). Unless secondary cracking occurs, 

it is not likely that younger material enters a wedge during a cracking event, meaning the 

maximum limiting age for an ice wedges is likely approximated by the youngest age 

returned during analyses (Lachniet et al., 2012). Therefore, the maximum limiting age of 

the F1 wedges must be 25,870 + 270 cal yr BP (Figure 3.7). Further, the F1 ice wedges 

are stratigraphically constrained by thaw and pool ice features above them (Figure 3.5A). 

An apparent period of thaw is evident in organic-rich horizons that truncate the F1 

wedges and pool ice lenses above the wedges (Figure 3.5B). Since the pool ice 14C ages 

of DOC range from 21,470 + 200 to 31,890 + 380 cal yr BP (Figure 3.7), the F1 wedges 

below these features must not be younger than 21,470 + 200 cal yr BP. Therefore, the F1 

wedges likely formed between 25.9 – 21.5 cal ka BP (Figure 3.7).  

 The Freeze event 2 (F2) ice wedge is represented by a small 0.20 m wide by 0.60 

m tall secondary wedge that cross-cuts the right side of wedge 35S (Figure 3.5A). 

Because the secondary wedge cuts through the already-formed wedge 35S in F1, it likely 

formed after the F1 event. The F2 event is further constrained in age by the pool ice from 

Melt event 1 (M1) that truncates the wedge from above (Figure 3.5B). With the pool ice 

14C ages of DOC ranging from 21,470 + 200 to 31,890 + 380 cal yr BP (Figure 3.7), the 

F2 wedges below these features must not be older than 21,470 + 200 cal yr BP. The F2 
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event was not dated, but it likely formed after the F1 event and before the M1 event, 

within the range of 25.9 – 21.5 cal ka BP (Figure 3.7). 

 Because the pool ice features in Melt event 1 (M1) are located stratigraphically 

above the F1 and F2 wedges and below the F3 wedges, the M1 event likely occurred after 

the F1 and F2 wedges formed but before the F3 wedges formed (Figure 3.5). Unlike the 

wedges, the pool ice consists of non-foliated lenses of silt-rich ice grading upward to 

clear ice (Figure 3.5B), suggesting the pools formed under warmer conditions without 

ground contraction from freezing compared to the wedge ice. Additional evidence for 

non-frozen conditions is apparent in slump structures in the sediment around the pool ice 

that indicates the frozen ground thawed and was reworked during the melt event (Figure 

3.5B). This reworking during thaw likely occurred during a warm period as pools were 

present at the surface, exposed to the atmosphere. A 13C value of -9.7‰ from CO2 in the 

pool ice is close to the modern value of atmospheric CO2 ( 13C = -6.8‰), which suggests 

contamination with infinite age carbon may have occurred during sampling. The old 14C

ages of DOC within the pool ice ranging from 21,470 + 200 to 31,890 + 380 cal yr BP 

suggest the high 13C values are likely not the result of water that equilibrated with the 

atmosphere prior to refreezing. These ages indicate the ice must be equal to or younger 

than 21.5 cal ka BP (Figure 3.7). Because there are no foliations within the pool ice, it is 

unknown whether these pools formed during a seasonally warm event or over many 

warm seasons. Green sedge material that appeared to be in growth position within the 

pool ice returned a radiocarbon age of 26,430 + 280 cal yr BP (Figure 3.5), older than the 

maximum limiting age of 21.5 cal ka BP for the pool ice. This older sedge material likely 

slumped into the pool during thaw and reworking, contributing to the uneven surface of 
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the top of the pool ice as the pool froze (Figure 3.5B). This period of freezing of the pool 

ice likely occurred before the formation of the F3 wedges, which are located 

stratigraphically above the M1 event, and constrain the minimum age of the pool ice 

(Figure 3.5C). The 14C ages of DOC within the F3 wedge range from 17,910 + 210 to 

18,820 + 140 cal yr BP, indicating the M1 event likely formed before 17.9 cal ka BP, 

placing the range of possible timing from 21.5 to 17.9 cal ka BP (Figure 3.7). 

 A small wedge, 18N, located stratigraphically above the M1 features and below 

the F4 wedges was classified as Freeze event 3 (F3) (Figure 3.5C). The 14C ages of DOC 

within this F3 ice wedge range from 17,910 + 210 to 18,820 + 140 cal yr BP (Figure 3.7), 

suggesting the age of the ice is likely equal to or younger than 17.9 cal ka BP. This 

maximum limiting age combined with the M1 maximum age stratigraphically below the 

F3 wedge indicates that the wedge likely formed between 17.9 and 21.5 cal ka BP 

(Figure 3.7). 

 A fourth Freeze event (F4) is apparent stratigraphically above the F3 event and 

below the F5 event (Figures 3.5A and 3.5D). The 14C ages of DOC within the F4 sampled 

ice wedges, 14.9S Winze and 52.5S, range from 32,030 + 400 to 35,690 + 450 cal yr BP, 

the oldest ages returned from the sampled wedges (Figure 3.7). Because of the 

stratigraphic age constraints of the wedges below these F4 wedges, these 32 - 36 cal ka 

BP 14C ages from DOC are likely the result of contamination from older carbon 

incorporated into the wedge during cracking. Because the F4 wedges are stratigraphically 

constrained below by the F3 wedges with a maximum limiting age of 17.9 cal ka BP, the 

F4 wedges are likely younger than 17.9 cal ka BP (Figure 3.7). A 14C age of 12,900 + 

280 cal yr BP from a wood log in the Debris Fan stratigraphically above the F4 wedges 
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(Sellmann, 1967) constrains the minimum age of the F4 event. Thus, the F4 event likely 

occurred between 17.9 - 12.9 cal ka BP (Figure 3.7).  

 A fifth Freeze event 5 (F5) is apparent stratigraphically above the F4 event 

(Figure 3.5E). These wedges are located in the uppermost section of the tunnel and were 

not sampled because they are only partly exposed in the tunnel ceiling. Similar to the F4 

wedges, the F5 wedges are narrow but extend several meters down into the tunnel from 

the ceiling. It is unknown where the tops of the wedges begin stratigraphically, as 

indicated in Figure 3.4. Sellmann (1967) identified small wedges of this size and 

approximate stratigraphic position in the ventilation shaft at the rear of the tunnel, but the 

shaft was inaccessible during this study because of sediment collapse, instability, and 

safety concerns near the shaft entrance. Because of their stratigraphic position above the 

F4 wedges, the F5 wedges must be younger than 17.9 cal ka BP (Figure 3.7). Like the F4 

wedges, the F5 wedges are also constrained above by the 12.9 cal ka BP age from a wood 

log in the Debris Fan near the tunnel entrance. Therefore, the likely age of the F5 event is 

between 17.9 - 12.9 cal ka BP (Figure 3.7).  

 The F5 wedges are constrained stratigraphically by the Debris Fan near the tunnel 

entrance and organic materials dated by Sellmann (1967). A transported willow log with 

an age of 12,900 + 280 cal yr BP in the Debris Fan suggests the Debris Fan is younger 

than 12.9 cal ka BP. The range of ages and maximum limiting ages of the five freeze 

events, one melt event, and lower and upper host sediments indicate the events likely 

occurred between 25.9 cal ka BP and 12.9 cal ka BP (Figure 3.7).  
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Discussion 

Approximate timing of freeze and melt events 

Between the time the lower and upper host sediments were emplaced around 41.0 

cal ka BP and 9.5 cal ka BP, respectively, at least five intervals of freezing and one 

interval of melt occurred in Central Alaska. The F1 wedges, with a 14C maximum 

limiting age of 25,870 + 270 cal yr BP and a stratigraphic minimum limiting age of 

21,470 + 200 cal ka BP, likely formed between 25.9 – 21.5 cal ka BP (Figure 3.7), much 

later than the previously reported 37,270 + 3780 to 37,610 + 2390 cal yr BP (Sellmann, 

1967). Hamilton et al. (1988) and Sellmann (1967) reported ages from the organic 

material surrounding the wedges in the lower silt unit that were similar to their 

radiocarbon ages in the ice (Figure 3.4). These data were interpreted to indicate that the 

wedges were syngenetic, forming at the same time as sediment deposition. Further 

evidence from cryostructures and apparent thermokarst-cave ice was interpreted to 

support a syngenetic origin of the wedges (Kanevskiy et al., 2008; Shur et al., 2004). 

However, 14C ages of DOC in the lower unit wedges were up to 14,000 years younger 

than the surrounding sediment (Lachniet et al., 2012), suggesting the timing of sediment 

deposition did not occur simultaneously with the ice wedge growth. The radiocarbon ages 

of the DOC presented here confirm the wedges and pool ice are much younger than the 

surrounding sediment ages, and it is likely the wedges formed significantly after, not 

during, the time of sediment deposition (Figure 3.7). The younger DOC ages from the ice 

wedges presented here indicate the wedges are actually epigenetic, not syngenetic, in 

origin, and formed later than previously thought.  



66

The timing of the freeze and melt events correspond to changes in Central 

Alaskan and Beringian climate as indicated by glacial moraines, sea level rise and fall, 

and vegetation changes that suggest climate fluctuated between cold and warm conditions 

between 25.9 and 12.9 cal ka BP. 

Freeze event 1 – 25.9 to 21.5 cal ka BP 

The F1 wedges, with a 14C maximum limiting age of 25,870 + 270 cal yr BP and 

a stratigraphic minimum limiting age of 21,470 + 200 cal yr BP, likely formed between 

25.9 – 21.5 cal ka BP (Figure 3.7). This 25.9 – 21.5 cal ka BP interval of freezing in the 

Permafrost Tunnel corresponds to an interval of glacial retreat in northern and 

southwestern Alaska. Evidence from 10Be dating of terminal moraines in the Brooks 

Range indicates glacial stillstands occurred between 27 – 24 cal ka BP (Balascio et al., 

2005), while the retreat of glaciers from their late LGM terminal positions farther south 

in the Alaska Range appears to have occurred around 22 – 19 cal ka BP (Briner and 

Kaufman, 2008). This expansion of Alaskan glaciers also corresponds to the 

approximately 120 m fall of sea level in the during the global LGM, which would have 

exposed much of the Bering land bridge (Elias and Crocker, 2008). As glaciers expanded 

in conjunction with sea level regression, the resulting increased aridity in the interior of 

the continent may have limited the availability of moisture for the growth of glaciers, 

contributing to their eventual retreat around 19 cal ka BP (Briner et al., 2005). Likewise, 

this increased aridity over the continent may have also limited the availability of moisture 

for the growth of ice wedges, and could have prompted the cease of ice wedge growth.  

The cold conditions necessary for F1 ice wedge growth between 25.9 and 21.5 cal 

ka BP also correspond to intervals of high loess production as glaciers expanded. 
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However, loess accumulation was low because of the lack of sufficient vegetation to trap 

loess (Muhs et al., 2003). Despite the increased continentality from lowered sea levels, 

the appearance of moisture-tolerant grasses and sedges from fossil arctic ground squirrel 

caches within this interval indicate conditions were not entirely arid in eastern Beringia 

(Gaglioti et al., 2011). Further evidence present in the 15N record of megafauna diets 

suggests a shift to wetter conditions began around 27 cal ka BP near Fairbanks (Fox-

Dobbs et al., 2008) and around 25 cal ka BP along the North Slope (Mann et al., 2013). 

This shift from drier to wetter conditions could explain the appearance of the F1 wedges 

around 25.9 cal ka BP as sufficient moisture was available for ice wedge growth to occur. 

The growth of the F1 and F2 wedges during this cold and wet event starting at 25.9 cal ka 

BP must have ceased by 21,470 + 200 cal yr BP because the dated Melt event 1 features 

truncate the F1 wedges (Figure 3.5). 

Freeze event 2 - <25.9 to 21.5 cal ka BP 

 The F2 wedges were not radiocarbon dated, but based on stratigraphic position, 

these wedges formed after the F1 wedges and before the F3 wedges, likely between 25.9 

and 21.5 cal ka BP (Figure 3.7). Because the F2 wedges are small secondary wedges, the 

growth period was likely shorter compared to the F1 wedges. The F2 wedges were 

truncated by the Melt event 1, so the F2 wedges must have ceased formation by 21.5 cal 

ka BP (Figure 3.7). Radiocarbon dating and/or stable isotope analyses of the F2 wedges is 

necessary to estimate a more precise timing of formation. 

Melt event 1 – 21.5 to 17.9 cal ka BP 

 The M1 pool ice features, located stratigraphically above the F1 and F2 wedges, 

returned a maximum limiting age of 21,470 + 200 cal yr BP and a stratigraphic minimum 
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limiting age of 17,910 + 210 cal yr BP. The M1 features likely formed between 21.5 –

17.9 cal ka BP (Figure 3.7), during a warmer interval. This timing of melt in the tunnel is 

consistent with evidence of warming in the Canadian Arctic and Yukon such as a 20 cal 

ka BP horse mandible (Lacelle et al., 2013) which indicates the area around the 

Richardson Mountains NWT was ice free during this time. A decline in the 15N in 

caribou bone around 20 cal ka BP also indicates a shift in diet to more moist acidic tundra 

vegetation characteristic of warmer and wetter climates (Mann et al., 2013). Evidence for 

glacial retreat near Denali in the Alaska Range between 22 and 19 cal ka BP (Briner and 

Kaufman, 2008) also indicates warmer conditions existed within this interval.  

The M1 pool ice maximum limiting age of 21,470 + 200 cal yr BP (Figure 3.7) is 

much younger than the previously reported 37,150 + 3920 cal yr BP from rootlets and 

organic material at the bottom of a thaw pond (Figure 3.4) (Sellmann, 1967). Green sedge 

material that appeared to be in growth position within the pool ice returned a radiocarbon 

age of 26,430 + 280 cal yr BP (Figure 3.5), which is also younger than the previously 

reported ages from the organic material surrounding the pool ice (Hamilton et al., 1988; 

Sellmann, 1967). I interpret this sedge material as an older horizon that fell into the pool 

at the end of the melt event, returning an age of sedge growth rather than the timing of 

the actual melt. The persistence of older carbon in the sediments surrounding the material 

is again highlighted by an oldest age of organic material of 31,890 + 380 cal yr BP from 

the pool ice (Figure 3.7). Old organic material must have been mobilized during the melt 

event, refrozen in the pool, and preserved in the refrozen pool ice. Slump structures 

apparent in the sediment above the pool ice (Figure 3.5B) also indicate that mass 

movement occurred when previously frozen ground thawed and was reworked by slope 
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processes. This Melt event 1 had previously been classified as a thaw unconformity 

(Hamilton et al., 1988), possibly representative of summer warm conditions during the 

LGM (Lachniet et al., 2012). The new DOC ages of the stratigraphically-constraining 

wedges above and below the pool ice confirm the timing of these melt features as 

occurring during warm intervals during the LGM. However, without stable isotopic data 

from the melt features, the exact timing and correlation with global warm events is not 

possible.  

Freeze event 3 – 17.9 to 12.9 cal ka BP 

The F3 wedges, with a maximum limiting age of 17,910 + 210 cal yr BP and a 

stratigraphic minimum limiting age of 12,900 + 280 cal yr BP (Figure 3.7), represent a 

previously undocumented interval of ice wedge growth in the tunnel that likely occurred 

between 17.9 and 12.9 cal ka BP. The beginning of this same interval includes the largest 

sea ice and glacial extent in the Arctic, sea levels as low as 120 m below modern sea 

levels, and the lowest global temperatures during the LGM (Miller et al., 2010). Hamilton 

et al. (1988) reported an age of 34,780 + 130 cal yr BP from organic wood and grass from 

the silty peat 1.8 m above the large ice wedges in the lower unit, but no ages of ice 

wedges from this stratigraphic interval in the upper silt unit were reported. An age of 

12,900 + 280 cal yr BP from a wood log in the debris fan deposit near the tunnel entrance 

(Sellmann, 1967) provides a possible constraining age, but the log could be several 

thousand years older than the actual timing of the debris fan event. A reported age of 

34,780 + 130 cal yr BP (Hamilton et al., 1988) from the surrounding sediments above 

wedge 40S, however, indicates that like the F1 and F2 wedges, the F3 wedges are 
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epigenetic in origin because the age of the sediment is much older than the 14C age of 

DOC within the ice wedge.  

The 17.9 - 12.9 cal ka BP timing of the F3 wedges corresponds to an interval of 

glacial retreat in the Nenana Valley near Fairbanks (Dortch et al., 2010). This glacial 

retreat could have been triggered by increased continentality as sea levels reached their 

lowest point during the LGM (Elias and Crocker, 2008) and also may have limited 

moisture availability for F3 wedge growth. The formation of these wedges may have 

ceased at the onset of rapid warming around 16 kyr, as seen in the increase in warmer 

pollen species in lake sediment records from Central Alaska (Ager and Brubaker, 1985) 

and in the 15N decrease in muskoxen and caribou diets (Mann et al., 2013). However, 

without stable isotope data from these ice wedges, the timing and correlation with other 

paleoclimatic records cannot be compared.  

Freeze event 4 - <17.9 to 12.9 cal ka BP 

The F4 wedges returned the oldest radiocarbon ages sampled in the tunnel, 

ranging from 32,030 + 400 cal yr BP to 35,690 + 450 cal yr BP (Figure 3.7). However, 

these ages are clearly a result of contamination with older carbon because they are 

stratigraphically constrained by younger ages (Figure 3.4). The F4 wedges are located 

stratigraphically above the F3 wedges with a maximum limiting age of 17,910 + 210 cal 

yr BP and stratigraphically below the debris fan with a minimum limiting age of 12,900 + 

280 cal yr BP (Figure 3.5D), so the F4 wedges must be younger than 17.9 cal ka BP. 

Although the age of 12,900 + 280 cal yr BP from the wood log in the debris fan deposit 

could be several thousand years older than the actual timing of the debris fan event, ages 

from organic material in host sediments stratigraphically above the log in the tunnel 
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ventilation shaft provide minimum limiting ages of 9.5 cal ka BP (Sellmann, 1967). This 

indicates the F4 wedges likely formed between 17.9 and 12.9 cal ka BP, which correlates 

with the transition to warmer and wetter climatic conditions around 16 cal ka BP, similar 

to those discussed above during the F3 event. Stable isotopic data from these wedges 

could enable a better approximation of the timing and extent of the F4 event.  

Freeze event 5 - <17.9 to 12.9 cal ka BP 

Similar to the F3 and F4 events, the F5 event is constrained by a 12.9 cal ka BP 

willow log from the Debris Fan (Sellmann, 1967) (Figure 3.7). These wedges were not 

sampled, and the tops of these wedges were not visible because they extend above the 

ceiling of the tunnel. Because the F5 wedges are located stratigraphically above the F3 

and F4 wedges, the F5 wedges likely formed after 17.9 cal ka BP, perhaps during the 

early Younger Dryas (YD). Ice wedges in Barrow formed during the YD, suggesting cool 

conditions occurred on the North Slope of Alaska (Meyer et al., 2010b). However, stable 

isotopic data from these F5 wedges would provide a better estimate of the temperature 

fluctuations during this interval.  

Implications for dating carbon in the permafrost environments 

 The several thousand year range of these radiocarbon values within these freeze 

and melt events highlights the need for high resolution 14C sampling of DOC within the 

ice combined with stable isotopic analyses of the ice to resolve anomalous age dating. As 

shown in the F4 wedges, long persistence times of carbon in permafrost environments 

can cause anomalously old ages, as carbon can be up to 17,000 years older than the age 

of the ice wedge. As seen in the Freeze and Melt events within the tunnel, carbon was 
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frozen, thawed and remobilized during incorporation into the ice wedge, and refrozen 

again during the ice wedge formation.  

Summary of thermal events in the Permafrost Tunnel 

 Central Alaska experienced at least five distinct freeze events and at least one 

melt event as shown in radiocarbon dated ice wedges preserved in the CRREL 

Permafrost Tunnel. Large ice wedges from the lower silt unit in the tunnel formed during 

F1, between 25.9 - 21.5 cal ka BP or during H2, followed by the secondary wedges in the 

F2 event. A melt event likely occurred between 21.5 - 17.9 cal ka BP, characterized by 

the pool ice features. The F3 event likely occurred between17.9 - 12.9 cal ka BP, or 

during H1. F4 and F5, likely occurred after 17.9 cal ka BP, but the exact timing of these 

events is unknown (Figure 3.7). 

Conclusion 

A new method of using 14C ages of DOC and CO2 to determine the timing of ice 

wedge and pool ice formation revealed five freeze events and one melt event within the 

CRREL Permafrost Tunnel. These freeze and melt events, consisting of large ice wedges 

and pool ice, likely occurred between 25.9 - 21.5 cal ka BP, earlier than previously 

thought. Small secondary wedges formed above these F1 wedges during a Freeze event 2. 

These F1 and F2 wedges were truncated by the Melt event 1 that likely occurred around 

21.5 - 17.9 cal ka BP, as indicated by pool ice and thaw features apparent in the tunnel. 

Ice wedges in Freeze event 3 likely between 17.9 - 12.9 cal ka BP, or possibly during 

Heinrich event 1. Inconclusive radiocarbon ages from a fourth interval of ice wedge 

formation, Freeze event 4, prohibit precise dating of ice wedge formation. However, the 

stratigraphic location of the Freeze event 4 wedges indicates the wedges likely formed 
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after 17.9 cal ka BP. A fifth event, Freeze event 5, also likely formed after 17.9 cal ka 

BP, possibly prior to the Younger Dryas. The prevalence of carbon as much as 17,000 

years older than the timing of ice wedge growth is apparent in the Freeze event 4 wedges, 

suggesting carbon in the arctic is reworked and resequestered during changing climatic 

conditions, causing anomalous ages in permafrost environments. More precise dating of 

these thaw events is required to determine the timing of these changes. Stable isotope 

analyses of the ice wedges could help to constrain the timing of these events by 

correlating the isotopic record with ice core and ocean sediment records.  



74

Figure 3.1. Map of USACE CRREL Permafrost Tunnel location. The USACE CRREL 
Permafrost Tunnel is located just north of Fairbanks, Alaska. Base map is a USGS 300-m 
Digital Elevation Model (DEM) (USGS, 1997).   
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Figure 3.2. Cross-section of the CRREL Permafrost Tunnel. Cross-section showing 
preserved ancient ice wedges within the upper and lower silt units of the Goldstream 
Formation (Hamilton et al., 1988). 
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Figure 3.3. General stratigraphic section of the CRREL Permafrost Tunnel. Figure 
showing radiocarbon ages of willow logs, ice wedges, peaty organic material, and bottom 
sediment (BS) from a thaw pond within the upper and lower silt units (Hamilton et al., 
1988). Ages shown are non-calibrated 14C ages. 
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Figure 3.4. Stratigraphic placement of freeze and melt events. A generalized stratigraphic 
section of the CRREL Permafrost Tunnel showing the approximate stratigraphic 
placement of five freeze (F) events and one melt (M) event. Labeled dashed boxes 
correspond to photographs A-E taken in the tunnel shown in Figure 5. Filled circles mark 
locations of sampled organic material with the youngest 14C ages of DOC from a suite of 
ages shown in calibrated years BP. Dashed stratigraphic contact lines indicate the 
approximate location of the Debris Fan and absence of sediments above the Debris Fan 
near the tunnel portal.  
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Figure 3.5. Photographs of five freeze and melt events. Photographs showing the relative 
position and stratigraphic placement of five freeze (F1 through F5) events and one melt 
(M1) event (dashed outlines) from the CRREL Permafrost Tunnel. A) Wedge 35S in F1 
(0.5 m above ground level inside tunnel), the secondary wedge at 35S in F2, the 34S Pool 
in M1, and the F4 wedge above Wedge 35S. B) Closer view of the 34S pool in M1 (~ 1.2 
m above ground level) and the 35S secondary wedge beneath it in F2. C) Wedge 18N in 
F3 (~1.5 m above ground level), with an approximately 1.5 m person standing beside the 
wedge. D) Wedge 52.5N in F4 (~ 3 m above ground level) with 50S pool ice in M1 
below it. E) Wedge 64S in F5 (4 + m above ground level) extends up into the ceiling of 
the tunnel and lies stratigraphically above Wedge 64S in F1.  
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Figure 3.6. Freeze event 1 ages and 13C values. Freeze event 1 (F1) ice wedge (35S, 
45S, 50S, and 58N) radiocarbon dating sampling locations, calendar ages (in calibrated 
years BP), and 13C values of DOC (closed symbols) and CO2 (open symbols) from the 
CRREL Permafrost Tunnel. F1 ice wedges have a maximum limiting age of 25,870 + 
270 cal yr BP.   
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Figure 3.7. Approximate timing of freeze and melt events. The combined calendar ages 
and 13C values for DOC (circles) and CO2 (triangles) from ice wedge and pool ice and 
stratigraphic placement suggest at least five freeze events and one melt event occurred in 
the CRREL Permafrost Tunnel. The limiting ages for each event are represented by thick 
bars while dashed bars with arrows represent the stratigraphically constrained limiting 
ages of events.   
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Table 3.1. Radiocarbon ages of DOC and CO2 within wedges and pool ice. 
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CHAPTER 4 

VARIABLE LATE PLEISTOCENE PALEOCLIMATE IN ALASKA FROM  
HIGH-RESOLUTION 18O OF PERMAFROST ICE WEDGES  

SUGGESTS NORTH ATLANTIC FORCING 
Abstract 

 Radiocarbon dating of dissolved organic carbon (DOC) within ice wedges and 

pool ice in the CRREL Permafrost Tunnel in Fairbanks, AK has revealed timing of 

formation during Marine Isotope Stage II, earlier than suggested by previous workers. 

Results from Chapter 3 suggest that five ice wedge growth events occurred in the interval 

between ca. 26 and 13 cal ka BP. Because of highly variable radiocarbon ages resulting 

from contamination with old carbon (described in Chapter 3), in this work I attempted to 

further refine growth ages by correlation of wedge ice 18O values to a record of sea 

surface temperature (SST) in the Bering Sea. For this correlation and to investigate the 

magnitude of paleoclimatic change in Central Alaska during MIS II, I analyzed 18O at 

high resolution for five intervals of ice wedge growth during cooling intervals and one 

interval of pool ice growth during a warmer interval characterized by thaw and ground 

ice melt. These intervals are identified with 18O records, displaying 18O values ranging 

from -28.9‰ to -20.4‰, which range between 6.6‰ below and +1.9 ‰ above the 

modern snow 18O value of -22.3‰. These 18O values suggest most of the ice wedges 

formed during colder-than-modern conditions, consistent with last glacial period 14C

ages. Using isotope-temperature relationships defined in Chapter 2, paleo-winter 

temperatures ranged from -41.6 to -11.2°C, while paleo-mean annual temperatures 

(MAT) ranged from -14.1 to 1.4°C. This range in 18O is consistent with 

paleotemperature fluctuations observed in the Bering Sea SST and Greenland ice core 

records. Based on a visual correlation to the Bering Sea SST record within the ice age 
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limits identifieded in Chapter 3, I suggest here that Freeze event 1 likely occurred during 

cooling of -12.3 to -1.2°C between 26.5 - 25.3 cal ka BP, coinciding with Heinrich event 

2, while Freeze event 2 occurred during cooling of -8.8 to -2.8°C between 21.0 - 20.5 cal 

ka BP. One warming interval, M1, when clear pool ice formed in a melt horizon above 

the F1 and F2 wedges, may have occurred as paleo-MAT ranged between -9.9 and -1.2°C 

between 19.1 - 18.8 cal ka BP. Freeze event 3 represents the lowest (coldest) 18O values 

that suggest paleo-MAT ranged between -14.1 and -9.2°C which is correlated to the 

coldest regional climate interval when the Laurentide Ice Sheet reached its local 

maximum extent in the Yukon between 17.3 - 17.0 cal ka BP, coinciding with Heinrich 

event 1. Freeze event 4 has similar high 18O values as a late Holocene ice wedge in the 

nearby Vault Creek permafrost tunnel, which was radiocarbon-dated to ca. 3.9 cal ka, and 

represents the warmest ice wedge forming thermal event as paleo-MAT likely ranged 

between -1.4 and 1.4°C. The combination of low-resolution and low-fidelity radiocarbon 

dating, high resolution 18O data, and paleotemperature estimates allow for more robust 

age constraints, and when compared with the well-dated Bering Sea temperature record, 

suggest ice wedges in Central Alaska formed in response to North Atlantic DO- and H-

type millennial forcing of climate.  

Introduction  

Oxygen and hydrogen isotopes in paleoclimate 

 Oxygen and hydrogen isotope ratios in proxies such as ice cores, speleothems, 

and benthic foraminifera are useful tools in studying past climatic changes in global 

temperature, circulation, and precipitation patterns. Oxygen ( 18O) and hydrogen ( D) 

isotopes are measures of the relative abundance in the ratios of 18O/16O and 2H/1H,
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respectively, in relation to the standard of mean ocean water (SMOW). Isotope 

fractionation is temperature dependent and follows the Rayleigh distillation curve (Craig, 

1961; Epstein and Mayeda, 1953). Other factors including altitude, seasonality, and 

latitude affect the isotopic signature of precipitation (Dansgaard, 1964).  

 Stable isotopes of oxygen and hydrogen in Greenland ice cores (Svensson et al., 

2008), global ocean sediments (Lisiecki and Raymo, 2005), Bering Sea sediments 

(Schlung et al., 2013), and ground ice (Meyer et al., 2010b), among many others, have 

been used to estimate Pleistocene temperature and climatic variations driven by orbital 

and millennial forcing of climate (Jouzel et al., 2007a). In ice records, more negative 

oxygen and deuterium isotopic values typically represent colder conditions, while more 

positive isotopic values represent warmer temperatures (Jouzel et al., 2007b; Meyer et al., 

2002). Greenland ice core isotopic records exhibit rapid shifts in 18O values of up to 6‰ 

during warm Dansgaard-Oeschger (DO) events and cold stadials (Andersen et al., 2004), 

indicating temperatures shifted by as much as 12 to 15°C during these climatic 

fluctuations (Johnsen et al., 2001). Some of these cold stadials are coincident with 

Heinrich (H) events, marked in oceanic sediment records by Ice Rafted Debris (IRD) 

released during massive discharges of ice into the North Atlantic (Hemming, 2004), 

driven by millennial forcing of climate (Alley and Clark, 1999; Bond and Lotti, 1995). 

Bering Sea oceanic isotopic records exhibit similar millennial-scale DO- and H-type 

shifts that indicate sea surface temperatures (SST) fluctuated by as much as 5°C between 

the warm interstadials and cold stadials over the past 60 ka (Figure 4.1) (Schlung et al., 

2013).  
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 In the absence of ice cores with continuous high resolution records of past 

climate, ice wedges in Arctic environments have recently been used as indicators of past 

Late Pleistocene and Holocene climatic trends in Siberia (Vasil'chuk and Vasil'chuk, 

1998), on the North Slope of Alaska (Meyer et al., 2010b), and in Central Alaska (Meyer 

et al., 2008). When ice wedges form, the snow meltwater that flows into the thermal 

contraction cracks records that year's climatic signal (Meyer et al., 2002). Low 18O

values from ice wedges near Barrow, AK indicate colder than present temperatures 

during the Younger Dryas (YD, ca. 12.9 to 11.5 cal ka BP) and late Pleistocene (Meyer et 

al., 2010b). Similarly, a ~10‰ range in 18O values from Late Pleistocene- to Holocene-

age ice wedges preserved in the Vault Creek Tunnel near Fairbanks, AK, indicate 

temperatures in Central Alaska fluctuated between warmer and colder than modern 

conditions, although the exact timing of the fluctuations is uncertain because of 

conflicting radiocarbon ages (Meyer et al., 2008). Stable isotope values from bulk 

samples of select ice wedges in the CRREL Permafrost Tunnel (Douglas et al., 2011) 

indicate wedges likely formed under cooler-than-modern conditions, but poor age 

constraints prohibit estimating the timing of formation and the low isotopic resolution 

prevents determining the magnitude of 18O change within the ice wedges.  

 Because DO and H events are expressed in global records, it is possible that North 

Atlantic forcing of climate on millennial scales is recorded in Alaska. Megafauna 

abundances in Central Alaska have been suggested to coincide with DO and H events 

(Mann et al., 2013), and radiocarbon dating of a single ice wedge from the CRREL 

Permafrost Tunnel near Fairbanks, Alaska (Figure 4.2) suggested that formation occurred 

during the Last Glacial Maximum at ca. 21 cal ka BP, or possibly slightly earlier during 
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Heinrich event 2 (H2) (Lachniet et al., 2012). However, the hypothesis of North Atlantic 

forcing of climate in Alaska has not been tested with sufficient resolution. More detailed 

radiocarbon dating of several ice wedges and pool ice in the Permafrost Tunnel from 

dating dissolved organic carbon (DOC) and carbon dioxide (CO2) of organic material 

within the ice indicate that at least five freeze events and one melt event occurred 

between 25.9 and 12.9 cal ka BP (Chapter 3). However, it is not possible to constrain the 

precise ages of these ice bodies with radiocarbon dating techniques.   

 As a complement to the attempts to age-date ice wedge formation, in the current 

study I analyzed the 18O change within ice wedges and pool ice and from them, estimate 

the magnitude of climatic variations during the late Pleistocene in Central Alaska. 

Further, in an attempt to better refine the growth intervals of the ice wedges, high-

resolution 18O analyses of five wedge generations were compared and correlated to a 

marine sediment record from the Bering Sea as a proxy for regional changes in 

paleotemperature.  

Methods 

 A detailed description of the tunnel stratigraphy, ice wedge sampling techniques, 

and radiocarbon dating of CO2 and DOC is provided in Chapter 3. Ice wedges and pools 

of various sizes and from various stratigraphic positions were identified for sampling in 

the tunnel and designated according to their distance in meters from the tunnel entrance 

on the north (N) or south (S) tunnel wall. Blocks of ice were cut from eight ice wedges 

(1N, 14.9S Winze, 18N, 35S, 45S, 50S, 52.5S, and 58N) and seven ice pools (31N-Pool, 

34S-Pool, 45N-Pool, 50S-Pool A, 50S-Pool L, 51S-Pool, and 70N-Pool) using an electric 

chainsaw.  
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 I subsampled each ice block in the cold room facility at Ft. Wainwright, AK for 

stable isotope analyses using the purpose-built Wedgenator ice milling tool. This device 

consists of a Dremel tool with a carbide, high-speed cutter bit attached to an aluminum 

meter stick secured and mounted at both ends. Using the Wedgenator tool, I milled ice 

samples in 2-mm swaths and collected in pre-labeled Ziploc plastic bags. To prevent 

contamination between each sample, the Dremel tool bit and ice wedge were brushed 

clean of ice shards using a small toothbrush following each sample collection. Samples 

were stored in plastic bags, packed in coolers with dry ice and cold packs, and shipped 

overnight via FedEx to the Las Vegas Isotope Science (LVIS) laboratory at the 

University of Nevada, Las Vegas. Samples were transferred to a freezer located in the 

laboratory.  

 Each stable isotope ice wedge sample was melted, filtered to remove particulate 

sedimentary material, and transferred to a five milliliter vial fitted with a two milliliter 

plastic insert. Two microliter aliquots were injected into a ThermoElectron high 

temperature conversion elemental analyzer (TC/EA) by reaction with glassy carbon at 

1,450°C in a helium carrier gas stream to produce H2 and CO gases. Isotopic ratios of 

oxygen ( 18O) and deuterium ( D) were determined on a ThermoElectron Delta V Plus 

isotope ratio mass spectrometer relative to two internal standards calibrated to SLAP 

(Standard Light Antarctic Precipitation) and VSMOW (Vienna Standard Mean Ocean 

Water) and reported in per mil (‰) concentrations. 
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Results and interpretation 

Ice wedge and pool ice stable isotopes 

 High resolution stable isotopes were analyzed in eight ice wedges (Appendix D) 

and seven ice pools (Table 4.1) from the CRREL Permafrost Tunnel. The ice wedge 18O

values range from -28.9 to -20.4‰ (mean = -26.0‰), the D values range from -226.5 to 

-163.7‰ (mean = -205.8‰), and the d values range from -7.6 to 19.0‰ (mean = 2.4‰). 

The pool ice 18O values range from -26.6 to -21.8‰ (mean = -23.4‰), the D values 

range from -209.5 to 175.6‰ (mean = -186.1‰), and the d values range from -3.2 to 

3.4‰ (mean = 1.4‰). These values plot below the Global Meteoric Water Line (GMWL) 

along a slope of 6.4 (Figure 4.3).  

 The 18O results of the ice wedges and pool ice were categorized into one of the 

freeze or melt events identified in Chapter 3. The approximate timing of five freeze 

events and one melt event were estimated in Chapter 3 using the relative stratigraphic 

position in the tunnel and 14C dating of DOC within the ice and were ordered by apparent 

sequence of formation, beginning with F1 at the base of the tunnel (Wedges 28N, 35S, 

45N, 45S, 50S, 58N, 60S, 67N, 70N), F2 (35S secondary wedge), M1 (28N Pool, 31N 

Pool, 34S Pool, 45N Pool, 50S Pool, 51S Pool, 60S Pool, 70N Pool), F3 (Wedges 18N 

and 50N), F4 (Wedges 14.9S, 50S, 52.5S), and F5 (Wedges 45N, 52.5N, 60S, 64S). The 

resulting isotopic values of each sampled freeze and melt event are shown in Figure 4.4.  

The isotopic values of the ice wedges form a distinctive concave shape with the 

highest 18O values at the outer sides of the wedge gradually decreasing to the lowest 

values at the center of the wedge (Figure 4.4A-D). The F3 wedge contains the lowest 

18O value of  -28.9‰ (Figure 4.4C), while the F4 wedges contain the highest 18O value 
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of -20.4‰ (Figure 4.4D). The largest range in 18O values within wedges occurs in the 

largest wedges, the F1 wedges, with 18O values ranging from -27.9‰ near the center to -

21.8‰ at the outside of the wedge (Figure 4.4A).

Within the isotopic profile of one the F1 wedges, though, a secondary wedge is 

apparent about 30 cm from the right side of wedge 35S (Figure 4.4A). The 18O values 

start to deviate from the pattern seen in the other F1 wedges by increasing around -25‰ 

instead of following the gradually decreasing pattern toward the center of the wedge. The 

18O values increase to -24.5‰ for 20 cm, then sharply decrease to -27‰ toward the 

center, consistent with the pattern of the other three F1 wedges. This observation of a 

double isotopic excursion towards negative values is consistent with a younger wedge 

cross cutting the F1 wedge. This 35S secondary wedge, classified as the F2 wedge, was 

documented but not sampled in Chapter 3, and is visually apparent on the right side of the 

wedge (Figure 4.5). Because F2 cuts F1, wedge F2 must be younger than F1. Another ice 

wedge, 1N, shares the same 18O values and profile as the F2 wedge at 35S, but its 

stratigraphic position was obscured by placement of the metal tunnel portal. Therefore, it 

is tentatively assigned an F2 age based on its isotopic similarity to the F2 wedge at 35S 

(Figure 4.4B).  

Origin of wedge and pool ice 

To establish whether the origin of the ice wedge ice and pool ice was meteoric 

precipitation, snowmelt, or ice wedge ice, the 18O- D relationships in both the ice 

wedges and ice pools were examined. Ice with a 18O- D slope lower than 6.0 indicates 

the ice formed by sublimation, while slopes greater than 6.0 suggest ice formed by 

refreezing of liquid water, as shown in the similar 18O- D relationships between buried 
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ground ice and local meteoric precipitation in the Yukon. These slope thresholds have 

indicated the origin of ground ice was meteoric precipitation, as the ground ice plotted 

along the local meteoric line with a similar slope (Lacelle et al., 2009). A similar 18O- D 

relationship exists here between the ice wedge values and modern snow values, as the ice 

wedge values plot along the local meteoric water line (LMWL) with a slope greater than 

6.0, indicating the source of the wedge ice was likely snowmelt that infiltrated into the 

contraction cracks during ice wedge formation (Figure 4.3).  

Likewise, the similar slope of the LMWL and the pool ice line (PIL) indicates the 

source of the pool ice was meteoric precipitation (Figure 4.3), not melted ice wedge ice, 

thus confirming the name "pool" ice. With the exception of the 45S Pool sample, the pool 

ice 18O values are higher than the ice wedge 18O values, indicating the source of the 

pool ice is likely meteoric precipitation. The lower 18O value of the 45S sample is 

intermediate between the wedge ice and meteoric precipitation, suggesting the pool ice is 

a mixture of both sources. It is possible the 45S pool formed first before the other pools, 

with thawing wedge ice and/or permafrost contributing to the water in the pool. As 

climatic conditions warmed, meteoric precipitation contributed moisture to the pool until 

flash freezing froze the pool into ice. The low pool ice values of the other pools indicates 

the ice did not form as a result of melting ice wedge ice, as suggested by the thermokarst-

cave ice hypothesis (Shur et al., 2004). The melting and refreezing of ice wedge ice to 

form thermokarst cave ice would likely result in heavier pool ice 18O values plotting 

below the Ice Wedge Line (IWL) as kinetic fractionation processes enrich the initial 

water with heavier isotopes along the freezing slope (Souchez et al., 2000). Instead, the 

18O- D relation between the PIL and the LMWL suggests the pools collected meteoric 
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precipitation during warmer intervals and underwent refreezing as conditions cooled 

(Figure 4.3).  

High resolution 18O record of paleoclimate 

 Sampling of ice wedges for 18O has typically been conducted at low resolutions, 

with one (Douglas et al., 2011) to several (Meyer et al., 2010b) samples per deci- to 

meter-scale wedge representing 18O values for the entire duration of formation. As a 

result of the low sampling resolution of previous studies, the presence of high-frequency 

climate variability on the time scales represented by the ice wedges remains poorly 

documented. Efforts to establish a 18O -age relationship within one wedge (50S) resulted 

in anomalous particulate organic carbon (POC) ages and an inconclusive 18O-age 

relationship within the wedge (Griffing, 2011). In addition, several decades of previous 

POC dating unpublished results prompted concerns of sample contamination resulting 

from the observation of age/depth anomalies in these and other ice wedges in the tunnel 

(Lawson unpublished data), prompting the efforts here to establish more rigorous 

sampling protocols to minimize contamination issues, and to use high resolution 18O and 

DOC analyses to establish an ice wedge 18O-age relationship. Wedge 35S in the F1 

event was analyzed every 4 mm to identify possible fluctuations within the ice wedge 

18O record. Small ~ 0.5‰ 18O fluctuations are observed on ~ 4 mm-scales throughout 

the wedge (Figure 4.6). These small fluctuations may be a seasonal climatic signal, but it 

is more likely they are fluctuating at longer timescales, perhaps decadal. 

 The high-to-low 18O values from the edges to the centers of the wedges follow 

the expected pattern of the ice wedge growth model. If secondary cracking had occurred 

within the wedges, it is expected 18O values would fluctuate between more negative and 
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less negative values across shorter sections of the wedge, coinciding with younger 

radiocarbon ages. These fluctuating 18O values would reflect the different climatic 

conditions during formation. With the exception of wedge 35S, evidence of secondary 

cracking events such as spikes of less negative to more negative 18O values is not 

apparent in the ice wedges, as the 18O values follow the expected high-to-low pattern 

with no apparent large fluctuations within the wedges (Figure 4.4). 

 However, the 18O values within wedge 35S do not follow this expected pattern. 

Visual investigation of the tunnel face before sampling detected the presence of a 

possible small secondary wedge on the right side of wedge 35S and high resolution 

isotopic analyses revealed this secondary wedge likely formed during a secondary 

cracking event. The high-to-low pattern of 18O values from the outer right edge of the 

wedge to the center is observed twice in wedge 35S, indicating a secondary wedge 

formed and cross cut the original F1 event (Figure 4.5). Compared to the main wedge 

35S 18O values ranging from -26.8 to -23.0‰, the secondary wedge 18O values range 

from -25.5 to -21.8‰, approximately 1.3 to 1.2‰ higher, suggesting it formed under 

warmer climatic conditions compared to the F1 event.  

 Although a high resolution 18O-age relationship was not possible because of the 

limitations of radiocarbon analyses, high resolution 18O analyses within the wedges 

enabled the comparison of high-frequency climate variability within and between ice 

wedge events. These results provide a significantly higher resolution record of 18O

variability in Central Alaska than previously recorded in other proxies. With 18O values 

ranging between -26.6 and -21.8‰, the highest of all the events sampled, the F4 event 

likely represents the warmest interval sampled in the tunnel. High resolution sampling of 
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the F3 event revealed it represented the coldest interval of those sampled in the tunnel, 

with 18O values ranging between -28.9 and -26.2‰ within the wedge, and up to -7.0‰ 

lower compared to the warmest (F4) wedges sampled. The F1 event likely represents the 

next warmest interval, with 18O values ranging from -27.9 to -21.8‰ within the wedges, 

up to --6.1‰ lower than the F4 wedges, and +1.0‰ higher than the F3 wedges. The F2 

wedges likely formed under even warmer conditions compared to the F1 and F3 wedges, 

with 18O values ranging between -26.0 and -22.7‰, up to -4.2‰ lower than the F4 

wedges and +2.9‰ higher than the F3 wedge (Figure 4.5). 

 This high resolution analysis at 4 mm revealed a much more detailed 

paleoclimatic record of 18O fluctuations compared to low resolution analyses, suggesting 

that high resolution sampling is necessary to capture the climatic variability within ice 

wedge growth intervals in Central Alaska. 

Wedge 18O as a proxy for paleoclimate change 

 The fluctuations of 18O within and between the wedges allowed for comparison 

of paleoclimatic changes during freeze events, but to compare the magnitude of 18O

change between the freeze events and modern climatic conditions, the 18O values of the 

ice wedges and pool ice were first compared to modern snow and Holocene ice wedge 

18O values (Figure 4.7). Modern snow collected in Denali National Park between 1989 

and 1993 ranged in 18O value from -27.8 to -18.2‰ ( 18O weighted mean of -22.3 + 

3.5‰), in D value from -227.5 to -187.8‰ ( D weighted mean of -176.3 + 31.4‰), and 

in d value from -11.5 to 8.7‰ (mean = -0.6‰) (USNIP, 2011). Similar to these modern 

snow values, a 3.9 cal ka BP ice wedge from an open pit at the Vault Creek Tunnel near 
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Fairbanks had a mean 18O value of -21.8‰, and D value of -172‰ (Meyer et al., 

2008).  

 Compared to the modern snow, the Permafrost Tunnel ice wedges generally have 

lower than modern 18O values, and range between -6.6 below and +1.9‰ above modern 

snow values (Figure 4.7). Assuming climatic conditions during the last glacial period 

were similar to modern conditions and because 18O values decrease with decreasing 

temperature, 18O values lower than modern values are interpreted to indicate climatic 

conditions were colder than modern. Likewise, 18O values higher than modern values 

are interpreted to indicate climatic conditions were warmer than modern.  

 Although the use of 18O values within the wedges is useful for comparison to 

modern values, combining the 18O values with 14C ages allows for a better age 

refinement of the timing and magnitude of freeze and melt events in the tunnel. For 

example, the Vault Creek ice wedge (Meyer et al., 2008) not only provides a constraining 

age of 3.9 cal ka BP for the timing of formation of the events in the Permafrost Tunnel, 

but it also closely matches the F4 wedge isotopic values ( 18O = -21.9 to -20.4‰) (Figure 

4.7). Because the F4 wedge 18O values closely match those of the Holocene age Vault 

Creek ice wedge, it is likely the F4 wedges formed around 3.9 cal ka BP. The F4 wedge 

18O values are the highest of those sampled in the tunnel and range between +0.4 and 

+1.9‰ above modern values, likely representing the warmest ice wedge forming thermal 

event (Figure 4.7).  

 Compared to the warmest thermal event in the tunnel, the F1 wedge 18O values 

range from -5.6 below to +0.5‰ above modern values, suggesting the F1 event formed 

under colder conditions compared to modern climate, intermediate between the coldest 
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and warmest conditions observed in the tunnel ice wedge record. The large wedge width 

and 6.1‰ magnitude of change in the 18O values suggests the interval of formation 

likely occurred over a cooling period between 25.9 - 21.5 cal ka BP, based on the 

constraining maximum and minimum limiting ages discussed in Chapter 3 (Figure 4.7). 

 The next interval of ice wedge growth, F2, likely occurred between 25.9 and 21.5 

cal ka BP, based on maximum and minimum limiting ages discussed in Chapter 3. The 

F2 wedge 18O values range from -3.7 to -0.4‰ below modern values, representing a 

3.3‰ magnitude of change within the event, suggesting it formed during a cooling when 

conditions were warmer than the F1 and F3 events, but still colder than modern climate 

(Figure 4.7). 

 The pool ice M1 18O values range between -4.3 below and +0.5‰ above modern 

snow values, indicating the pools formed under both colder and warmer than modern 

conditions. Although the 18O values range from -26.6 to -21.8‰, the median 18O value 

of the pool ice samples ( 18O = -23.1‰), is close to the modern value of snow, 

suggesting the pool ice formed under similar to modern conditions. However, maximum 

and minimum limiting ages between 21.5 and 17.9 cal ka BP (Chapter 3) constrain the 

timing of the M1 event, suggesting the pools may have formed during warm seasonal 

conditions similar to modern conditions rather than cold seasonal conditions (Figure 4.7). 

 Conversely, the F3 wedge 18O values range from -6.6 to -3.9‰ below modern 

values, indicating it formed during the coldest conditions of those sampled in the tunnel. 

The 3.3‰ magnitude of 18O change within the wedge likely occurred between 17.9 - 

12.9 cal ka BP based on maximum and minimum limiting ages discussed in Chapter 3 

(Figure 4.7).  This combined use of high resolution 18O records and 14C ages of DOC 
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within ice wedge ice provides a proxy for paleoclimate change in Central Alaska that 

suggests climatic conditions were -5.6 below to -0.5‰ above modern conditions likely 

beginning around 25.9 cal ka BP, warmed to about -3.7 to -0.4‰ below modern 

conditions, warmed perhaps seasonally to -4.3 below to +0.5‰ above modern conditions 

around 21.5 cal ka BP, cooled to -6.6 to -3.9‰ below modern conditions around 17.9 cal 

ka BP, and then eventually warmed to modern conditions around 3.9 cal ka BP (Figure 

4.7). 

Paleotemperature reconstruction of freeze and melt events 

 The high resolution ice wedge and pool ice 18O values were used to reconstruct 

the range of temperature fluctuations between modern and past conditions over which the 

freeze and melt events formed. To estimate the magnitude of fluctuation between modern 

and past temperatures, two different 18O-T equations were used to predict the possible 

range under which the ice wedges and pool ice formed. The first 18O-T equation was 

determined from the spatial isoscape derived in Chapter 2 using winter temperatures and 

spatially-derived surface water 18O values, resulting in the equation 18O = 0.28 x DJFT 

-14.9 (R2 = 0.59) (Equation 1). The second 18O-T equation was obtained from the 

simpler MAT isoscape derived in Chapter 2 from spatially-derived surface water 18O

values and mean annual air temperature (MAT), resulting in the equation 18O = 0.55 x 

MAT -17.9 (R2 = 0.61) (Equation 2). The minimum and maximum 18O values from each 

freeze and melt event were then used to calculate the 18O difference from modern 18O

Denali snow values of -22.3‰ (USNIP, 2011). The range of values within each freeze 

and melt event were then used to calculate the gradient of 18O change with temperature 

change. If Equation 1 is correct, 18O values decrease by 1‰ for every 3.6°C of winter 
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(DJF) temperature decrease. If Equation 2 is correct, 18O values decrease by 1‰ with 

every 1.8°C of mean annual temperature (MAT) decrease. The paleotemperature was 

then calculated by subtracting the modern DJF T or MAT from the isoscape-derived 

paleotemperatures.  

 The first equation suggests winter temperatures formed when temperatures likely 

ranged between -41.6 and -11.2°C, which is consistent with modern winter temperatures 

of -18°C measured in Fox, AK (NCDC, 2010). The second equation suggests mean 

annual temperatures formed when temperatures likely fluctuated between -14.1 and 

1.4°C, which is consistent with modern MAT of -2.1°C measured in Fox, AK (NCDC, 

2010) (Table 4.3).  

 The 18O in the wedges does not appear to show warming out of cold events, only 

cooling out of warm events, suggesting climatic conditions became too warm for wedges 

to continue forming. The F1 wedges appear to have formed when paleo-winter 

temperatures ranged from -38.0 to -16.2°C (Equation 1), or when paleo-MAT ranged 

from -12.3 to -1.2°C (Equation 2). The F2 wedges appear to have formed under slightly 

warmer conditions, when paleo-winter temperatures ranged from -31.2 to -19.4°C 

(Equation 1), or when paleo-MAT ranged from -8.8 to -2.8°C (Equation 2). The pool ice 

appears to have formed when paleo-winter temperatures ranged from -33.4 to -16.2°C 

(Equation 1), perhaps at times slightly warmer than modern winter temperatures. The 

paleo-MAT may have ranged from -9.9 to -1.2°C (Equation 2) during pool ice formation, 

also possibly slightly warmer than modern MAT. The F3 wedge formed during the 

coldest interval, when paleo-winter temperatures likely ranged from -41.6 to -31.9°C 

(Equation 1) and when paleo-MAT ranged from -14.1 to -9.2°C (Equation 2). This cold 



98

interval represents a period that was likely as much as --23.6°C colder than modern 

winter temperatures (Equation 1) and as much as -12.0°C colder than modern MAT 

(Equation 2). The F4 wedges formed when paleo-winter temperatures were likely -16.6 to 

-11.2°C (Equation 1) and paleo-MAT ranged from -1.4 to 1.4°C (Equation 2). These 

paleotemperatures for the F4 wedges are consistent with modern winter temperatures of -

18°C and MAT of -2.1°C (Table 4.2). 

 While the Bering Sea SST record suggests that temperatures fluctuated by as 

much as 5°C between DO- and H-type events (Schlung et al., 2013), the Greenland ice 

core GICC05 record suggests temperatures fluctuated by as much as 12 - 15°C during the 

last glacial period (Johnsen et al., 2001). This range of temperature fluctuation suggests 

the isoscape-derived paleotemperature equations may be accurate estimates of Central 

Alaskan paleotemperatures because the range of temperatures (~15.5°C for paleo-MAT) 

is near the range of Greenland temperatures during millennial fluctuations. This similar 

magnitude of paleotemperature shift suggests Central Alaskan paleotemperatures were 

possibly controlled by North Atlantic millennial forcings. A similar magnitude shift of 

18O values between the freeze events and the Bering Sea sediment record could confirm 

this hypothesis of millennial-scale forcing of climate within Central Alaska.  

Discussion 

Approximate timing of freeze and melt events 

 The high-resolution (~ 4 mm interval) record of ice wedge 18O values combined 

with radiocarbon ages from organic material within the ice suggests formation was 

episodic, likely began around 25.9 cal ka BP and ceased around 3.6 cal ka BP. The range 

of isotopic values within the wedges and between the different freeze events also allows 
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for a tentative correlation with high resolution 18O records. To better approximate the 

timing of ice wedge growth and pool ice formation, the 18O values of the radiocarbon 

dated freeze and melt events were visually correlated with the planktonic Bering Sea 

IODP U1340 (Schlung et al., 2013) 18O record which is tied to the Greenland GICC05 

ice core record for referenced time intervals (Svensson et al., 2008). While the GICC05 

data provides a proxy of Greenland snow 18O values affected by global climate 

teleconnections, the U1340 site data provides the geographically nearest, highest 

resolution, and most comprehensive record of sea surface temperature (SST) data to date 

for the region. For this correlation, it was assumed the paleoclimatic conditions and 

perturbations in the Bering Sea were similar to those experienced in Central Alaska 

during the time period in which the freeze and melt events occurred. This assumption, 

therefore, provides only a tentative correlation between the freeze and melt events and the 

Bering Sea U1340 ocean sediment record and a tentative chronology of thermal events 

from radiocarbon dated ice wedges from the Permafrost Tunnel (Figure 4.8). The 

minimum and maximum limiting ages were used to determine the range and likely timing 

of the event, and the U1340 records were used to estimate the most likely correlated age 

based on the magnitude of 18O fluctuations (Table 4.3).  

The Bering Sea SST record exhibits millennial-scale forcing of DO- and H-type 

events at ca.1200-year intervals (Schlung et al., 2013) (Figure 4.8). Similarly, the ice 

wedge and pool ice values follow this same trend. The high resolution 18O analyses of 

the F1 wedges revealed the decrease in 18O values from the onset of wedge formation to 

the ceasing of wedge formation followed a gradual decline (Figure 4.6), suggesting the 

wedges did not form during rapid climatic shifts but instead during gradual shifts in 
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climate. The tentative correlation with the Bering Sea record indicates this shift occurred 

over ca. 1200 years, which is consistent with the timescale of forcing of DO- and H-type 

events in the North Atlantic (Figure 4.8). This tentative correlation combined with the 

apparent similar magnitude shift in paleotemperatures between the freeze events and 

Bering Sea records suggests that Central Alaskan climate was likely controlled by the 

effect of millennial-scale events in the North Atlantic.  

Evidence for this millennial forcing is apparent in the ice wedge 18O record 

exhibiting high values at the edges of the wedge decreasing to low values at the center of 

the wedge (Figure 4.4), which is consistent with the concave pattern of high 18O values 

decreasing to low 18O values observed in both Alaskan (Meyer et al., 2010b) and 

modern Antarctic wedges (Raffi and Stenni, 2011). This pattern of decreasing 18O

values is also similar to the decreasing 18O pattern observed in the U1340 Bering Sea 

record, suggesting cooling initiated Central Alaskan ice wedge growth and rapid warming 

truncated ice wedge growth (Figure 4.8). 

The timing of the decrease in 18O values by as much as 6.6‰ within the wedges 

(Figure 4.4) correlates with the decrease in 18O values observed during cooling over the 

last glacial period apparent in the Bering Sea U1340 sediment record (Schlung et al., 

2013), pollen and vegetation records indicating shifts in warm and cold tolerant species 

(Ager and Brubaker, 1985), and glacial moraine ages indicative of glacial still-stands 

(Briner et al., 2005). Between the time of emplacement of the lower host sediments 

around 41.0 cal ka BP and the growth of Holocene ice wedges around 3.9 cal ka BP, 

respectively, at least four intervals of freezing and one interval of melt occurred in 

Central Alaska.  
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Freeze event 1 

The 6.1‰ magnitude decrease in 18O values to -5.6 below and +0.5‰ above 

modern snow values combined with 14C ages of DOC within the F1 wedges suggests they 

likely formed during cooler than modern conditions, possibly when paleo-winter 

temperatures ranged from -38.0 to -16.2°C and paleo-MAT ranged from -12.3 to -1.2°C. 

Based on the apparent correlation between cooling trends in the wedge and in Bering Sea 

SST, F1 is tentatively assigned a formation age between 26.5 - 25.3 cal ka BP, coinciding 

with H2 (Figure 4.8). The 18O values are consistent with 18O values from wedges 

within the same F1 interval in the tunnel obtained during low-resolution sampling 

(Douglas et al., 2011), and also with 18O values of Zone C ice wedges from the Vault 

Creek Tunnel near Fairbanks (Meyer et al., 2008). The timing of formation of these 

wedges is younger than previously reported (Hamilton et al., 1988; Sellmann, 1967), and 

is consistent with the possible timing during H2 first suggested by Lachniet et al. (2012). 

If the wedge 18O decrease corresponds to the correlative age, it would represent a 

duration of ice wedge formation over ca. 1200 years. At widths of up to 1.6 m, the F1 

wedges were the widest present in the tunnel, indicating they may have formed over the 

longest cooling interval, or during periods of slope stability. Evidence of mass movement 

such as slumping and debris flows apparent in the tunnel suggest periods of thaw and 

coincident mass movement of slope material may have limited or truncated ice wedge 

growth (Figure 4.5). However, evidence of slope instability is not as prevalent around the 

F1 wedges compared to the M1-F4 events, suggesting slope stability and/or cool 

conditions may have promoted wedge growth. 



102

Further evidence for cooling in Central Alaska during the growth of the F1 

wedges during this ca. 26.5 – 25.3 cal ka BP interval is apparent in the records of Alaskan 

glacial advance. The 10Be dating of terminal moraines in the Brooks Range indicates 

glacial advance occurred between 27 – 24 cal ka BP (Balascio et al., 2005), 

corresponding to the approximately 120 m fall of sea levels in the Bering Sea (Elias and 

Crocker, 2008). As ice sheets expanded and sea level regressed, the resulting increased 

aridity in the interior of the continent may have limited the availability of moisture for the 

growth of glaciers, contributing to their eventual retreat (Briner et al., 2005). This 

increased aridity over the continent may have also limited the availability of moisture for 

the growth of ice wedges, and may have prompted the cease of ice wedge growth ca. 25.3 

cal ka BP. However, the appearance of moisture-tolerant grasses and sedges from fossil 

arctic ground squirrel caches (Gaglioti et al., 2011) combined with 15N records of 

megafauna diets (Fox-Dobbs et al., 2008) suggests climatic conditions underwent a shift 

ca. 27 cal ka BP near Fairbanks and ca. 25 cal ka BP along the North Slope (Mann et al., 

2013). This shift from drier to wetter conditions combined with cooling during H2 could 

explain the initiation of growth of the F1 wedges ca. 26.5 cal ka BP as sufficient moisture 

and cooling was available for ice wedge growth to occur. Additional evidence for 

Heinrich event cooling in the Arctic includes ice rafted debris found in the Fram Strait 

(Darby et al., 2002), indicating ice export occurred from the Laurentide Ice Sheet (LIS) 

through the M’Clure Strait in northern Canada into the Arctic Ocean ca. 26,450 cal yr BP 

(Stokes et al., 2005), which is consistent with the estimation of the timing of the initiation 

of F1 wedge growth.  
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Freeze event 2 

Based on the 3.3‰ magnitude decrease in 18O values and the apparent 

correlation between cooling trends in the wedge and in Bering Sea SST, F2 is tentatively 

assigned a formation age between ca. 21.0 - 20.5 cal ka BP (Figure 4.8). With 
18

O

values ranging from -26.1 to -22.7‰ (Figure 4.4B), the initiation of growth of the F2 

wedges appears to have occurred at temperatures cooler than the initiation of the F1 

wedge growth, likely when paleo-winter temperatures ranged from -31.2 to -19.4°C and 

paleo-MAT ranged from -8.8 to -2.8°C. The magnitude of cooling observed in the F2 

wedges corresponds to the magnitude of 18O change in the U1340 record, although this 

cooling does not correspond to a specific H event (Figure 4.8). Higher 18O values at the 

edges of the F2 wedge also can be interpreted as the wedge ceasing formation during 

warmer conditions compared to the F1 event. This may have occurred during a shift to 

warmer and wetter climates ca. 20 cal ka BP, as indicated by the decline in the 15N in 

caribou bone which suggests a shift in diet to more moist acidic tundra vegetation (Mann 

et al., 2013). An additional indicator of warmer conditions includes evidence of glacial 

still-stands near Denali in the Alaska Range ca. 22 and 19 cal ka BP (Briner and 

Kaufman, 2008).  

Melt event 1 

The 4.8‰ range in 18O values between -4.3 below and +0.5‰ above modern 

snow values suggests the pools formed under conditions slightly cooler to warmer than 

modern conditions, possibly when paleo-winter temperatures ranged from -33.4 to -

16.2°C and paleo-MAT ranged from -9.9 to -1.2°C. The apparent correlation between 

warming trends in the pool ice and in Bering Sea SST tentatively suggests an M1 
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formation age between ca. 19.1 - 18.8 cal ka BP (Figure 4.8). The 18O values are also 

consistent with 18O values obtained during low-resolution sampling of pool ice within 

the tunnel (Douglas et al., 2011). In addition, the pool ice 18O- D slope is similar to the 

slope of the local meteoric water line (LMWL), indicating the source of the pool ice is 

meteoric precipitation (Figure 4.3). This meteoric origin of pool ice is consistent with 

warming during the 19.1 - 18.8 cal ka BP interval, suggesting climatic conditions were 

likely too warm for thermal contraction cracking and ice wedge formation to occur.  

 This interval of likely formation over only 300 years occurred much earlier than 

the ca. 31 cal ka BP age of pool ice formation previously reported (Hamilton et al., 1988; 

Sellmann, 1967), and is consistent with warming in the Canadian Arctic and Yukon. A 

horse mandible with an age of ca. 19.7 cal ka BP (Lacelle et al., 2013) indicates the area 

around the Richardson Mountains NWT was ice free during this time. Glacial retreat near 

Denali in the Alaska Range was likely complete by ca. 19 cal ka BP (Briner and 

Kaufman, 2008) indicating warmer conditions prevailed in the region. However, these 

warm conditions may have been short lived, as evidence from the NWT indicates cold 

conditions returned to the area ca. 18.5 cal ka BP as the Laurentide Ice Sheet (LIS) 

reached its maximum extent (Lacelle et al., 2013). 

Freeze event 3 

 A -6.6 to -3.9‰ decrease in F3 ice wedge 18O values compared to modern snow 

values suggests Central Alaska experienced colder than modern conditions, with paleo-

winter temperatures likely ranging from -41.6 to -31.9°C and paleo-MAT ranging from -

14.1 to -9.2°C. Based on the apparent correlation between cooling trends in the wedge 

and in Bering Sea SST, F3 is tentatively assigned a formation age between ca. 17.3 and 
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17.0 cal ka BP, coinciding with H1 (Figure 4.8). This F3 wedge also corresponds to a 

wedge with low 18O values between -29.3 and -23.6‰ in the Vault Creek Tunnel near 

Fairbanks (Meyer et al., 2008) that suggests they both formed under similar conditions 

and likely at the same time interval.  

 The H1 cold event that occurred from ca. 16.5 kyr to 17.5 kyr marks the end of 

the LGM (Figure 4.8). This interval also corresponds to the largest sea ice and glacial 

extent in the Arctic, sea levels as low as 120 m below modern sea levels, and the lowest 

global temperatures during the LGM (Miller et al., 2010). The timing of the F3 wedges is 

consistent with terminal moraine ages that suggest glacial still-stands in the Nenana 

Valley near Fairbanks (Dortch et al., 2010) and near the Delta River Valley began ca. 17 

cal ka BP (Matmon et al., 2010). Glacial retreat from LLGM positions could have been 

triggered by increased continentality as sea levels reached their lowest point during the 

LGM (Elias and Crocker, 2008) and also may have limited moisture availability for F3 

wedge growth. The rapid warming observed in the U1340 record ca. 16 kyr is also 

accompanied by an increase in warmer pollen species in lake sediment records from 

Central Alaska (Ager and Brubaker, 1985), and the 15N decrease in muskoxen and 

caribou diets that signals wetter and warmer conditions (Mann et al., 2013).  

 Toward ca. 14 cal ka BP, loess accumulation began to increase (Muhs et al., 

2003) as vegetation began to change to a shrub-birch tundra which was a better trap of 

loess (Ager and Brubaker, 1985). This transition to a shrub-birch tundra is also reflected 

in the 15N values in caribou and muskoxen bones that suggest a shift in diet to more 

moist acidic tundra vegetation (Mann et al., 2013). Although ice wedges in Barrow, AK 

dating to ca. 14.3 - 12.9 cal ka BP provide evidence for a YD cold event in Alaska 
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(Meyer et al., 2010b), YD-age wedges do not appear to be present in Central Alaska. The 

U1340 record indicates the magnitude of cooling during the YD was small, so it is 

possible that the cooling was not cold enough or long enough to initiate ice wedge 

cracking. 

 The appearance of wetter and warmer vegetation is also consistent with the 

resubmergence of the Bering Strait by ca. 13.4 - 13.2 cal ka BP (England and Furze, 

2008), as ice sheets melted and sea levels rose, producing a warmer and wetter climate 

for Central Alaska. A wood willow log with an age of 12.9 cal ka BP in the Debris Fan 

above the F4 wedges indicates conditions were suitably warm and wet for willow trees to 

grow near the tunnel.  

Freeze event 4 

 The closely matching 18O values between the F4 wedges and the Vault Creek ice 

wedge indicates the F4 wedges likely formed around 3.9 cal ka BP when temperatures 

were warmer than modern conditions (Figure 4.8), with paleo-winter temperatures 

ranging from -16.6 to -11.2°C and paleo-MAT ranging from -1.4 to 1.4°C. The presence 

of the Debris Fan above the wedges provides further indication conditions were warm 

enough for mass movement of slope sediments. It appears likely the Debris Fan sheared 

off sections of the F4 wedges, creating the appearance of two separate F4 and F5 wedges. 

However, F5 wedges were not analyzed for 18O values, so this hypothesis cannot be 

tested. The likely shearing off of the F4 wedges by the Debris Fan indicates mass 

movement of unfrozen or thawed sediments occurred during a warm interval, after the 

formation of the F4 wedges around 3.9 cal ka BP.   
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Freeze event 5 

 Ice wedges within F5 were not sampled for stable isotopes, so no correlation was 

made between the F5 wedges and the U1340 record. Based on the likely age of the F4 

event, it is possible the F5 wedges are synonymous with the F4 wedges or formed after 

3.9 cal ka BP.  High resolution isotopic data from the F5 wedges would be needed to 

estimate the timing of the formation. 

Summary of Central Alaskan paleoclimate 

 Central Alaska experienced five distinct climatic perturbations as shown in 

radiocarbon dated and isotopically distinct ice wedges and pool ice preserved in the 

CRREL Permafrost Tunnel. The F1 cold event likely occurred between ca. 26.5 - 25.3 cal 

ka BP, apparent as a 6‰ decrease in 18O values as paleo-winter temperatures ranged 

from -38.0 to -16.2°C and paleo-MAT ranged from -12.3 to -1.2°C, likely occurring 

during H2. A second cold interval, F2, characterized by a decrease of 3.3‰ in 18O

values, likely occurred between ca. 21.0 - 20.5 cal ka BP. A warm interval, M1, likely 

occurred between ca. 19.1 - 18.8 cal ka BP, with increases of up to 4.8‰ in 18O values 

and paleo-winter temperatures ranging from -33.4 to -16.2°C and paleo-MAT ranging 

from -9.9 to -1.2°C. A third freeze event, F3, likely occurred between ca. 17.3 - 17.0 cal 

ka BP, coinciding with H1, and recorded a decrease in 18O values of 2.7‰ representing 

the lowest and coldest of the events sampled as paleo-winter temperatures ranged from -

41.6 to -31.9°C and paleo-MAT ranged from -14.1 to -9.2°C. The F4 event likely 

occurred ca. 3.9 cal ka BP and occurred as 18O values were between -4.3 below and 

+0.5‰ above to modern values and paleo-winter temperatures ranged from -16.6 to -

11.2°C and paleo-MAT ranged from -1.4 to 1.4°C (Table 4.3). 
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Conclusion 

 If this correlation in wedge ages and climatic perturbations in other records is 

correct, ice wedge growth began ca. 26.5 cal ka BP, likely in response to H2 cooling, as 

recorded in the decreasing 18O values in the ice as paleo-winter temperatures ranged 

from -38.0 to -16.2°C and paleo-MAT ranged from -12.3 to -1.2°C . Four intervals of 

cooling (ca. 26.5 - 25.3 cal ka BP, ca. 21.0 - 20.5 cal ka BP, ca. 17.3 - 17.0 cal ka BP, and 

ca. 3.9 cal ka BP) and one interval of warming (ca. 19.1 to 18.8 cal ka BP) were recorded 

in the ice wedges and pool ice, with two of the cooling intervals likely occurring in 

response to Heinrich events. High resolution 18O values in ice wedges combined with 

14C ages of DOC within the ice were visually correlated with Bering Sea ocean sediment 

records. It was found that between H2 and 3.9 cal ka BP, Central Alaskan 18O values 

fluctuated by as much as -6.6‰ below to +1.9‰ above modern values and paleo-winter 

temperatures ranged between -41.6 and -11.2°C while paleo-MAT ranged between -14.1 

and 1.4°C. These freeze event temperature and 18O fluctuations are consistent in timing 

and magnitude with DO- and H-type events observed in the Bering Sea SST and 

Greenland ice core records, suggesting possible North Atlantic millennial-scale forcing of 

climate in Central Alaska. Although the persistence and incorporation of old organic 

matter into ice wedges and permafrost during formation and the resulting possibly 

anomalous ages causes difficulty in accurately dating ice growth, the results here indicate 

this method of combining high resolution isotopic analyses with 14C dating of DOC 

within the ice provides better chronological control on paleoclimate records in permafrost 

when combined with the Bering Sea SST record.  
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Figure 4.1. Bering Sea U1340 18O records. Benthic and planktonic 18O records from 
the North Atlantic, the Santa Barbara Basin, and Integrated Ocean Drilling Program site 
U1340 in the Bering Sea follow the same general pattern as Lisiecki and Raymo's (2005) 
Global Stack record over the past 60 kyr (Schlung et al., 2013). The high-resolution 
pattern of the U1340 data indicates these millennial-scale events were not confined to the 
North Atlantic.   
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Figure 4.2. CRREL Permafrost Tunnel location map. The tunnel is located just north of 
Fairbanks, Alaska. The Bering Sea IODP Site U1340 provides ocean sediment records of 
past sea surface temperature (SST). Base map is a USGS 300-m Digital Elevation Model 
(DEM) (USGS, 1997).   

U1340
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Figure 4.3. 18O and D values from ice wedges and pool ice. Ice wedge and pool ice 
values plot below the Global Meteoric Water Line (GMWL) and the Local Meteoric 
Water Line (LMWL) with a trend of D = 6.4 x 18O - 40. Ice wedge and pool ice values 
plot below modern snow values, indicating the wedge ice consists of melted snow. The 
similar slopes of the LMWL (8.0) and the PIL (7.2) indicate the pool ice originated as 
meteoric precipitation. Modern snow 18O and D values for Denali National Park were 
obtained from USNIP (2011).  
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Figure 4.4. 18O values from four freeze events and one melt event. Ice wedge and pool 
ice 18O values of four freeze events (F1 - F4) and one melt event (M1) from the CRREL 
Permafrost Tunnel.
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Figure 4.5. Freeze event 1 ice wedge 35S 18O values. Freeze event 1 (F1) ice wedge 
(35S) 18O values with secondary ice wedge apparent as isotopic deviation on right side 
of wedge. The secondary wedge is classified as F2 because it cross cuts the F1 wedge and 
therefore formed after the F1 wedge. The F2 wedge also has higher 18O values, 
suggesting it formed under warmer climatic conditions compared to the F1 wedge. The 
pool ice in melt event 1 (M1) and wedge ice in freeze event 4 (F4) are also visible. Note 
meter stick for scale on left side of wedge. 
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Figure 4.6. Wedge 35S high resolution 18O record. The high resolution 18O record for 
wedge 35S reveals small ~0.5‰ fluctuations within the wedge that are similar to the 
larger fluctuations observed in the Bering Sea U1340 planktonic record (Schlung et al., 
2013). However, the capability of radiocarbon dating prohibits correlating the wedge 
fluctuations with climate proxy data at such high resolution.  



115

Figure 4.7. Freeze and melt events with 18O values. Radiocarbon maximum limiting 
ages revealed at least five freeze events and one melt event in the CRREL Permafrost 
Tunnel. The 18O values of tunnel ice wedges and pool ice values range between -28.9 
and -20.5‰. The Holocene-aged ice wedge 18O value of -21.8‰ from the Vault Creek 
Tunnel is consistent with mean modern Denali National Park snow 18O values of -
22.3‰ (small dashed line) + 3.5‰ (large dashed line). The 18O difference between 
modern snow and freeze and melt events ranges between -6.6 and +1.9‰. 
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Figure 4.8. Tentative correlation of 18O with Bering Sea SST record. The tentative 
correlation of 18O for the four freeze events (F1 - F4) and one melt (M1) event with the 
Bering Sea U1340 record (Schlung et al., 2013), the IRD record (Bond et al., 1995), and 
the GICC05 record (Svensson et al., 2008). Colored bars corresponding to the colored 
F/M events show the large range of possible timing of formation for each F/M event 
estimated by 14C ages and stratigraphic position in the CRREL Permafrost Tunnel. The 
F1 (red) ice wedges (35S, 45S, 50S, and 58N) likely formed between 26.5 - 25.3 cal ka 
BP, or during Heinrich event 2 (yellow shaded bar). The F2 (purple) wedge (1N) likely 
formed between 21.0 - 20.5 cal ka BP. The M1 (squares) pool ice likely formed between 
19.1 - 18.8 cal ka BP. The F3 (green) wedge (18N) likely formed between 17.3 - 17.0 cal 
ka BP, or during Heinrich event 1 (yellow shaded bar). The F4 (orange) wedges (14.9S 
Winze, 52.5S) likely formed around 3.6 cal ka BP, constrained in age by the isotopically 
similar Vault Creek Ice Wedge (VCIW). The timing of the Laurentide Ice Sheet (LIS) 
growth is indicated by a black bar, and the Dansgaard-Oeschger (DO) events 1 and 2 are 
shown. The long cold interval during the Last Glacial Maximum and onset of 
deglaciation after the Last Glacial Maximum (LGM) follows the insolation curve at 65°N 
latitude (Berger and Loutre, 1991) (orange curve).  
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Table 4.1. Pool ice stable isotope values. 

Sample ID 

18O           
(‰ VSMOW) 

D            
(‰ VSMOW) dx 

31N-Pool -21.8 -175.6 -1.1 
34S-Pool -22.7 -178.7 2.5 
45N-Pool -26.6 -209.5 3.1 

50S-Pool A -23.8 -186.9 3.4 
50S-Pool L -23.4 -184.1 3.4 
51S-Pool -22.6 -179.7 1.4 
70N-Pool -23.1 -187.9 -3.2 
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Appendix A: Surface water sampling data 
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Appendix B: Surface water temperature and precipitation data 
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Appendix C: Isoscape residuals
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Appendix D: Ice wedge stable isotope values 
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