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ABSTRACT 

Study of Water Transport Phenomena on Cathode of PEMFCs using  

Monte Carlo Simulation 

by 

Karn Soontrapa 

Dr. Yitung Chen, Examination Committee Chair 

Professor of Department of Mechanical Engineering 

University of Nevada, Las Vegas 

 

This dissertation deals with the development of a three-dimensional 

computational model of water transport phenomena in the cathode catalyst layer (CCL) 

of PEMFCs.  The catalyst layer in the numerical simulation was developed using the 

optimized sphere packing algorithm.  The optimization technique named the adaptive 

random search technique (ARSET) was employed in this packing algorithm.  The 

ARSET algorithm will generate the initial location of spheres and allow them to move in 

the random direction with the variable moving distance, randomly selected from the 

sampling range (α), based on the Lennard-jones potential of the current and new 

configuration.  The solid fraction values obtained from this developed algorithm are in 

the range of 0.631 to 0.6384 while the actual processing time can significantly be reduced 

by 8% to 36% based on the number of spheres.  The initial random number sampling 

range (α) was investigated and the appropriate α value is equal to 0.5.   

This numerically developed cathode catalyst layer has been used to simulate the 

diffusion processes of protons, in the form of hydronium, and oxygen molecules through 

the cathode catalyst layer. The movements of hydroniums and oxygen molecules are 
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controlled by the random vectors and all of these moves has to obey the Lennard-Jones 

potential energy constrain. Chemical reaction between these two species will happen 

when they share the same neighborhood and result in the creation of water molecules.  

Like hydroniums and oxygen molecules, these newly-formed water molecules also 

diffuse through the cathode catalyst layer.  It is important to investigate and study the 

distribution of hydronium oxygen molecule and water molecules during the diffusion 

process in order to understand the lifetime of the cathode catalyst layer.  The effect of 

fuel flow rate on the water distribution has also been studied by varying the hydronium 

and oxygen molecule input.  Based on the results of these simulations, the hydronium: 

oxygen input ratio of 3:2 has been found to be the best choice for this study.    

To study the effect of metal impurity and gas contamination on the cathode 

catalyst layer, the cathode catalyst layer structure is modified by adding the metal 

impurities and the gas contamination is introduced with the oxygen input.  In this study, 

gas contamination has very little effect on the electrochemical reaction inside the cathode 

catalyst layer because this simulation is transient in nature and the percentage of the gas 

contamination is small, in the range of 0.0005% to 0.0015% for CO and 0.028% to 0.04% 

for CO2.  Metal impurities seem to have more effect on the performance of PEMFC 

because they not only change the structure of the developed cathode catalyst layer but 

also affect the movement of fuel and water product.  Aluminum has the worst effect on 

the cathode catalyst layer structure because it yields the lowest amount of newly form 

water and the largest amount of trapped water product compared to iron of the same 

impurity percentage.  For the iron impurity, it shows some positive effect on the life time 

of the cathode catalyst layer.  At the 0.75 wt% of iron impurity, the amount of newly 
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formed water is 6.59% lower than the pure carbon catalyst layer case but the amount of 

trapped water product is 11.64% lower than the pure catalyst layer.  The lifetime of the 

impure cathode catalyst layer is longer than the pure one because the amount of water 

that is still trapped inside the pure cathode catalyst layer is higher than that of the impure 

one.  Even though the impure cathode catalyst layer has a longer lifetime, it sacrifices the 

electrical power output because the electrochemical reaction occurrence inside the impure 

catalyst layer is lower.   
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CHAPTER 1 

INTRODUCTION 

1.1 Proton Exchange Membrane Fuel Cell 

To overcome the increment of fossil fuel price many alternative energy choices 

had been introduced and fuel cell is one device among the others that gains some 

reputation because of its efficiency to convert chemical energy to electricity [1].  

Polymer-electrolyte-membrane or proton exchange membrane fuel cell (PEMFC) is one 

of the best fuel cells for future portable power and transportation applications because it 

has two unique characteristics which are: 

(1) Low-operating temperature: low operating temperature allows PEMFC to 

have a shorter start up time compared to another types of fuel cells [1]. 

(2) High power density: PEMFC utilizes a solid polymer electrolyte which has 

the advantages over liquid electrolytes in that the solid electrolyte has a 

higher power density and is more resistant to corrosion [1]. 

Nafion is common material for a polymer electrolyte because of its unique 

characteristic which is a very good proton conductor but poor electron conductor and this 

characteristic is very critical for PEMFC operation.  The catalyst layer, made from 

platinum supported on carbon, is deposited onto the membrane.  A gas diffusion backing 

layer (GDL) which is a porous media made from a carbon cloth is attached to the catalyst 

layer to help distributing the reactant to the catalyst layer. 

The electrochemical reaction in the PEMFC can be seen in Figure 1.1. 
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Figure 1.1. Electrochemical reaction in a PEMFC [1]. 

In Figure 1.1, a humidified hydrogen gas flows into the anode channel and 

diffuses through the gas diffusion backing layer (GDL) and enters the catalyst layer.  At 

the anode catalyst layer hydrogen separates into protons (H+) and electrons (e-) as shown 

by the equation (1.1). 

H2 (g) → 2H+ + 2e-       (1.1) 
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Protons will diffuse through the polymer membrane from the anode catalyst layer 

to the cathode catalyst layer while electrons will conduct through the external circuit to 

the cathode catalyst layer.  This is the reason why the polymer membrane is a very good 

proton conductor but poor electron conductor.  On the cathode catalyst layer, protons and 

oxygen will react and form water molecules.  The electrochemical reaction at the cathode 

catalyst layer can be represented by equation (1.2). 

2H+ + ½O2(g) + 2e- → H2O(l)      (1.2) 

The combination of the electrochemical reaction at the anode and the cathode 

catalyst layer or the overall chemical reaction is shown by equation (1.3). 

H2(g) + ½O2(g) → H2O(l)     (1.3) 

From equation (1.3), it is clear that water is produced at the cathode catalyst layer 

so that the water concentration at the cathode side is higher than that on the anode side. 

This product of water can lead to the one of the major losses in PEMFC which is called 

mass transport loss or concentration loss.  As water molecules start to accumulate in the 

catalyst layer, they will block the movement of protons and oxygen molecules which will 

dramatically reduce the performance of fuel cells. 

Losses in PEMFC can be divided into three categories as follows: 

(1) Activation loss: This loss is the result of the slowness of the reaction taking place 

on the surface of the electrodes.  In order to drive the electrochemical reaction 

that generates the electron, some proportion of the voltage generated is lost 

because energy is needed to overcome the potential barrier. 
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(2) Ohmic loss: This is a voltage drop due to the resistance to the flow of protons 

through the polymer membrane and the flow of electrons through the external 

circuit.  

(3) Mass transport loss or concentration loss: This loss is due to the change in 

concentration of the reactants at the surface of the electrodes as the fuel is used.  

As water molecules start to build up at the cathode catalyst layer, less oxygen can 

flow into the cathode catalyst layer and this will lead to the reactant-starved 

condition. 

Losses in PEMFC can be depicted by the I-V curve in Figure 1.2. 

 

Figure 1.2. I-V curve of a fuel cell showing the individual losses [2]. 
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From Figure 1.2, the theoretical maximum voltage of the PEMFC at the ideal 

working condition, 25°𝐶 and 1 atm, is equal to 1.23 V but the voltage loss will keep on 

going when we allow PEMFC to continuously operate.  It is clear that concentration loss 

is the major loss in PEMFC.  So, the effective way to manage this loss is very important 

for the performance for PEMFC.  Liquid water management at the cathode side of the 

PEMFC is a one effective way to decrease the concentration loss.  Excess product water 

needs to be expelled from fuel cell catalyst layer in order to keep these fuel cells working 

at their optimum level. 

1.2 Water Management in PEMFC 

Scholars have proposed many effective ways to manage the liquid water at the 

cathode catalyst layer which will be described in this section.  

1.2.1 Mathematic Model  

Nguyen and White [3] presented a two-dimensional model across the membrane 

and along the flow channel of a PEM fuel cell.  They modeled the variation in current 

density, water transport, stream temperatures and pressure along the channel.  They also 

modeled the effect of varying anode inlet humidity.  However, they ignored the transport 

processes in the gas-diffusion layers and the catalyst layers.  

Huang et al. [4] presented a two-dimensional water and thermal management 

model.  In this analysis, they included multiple parameter such as pressure effect, 

pressure drop, open circuit voltage dependence on pressure and stack temperature, and 

membrane conductivity dependence on anode and cathode side.  Results from this model 

showed that humidity has a significant effect on the performance of PEMFC especially 
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on the anode side.  While increasing the temperature and pressure, with in a specific 

range, can increase the performance of PEMFC. 

Weber and Newman [5] had developed a non-isothermal one-dimensional model 

for PEMFC.  The temperature gradient between the fuel cell sandwiches can cause a 

heat-pipe effect which make a liquid water to evaporate and moves toward the gas 

channel.  This water steam will condense and block the movement of reactant-gas which 

leads to PEMFC’s concentration loss.  To prevent this phenomenon, temperature inside 

the PEMFC should be in a certain level because this high temperatures can increase the 

kinetics and mass transport inside the fuel cell.  Another results of this simulation also 

showed that 65°C and 1 bar is the optimum operating temperature and pressure for 

PEMFC while the heat removal of 20 W/cm2 is needed to maintain the best performance.  

Dannenberg et al. [6] had developed a two-dimensional model which can 

simulated heat and mass transfer inside the flow channel of PEMFC.  The results from 

this model showed that PEMFC performed best in the isothermal state and the oxygen 

depletion or concentration loss can be prevented by adding a well humidified reactant 

gases.  Another results from this work showed that the operating temperature of 80ºC can 

decrease the ohmic loss in PEMFC. 

Fronk et al. [7] addressed several issues regarding PEM fuel cell systems for 

transportation applications.  They highlighted the importance of thermal management 

while trying to maximize the performance of these systems.  The issue of water recovery 

in the stack and the condenser was discussed.  Variation of water and thermal 

management parasitic loads with variation in the cathode pressure was also investigated 

in this study. 
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Geyer and Ahluwalia [8] developed a computer simulation tool which can be used 

for fuel cell system design and analysis.  Their PEM fuel cell model is primarily a curve 

fit where the voltage is modeled as a function of current, cell temperature and the partial 

pressure of oxygen at the cathode inlet.  They did not model the water transport processes 

inside the fuel cell and hence, did not take into account variable membrane hydration.  

They claimed to be able to dynamically model the variation in stack temperature.  They 

employed fundamental models for their condenser and heat exchangers and also had 

detailed pump models that model the energy consumption of the pumps. 

For a unified water transport, Um and Wang [9] developed a model within the 

single-domain CFCD (computational fuel cell dynamics) framework with the aid of the 

equilibrium water uptake curve in the membrane phase.  They used this to elucidate water 

management in three-dimensional fuel cells with dry-to-low humidified inlet gases after 

its validation against available experimental data for dry oxidant and fuel streams.  

Shan and Choe [10] proposed a new model constructed upon the layers of a cell, 

taking into account the following factors: (1) dynamics in temperature gradient across the 

fuel cell; (2) dynamics in water concentration redistribution in the membrane; (3) 

dynamics in proton concentration in the cathode catalyst layer; (4) dynamics in reactant 

concentration redistribution in the cathode GDL.  

Haddad et al. [11] developed a dynamical model considering the influence of gas 

consumption and humidification rates on water diffusion and membrane humidity.  With 

the aid of the dynamical model, an appropriate control of the water content can be built to 

improving the electrical efficiency and minimizing power losses. 
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Serincan and Yesilyurt [12] developed a two-dimensional transient single-phase 

CFD model, incorporating water transport in the membrane and the flow and transport of 

species in porous gas diffusion electrodes.  They used this to study the effect of step 

changes in cell voltage, cathode air pressure, and relative humidity during start-ups and 

failures of auxiliary components, such as the loss of pressure in the case of compressor or 

manifold malfunctions and the loss of humidity in the case of a humidifier malfunction.  

Le and Zhou [13] reported a general model specially focused on the liquid water 

management.  They developed a three-dimensional unsteady model with detailed thermo-

electrochemistry, multi species and two-phase effects with the interface tracking by using 

the volume-of-fluid (VOF) method which was implemented into the computational fluid 

dynamic (CFD) software package FLUENT.  

Wang and Wang [14] developed a three-dimensional transient model to study the 

transient dynamics of a PEMFC.  They further performed numerical simulations for a 

single channel PEMFC undergoing a step increase in current density. 

Shimpalee et al. [15] performed three-dimensional CFD simulations of a PEM 

fuel cell to investigate the effect of GDL flooding on fuel cell performance.  The results 

show that increasing the degree of water flooding as it may occur in untreated GDL, 

reduces the effective diffusivity of gases dramatically, which in turn increases the 

concentration and surface overpotentials, and the fuel cell performance is decreased 

significantly. 

Paquin and Fréchette [16] developed a simple one-dimensional model to analyze 

water management in an air breathing small PEMFC.  The results show that decreasing 
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the ratio between thermal and mass transport resistance under a certain conditions leads 

to flooding problems while increasing this ratio leads to dry-out of the polymer 

electrolyte membrane in air breathing PEMFC. 

Meng and Wang [17] predicted water flooding inside a PEMFC and the liquid 

water effects in the cell performance.  They affirmed that when the current density is 

beyond a certain value, too much water will be produced at the cathode and the gas will 

be saturated by water vapor, then the phase of water vapor begins to change into a liquid 

phase resulting in cathode flooding.  Furthermore, when the current density is greater 

than 1.4 A cm-2, at the condition of relative humidity equals to 100% for both cathode 

and anode, water flooding will happen in the cathode, which will be in the case of severe 

flooding when the water activity (pw / pw
sat) is in excess of 3. 

Lin et al. [18] developed a two-phase, one-dimensional steady-state, isothermal 

model of a fuel cell region consisting of the catalyst and gas diffusion layers to 

investigate the effect of water flooding in the gas diffusion layer and catalyst layer of the 

cathode on the overall cell performance.  The simulation results confirmed that the water-

flooding situation in the catalyst layer is more severe than that in the gas diffusion 

backing layer since water is first produced in the catalyst layer. 

Liu et al. [19] studied membrane hydration and electrode flooding by developing 

a two-dimensional partial flooding model in which the pore size distributions are 

assigned for the hydrophobic and hydrophilic pores of the GDL.  The liquid water 

produced is considered to condense in hydrophilic and hydrophobic pores in sequence if 

the water vapor pressure is greater than the capillary condensation pressure.  In addition, 

a GDL including a microporous layer (MPL) with a linear porosity is one of the very 
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effective ways for liquid water draining from catalyst layer into the gas channel when the 

total thickness of the GDL and MPL is kept constant and the MPL is thinned to 3 μm. 

Zhu et al. [20] investigated the dynamic behavior of liquid water entering a 

PEMFC channel through a GDL pore by performing two-dimensional, transient 

simulations employing the VOF method.  The simulation results show that the height of 

the channel as well as the width of the pore have significant impacts on the deformation 

and detachment of the water droplet, and the coalescence of two water droplets can 

accelerate the deformation rate and motion of the droplets in the micro channel.  

Furthermore, they simulated the processes of water droplet emergence, growth, 

deformation and detachment by transient three-dimensional two-phase flow model and 

found that the wettability of the micro channel surface has a major impact on the 

dynamics of the water droplet, with a droplet splitting more readily and convecting 

rapidly on a hydrophobic surface, while for a hydrophilic surface there is a tendency for 

spreading and film flow formation. 

1.2.2 Experimental Data 

Fouquet et al. [21] monitored flooding and drying out of a PEM fuel cell using a 

model-based approach coupled with ac impedance measurements.  They found that a cell 

flooding occurs in two steps: first, accumulation of liquid water inside the GDL while 

cell voltage drops quite slowly and, after several minutes, the droplets aggregate and 

block the gas channels, impeding reactants’ diffusion to the catalyst sites and inducing in 

turn a rapid cell voltage drop. 
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He et al. [22] employed an electrode flooding monitoring device to investigate the 

correlation between the fuel-cell performance and the liquid water saturation level in the 

gas diffusion backing layers, the effects of various operating parameters, and the 

dynamics and hysteresis behavior of liquid water in the gas diffusion backing layers.  The 

results confirmed that the hysteresis behavior of fuel-cell performance during water 

imbibition and drainage cycle is attributed to the difference in water-removal rate by 

capillary force and the difference in membrane conductivity. 

Natarajan and Nguyen [23] used a segmented electrode/current collector setup to 

examine the effect of oxygen flow rate, anode sparger temperature, and hydrogen 

starvation on the spatial and temporal distribution of local current densities along a single 

gas channel in a PEM fuel cell.  They found that when the water removal rate was not 

sufficient electrode flooding occurred in segments that were farthest from the gas inlet.  

Once the liquid water fills up the majority of the pores in an electrode, the continuity of 

the gas phase within the electrode is severely compromised and the sustainable current 

density will be in the order of a few tens of mA/cm2 as the limiting currents observed in 

their experiments. 

Kimball et al. [24] examined the process of flooding with a single-channel fuel 

cell that permits direct observation of liquid water motion.  As product water flows 

through the largest pores in the hydrophobic GDL, drops detach from the surface, 

aggregate, and form slugs.  Flooding in PEMFCs occurs when liquid water slugs 

accumulate in the gas flow channel, inhibiting reactant transport.  They affirmed that 

flooding is not the result of capillary condensation in the GDL, but rather liquid blocking 

oxygen transport across the gas/GDL interface. 
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Although water flooding in PEMFC has been extensively studied, they all focus 

on the water flooding problems at the gas flow channels.  Very few of these studies have 

reported the new approach in solving water flooding that happens at the cathode catalyst 

layer.  Even though, the cathode catalyst layer is the first area that will be affected by the 

water flooding problem.  

This excess product water must be repelled out of cathode catalyst layer otherwise 

it will block the movement of protons and oxygen molecules which will dramatically 

reduce the performance of fuel cells.  To improve the performance of PEMFCs, 

appropriate water management strategies should be studied and one of the best ways to 

develop these water management strategies is to investigate how water is formed and 

moved out of the cathode catalyst layer which means this study will be at the atomic 

level. 

To simulate the electrochemical reaction at the atomic level, the appropriate 

technique must be utilized and the Monte Carlo technique is one of the most famous 

techniques that can deal with the proposed study. 

 

1.3 Monte Carlo Technique 

The Monte Carlo technique is a stochastic algorithm that utilizes a random 

sequence of number to obtain numerical results.  In this dissertation, the Monte Carlo 

technique is used to simulate the cathode catalyst layer and track the movement of 

reactants and product water.  The Monte Carlo technique is very useful because it can 

simulate the system with many degrees of freedom and it can deal with the uncertainty 

input. 
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The self-developed computer code that used in this dissertation is written in 

Mathematica which is one of the most powerful global computation languages. 

Mathematica was chosen because of its flexibility to be modified and its powerful 

graphic output.  Mathematica code, line by line, is easy to read and follow compared to 

other programing language tools such as Matlab. 

 

1.4 Dissertation Purpose 

This dissertation offers a new approach to study the transport phenomena of 

protons, oxygen molecules and water molecules in PEMFC.  With modeling via the 

Monte Carlo simulation, the behaviors of reactant and product water on the cathode 

catalyst layer can be obtained, which can help to study the life time of the cathode 

catalyst layer.  In addition, this simulation can also suggest the effect of the 

contamination in the cathode catalyst layer which can lead to the developments of a new 

catalyst for PEMFC.  The rest of this dissertation is arranged as follows: 

• Chapter 2 shows the optimized approach to create the cathode catalyst layer. 

• Chapter 3 describes the modeling result of the chemical reaction in cathode catalyst 

layer. 

• Chapter 4 discusses about the effect of the cathode catalyst layer structure on the water 

distribution. 

• Chapter 5 concludes the dissertation. 
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CHAPTER 2 

POROUS MEDIA STRUCTURE CREATION USING SPHERES PACKING 

ALGORITHM 

2.1 Introduction 

Water transport is one of the most critical issues for PEMFCs.  Excess product 

water needs to be expelled from fuel cell catalyst layer in order to keep these fuel cells 

working at their optimum level.  The excess product water will diffuse out of the catalyst 

layers through gas diffusion layers which were made of porous media, so the best 

approach to understand the transport phenomena inside PEMFCs is to first understand the 

porous media structure which will allow us to gain more knowledge how to improve the 

water management in PEMFCs.  Sphere packing is a way to create the porous media 

structure and there are many publications about the creation of porous media structure 

using sphere packing approach.  

Hermann et al. [25] simulated a nano-porous dielectric material with low 

dielectric constant (k) value by randomly packed hard spheres.  The spheres and the 

space between them represent the pores and the solid material of the insulator.  They 

claimed that a local maximum of 70% porosity is obtained for a power-law pore size 

distribution with exponent -3.3.  And the elastic constants of their models were calculated 

for the isotropic case in the composite sphere assemblage approach.  From their packing 

result, the Young’s modulus and the bulk and shear modulus are presented for the range 

of porosity up to 70%.  
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Scott and Kilgour [26] proposed that models of randomly packed spheres which 

exhibit some properties of simple liquids in that their radial distribution function and 

packing density are similar.  They conducted experiments for both random loose packing 

and random close packing with 1/8 in. plexi-glass, nylon and steel balls in air and also 

with steel balls immersed in oil.  A series of measurements for random loose packing and 

for random close packing, with help of a mechanical vibrator, were made.  The obtained 

packing density for random loose packing was 0.60 and for random close packing was 

0.63. 

Berg et al. [27] studied the packing of spheres experimentally with approximately 

5,000 ball bearings of 1/8-inch diameter.  The ball bearings were poured into a plexiglass 

cylindrical container which is 63 mm in diameter.  After that water was poured into the 

container and then frozen.  The ice block was taken out of the container and structure was 

examined as the thawing of the ice progressed from the boundary inwards.  By weighing 

the balls and measuring the height to which they filled the container determined the 

density, which varied from 0.586 to 0.592.  The container was then placed on a shaker 

and treated for certain period of time.  Three different types of shakers were used, which 

yielded densities of 0.615, 0.612 and 0.614.  Sphere packing configuration depends very 

much on the mode of shaking; one-dimensional shaking gives irregular random packing.  

On the other hand, three-dimensional shaking gives an almost perfect hexagonal close 

packed structure, with packing density of 74%.  All the reported experiments were one-

dimensional shaking, which gave a random packing of 61%. 

Powell [28] generated a structure of randomly packed equal size spheres using 

computer simulation.  The study was aimed at determining the nearest neighbors in the 
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assembly.  He claimed that the properties of particulate assemblies such as the structural 

properties of powders or electrical conductivity depend on the number and distribution of 

contacts of each particle, hence, the number of nearest neighbors is of particular interest 

in the range of r = 1.0 to 1.1 sphere diameter since this determines the number of actual 

touching contacts and the number of near contacts.  He determined the density of random 

close packing of the computer-generated assembly to be 0.636. 

Jodrey and Tory [29] had developed an algorithm which generates a random close 

packing of equal spheres from a random distribution of points.  Each point is the center of 

an inner and an outer sphere.  Their algorithm eliminates overlaps among outer spheres 

while slowly shrinking the outer diameter.  The two diameters approach each other, and 

the eventual coincidence of true and nominal densities terminates the procedure.  As the 

contraction rate approaches zero, this dependence decreases sharply.  Packing fractions 

between 0.642 and 0.649 are consistent with Berryman's extrapolation. 

Nolan and Kavanagh [30] proposed that the characteristics of random packing are 

determined by its interstices.  They defined interstices to be a network of channels 

passing through the lattice, rather than isolated regions of space.  It was stated that the 

lattice is transformed from random loose packing to random close packing as the mean 

interstices volume decreases from a maximum to minimum.  They generated an 

algorithm to simulate any random packing between random loose packing to random 

close packing.  The packing density was calculated by measuring every complete and 

fractional sphere positioned within a radius of 5-sphere diameter to the center of lattice. 

A contact was defined when there was an overlap between two spheres.  The mean 

overlap was defined to be 0.002 of the sphere diameter.  The packing density ranged from 
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0.509 to a maximum of 0.638.  The random loose packing was 0.52.  The mean 

coordination number varied from 4.4 to 5.9 as the structure changed from random loose 

packing to random close packing.  The radial distribution function for random close 

packing has peaks at 1.0 and a split peak at 1.725 and 1.97. 

Adams and Matheson [31] simulated random close packing of hard spheres.  The 

idea behind the method was to place a new sphere at the tetrahedral site nearest to the 

center of packing, thereby producing a spherical model.  The packing fraction was 

reported to be 0.628. 

Very few of the published articles applied the optimization technique in the 

packing problem.  Hermann et al. [32] used the generalized Bernal model for liquids to 

create the multi-component liquid and amorphous metallic alloys structure.  They show 

that the optimization of computer simulated random close packing models is a promising 

way to propose models with enhanced packing fraction and to specify the compositions 

and radii distributions required.  They also presented a series of multi-component systems 

with enhanced packing fraction and proposed them as candidates for new bulk metallic 

glasses.  Optimization techniques are widely used in the logistics field because of their 

ability to pack multiple stuffs in the confine space with a short period of calculation. 

George and Robinson [33] developed a wall building approach to container 

packing, which has been very widely applied and has formed the basis of many variants. 

It fills the container in layers across its width.  The depth of each layer is determined by 

the size of the first box packed into the layer.  The procedure starts from one end of the 

container and attempts to keep an even workface over the cross section of the container. 

The filling scheme chooses a box type and then completes as many columns as possible. 
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Thapatsuwan et al. [34] described the development and application of an artificial 

immune system (AIS), particle swarm optimization (PSO) and a genetic algorithm (GA) 

for solving multiple container packing problems (MCPP) using the Microsoft Visual 

Basic.  It was found that each algorithm’s parameters were statistically significant with a 

95% confidence interval.  The best configurations were then used in a sequential 

experiment that compared the performance of the AIS, PSO and GA algorithms for 

solving 21 heterogeneous MCPP. 

 These optimization techniques can also be adapted in the sphere packing problem 

to reduce processing time of the packing process. 

 

2.2 Spheres Packing Algorithm 

The catalyst layer’s structure has been developed using the sphere packing 

process in order to understand the electrochemical reaction that happens in PEMFC.  

Spheres in this packing process represent the carbon atoms because carbon is the 

common material for the catalyst layer [1].  As the van der Waals radius of carbon is 

equal to 1.7 angstrom then the sphere radius was assigned to 1.7 angstrom and the base 

side of the cubic container can be calculated by the following equation [35].   

32 NrD       (2.1) 

where D is the base side (angstrom), r is the sphere radius (angstrom) and N is the 

number of spheres.  

The packing algorithm can be described as follows:   
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Step 1 3 random numbers, for x, y and z, were generated to give the initial coordinate 

of carbon sphere and record this coordinate.   

Step 2 Generate another 3 random numbers for the second coordinate of the carbon 

sphere. 

Step 3 Test the coordinate from step (2) if the coordinate from step (2) is the same as 

the coordinate from step (1) then repeat step (1) again, otherwise record this 

coordinate. 

Step 4 Repeat steps (2) and (3) until the number of desired spheres were placed in the 

cubic. 

Step 5 Select a random number ( currentp ) within [0 , α] range where α is a parameter 

which controls the width of random number pool.  

Step 6 Generate a random vector which has a magnitude of rpcurrent  . 

Step 7 Allow sphere number i to move along this vector. 

Step 8 Test the current coordinate of this sphere to make sure that it does not overlap 

with other spheres.  If the current coordinate of sphere number i overlaps with 

other spheres then repeat step (6). 

Step 9 Repeat steps (6) to (8) until all spheres have been moved.  Assign this 

configuration as a current configuration.  

Step 10 Calculate the total potential energy of this configuration using the combination 

between the Lennard-Jones potential and the Morse potential which can be 

shown as the following formula. 

 
])/()/[(4)( 612

ijijij rrrL        (2.2) 
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Equation (5) shows the Lennard-Jones potential: L(rij) is the total Lennard-Jones potential 

energy of the system (kJ per mol),   is the Lennard-Jones potential for carbon-carbon 

interaction which equals to 0.4396 kJ per mol,   is the finite distance at which the inter-

particle potential of carbon-carbon is zero which equals to 3.851 angstrom [36] and 
ijr  is 

the distance between two particles (angstrom). 

]2[)(
)()(2 00 rrrr

mij
ijij eerM






     

(2.3) 

Equation (6) shows the Morse potential [37] where M(rij) is the total Morse potential 

energy of the system (kJ per mol), εm is the Morse potential parameter which equals to 

478.9 kJ mol-1Å2, α is a parameter that controls the width of the potential and it is equal 

to 2.1867 Å-1 , r0 is the equilibrium bond distance which equals to 1.418 Å [36] and rij is 

the distance between a pair carbon molecules.  The total potential energy of the system 

can be written as U(rij) = L(rij)+M(rij).  

The objective function of this process is to minimize the total potential energy. 

Each packing configuration will be at the steady state when the total potential energy of 

that configuration reaches the global minimum.  Step 1 to step 10 in this algorithm are 

similar to the basic random search technique (BRST) [38] and the flow chart of this 

BRST is shown in Figure 2.1. 
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Figure 2.1. Flow chart of the BRST algorithm. 

 

Even though the BRST algorithm gives a very good chance to reach the global 

minimum for the objective function but the drawback of the BRST algorithm is it takes 

too much time before reaching that global minimum solution [38].  To decrease the 

processing time of the packing process, an optimization technique called the adaptive 

random search technique (ARSET) [38] is applied which allows us to vary the magnitude 

of random vectors based on the difference of total potential energy.  Detail of this 
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Step 11 Select a random number (q) within [0 , α] range.  This random number, q, is be 

used to increase or decrease the magnitude of initial random vector.  

Step 12 Generate a random vector which has a magnitude of rqpp currentcurrent  )( . 

Step 13 Repeat steps (7) to (9) and assign this configuration as a new configuration.   

Step 14 Calculate the total potential energy of this new configuration and find the 

difference of the total potential energy between new and current configuration 

which is described as the following equation. 

   
)()()( ijcurrentijnewij rUrUrU      (2.4)  

where )( ijnew rU  is equal to a total potential energy from step (14) and )( ijcurrent rU  is equal 

to  a total potential energy from step (10). 

Step 15 If )( ijrU is less than zero then change the value of α using this following 

equation. 

)/(* newcurrentcurrentnew UU      (2.5) 

Step 16 Repeat steps (11) to (15) until the absolute potential energy difference is less 

than 0.0001 and stop the program. 

Step 17 From step (14) if )( ijrU  is greater than zero then generate random vectors 

which have a magnitude of rqpp currentcurrent  )(  and repeat steps (13) to 

(15) again. 

Step 18 If )( ijrU  is still greater than zero then change the value of α using equation 

(5). 
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Step 19 Repeat upper steps until the potential energy difference is less than 0.0001 and 

stop the program. 

The difference between the BRST and the ARSET is that the BRST has not 

considered the random vectors variation.  The BRST does fix the magnitude of the 

random vector at ( rp ) and repeats the procedure until the potential energy difference is 

less than 0.0001 then stop.  But for the ARSET algorithm, it changes the magnitude of 

random vectors based on the current solution and new solution.  Furthermore the benefit 

of this ARSET algorithm is simplicity, it doesn’t require any differentiation and it is easy 

to understand which makes this ARSET adaptable to scientific and engineering problems. 

Flow chart of the ARSET algorithm is shown in Figure 2.2.  
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Figure 2.2. Flow chart of the ARSET algorithm. 
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This self-developed program is written in Mathematica code and the specifications 

of the computer hardware that used to run this code is described in Table 2.1. 

Table 2.1  

Computer hardware specifications 

Component   Specification      

 CPU    Intel Core i5 450M      

 RAM    PC3-8500F: 8 GB     

 Hard Drive   SATA 2 7200 RPM with 16 MB Cache 

 Operation system  Windows 7 64 bits  

The solid fraction of each run was calculated, after the end of each packing 

process, by dividing the solid volume by the total volume.  The initial value of α is equal 

to 0.5 and we investigate the effect of this α value which is described in the last section of 

this chapter. 

2.3 Results and Discussion 

2.3.1 Algorithm verification 

Because the results from the BRST algorithm always reaches the global minimum 

[38] then the total potential energy results from the ARSET algorithm are compared with 

the results from the BRST algorithm to ensure that results from this adaptive algorithm 

also reached the global minimum.  One hundred different initial configurations each for 

the systems of 1000 spheres, 1800 spheres, 5000 spheres, 10000 spheres and 30000 

spheres are generated, each of them has a different initial total potential energy, and 
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allowed to complete the packing process using the BRST or the ARSET algorithm.  The 

average total potential energy for each number of spheres from the BRST algorithm and 

the ARSET algorithm are calculated and the results of these tests are shown in Table 2.2. 

Table 2.2  

Average final total potential energy from the BRST and the ARSET algorithms 

      Average total potential energy

 Number of spheres BRST     ARSET (σ = standard deviation) % difference 

 1,000   0.0914  0.0914 (σ = 0.00015)  0%   

 1,800   0.0917  0.0919 (σ = 0.00014)  +0.2181% 

 5,000   0.0923  0.0927 (σ = 0.00018)  +0.4333% 

 10,000   0.0974  0.0992 (σ = 0.00028)  +1.8480% 

 30,000   0.0962  0.0999 (σ = 0.00037)  +3.8461%  

As shown in Table 2.2, after finished the packing process using the BRST 

algorithm, the total potential energy for each number of spheres converged to a certain 

number which is a global minimum state for the total potential energy.  Differences 

between the average final total potential energy from the BRST and the ARSET 

algorithms are less than 0.5% when the number of spheres is less than 5,000 but the 

percentage differences are equal to 1.85% and 3.86% for the system of 10,000 and 30,000 

spheres, respectively.  From these results, the performance of the ARSET algorithm tends 

to decrease as the number of spheres increase.  Complexity of the search space will 

increase as number of spheres increases and this complexity will affect the search ability 

of this ARSET algorithm.  Even though the ARSET algorithm still shows some errors 

when the number of spheres is greater than 5000, these errors are still small, less than 
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4%, which indicated that the ARSET algorithm is acceptable.  The total potential 

energies from the ARSET are about 4% higher than the total potential energy from the 

BRST which means that the packing configurations from the BRST are more stable than 

the configurations from the ARSET.  To interpret the effect of these configurations, the 

solid fraction for each number of spheres must be incorporated and the discussion about 

the solid fraction can be found in the next section.  

The developed ARSET algorithm was proved to give the global minimum for the 

total potential energy.  The next step is to verify the results from this ARSET algorithm 

with previous results published by [29] and [30].  We ran this program for 100 times for 

1,000 spheres and 1,800 spheres.  The average solid fractions were computed and 

compared with the previous works.  For 1,000 spheres, our solid fraction is equal to 

0.621, compared with 0.645 from [29] which is approximately 3.72% lower than the 

reference value.  But for 1,800 spheres our solid fraction is equal to 0.624 compared with 

0.635 from [30] which is 1.73% different from the reference value. Detail of this 

comparison is shown in Table 2.3. 

Table 2.3  

The average solid fraction 

Number of spheres Reference calculated   Current calculated % difference  

   solid fraction   solid fraction     

 1,000  0.645 [29]  0.621   -3.720%  

 1,800  0.635 [30]  0.624   +1.732%  
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From the results shown in  Table  2.3,  the  solid  fraction  obtained  from  this  

ARSET algorithm  has  good  agreement  with  the  solid  fractions  obtained  from  

previous  works  which  means  that  this  developed  ARSET  algorithm  yields  the  

acceptable  results. 

2.3.2 Benefit of the developed ARSET algorithm 

This developed ARSET algorithm has been used the difference between the 

current potential energy and the potential energy from the next step to change the 

magnitude of the random vectors.  This means that the ARSET algorithm expands or 

narrows the search space.  If this ARSET yielded the better solution then it expands the 

search space.  Otherwise, it narrows down the search space if a better solution has been 

found after the expansion. 

From this concept the developed ARSET algorithm should reduce the chance of 

obtaining the local minimum solution and accelerate to the global minimum solution 

which can decrease the processing time of the packing process. 

To prove that the developed ARSET algorithm can reduce the processing time, 

we ran this program for five different numbers of spheres using the BRST and the 

ARSET algorithms.  The simulation for each number of spheres was run for 100 times. 

Actual processing time and solid fraction value were recorded after the end of each run. 

These numbers were used to calculate the average actual processing time and the average 

solid fraction value.   
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From the results shown in Table 2.4, the developed ARSET algorithm reduces the 

actual processing time by 5.58% to 34% depend on the number of spheres.  When the 

number of spheres increases, the developed ARST algorithm will significantly reduce the 

amount of actual processing time.  But for the case of 30,000 spheres, the performance of 

this ARSET algorithm is less than that of 10,000 spheres case.  This phenomenon is the 

result of the system complexity.  For 30,000 spheres case, this ARSET algorithm moved 

30,000 spheres and calculated the total potential energy for each move this might yield a 

number of local minimums which the ARSET algorithm has to get rid of in order to 

obtain the global minimum result.  In order to get past this local minimum, the ARSET 

algorithm has to move back and forth, expands or narrows the search space which has 

consumed the processing time and lowers the performance of the packing process.  

Table 2.4  

Actual processing time comparison between the BRST and the ARSET algorithms 

      Actual processing time (second)  

 Number of spheres  BRST   ARSET  % difference

 1,000    0.39   0.37  -5.58% 

 1,800    0.58   0.50  -13.79% 

 5,000    16.81   13.05   -22.36% 

 10,000    98.34   64.32  -34.59% 

 30,000    1308.73  936.81  -28.42% 

In general, the ARSET algorithm has already been proved to be more effective 

than the BRST algorithm and the next step is to compare the solid fraction of these two 

algorithms. 
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The value of solid fraction from these five different numbers of sphere using the 

BRST and the ARSET algorithms are very similar.  Results in Table 2.5 show that for 

1,000 and 1,800 spheres cases solid fractions from these two algorithms are the same, but 

for 5000, 10000 and 30,000 spheres the values of solid fraction obtained from the BRST 

and the ARSET are slightly different.   

Table 2.5  

Solid fraction comparison between the BRST and the ARSET algorithms 

      Solid Fraction    

 Number of sphere  BRST   ARSET  % difference

 1,000    0.621   0.621  0%  

 1,800    0.624   0.624  0%  

 5,000    0.625   0.617  1.280% 

 10,000    0.628   0.611  2.707% 

 30,000    0.629   0.610  3.021% 

As seen in Table 2.2, the total potential energy from the BRST and the ARSET 

algorithms for 5000, 10000 and 30,000 spheres cases are different which means that the 

packing configuration from the BRST and the ARSET algorithms for these three cases 

are also different too.  The total potential energy values from the ARSET algorithm are 

higher than the total potential energy from the BRST algorithm which means that the 

packing configurations from the BRST algorithm are more stable than the configurations 

from the ARSET algorithm.  Furthermore, the results from Table 2.5 can be incorporated 

with the results from Table 2.2 which concludes that the packing configurations from the 

ARSET are less dense.  These less dense packing configurations allows more protons and 
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oxygen molecules transport but they also lowers the electron conductivity.  The effect of 

these phenomena need to be investigated in the future study. 

 2.3.3 Magnitude of the random number and its effect    

In the ARSET algorithm, spheres are allowed to move along the random vector 

while the magnitudes of these random numbers are limited by the value of α.  Then in 

this section, the effect of α is investigated by initially selects three α values and runs the 

ARSET algorithm for three different numbers of spheres which are 5000, 10000 and 

30,000 spheres.  The initial α values that were selected for this test are 0.3, 0.5 and 0.7. 

Each case has been processed for 100 times and the average actual processing time of 

each case is calculated which are shown in Figure 2.3 to Figure 2.5.  

From Figure 2.3 to Figure 2.5, the initial α values show some effects in the actual 

processing time.   

 

Figure 2.3. The average actual processing time for 5,000 spheres. 
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From Figure 2.3, the initial α value equal to 0.7 gives the processing time equal to 

13.47 seconds compared to 13.52 seconds of the initial α value equal to 0.3 and 0.5 then 

for 5,000 spheres case the initial α value of 0.7 is considered to be the best.  

In Figure 2.4 the initial α value equals to 0.7 is still better than the initial α value 

of 0.3 and 0.5 because it yields the lowest processing time equal to 75.55 seconds 

compared to 84.13 seconds and 80.47 seconds of the initial α values equal to 0.3 and 0.5, 

respectively.  

 

Figure 2.4. The average actual processing time for 10,000 spheres. 
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Figure 2.5. The average actual processing time for 30,000 spheres. 
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simulation results of 5,000 and 10,000 spheres using the developed ARSET algorithm 

with the initial α equal to 0.5.  

 

Figure 2.6. Sphere packing simulation result for 5,000 spheres with the initial α = 0.5. 
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Figure 2.7. Sphere packing simulation result for 10,000 spheres with the initial α = 0.5. 
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structure of the catalyst layer.  From Table 2.5, the solid fractions of these two cases are 

equal to 0.617 and 0.611 respectively which mean that these catalyst layers have 

approximately 38% void space.  This void space will allow proton and oxygen molecules 

to diffuse through and these molecules which will later be interacted which each other 
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and form water molecules.  These water molecules must be expelled from the catalyst 

layer in order to maintain the best performance of fuel cell.   

The movement of protons and, oxygen and water molecules is limited by the void 

space.  If the catalyst layers have large void space then protons, oxygen and water can 

easily diffuse through the catalyst layers but the electron conduction through carbon 

molecules is lower than the case of small void space.  These simulated catalyst layers will 

be used to model the diffusion of proton, oxygen and water at the cathode side of PEMFC 

and the effect of the void space will be investigated in the later chapters.   

 

2.4 Conclusions 

An optimization technique and computer code called the adaptive random search 

technique (ARSET) has been successfully developed and employed in the sphere packing 

algorithm.  This ARSET algorithm can vary the magnitude of random vectors based on 

the total potential energy difference between current and new configuration.  This 

ARSET algorithm has been proved that it can give the global minimum solution for the 

total potential energy.  When apply this algorithm to 1,000 and 1,800 spheres, it gives a 

good agreement in solid fraction values compared with the results from the previous 

works.   

This developed ARSET algorithm significantly reduces the actual processing time 

of the packing process compared with the basic random search technique (BRST) 

algorithm.  The actual processing times that can be reduced using this algorithm are 

5.58% for the system of 1,000 spheres, 15% for the system of 1,800 spheres, 22% for the 
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system of 5,000 spheres, 34% for the system of 10,000 spheres and 28.42% for the 

system of 30,000 spheres.  The solid fractions from the BRST and the ARSET algorithms 

are very similar with the maximum percentage difference at 2.73%.  The effect of initial 

sampling range (α) has also been investigated and the appropriate α value is equal to 0.5 

because it shows a good performance with any number of spheres.        
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CHAPTER 3 

DIFFUSION AND CHEMICAL REACTION IN PEMFCS CATHODE  

CATALYST LAYER 

3.1 Introduction 

As PEMFCs are energy conversion devices, they can convert the chemical energy 

which is stored in their fuel, which are hydrogen and oxygen, into electrical energy and 

water.  This excess product water must be repelled out of cathode catalyst layer otherwise 

it can block the movement of protons and oxygen molecules which can dramatically 

reduce the performance of fuel cells.  To improve the performance of PEMFCs, 

appropriate water management strategies should be introduced and the best way to 

develop these water management strategies is to investigate how water is created and 

moved out of the cathode catalyst layer which means this study is focused at the atomic 

level.  Scholars have proposed many simulation models using the Monte Carlo (MC) 

technique to study the transport phenomena in fuel cell. 

Seidenberger et al. [39] introduced the MC model which requires low 

computational resource but it still can simulate the liquid water distribution within the 

GDL on the micro scale.  Their result shows a clear influence of the porous 

polytetrafluoroethylene (PTFE) coverage upon the amount of water residing within the 

GDL structure.  When decreasing the PTFE coverage area more and more water clusters 

are formed until they reach a critical value which is very important for fuel cell operation.  
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Seidenberger et al. [40] improved their former MC model and shifted the focus to 

the liquid-solid phase boundaries and the phase transitions.  Their simulation results show 

that the GDL region is especially prone to the accumulation of liquid water. 

Modak and Lusk [41] have developed a kinetic Monte Carlo (KMC) model which 

simulates the open circuit voltage in a doped electrolyte.  Their work was focused on 

electrical–physical processes but did not consider any chemical reactions.  A pressure 

differential was applied over an uncharged and open-circuited electrolyte allowed to 

come to equilibrium.  The voltage was computed as a function of time and found to reach 

the values predicted by equilibrium thermodynamics over a range of pressure 

differentials.  Results from the Monte Carlo simulation were compared with the 

predictions from an analytical model and were found to be in a very good agreement.  

Wanga et al. [42] studied a hydrogen-powered solid oxide fuel cell (SOFC) using 

a kinetic Monte Carlo model.  Its electrolyte, cathode, and anode are 9 mol% yttria 

stabilized zirconia (YSZ), ultrathin metal Pt, and ultrathin metal Ni, respectively. 

Chemical reactions at the cathode and anode side of the fuel cell were simulated.  The 

ionic current density (J) is used to perform a sensitivity analysis for the kinetic 

parameters by varying the operating condition under the different materials.  Result from 

their simulation shows that the amount of input oxygen which is the main factor for the 

fuel cell performance is followed by the oxygen ion transfer within YSZ.  Physical 

parameters such as the applied bias voltage, operating temperature, thickness of the YSZ, 

and the relative permittivity of the YSZ are found to significantly affect the calculated 

ionic current density of the SOFC.  
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Lau et al. [43] developed a KMC model to simulate the cathode of an YSZ fuel 

cell using a nonsymmetrical cell scheme.  In their model, the oxidation reduction reaction 

that occurs at the SOFC cathode was simulated at the atomic level.  The ionic current 

density (J) is used to evaluate the limitations of the cathode/YSZ performance.  Material 

properties and different operating conditions are also evaluated.  According to the results 

of their simulation (1) temperature, (2) dopant fraction of Y2O3, and (3) the relative 

permittivity of YSZ are found to be the critical parameters for the performance of fuel 

cell.   

Ge et al. [44] introduced a two-dimensional Markov Chain Monte Carlo model 

for the anode/electrolyte interface.  The density of oxygen vacancies, which is directly 

adjacent to the lanthanum strontium vanadate (LSV) / YSZ interface, is one order of 

magnitude higher than the bulk value of YSZ.  The double layer undergoes pronounced 

relaxations when the interfaces are under anodic biases ranging from 0 to 150 mV.  The 

results indicate that 70–80% of the oxygen vacancies are immobilized in the Helmholtz–

Perrin layer.  The rationale presented in this work has wide applications on elucidating 

anodic reaction mechanisms and potential distributions across anode/electrolyte 

interfaces. 

Zhange et al. [45] developed a two phase lattice model of electrode catalyst layer 

in PEMFC which incorporated a catalyst-mixed ionomer and pores using the Monte 

Carlo method.  Their model proves to be more accurate compared to another two phase 

lattice model which has the catalyst layer composition consisting of a pore phase and a 

mixed electronic and ionic conductor phase.  The peak of the reaction rate moves from 

membrane side to the GDL side with the increase of cell current, as a result of rate-
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limiting factor shifting from proton conduction to oxygen transport.  Nonuniform 

ionomer distribution across catalyst layer, with higher ionomer content at the membrane 

side and higher porosity at GDL side, is superior to uniform ionomer distribution when 

working at high cell current. 

Suzuki et al. [46] developed a three-dimensional modeling for the cathode catalyst 

layer of a PEMFC which is made from 20 wt% Pt/C.  The pore tortuosity of the cathode 

catalyst layer was calculated using the systematic development of a numerical simulation.  

The simulated results of current density-potential curves indicated the existence of an 

optimum ionomer content (33%) for a PEMFC catalyst layer.  The effect of the 

electrolyte content on the oxygen diffusion coefficient and proton conductivity of the 

cathode catalyst layer (CCL) was also investigated.  The proton conductivity increased 

with an increase in the ionomer content.  In contrast, the oxygen diffusion gradually 

decreased as the ionomer content increased.  The relationship among a network of 

catalyst grains for electronic conduction, a network of ionic conduction and a network of 

channels for gas diffusion were investigated to formulate a correlation between the 

ionomer percentage and a polarization characteristics.  At an optimal ionomer content, 

both carbon grains and the ionomer were found to be perfectly percolated. 

The cathode catalyst layer, which is the location where the electrochemical 

reaction happens, is one of the most important regions to study the transport phenomena 

in PEMFCs.  The structure of the cathode catalyst layer which is a porous media [1] is 

very important for the transport phenomena of proton, oxygen and product water.  The 

movement of protons and oxygen and water molecules is limited by void space.  Protons, 

oxygen and water have to diffuse through the catalyst layers using this void space to be 
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their path for movement.  The complexity of the cathode catalyst layer (CCL) is an 

important variable for the diffusion of these three species.  If the structure of the CCL is 

very complex then protons, oxygen molecules and water molecules cannot be easily 

diffused through it.  In this study, the Monte Carlo simulation is used to model the 

transport phenomena in the cathode catalyst layer.  To understand how water is created in 

the catalyst layer the electrochemical reaction between protons and oxygen has to be 

simultaneously considered and included in this numerical simulation study. 

 

3.2 Numerical Simulation Algorithm 

The algorithm has been separated into two parts.  The first part is the cathode 

catalyst layer formation using the spheres packing algorithm and the second part is the 

movement of proton, oxygen and water, which water is a product of the chemical reaction 

between proton and oxygen, through this developed cathode catalyst layer.  

The basic material of the cathode catalyst layer is carbon with platinum (Pt) 

particle coated on its surface [1].  But in Chapter 2 only the carbon molecule is 

considered in the sphere packing algorithm.  So in this chapter an assumption is made 

that those carbon molecules already have the Pt particles uniformly dispersed on their 

surfaces. 

The sphere packing algorithm described in Chapter 2 has been modified by 

changing the shape of the container from cubic shape to rectangular shape because the 

normal shape of the cathode catalyst layer is rectangular not cubic.  In the previous 

chapter the shape of the container is cubic which has a base side equal to D which can be 

calculated from equation (3.1): 
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32 NrD      (3.1) 

where D is the base side (angstrom), r is the sphere radius (angstrom) and N is the 

number of spheres.  But the new container’s shape, which is rectangular, has a length of 

2D, thickness of D/2 and the width of D, so these two containers still have the same 

volume which is D3.   

 

Figure 3.1. Packing result of 10,000 spheres in the rectangular container. 

Figure 3.1 is the result of the spheres packing algorithm which represents the 

atomistic structure of the cathode catalyst layer, each sphere in the container is the carbon 
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molecule with the Pt particles uniformly dispersed on its surface.  The solid fraction of 

this packing is equal to 0.611 or the void space of this packing is approximately 39%. 

Proton and oxygen will use this void space to diffuse into the cathode catalyst layer and 

interact with each other to form water molecule. 

The thickness of the cathode catalyst layer is usually in the range of 10 μm [1] 

and from the packing algorithm the thickness (D/2) of the container can be calculated by 

equation (3.1).  As the van der Waals radius of carbon is equal to 1.7 angstrom then the 

sphere radius was assigned to be 1.7 angstrom.  If the cathode catalyst layer with the 

thickness of 10 μm is created and used then more than 25 billion carbon molecules need 

to be packed in the rectangular container and this will require the enormous 

computational time.  Because the packing algorithm requires the clock time in the 

numerical simulation to be at least 1 minute to pack 10,000 carbon molecules and at least 

15 minutes to pack 30,000 carbon molecules, the processing time will  exponentially 

increase when the number of spheres increases which results in packing complexity.  To 

deal with the packing processing time, the cathode catalyst layer which made of 10,000 

carbon molecules is simulated or on the other hand the thickness of this simulated 

cathode catalyst layer is approximately 36 angstrom.  From Figure 3.1, the thickness of 

this simulated catalyst layer is represented in the Z-direction while the length is 

represented in the Y- direction and the width in the X-direction.  

The electrochemical reaction that occurs in the cathode catalyst layer can be 

represented in the following equation. 

4𝐻+ + 4𝑒− + 𝑂2 → 2𝐻2𝑂        (3.2) 
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This chemical reaction is the combination of 4 species which are proton (H+), 

electrons (e-), oxygen (O2) and water (H2O).  As proton cannot diffuse through the 

cathode catalyst layer by itself, it needs water as a media.  Proton tends to interact with 

water to form a hydronium (𝐻3𝑂+) and this hydronium will diffuse through the cathode 

catalyst layer and interact with oxygen and form water molecules.  This electrochemical 

reaction is investigated at the very beginning which includes the movement of 

hydroniums and oxygen into the cathode catalyst layer and the electrochemical reaction 

between hydroniums and oxygen.  In this simulation, four assumptions have been made 

which are: (1) the electrochemical reaction among hydroniums, electrons and oxygen 

molecules is assumed to be isothermal; (2) the movement and the electrochemical 

reaction of electron are neglected based on the assumption that electron is one of the 

smallest particles which means it can easily conduct through the cathode catalyst layer 

and it should represent itself when hydroniums and oxygen tend to interact with each 

other; (3) the hydrogen bonding effect inside of the water molecules is not considered; (4) 

Brownian motion is not considered because each molecular movement is controlled by a 

random vector, which based on the Monte Carlo technique, and it replicates the Brownian 

motion.     

The developed algorithm which controls the movement of hydroniums, oxygen 

and the product water is described as follows: 

Step 1 Randomly generate the initial location of hydroniums and oxygen molecules, the 

initial location of hydroniums will have the coordinate of (x , y , 0) and oxygen 

molecules will have the initial coordinate of (x , y , D/2) where x and y are 

random numbers. 
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Step 2 Check if the location of hydroniums, oxygen molecules and carbon molecules, 

from the spheres packing algorithm, overlap with each other or not.  If there is no 

overlap then go to step (3) otherwise go back to step (1). 

Step 3   Generate a random vector which has a magnitude of 0.5 x ro, where ro is the van 

der Waals radius of oxygen which equals to 1.5 angstrom [47]. 

The reason of why the magnitude of the random vector for oxygen molecule is 

equal to 50 percent of the molecular radius is because oxygen molecule size is close to 

carbon molecule size, 1.7 angstrom, and this moving algorithm needs to make sure that 

these oxygen molecules continuously move through the cathode catalyst layer and they 

are not jumping through the void space.  If the magnitude of the random vector is too 

long then there is a chance that the molecule will not move on its path and, instead, will 

jump from the initial location to the final location.  The latter is big enough for it to fit in, 

even though the size of that moving channel is smaller than the molecular size.  If the 

magnitude of the random vector is small enough then this molecule has to check the 

possibility of its every moving step so that every moving channel must be possible for 

this molecule to move through in order to complete the moving step in the developed 

algorithm.     

Step 4 Allow oxygen number i to move along this vector. 

Step 5 Test if the current coordinate of this oxygen overlaps with other molecules or 

not.  If the current coordinate of oxygen number i overlaps with other molecules 

then go to back to step (3) otherwise go to step (6). 
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Step 6 Repeat steps (3-5) until all oxygen molecules are moved and save this 

configuration as the new configuration. 

Step 7 Calculate the total potential energy of this current configuration using the 

Lennard-Jones potential which is shown by the following equation. 

])/()/[(4)( 612

ijijij rrrL      (3.3)  

Equation (3.3) shows the Lennard-Jones potential where L(rij) is the total Lennard-Jones 

potential energy of the system (kJ per mol),   is the Lennard-Jones potential (kJ per 

mol),   is the finite distance at which the inter-particle potential energy of carbon-

carbon is equal to zero and ijr  is the distance between 2 particles (angstrom).  

Step 8 Generate a random vector which has a magnitude of 0.5 x rh, where rh is the 

atomic radius of hydronium which equals to 1.43 angstrom [48].  The Lennard-

Jones potential parameter of hydronium is taken from Gertner and Hynes [49] 

and the full description of the Lennard-Jones potential used in this simulation can 

be seen in Appendix B.  In order to determine the Lennard-Jones parameter of 

each molecular pair, the Lorentz/Berthelot mixing rules is utilized.  The 

Lorentz/Berthelot mixing rules is an arithmetic equation which can estimate the 

intermolecular potential parameters for a mixed pair of molecules by combining 

the analogous potential parameters for the two pairs of identical molecules (ii 

and jj).  The Lennard-Jones mixed pair parameter can be calculated by the 

Lorentz/Berthelot mixing rules using the following equations:  

𝜎𝑖𝑗 =
1

2
(𝜎𝑖𝑖 + 𝜎𝑗𝑗)    (3.4) 
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where σij is the finite distance (angstrom) at which the inter-particle potential of a 

mixed pair molecule is zero. 

  σii and σjj   is  the finite distance (angstrom) at which the inter-particle potential 

of identical molecule is zero. 

 𝜀𝑖𝑗 = √𝜀𝑖𝑖𝜀𝑗𝑗     (4.2) 

where εij is the Lennard-Jones potential for mixed pair interaction (kJ per mol). 

εii and εjj is the Lennard-Jones potential for identical molecules (kJ per mol). 

The reason that the magnitude of the random vector is set to 50 percent of the 

molecular radius for hydronium is based on the similar reason and assumption 

for oxygen molecule which is described in step 3.    

Step 9 Allow hydronium number i to move along this vector. 

Step 10 Test if the current coordinate of this hydronium overlaps with other molecules or 

not. If the current coordinate of hydronium number i overlaps with other 

molecules then go to back to step (8) otherwise go to step (11). 

Step 11 Repeat steps (8-10) until all hydroniums have been moved and save this 

configuration as the current configuration. 

Step 12 Calculate the total potential energy of this current configuration using the 

Lennard-Jones potential. 

Step 13 Calculate the total potential energy difference between step (12) and step (7) 

which is described as the following equation:  
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)()()( ijcurrentijnewij rUrUrU     (3.4) 

where )( ijnew rU  is equal to a total potential energy of the new configuration and 

)( ijcurrent rU  is equal to  a total potential energy of the current configuration. 

Step 14 If )( ijrU is less than zero then accept the new configuration as current 

configuration and go to step (15) otherwise go back to step (8). 

Step 15 Check the oxygen molecules number i if there are four hydroniums located 

within the length of 1 angstrom from the center of this oxygen molecule.  If 

there are four hydroniums located within this length then the electrochemical 

reaction will happen because the hydrogen bond length in the water model is in 

the range of 1 angstrom [50].  After this electrochemical reaction occurs, six 

water molecules will replace those four hydroniums and oxygen molecule.  The 

coordinate of these newly-formed water molecules will be at the center of the 

replaced hydroniums and oxygen.  If there are no hydroniums within 1 angstrom 

length then this algorithm will check oxygen molecules number i+1 for the 

possibility of this electrochemical reaction.   

Step 16 Repeat step (15) until all oxygen molecules are tested. 

Step 17 Generate a random vector which has a magnitude of 0.5 x rw, where rw is the 

van der Waals radius of water which equals to 1.41 angstrom [50]. 
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The reason that the magnitude of the random vector is set to 50 percent of the 

molecular radius for water molecules is based on the similar reason and assumption for 

oxygen molecule which is described in step 3. 

Step 18   Allow water number i to move along this vector. 

Step 19 Test if the current coordinate of this water molecule overlaps with other 

molecules or not.  If the current coordinate of water number i overlaps with 

other molecules then go back to step (17) otherwise go to step (18). 

Step 20  Repeat steps (17-19) until all water molecules have been moved and save this 

configuration as the new configuration. 

Step 21 Calculate the total potential energy of this new configuration using the Lennard-

Jones potential. 

Step 22  Calculate the total potential energy difference between step (21) and step (12). 

Step 23 If )( ijrU is less than zero then accept the new configuration as the current 

configuration and go to step (24) otherwise go back to step (17). 

Step 24 Increase the number of iterations (t) by one and check the current value of the 

iteration if it is still less than the desired iteration then go back to step (1) 

otherwise stop.  The flow chart of this algorithm is shown in Figure 3.2.  
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Figure 3.2. Flow chart of the developed algorithm for the pure catalyst layer. 
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In the real practice each molecular movement will affect the whole system, 

because of the intermolecular force, then every molecules should move together to 

simulate the actual behavior of the diffusion process.  But this simulation algorithm, for 

each step, considers only the movement of a single molecule while another molecules 

are fixed which a limit of the Monte Carlo technique is.  Unlike the Monte Carlo, 

molecular dynamic technique can be used to simulate the movement and the interaction 

of multiple molecules but it requires a powerful computational hardware an enormous 

processing time.  To study the effect of the input hydronium and oxygen to the water 

distribution inside the cathode catalyst layer after the certain iteration, the input 

hydroniums and oxygen per iteration is varied as 3:2, 5:3 and 6:4 to determine which 

ratio yields the best result.  Each successfully iteration can be roughly estimated as 

4.38 × 10−13 second i.e. 0.438 picosecond and the simulation is allowed to run for 

1000, 5000 and 20000 iterations to investigate the effect of time. 

3.3 Results and Discussion 

3.3.1 Water distribution across the cathode catalyst layer 

In this section, the water distribution throughout the cathode catalyst layer is 

discussed.  To avoid cluttering, the snap shot of the cathode catalyst layer for each certain 

iteration is depicted by the container, which represents the boundary of the cathode 

catalyst layer, and the location of water molecules only.  The amount of hydroniums, 

oxygen molecules and water molecules that is still trapped inside the cathode catalyst 

layer is shown in other figures. 

The simulation is started with the lowest input rate for hydronium and oxygen at 

three molecules per iteration and two molecules per iteration consecutively.  As 
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hydroniums and oxygen molecules start to diffuse into the developed cathode catalyst 

layer, they are going to move and arrange themselves into a new configuration which has 

lower potential energy than the former configuration.  Six water molecules will be 

created when four hydroniums and one oxygen molecule are in the same neighborhood.  

These processes will continue until the desired iteration is reached. 

 

 

 

 

 

Figure 3.3. Simulation result at 1,000 iterations: Location of water molecules. 

Figure 3.3 shows the snap shot of the cathode catalyst layer at 1,000 iterations. 

From this snap shot the newly-formed water molecules are located near the center of the 

cathode catalyst layer which can be explained by the movement of hydroniums and 

oxygen molecules.  Molecular size of hydronium, oxygen and carbon are in the same 

range, 1.43 angstrom for hydronium, 1.5 angstrom for oxygen and 1.7 angstrom for 

carbon, then the movement of hydronium and oxygen tends to have the similar 

acceptance rate by this algorithm.  Because of this reason, hydronium and oxygen tend to 

have the similar diffusivity rate thus, the location where the most electrochemical 

reaction has tendency to occur in the area where  
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= 0.5.  But from the potential 
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the newly formed water molecules tend to diffuse to the location where there are less 

hydronium because the Lennard-Jones potential of hydronium-water is higher than the 

Lennard-Jones potential of water-water and water-oxygen.  As the hydronium 

concentration is high at the location of  
𝑍

𝐷/2
< 0.5 then the newly formed waters tend to 

diffuse to the location where 
𝑍

𝐷/2
> 0.5.   

All of these explanations can be proved by the profiles of hydroniums, oxygen 

molecules and water molecules which are shown in Figure 3.4.  In this figure, 22% of 

oxygen molecules are located in the area where  
𝑍

𝐷/2
= 0.9 and 

𝑍

𝐷/2
= 0.1 and another 

17% and 21% of oxygen molecules are located at the location where 
𝑍

𝐷/2
= 0.7 and 

𝑍

𝐷/2
=

0.8 respectively.  The majority of hydroniums can be found at the area where 
𝑍

𝐷/2
< 0.3 

while most of the newly-formed water molecules are located in the area where 
𝑍

𝐷/2
> 0.5.  

 

Figure 3.4. Simulation result at 1,000 iterations: Profiles of the hydroniums, and oxygen 

and water molecules in the cathode catalyst layer. 
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Concentration percentage is the number of species at the individual location over the total 

number of that species. 

For the results of 5,000 iterations case are shown in Figure 3.5 and Figure 3.6.  

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Simulation result at 5,000 iterations: location of water molecules. 
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Figure 3.6. Simulation results at 5,000 iterations: Profiles of the hydroniums, and oxygen 

and water molecules in the cathode catalyst layer. 

From Figure 3.5 and Figure 3.6, the majority of water molecules is located where 

𝑍

𝐷/2
> 0.5  while some of them can diffuse to the area where 

𝑍

𝐷/2
< 0.5 even though more 

oxygen molecules and hydroniums are allowed to enter into the developed cathode 

catalyst layer.  This phenomenon can be explained by the following process.  

(1) While this algorithm is continuously running, more water molecules will be 

formed in the cathode catalyst layer and they tend to move to the location where 

there are fewer hydroniums because the Lennard-Jones potential between water-

hydronium is higher than the Lennard-Jones potential between water-oxygen.  As 

the concentration of hydronium is higher at the location where 
𝑍

𝐷/2
→ 0.3 then 

water molecules will move in the opposite direction, the location where 
𝑍

𝐷/2
>

0%

10%

20%

30%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

n
ce

n
tr

at
io

n
 p

er
ce

n
ta

g
e

Z/(D/2)

hydronium oxygen water



57 
 

0.3, that is the reason of why water concentration is still high at the location 

where 
𝑍

𝐷/2
> 0.5.  

(2) As more water molecules tend to move to the location where 
𝑍

𝐷/2
> 0.5, they will 

start to block the movement of oxygen molecules which make the oxygen 

molecules even harder to diffuse to the location where 
𝑍

𝐷/2
→ 0.  Water molecules 

also block the movement of hydronium that try to diffuse to the location where 

𝑍

𝐷/2
> 0.5 that is the reason why the hydronium concentration is very high at the 

location of 
𝑍

𝐷/2
< 0.5. 

(3) As water molecules and oxygen molecules started to accumulate near the location 

where 
𝑍

𝐷/2
> 0.5, water molecules themselves will try to diffuse to the new 

location in order to comply with the total potential energy constrain.  Therefore, 

they start to migrate to the location of 
𝑍

𝐷/2
< 1  because there are fewer oxygen 

and water molecules in that location.   

(4) Oxygen molecules also move similarly to the water molecules but their 

movements are more difficult than water because oxygen molecules have to pass 

through the cluster of newly-formed water and their movements could be possibly 

rejected due to the high Lennard-Jones potential.  But some oxygen molecules 

can still move through the obstacle and locate themselves in the area where  

𝑍

𝐷/2
→ 0.5 as it can be found from the oxygen profile in Figure 3.6.  These oxygen 

molecules will then have a chance to interact with hydroniums to form more 

water at this location.   
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While this algorithm is continuously running, hydroniums, oxygen and water 

molecules will follow these processes in order to minimize the total potential energy.  

Water molecules will start to diffuse through the cathode catalyst layer.  As this 

algorithm is allowed to run to 15,000 iterations, the cathode catalyst layer is full of water 

molecules which can be seen in Figure 3.7.  

 

 

 

 

 

 

 

Figure 3.7. Simulation result at 15,000 iterations: Location of water molecules.  

In this case, water molecules and oxygen molecules still behave in the similar way 

as they did in the 5,000 iterations case.  But in the 15,000 iterations case, the large 

amount of water molecules that occupied the void space near 
𝑍

𝐷/2
→ 1 location have built 

up a potential wall and the movement of another water molecule that wants to diffuse to 

the  
𝑍

𝐷/2
→ 1 direction have been rejected because of the potential constraint then water 

molecules tended to diffuse to 
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in Figure 3.8, water molecules have already occupied the void space throughout the 

cathode catalyst layer.  The movement of oxygen molecules is hindered by this water 

barrier but in the opposite way.  As the oxygen concentration at the 
𝑍

𝐷/2
→ 1 location is 

very high then oxygen molecules will try to move to 
𝑍

𝐷/2
→ 0 direction but they are 

blocked by the water barrier and more oxygen molecules are stuck in this 
𝑍

𝐷/2
→ 1 

location where the very high oxygen concentrations can be found.  

 

Figure 3.8. Simulation result at 15,000 iterations: Profiles of the hydroniums, and oxygen 

and water molecules in the cathode catalyst layer. 

From Figure 3.8, the movement of hydronium is also affected by this water 

barrier.  Hydronium needs a void space, which is already occupied by water molecules, to 

diffuse through this cathode catalyst layer.  Thus, the hydronium concentration is higher 

at the area where 
𝑍

𝐷/2
→ 0.  Very few hydroniums and oxygen molecules can diffuse 
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through the catalyst layer then the electrochemical reaction between these two species 

will hardly occur and this phenomenon will lead to the major loss for PEMFCs which 

called the concentration loss.  

The number of hydroniums, oxygen molecules and water molecules that still 

located inside the cathode catalyst layer is shown in Table 3.1. 

Table 3.1  

Number of each species that located inside the cathode catalyst layer for each iterations 

        Species 

Iteration   Hydronium  Oxygen   Water 

1,000    2,815   1,932    24 

5,000    3,528   2,231    634 

15,000    2,694   1,788    1,923 

From Table 3.1, it is clear to find that the number of each species that are still 

located inside the cathode catalyst layer does not follow the electrochemical reaction 

equation strictly.  For 1,000 iterations the number of hydroniums and oxygen that enter in 

this developed catalyst layer is equal to 3,000 and 2,000 molecules, respectively, and the 

number of newly formed water molecules is equal to 24.  If all newly formed water 

molecules are assumed to stay inside the developed cathode catalyst layer then the 

expected numbers of hydroniums and oxygen should equal to 2,984 and 1,996 molecules, 

respectively.  But as shown in Table 3.1, the numbers of hydroniums and oxygen that still 

stay inside the developed catalyst layer are equal to 2,815 and 1,932 molecules, 

respectively.  This means that some hydroniums and oxygen molecules have diffused out 
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of the developed catalyst layer which is possible because in this algorithm every species 

can move in any direction.  When any of them move out of the developed catalyst layer, 

this algorithm will remove them from the memory array.  Even though the number of 

each species that still stay inside the developed catalyst layer is not exactly equal to the 

expected number from the electrochemical reaction equation, the ratio of each species is 

still in a good agreement with the governing electrochemical reaction equation.   

For 5000 and 15,000 iteration, the difference between the simulation result and 

the expected number from the electrochemical reaction equation is quite high and the 

reasons behind this phenomenon can be explained by the same explanation discussed in 

the previous. 

3.3.2 The effect of hydronium and oxygen input 

The effect of fuel input has been investigated by changing the input values of 

hydroniums and oxygen per iteration from three hydroniums and two oxygen molecules 

per iteration to five hydroniums and three oxygen molecules and finally six hydroniums 

and five oxygen molecules per iteration.  The algorithm is allowed to run for 15,000 

iterations for each fuel ratio and the number of each species that still locate inside the 

developed catalyst layer is compared to find the best fuel input ratio.  Table 3.2 shows the 

result for each fuel input ratio. 
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Table 3.2  

Number of each species for each fuel input ratio after 15,000 iterations 

        Species 

Fuel input ratio  Hydronium  Oxygen   Water 

3:2    2,694   1,788    1,923 

5:3    2,467   1,644    2,281 

6:5    2,240   1,327    2,653 

 

From Table 3.2, the input ratio of 3:2 seems to be the best fuel input ratio for this 

simulation scenario because it shows the least amount of water molecules that is still 

trapped inside the catalyst layer.  The input ration of 3:2 also gives the largest amount of 

oxygen molecules and hydronium which means the possibility for more electrochemical 

reactions is higher than another fuel input ratio.  And it is found that as the number of 

input oxygen increases the number of trapped water molecules also increase which is not 

good for the performance for PEMFC because it can lead to a concentration loss and 

flooding problem. 

This simulation simulates the diffusion and electrochemical reaction at the atomic 

level which gives the basic idea of how hydroniums and oxygen molecules react and 

form water molecules.  This information can be transferred to macroscopic simulation 

model in order to create the practical modelling of the PEMFC or it can be coupled with 

the multiscale modeling which will be studied in the future research.  

 

 



63 
 

3.4 Conclusion 

A Monte Carlo computational geometry algorithm which can simulate the 

electrochemical reaction inside the PEMFC cathode catalyst layer has been successfully 

developed.  This algorithm controls the movement of reactants, which are hydroniums 

and oxygen molecules, and product water.  These three species are allowed to interact 

and diffuse through the catalyst layer in which every movement is controlled by the 

Lennard-Jones potential.  As the developed algorithm is allowed to run to 15,000 

iterations it shows the phenomenon of the concentration loss due to a large amount of 

water molecules already occupied the void space in the cathode catalyst layer.  The fuel 

input ratio is also investigated and the appropriate hydronium to oxygen ratio is equal to 

3:2. 
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CHAPTER 4  

THE EFFECT OF GAS CONTAMINATION AND METAL IMPURITY ON  

THE PEMFC CATHODE CATALYST LAYER 

4.1 Introduction 

In Chapter 3, the electrochemical reaction between hydroniums and oxygen 

molecules and the movement of water, which is a product of this electrochemical 

reaction, have been investigated.  Cathode catalyst layer (CCL) described in Chapter 3 is 

assumed to be made of 100% platinum coated carbon and the fuel input are pure 

hydroniums and oxygen molecules but in the real practice there are nothing as a perfect 

catalyst and pure fuel. Thus the material impurity and gas contamination must be 

considered in order to simulate the real working condition of the fuel cell. 

There are three contamination and impurity sources for PEMFC which can be 

described as the following: 

1. Hydrogen contamination: Hydrogen that has been used for the fuel cell 

usually comes from the reformation of the hydrocarbons or oxygenated 

hydrocarbons.  Unfortunately there are some unavoidable impurities.  The 

reformate or hydrogen rich gas which is produced from the steam reforming 

or autothermal reforming contains 70% hydrogen, 25% carbon dioxide, 2% 

carbon monoxide and another 3% of inert gas and sulfur [51].  

2. Air (oxygen contamination): Oxygen is a fuel that is used to supply to the 

cathode side of the PEMFC and air, which typically contains 20.95% of 

oxygen [52], and this is the most practical fuel for the cathode side.  But the 
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air pollutants with many impurities can flow into the cathode channel side of 

the PEMFC.  NOx , SOx and COx are the undesired impurities that are always 

found in the PEMFC cathode catalyst layer and the percentage of these 

impurities varies with the air quality.    

3. Other contamination: The last impurity found inside the PEMFC is the 

metallic ion impurity from a fuel cell component.  The corrosion of any 

metallic part of the PEMFC such as  flow field bipolar plates, inlet/outlet 

manifolds and cooling loops can introduce the Fe3+, Ni2+, Cu2+ and Cr3+ into 

the catalyst layer of the PEMFC [51]. 

Scholars have proposed studies of the contaminates’ effect on the performance of 

fuel cell.  Shi et al. [53] developed a model which investigated the effect of toluene, 

which is one of many volatile organic compounds found in the atmosphere, on the 

performance of fuel cell.  In their model, the transient and steady state behaviors of the 

fuel cell were simulated which considered the oxygen reduction mechanism and 

contaminant reactions.  From the result of their simulation, the contamination level of 

750 ppb toluene yields a 48 mV performance drop at 1 Acm−2.  Their simulation results 

have been validated with experimental data on fuel cell toluene contamination at four 

different current densities (0.2, 0.5, 0.75, and 1 Acm−2) and three toluene concentrations 

(1, 5, and 10 ppm). 

Li et al. [54] studied the effect of toluene on PEMFC performance by changing 

the level of input toluene under different current densities.  In their study, four different 

levels of toluene concentration were used as an input while they operated their fuel cell 

under five current densities.  The result of this study showed that the cell performance 
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dropped immediately after the toluene was put into the air stream and the steady-state cell 

voltage drop is highly related to the toluene concentration.  They also found that the 

relative humidity (RH) and cathode Pt loading is related to the performance of PEMFC.  

High RH and high Pt loading can help decrease the degradation of PEMFC.  Another 

interesting result from this experiment is that the toluene contamination cannot be fully 

recovered because after the initial experiment they replaced the toluene contaminated air 

with a clean air but their fuel cell performance still steadily declined. 

Li et al. [55] proposed the effect of cobalt (Co2+) contamination on the 

performance of PEMFC.  From this study they found that the concentration of cobalt 

highly affects the performance of PEMFC because the fuel cell voltage dropped 

significantly after the Co2+ was injected into the cathode air stream.  It was observed for 

the low operating temperature, the effect of Co2+ contamination was more severe because 

the Pt surface tends to absorb more cobalt at the lower temperature.  

Sun et al. [56] reported the performance loss of the iron-fed fuel cell which is 

another kind of fuel cell that can recover iron and electricity from acid mine drainage. 

From their study, the iron contamination occurs on both the electrode and membrane but 

the membrane contamination tends to show a more severe effect.  The α-FeO(OH), which 

is the product from the iron-fed fuel cell, is the major source of the iron contamination 

and it needs to be pushed out from the membrane of the fuel cell before it can form the 

fouling layers on the surface of electrode.  If the α-FeO(OH) successfully formed the 

fouling layer on the membrane it will increase the membrane electrical conductivity 

which will delay the electro-oxidation kinetic of the Fe3+ and lower the performance of 

the fuel cell. 
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Bouzek et al. [57] performed experiments to study the effect of mercury on the 

performance of PEMFC.  Results from their experiment showed that mercury can cause a 

huge drop in the PEMFC’s performance because it tends to be absorbed by the Pt coated 

catalyst and it is impossible to regenerate the Pt surface.  Result from 7000 hours 

experiment, which was operated under the standard operation conditions, showed that an 

average contamination of mercury at the level of 10 μg N m−3 can decrease the 

performance of PEMFC by 20%.  

Mohtadi et al. [58] showed that the poisoning rate of NO2 is highly dependent on 

its concentration.  With the supply of 5 ppm of NO2, approximately 55% loss in current 

after 12 hours of exposure was observed.  The performance of the cell can be recovered 

with the supply of neat air.  However, full recovery cannot be obtainable after the 

repetitive poisoning.  Cyclic voltammetry (CV) was performed to understand the 

contamination mechanism.  Using the CV spectra of the cell before and after exposure to 

5 ppm NO2, they concluded that NO2 is not catalytic surface poisoning, instead the 

ionomer and/or the catalyst ionomer interface could be affected by the exposure.  From 

their experimental results, they hypothesized that NO2 gets electrochemically reduced on 

the cathode.  They also studied the effects of the concentration of NO2 and found that the 

rate of poisoning is not a strong function of the NO2 concentration. 

Sulek et al. [59] proposed the effect of the metal ion contamination on the 

performance of PEMFC.  They did a series of tests on four different types of metal ion 

and they found out the Al3+ has the worst effect on PEMFC’s performance follow by Fe2+ 

, Ni2+ and Cr3+.  Results from these experiments also show that there is no change in the 
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performance of contaminated PEMFC until the membrane electrical conductivity loss 

was greater than approximately 15%. 

 Yang et al. [60] used a simulated NOx/air mixture with a total concentration of 

NO and NO2 (in a ratio of 9:1) ranging from 10 ppm to over 1000 ppm to investigate the 

degradation of the cell performance.  Their experimental measurements indicated that the 

poisoning effect of NOx is reversible with complete recovery being achieved over a very 

long time. 

Chu et al. [61] developed a one-dimensional transient model to investigate the 

effects of CO on liquid water transport in the PEM fuel cell.  Their results indicated that 

the saturation of liquid water is reduced in the catalytic layers.  The distribution of liquid 

water depends more strongly on the CO concentration than on the dilution of hydrogen in 

the membrane electrode assembly (MEA) of the cell.  Due to poisoning, the current 

density is reduced, weakening the effect of the electro-osmotic drag.  Further, the oxygen 

reduction reaction is also suppressed, reducing the diffusion of water from the cathode to 

the anode.  Much of the work has concentrated on understanding the effects of CO 

poisoning on the cell rather than a stack. 

Even though there has been much research about the effect of the contamination 

on the performance of PEMFC, the mechanism and the electrochemical reaction that 

occur inside the cathode catalyst layer needs more study.  This is needed to better 

understand the water transport phenomena which can lead to a more suitable approach for 

the water management in the PEMFC. 
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In this chapter the effect of metal impurity and gas contamination are studied by 

modifying the sphere packing algorithm developed in Chapter 2 to create the metal 

contaminated cathode catalyst layer.  Also the electrochemical reaction algorithm 

described in Chapter 3 is modified to investigate the effect of gas contamination. 

 

4.2 Numerical Simulation Algorithm 

The numerical simulation approach described in Chapter 3 has been utilized again 

by separating the algorithm into two parts.  The first part is the cathode catalyst layer 

formation using the sphere packing algorithm which includes metal impurity.  The 

second part is the movement of hydroniums, oxygen, contamination gases (CO2 and CO) 

and water through this developed cathode catalyst layer.  

As described in the beginning of this chapter, metal impurities can occur in the 

cathode catalyst layer and aluminum and iron are selected to be the metal impurities in 

this study because they can greatly decrease the performance of the PEMFC.  The metal 

impurities are also modeled as spheres while the radius of the metal sphere is equal to 

1.94 angstrom [62] for iron and 1.84 angstrom [63] for aluminum.  To create the impure 

cathode catalyst layer the sphere packing algorithm described in Chapter 3 is modified by 

adding these initial steps at the beginning of the sphere packing algorithm. 

 

Step 1 Determine the desired percentage of the metal impurity which can vary from 

0.25 wt % to 1 wt %.  For an example if 0.25 wt% impurity is selected that 

means 25 out of 10,000 spheres are the metal impurities because the cathode 

catalyst layer is created from 10,000 spheres. 
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Step 2 Generate 3 random numbers and assign them as x, y and z to give the initial 

coordinate of metal sphere and record this coordinate.   

Step 3 Generate another 3 random numbers for the second coordinate of the metal 

sphere. 

Step 4 Test the coordinate from step (2) if the coordinate from step (2) is the same as 

the coordinate from step (1) then repeat step (1) again, otherwise record this 

coordinate. 

Step 5 Repeat steps (3) and (4) until the number of desired metal spheres are placed in 

the container. 

 

The Lennard-Jones potential is used to control the potential energy of the sphere 

packing process.  For this case, iron and aluminum have been introduced in the packing 

algorithm then the Lennard-Jones potential between carbon and iron and the Lennard-

Jones potential between carbon and aluminum must be considered.  In order to determine 

the Lennard-Jones parameter of carbon-iron and carbon-aluminum, the Lorentz/Berthelot 

mixing rules described in Chapter 3 is utilized again.  

For iron: σii is equal to 2.32 angstrom and εii is equal to 50.02 kJ per mol [64] and 

for aluminum: σjj is equal to 2.62 angstrom and εjj is equal to 37.99 kJ per mol [64].  Then 

the Lennard-Jones parameter for the mixes pair can be described as follows: 

(1) Carbon-iron: σij = 3.09 angstrom, εij = 4.69 kJ per mol.  

(2) Carbon-aluminum: σij = 3.24 angstrom, εij = 4.09 kJ per mol. 

Figure 4.1 shows the example of 0.25 wt% iron impurity and these iron spheres 

are randomly placed in the rectangular container.  After being successfully placed, these 
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iron spheres do not move and the sphere packing algorithm described in Chapter 3 is 

allowed to run.  The carbon spheres then interact with the metal impurity which results in 

the change of the cathode catalyst layer’s structure compared to the pure carbon structure. 

 

Figure 4.1. The example of randomly placed metal impurity inside CCL. 

 

The sphere packing algorithm is allowed to run for 20 times for each level of 

impurity and the average solid fraction of each contamination percentage is calculated 

and listed in Table 4.1. 

 

 

   

z 

y 

x 
D/2 

D 

2D 



72 
 

Table 4.1  

The average solid fraction value with the different levels of impurity 

                                     Average solid fraction value 

Impurity type/percentage  0%       0.25%         0.5%         0.75%      1% 

Iron     0.611         0.604          0.592         0.587       0.574          

Aluminum    0.611         0.607          0.602         0.591       0.583  

 

From Table 4.1 it is clear to find that iron impurity has a greater effect on the 

carbon packing than the aluminum impurity which can be explained by the potential 

constraint.  The Lennard-Jones potential between carbon-iron is higher than the Lennard-

Jones potential between carbon-aluminum and the objective function of this sphere 

packing algorithm is to minimize the total potential energy of the system.  Carbon 

spheres tend to be placed further away from the iron spheres in order to minimize the 

total potential energy.  Thus, this packing configuration created a larger void space than 

the pure carbon configuration and carbon-aluminum configuration. 

  From the solid fraction values shown in Table 4.1, the developed cathode catalyst 

layer with the iron impurity is less dense than any other type of configuration.  The less 

dense cathode catalyst layer allows more hydroniums, oxygen molecules, contamination 

gases and water molecules to diffuse into the catalyst layer.  The effect of these metal 

impurities is discussed in the next section. 

After the cathode catalyst layer is developed, the diffusion algorithm described in 

Chapter 3 is allowed to run.  But in this chapter contamination gases are introduced to the 
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developed catalyst layer which means that the diffusion algorithm described in Chapter 3 

needs to be modified.  The modified algorithm can be described as follows: 

  

Step 1 Randomly generate the initial location of hydroniums and oxygen molecules, the 

initial location of hydroniums will have the coordinate of (x , y , 0) and oxygen 

molecules will have the initial coordinate of (x , y , D/2) where x and y are 

random numbers. 

Step 2 Check if the location of hydroniums, oxygen molecules and carbon molecules, 

from the sphere packing algorithm, overlap with each other or not.  If there are 

no overlap then go to step (3) otherwise go back to step (1). 

Step 3    Generate a random vector which has a magnitude of 0.5 x ro, where ro is the van 

der Waals radius of oxygen. 

Step 4 Allow the oxygen number i to move along this vector. 

Step 5 Test if the current coordinate of this oxygen overlaps with other molecules or 

not.  If the current coordinate of oxygen number i overlaps with other molecules 

then go to back to step (3) otherwise go to step (6). 

Step 6 Repeat steps (3-5) until all oxygen molecules have been moved and save this 

configuration as the new configuration. 

Step 7 Calculate the total potential energy of this current configuration using the 

Lennard-Jones potential. 
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Step 8 Generate a random vector which has a magnitude of 0.5 x rh, where rh is the 

atomic radius of hydronium. 

Step 9 Allow the hydronium number i to move along this vector. 

Step 10 Test if the current coordinate of this hydronium overlaps with other molecules 

or not.  If the current coordinate of hydronium number i overlaps with other 

molecules then go to back to step (8) otherwise go to step (11). 

Step 11 Repeat steps (8-10) until all hydroniums have been moved and save this 

configuration as the current configuration. 

Step 12 Calculate the total potential energy of this current configuration using the 

Lennard-Jones potential. 

Step 13   Calculate the total potential energy difference between step (12) and step (7). 

Step 14 If the total potential energy difference is less than zero then accepts the new 

configuration as current configuration and go to step (15) otherwise go back to 

step (8). 

Step 15 Select the type of contaminate gas.  It can be a carbon dioxide or a carbon 

monoxide and determine the percentage of the contaminate gas.  

Step 16 For CO2 the percentage can vary from 0.025 wt% for very clean air, to 0.04 

wt% which is the average of the CO2 concentration of the earth’s atmosphere 

[65].  For CO, the percentage can vary from 0.0005 wt% to 0.0015 wt% which 

is the CO level from the vehicle exhaust [66]. 
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The input amount for the contaminate gas per iteration is calculated from the 

relationship between the percentage of oxygen and the percentage of the contaminate 

gases.  For an example, the oxygen concentration in the atmosphere is equal to 21% and 

the oxygen input per iteration equals two molecules but this simulation is going to run for 

15,000 iterations then the total oxygen input is equal to 40,000 molecules.  These 40,000 

molecules are related to the 21% of the total gas in the atmosphere if the selected carbon 

dioxide percentage equals to 0.035 wt% then the total number of input carbon dioxide is 

equal to 67 molecules or 0.035 wt% of the total gas in the atmosphere.  Because this 

simulation is allowed to run for 15,000 iterations but there are only 67 carbon dioxide 

molecules, so a single carbon dioxide molecule is introduced into the simulation system 

every 298 iterations.  Table 4.2 shows the information of the input gas contamination. 

Table 4.2  

Gas contamination input for the simulation 

Species 
Weight 

percentage 
Total amount 

Iteration cycle for the contamination 

appearance 

CO 

0.0005 1 10,000 

0.001 2 6,667 

0.0015 3 5,000 

CO2 

0.025 48 411 

0.03 57 344 

0.035 67 298 

0.04 76 259 
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Step 17 Randomly generate the initial location of contamination gas, the initial location 

of this gas has the initial coordinate of (x, y, D/2) because the contamination gas 

comes with air which is the source of oxygen input.  

Step 18 Check if the location of hydroniums, oxygen molecules, carbon molecules and 

contamination gas overlap with each other or not.  If there is no overlap then go 

to step (19) otherwise go back to step (17). 

Step 19 Generate a random vector which has a magnitude of 0.5 x rg, where rg is the van 

der Waals radius of the contamination gas.  To define the radius of the 

contamination gases, the following assumptions have been made.  

  (1) Contamination gases are in perfect spherical shape.  

(2) For carbon dioxide, its sphere radius is equal to 1.16 angstrom as shown in 

Figure 4.2. 
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Figure 4.2. Carbon dioxide molecular radius. 

From Figure 4.2, carbon dioxide has a linear bond shape with a length of 1.16 

angstrom [67].  This bond can move or rotate in any direction and on any axis.  If this 

carbon dioxide molecule rotates 90 degrees then it will occupy another space on top of its 

original location.  When it does another 90 degrees rotation in the y, x and z directions it 

will occupy more space and that overall space will have a perfect spherical shape.  That is 

the reason why the carbon dioxides in this simulation are all assumed to have a spherical 

shape. 
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(3) This concept also applied on the carbon monoxide too.  This gas has only 1 

triple bond and its bond length is equal to 1.12 angstrom [67].  Thus the 

carbon monoxide sphere in this simulation is assumed to be a perfect sphere 

with a 0.56 angstrom radius as shown in Figure 4.3. 

     

 

 

 

 

 

 

Figure 4.3. Carbon monoxide molecular radius. 

Step 20 Allow contaminate gas molecule number i to move along this vector. 

Step 21 Test if the current coordinate of this contaminate gas molecule overlaps with 

other molecules or not.  If the current coordinate of contaminate gas molecule 

number i overlaps with other molecules then go to back to step (19) otherwise 

go to step (22). 

Step 22 Repeat steps (19-21) until all contaminate gas molecules have been moved and 

save this configuration as the current configuration. 
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Step 23 Calculate the total potential energy of this current configuration using the 

Lennard-Jones potential.  The full list of the Lennard-Jones parameters is shown 

in Appendix B. 

Step 24   Calculate the total potential energy difference between step (24) and step (12). 

Step 25 If the total potential energy difference is less than zero then accepts the new 

configuration as current configuration and go to step (26) otherwise go back to 

step (19). 

Step 26 Check oxygen molecules number i if there are four hydroniums located within 

the length of 1 angstrom from the center of this oxygen molecule.  If there are 

four hydroniums located within this length then a chemical reaction will 

happen.  After this electrochemical reaction, six water molecules will replace 

those four hydroniums and oxygen molecule.  The coordinate of these newly-

formed water molecules will be at the center of the replaced hydroniums and 

oxygen.  If there are no hydroniums within this 1 angstrom length then this 

algorithm will check oxygen molecules number i+1 for the possibility of this 

chemical reaction. 

Step 27 Repeat step (26) until all oxygen molecules are tested. 

Step 28 Generate a random vector which has a magnitude of 0.5 x rw, where rw is the 

van der Waals radius of water. 

Step 29   Allow water number i to move along this vector. 
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Step 30 Test if the current coordinate of this water molecule overlaps with other 

molecules or not.  If the current coordinate of water number i overlaps with 

other molecules then go back to step (17) otherwise go to step (18). 

Step 31 Repeat steps (28-30) until all water molecules have been moved and save this 

configuration as the new configuration. 

Step 32 Calculate the total potential energy of this new configuration using the Lennard-

Jones potential. 

Step 33  Calculate the total potential energy difference between step (32) and step (23). 

Step 34 If total potential energy difference is less than zero then accepts the new 

configuration as current configuration and go to step (35) otherwise go back to 

step (28). 

Step 35 Increase the number of iteration (t) by one and check the current value of the 

iteration if it is still less than the desired iteration then go back to step (1) 

otherwise stops.  The flow chart of this algorithm is shown in Figure 4.4.  
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Figure 4.4. Flow chart of the developed algorithm with metal impurity and gas 

contamination. 
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This developed algorithm is used to determine the effect of metal and gas 

contamination by changing the percentage of metal impurity in the developed cathode 

catalyst layer and the percentage of the input contamination gas.  Each level of 

contamination is simulated for 10 times and each simulation is allowed to run for 15,000 

iterations.  The average amount of every species that still located inside the cathode 

catalyst layer is counted and the amount of newly formed water during these iterations is 

also recorded.  

 

4.3 Results and Discussion 

In this section the effect on the metal impurity and gas contamination are 

investigated based on the assumption that carbon monoxide and carbon dioxide are not 

absorbed on the platinum surface.  The numerical simulation is started with the zero 

amount of metal impurity in the cathode catalyst layer.  For each iteration, three 

hydroniums and two oxygen molecules are allowed to diffuse into this developed cathode 

catalyst layer and start the electrochemical reaction.  Contaminate gas is also allowed to 

diffuse into this developed cathode catalyst layer and the amount of the contaminate gas 

per iteration is determined by the contaminate percentage.  Only the intermolecular 

interaction among hydroniums, oxygen molecules, contaminate gases, metal impurities 

and product water is considered in this simulation.  

After finishing the simulation with all desired percentage of gas contamination, 

the metal impurity is introduced into the cathode catalyst layer which resulted in the 

change of its structure.  After that hydroniums, oxygen molecules and contaminate gas 
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are allowed to diffuse into this developed cathode catalyst layer again.  The results of 

these simulation are shown in Table 4.3 to Table 4.12.   

4.3.1 The effect of gas contamination 

The effect of contaminate gases on the performance of 100% carbon cathode 

catalyst layer (CCL), created from 10,000 carbon spheres, is minimal as shown in Table 

4.3.  For CO contamination, the difference in the amount of newly formed water for 0% 

contamination and 0.0015% contamination is equal to 0.13% which is very small.  The 

relationship between the contamination percentage and the amount of newly formed 

water is not clear because as the CO concentration increases from 0% to 0.0005% the 

amount of newly formed water decreases.  But when the CO concentration increases from 

0.0005% to 0.001%, the amount of newly formed water is also increased. 

The similar phenomenon also happens with the CO2 contamination case.  The 

difference between the amount of newly formed water for 0% and 0.04% contamination 

concentration is only 0.41% and there is no clear relationship or evidence between the 

concentrations of CO2 and the amount of newly formed water. 

This phenomenon can be explained by the concentration of CO and CO2 and the 

maximum iteration of this simulation.  CO concentration is varied from 0% to 0.0015% 

and the concentration for CO2 is varied from 0% to 0.04%, the total amount of the 

contamination gases that introduced into the system is very small compared to the 

amount of hydronium and oxygen molecule.  Even though, the contaminate gas can 

interfere with the movements of hydronium and oxygen but the number of these 

contamination gases is too small to cause any significant effect on the system.  
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Table 4.3  

The effect of gas contamination on 100% carbon CCL, created from 10,000 carbon 

spheres 

 

4.3.2 The effect of iron impurity 

For 0.25 wt% iron impurity, the average amount of newly formed water is 1.84% 

lower than the 100% carbon cathode catalyst layer case while the amount of water 

molecules that still trapped inside the cathode catalyst layer after 15,000 iterations is 

3.32% lower.  The reason of why this simulation yields the lower amount of newly 

formed water than the 100% carbon case is because iron is presented in the cathode 

catalyst layer.  From the spheres packing results shown in Table 4.1, structure of the 

contaminated cathode catalyst layer is less dense than the non-contaminate one and this 

less dense structure allows more hydroniums and oxygen molecules to diffuse deeply 

Type of gas 

contamination 

Contamination 

percentage 

Newly formed 

water 

(molecules) 

Number of molecules after 15,000 iterations  

hydronium oxygen water 

CO 

0 3,879 2,694 1,788 1,923 

0.0005 3,883 2,690 1,803 1,917 

0.001 3,882 2,687 1,796 1,924 

0.0015 3,877 2,695 1,793 1,920 

CO2 

0 3,879 2,701 1,788 1,923 

0.025 3,888 2,686 1,796 1,935 

0.03 3,886 2,688 1,799 1,926 

0.035 3,890 2,676 1,791 1,935 

0.04 3,888 2,667 1,800 1,934 
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inside its structure.  When hydroniums and oxygen molecules move closer to the iron 

spheres they are all pushed away from their current position. 

As iron spheres are randomly placed through the developed cathode catalyst layer 

then every move of hydroniums and oxygen molecules is highly to be rejected by the 

diffusion algorithm because the Lennard-Jones potential between hydronium-iron and 

oxygen-iron is much higher than the Lennard-Jones potential between hydronium-carbon 

and oxygen-carbon.  Thus, hydroniums and oxygen molecules are forced to place 

themselves far away from iron spheres which make hydronium and oxygen molecule to 

be highly scattered throughout the cathode catalyst layer.  

As described in Chapter 3, the electrochemical reaction in this algorithm happens 

when four hydroniums and two oxygen molecules share the same neighborhood but the 

presence of iron spheres in the cathode catalyst layer has reduced the possibility of the 

electrochemical reaction occurrence.  In Table 4.4, the total amount of newly formed 

water for the 0.25 wt% iron impurity case is 1.84% lower than the 100% carbon catalyst 

case.  There are only 25 iron spheres in the developed cathode catalyst layer and this 

amount is not enough to scatter the large amount of hydronium and oxygen molecules, 

thus the occurrence of electrochemical reaction for this 0.25 wt% iron impurity case is 

still very close to the 100% carbon catalyst case. 

The amount of water that is still trapped inside the contaminated cathode catalyst 

is also lower than the non-contaminated one.  It is because of a high Lennard-Jones 

potential between iron and water, 5.7 kJ per mol.  To minimize the total potential energy, 

the developed algorithm has been tried to place water molecules away from iron spheres 

as much as possible which results in the diffusion of water molecules from the cathode 
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catalyst layer.  But as described before, the amount of iron spheres is not large enough to 

cause a significant effect.  That is the reason the amount of water that is still trapped 

inside the contaminated cathode catalyst layer is just 3.32% lower than the non-

contaminated catalyst. 

Table 4.4  

The effect of metal impurity on CCL, created from 10000 spheres, with 0.25 wt% iron 

impurity 

Type of gas 

contamination 

Contamination 

percentage 

Newly 

formed water 

(molecules) 

Number of molecules after 15,000 iterations 

hydronium oxygen water 

CO 

0 3,796 2,748 1,839 1,877 

0.0005 3,813 2,747 1,864 1,848 

0.001 3,835 2,742 1,862 1,826 

0.0015 3,800 2,747 1,847 1,859 

CO2 

0 3,813 2,756 1,870 1,848 

0.025 3,839 2,741 1,872 1,882 

0.03 3,805 2,740 1,870 1,872 

0.035 3,820 2,725 1,863 1,879 

0.04 3,802 2,711 1,877 1,872 

 

When the iron concentration in the developed cathode catalyst layer is increased 

to 0.5 wt%, the solid fraction value of the catalyst layer is reduced to 0.592 which means 

that there is more void space inside this developed cathode catalyst layer.  Hydroniums 

and oxygen molecules can now easily diffuse into this catalyst layer but the presence of 

more iron spheres in the structure make these diffusions to be more scattering.  This is the 

reason why the amount of newly formed water for this case is 4.66% lower than the 
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100% carbon case.  Even though the higher percentage of iron impurity has reduced the 

occurrence of the electrochemical reaction, it does reduce the amount of water that still 

trapped inside the cathode catalyst layer by 8.98%.  This lower amount of water can 

increase the lifetime of the cathode catalyst layer and the result of this simulation can be 

found in Table 4.5. 

Table 4.5  

The effect of metal impurity on CCL, created from 10000 spheres, with 0.5 wt% iron 

impurity 

Type of gas  

contamination 

Contamination 

percentage 

Newly 

formed water 

(molecules) 

Number of molecules after 15,000 iterations  

hydronium oxygen water 

CO 

0 3,728 2,775 1,860 1,765 

0.0005 3,704 2,767 1,868 1,739 

0.001 3,712 2,772 1,870 1,759 

0.0015 3,719 2,798 1,865 1,744 

CO2 

0 3,681 2,778 1,847 1,752 

0.025 3,742 2,788 1,861 1,772 

0.03 3,681 2,797 1,874 1,720 

0.035 3,675 2,767 1,866 1,773 

0.04 3,698 2,763 1,870 1,758 

 

For 0.75 wt% iron impurity, the higher percentage of iron impurity has reduced 

the amount of newly formed water by 6.59% and the amount of water molecule that is 

still trapped inside the cathode catalyst layer is reduced by 11.64% as shown in Table 4.6. 
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Table 4.6  

The effect of metal impurity on CCL, created from 10000 spheres, with 0.75 wt% iron 

impurity 

Type of gas  

contamination 

Contamination 

percentage 

Newly formed 

water 

(molecules) 

Number of molecules after 15,000 iterations  

hydronium oxygen water 

CO 

0 3,619 2,804 1,833 1,694 

0.0005 3,638 2,805 1,842 1,686 

0.001 3,606 2,794 1,835 1,709 

0.0015 3,618 2,807 1,828 1,692 

CO2 

0 3,642 2,813 1,826 1,706 

0.025 3,605 2,791 1,840 1,705 

0.03 3,642 2,800 1,835 1,705 

0.035 3,641 2,787 1,837 1,711 

0.04 3,650 2,777 1,848 1,714 

 

The highest iron concentration for this study is equal to 1 wt%.  For this iron 

concentration, there are 100 iron spheres embedded in the cathode catalyst layer based on 

10,000 spheres configuration.  These iron spheres show some effects on the 

electrochemical reaction and water transport phenomena inside the developed cathode 

catalyst layer.  These iron spheres not only reduce the amount of newly formed water by 

12.13% but also lower the number of water molecules that is still trapped inside the 

catalyst layer by 14.54%.  The simulation results are shown in Table 4.7. 

 

 

 



89 
 

Table 4.7  

The effect of metal impurity on CCL, created from 10000 spheres, with 1 wt% iron 

impurity 

Type of gas  

contamination 

Contamination 

percentage 

Newly formed 

water 

(molecules) 

Number of molecules after 15,000 iterations  

hydronium oxygen water 

CO 

0 3,421 2,751 1,849 1,636 

0.0005 3,378 2,757 1,868 1,617 

0.001 3,381 2,750 1,848 1,653 

0.0015 3,426 2,747 1,861 1,634 

CO2 

0 3,421 2,756 1,842 1,648 

0.025 3,434 2,748 1,865 1,683 

0.03 3,408 2,760 1,858 1,643 

0.035 3,462 2,727 1,853 1,641 

0.04 3,393 2,728 1,869 1,661 

 

From Table 4.3 to Table 4.7, it is found that the iron concentration is inversely 

proportional to the amount of newly formed water and the number of water molecules 

that is still trapped inside the cathode catalyst layer.  These two factors are directly 

related to the performance of the PEMFC, the amount of newly formed water indicates 

the electrical power output and the number of water molecules that is still located inside 

can determine the lifetime of the cathode catalyst layer.  In order to maintain the 

performance of the PEMFC, these water variables must be managed carefully.  The 

amount of newly formed water should be as high as possible while keeping the number of 

water molecules inside the cathode catalyst layer at the minimal level. 
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The ratio of the amount of newly formed water to the number of water molecules 

that is still trapped inside the cathode catalyst layer can be the indicator for the 

performance of the fuel cell.  A PEMFC that has good performance is supposed to have a 

high water ratio.  The value of this water ratio from the iron impurity simulation, based 

on the 10000 spheres cathode catalyst layer, is calculated and listed in Table 4.8. 

Table 4.8  

The average water ratio for each iron impurity percentage 

Impurity weight 

percentage 

A: The average amount of 

newly formed water 

(molecule) 

B: The average number of 

water molecule trapped 

inside the CCL 

Water ratio (A/B) 

0 3,885 1,926 2.02 

0.25 3,814 1,862 2.05 

0.5 3,704 1,753 2.11 

0.75 3,629 1,702 2.13 

1 3,414 1,646 2.07 

 

Because the effect from the gas contamination is very small then the average 

value of newly formed water and the number of water molecules that is trapped inside the 

cathode catalyst layer is calculated regardless of the gas contamination.  From Table 4.8, 

the water ratio of the 0.75 wt% iron impurity which equals to 2.13 is the highest 

compared to other iron impurity percentages which means that this 0.75 wt% iron 

impurity is the most appropriate amount of impurity in the material preparation.  Even 

though the pure carbon catalyst yields the largest amount of newly formed water or on 

the other hand it gives the maximum electrical power output, it also yields the maximum 
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the number of water molecules that is still trapped inside the cathode catalyst layer which 

results in the poor lifetime of the catalyst layer.  

 For the 0.75 wt% iron impurity, the average number of water molecules that 

trapped inside the cathode catalyst layer is 11.64% lower than that of the pure carbon 

catalyst layer which means that the lifetime of this impure catalyst layer is longer. 

However, this impure catalyst layer has to sacrifice the electrical power output in order to 

perform at the long time because the average amount of newly formed water for this 0.75 

wt% iron impurity is 6.59% lower than the pure carbon catalyst case.    

4.3.3 The effect of aluminum impurity 

From Table 4.1, the cathode catalyst layer structure with the aluminum impurity is 

denser than that with the iron impurity then the amount of hydroniums, oxygen molecules 

and gas contamination that diffused into this aluminum contaminated cathode catalyst 

layer are supposed to be less.  If less hydroniums and oxygen molecules are diffused into 

the developed cathode catalyst layer then the possibility for the occurrence of 

electrochemical reaction should be lower but this the numerical simulation results in 

Table 4.9 to Table 4.12 show the opposite result.  At the level of 0.25% impurity as 

shown in Table 4.9, the average amount of newly formed water is just 1.54% less than 

the 100% carbon catalyst case and the number of water molecules that still trapped inside 

this cathode catalyst layer is just 1.15% less than the pure carbon catalyst.  This 

phenomenon can be explained by the mixed pair Lennard-Jones potential.  The mixed 

pair Lennard-Jones potential of aluminum and other species are less than that of the iron, 

so less molecule scatter can be expected.  And also for 0.25% impurity, the number of 

aluminum molecule that is embedded in the developed catalyst layer is just 25 molecules 
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which is too small to scatter the large amount of hydroniums and oxygen molecules, so 

the transport phenomenon inside this catalyst layer is quite similar to the pure carbon 

catalyst layer. 

Table 4.9 

The effect of metal impurity on CCL, created from 10000 spheres, with 0.25 wt% 

aluminum impurity 

Type of gas  

contamination 

Contamination 

percentage 

Newly formed 

water 

(molecules) 

Number of molecules after 15,000 iterations  

hydronium oxygen water 

CO 

0 3,809 2,778 1,831 1,904 

0.0005 3,840 2,779 1,847 1,903 

0.001 3,823 2,783 1,839 1,903 

0.0015 3,822 2,773 1,837 1,907 

CO2 

0 3,830 2,786 1,832 1,896 

0.025 3,826 2,791 1,839 1,904 

0.03 3,816 2,779 1,843 1,894 

0.035 3,816 2,775 1,834 1,922 

0.04 3,844 2,760 1,844 1,905 

 

For 0.5 wt% aluminum impurity, the transport phenomena inside the developed 

cathode catalyst layer are similar to the 0.5 wt% iron impurity case but the hydronium 

and oxygen scatters are not as big as the scatter pattern that occurred in the iron 

contaminated catalyst.  Compared to 0.5 wt% iron impurity case, more water molecules 



93 
 

are formed in this catalyst layer but less water has been repelled out of it.  From Table 

4.10, the average amount of newly formed water is equal to 3,750 molecules or 3.47% 

lower than that of the pure carbon catalyst layer while the average number of water 

molecule inside this catalyst layer equals to 1,804 or 6.36% lower than the average 

amount of water that still trapped inside the 100% carbon catalyst.   

Table 4.10  

The effect of metal impurity on CCL, created from 10000 spheres, with 0.5 wt% 

aluminum impurity 

Type of gas  

contamination 

Contamination 

percentage 

Newly formed 

water 

(molecules) 

Number of molecules after 15,000 iterations  

hydronium oxygen water 

CO 

3,763 2,752 1,849 1,796 3,763 

3,759 2,751 1,864 1,785 3,759 

3,750 2,745 1,857 1,809 3,750 

3,748 2,754 1,854 1,801 3,748 

CO2 

3,732 2,763 1,849 1,811 3,732 

3,745 2,753 1,857 1,804 3,745 

3,754 2,743 1,860 1,808 3,754 

3,761 2,733 1,852 1,804 3,761 

3,743 2,727 1,861 1,816 3,743 

 

Table 4.11 shows the simulation results for 0.75 wt% aluminum impurity.  For 

this case, the average amount of newly formed water is equal to 3,723 molecules or 
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4.18% lower than the pure carbon case and the number of water molecules inside this 

cathode catalyst equals to 1,768 molecules or 8.23%.  

Table 4.11  

The effect of metal impurity on CCL, created from 10000 spheres, with 0.75 wt% 

aluminum impurity 

Type of gas  

contamination 

Contamination 

percentage 

Newly formed 

water 

(molecules) 

Number of molecules after 15,000 iterations  

hydronium oxygen water 

CO 

0 3,724 2,803 1,826 1,769 

0.0005 3,693 2,809 1,845 1,764 

0.001 3,723 2,810 1,837 1,768 

0.0015 3,740 2,809 1,832 1,757 

CO2 

0 3,732 2,820 1,824 1,758 

0.025 3,698 2,794 1,835 1,780 

0.03 3,723 2,801 1,852 1,767 

0.035 3,769 2,787 1,838 1,779 

0.04 3,704 2,781 1,840 1,770 

 

For the 1 wt% aluminum impurity, the average amount of newly formed water is 

equal to 3,593 molecules or 7.52% lower than the pure carbon case and the number of 

water molecules inside this cathode catalyst equals to 1,702 molecules or 11.67% which 

is shown in Table 4.12. 
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Table 4.12  

The effect of metal impurity on CCL, created from 10000 spheres, with 1 wt% aluminum 

impurity 

Type of gas  

contamination 

Contamination 

percentage 

Newly formed 

water 

(molecules) 

Number of molecules after 15,000 iterations  

hydronium oxygen water 

CO 

0 3,607 2,751 1,862 1,708 

0.0005 3,580 2,760 1,880 1,698 

0.001 3,587 2,754 1,881 1,703 

0.0015 3,604 2,755 1,876 1,684 

CO2 

0 3,580 2,771 1,865 1,704 

0.025 3,592 2,754 1,870 1,695 

0.03 3,583 2,752 1,886 1,701 

0.035 3,590 2,733 1,872 1,707 

0.04 3,611 2,730 1,874 1,715 

 

In order to determine the amount of aluminum impurity that shows a positive 

effect on the performance of this catalyst layer, the ratio of newly formed water to the 

number of water molecules that still trapped inside the catalyst layer, based on 10000 

spheres catalyst layer, for each level of aluminum impurity is calculated which can be 

found in Table 4.13.    
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Table 4.13  

The average water ratio for iron and aluminum impurity 

Impurity type 

Impurity weight 

percentage 

A: The average 

amount of newly 

formed water 

(molecule) 

B: The average 

number of water 

molecule inside the 

CCL 

Water ratio (A/B) 

Iron 

0 3,885 1,926 2.02 

0.25 3,814 1,862 2.05 

0.5 3,704 1,753 2.11 

0.75 3,629 1,702 2.13 

1 3,414 1,646 2.07 

Aluminum 

0 3,885 1,926 2.02 

0.25 3,825 1,904 2.01 

0.5 3,750 1,804 2.08 

0.75 3,723 1,768 2.10 

1 3,593 1,702 2.11 

 

In Table 4.13, the aluminum concentration of 1 wt% yields the highest value of 

water ratio compared to other percentages of aluminum impurity however the iron 

impurity of 0.75 wt% is still the best impurity level for the PEMFC because it gives the 

highest water ratio value. 

  From all of the information found above, the embedded metal impurity in the 

PEMFC cathode catalyst layer is a good approach for PEMFC water management 

because the metal impurity, especially iron, can help decrease the amount of water inside 

the cathode catalyst layer which can extend the lifetime of the PEMFC.  But this 

approach also has the drawbacks which are (1) the decrement of electrical power output 
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from the PEMFC (2) construction of the desired impure cathode catalyst layer is quite 

difficult to achieve because the catalyst production processes cannot control the 

randomness of the metal embedded and the impurity percentage may not be at the exact 

level as anticipated.     

4.4 Conclusion 

In this chapter, the effects of gas and metal impurity have been studied by 

modifying the sphere packing algorithm described in Chapter 2 and Chapter 3 to create 

the contaminated cathode catalyst layer.  Also the diffusion and electrochemical reaction 

algorithm from Chapter 3 is modified to simulate the effect of gas contamination.   

From the numerical simulation results, the effect of the gas contamination is 

minimal because the number of contamination gas molecules is too small and this 

simulation is a transient state simulation.  Unlike the gas contamination, the metal 

impurity has the significant effect on the performance of the cathode catalyst layer.  For 

0.25 wt% iron impurity, it can decrease the amount of newly formed water by almost 2% 

and the number of water molecules that is still trapped inside the cathode catalyst layer 

after 15,000 iterations is decreased by 3.32% compared to the pure carbon catalyst.  The 

amount of newly formed water and the number of water molecules trapped inside the 

cathode catalyst layer decrease as the metal impurity percentage increase.  Iron impurity 

seems to have more positive effects on the performance of PEMFC because the ratio of 

the amount of newly formed water to the number of water molecule inside the catalyst for 

iron impurity is higher than that of the aluminum impurity.  The 0.75 wt% iron impurity 

shows the most positive effect on the performance of PEMFC because it yields the 

highest water ratio of 2.13.  
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The objective of this work is to find the effective approach to manage water inside 

the cathode catalyst layer.  To achieve this objective, the transport phenomena and the 

electrochemical reaction inside the cathode catalyst layer are simulated at the atomic 

scale.  The first task for this work is to simulate a porous media structure that can 

represent the cathode catalyst layer.  An optimization technique called ARSET coupled 

with the self-developed sphere packing algorithm is used to create this porous media.  

The ARSET algorithm which can vary the magnitude of the random vector helps to 

reduce the processing of sphere packing algorithm by 34% while the sphere packing 

results are in a good agreement with the previous publications.  This study has been 

published in the Journal of Advanced Powder Technology (Volume 24, Issue 6, 

November 2013, Pages 955-961).      

 The second task for this work was to simulate the movement and the 

electrochemical reaction of hydroniums and oxygen molecules and also the diffusion of 

water which is a product of this electrochemical reaction.  A Monte Carlo algorithm is 

again used for this study and the simulation is run for 1000, 5000 and 15000 iterations to 

investigate the distribution of these three species throughout the developed cathode 

catalyst layer.  At 15,000 iterations, this developed cathode catalyst layer shows 

phenomena of the concentration loss because water molecules already occupied most of 

the void space in the catalyst layer.  Another parameter that has been investigated in this 
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study is the ratio of hydronium and oxygen input and the result of this simulation shows 

that the fuel input ratio of 3:2 is the most appropriate ratio because it shows the least 

amount of water molecules that are still trapped inside the cathode catalyst after the end 

of simulation.  This study is submitted to the Journal of Power Source, and it is under the 

review process.  

The algorithms from the first and second task are modified again to simulate the 

effects of gas contamination and metal impurity.  CO and CO2 are selected to be the gas 

contaminants while the metal impurities are iron and aluminum.  In this study, gas 

contamination shows a very little effect on the catalyst layer because the contamination 

percentage of these gases is very small.  However, the metal impurity shows a significant 

effect on the amount of newly formed water and the number of water molecules that still 

trapped inside the cathode catalyst layer after 15,000 iterations.  Iron impurity shows a 

more positive effect on the performance of PEMFC than the aluminum impurity because 

it yields the higher ratio of the newly formed water to the amount of water molecules that 

still trapped inside the cathode catalyst layer than the aluminum impurity.  This study is 

also submitted to the Journal of Power Source and it is under the review process.  

 

5.2 Recommendations for Future Work 

There are three suggestions for future work which are: 

(1) The composition of the actual cathode catalyst layer are carbon and platinum then 

carbon and platinum molecules should be packed together.  The platinum 

molecules are supposed to be attached to the surface of the carbon molecules and 
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allow the sphere packing algorithm to pack a number of these molecular pairs in 

the container. 

(2) The movement of electrons through the cathode catalyst layer should be 

simulated.  After electrons are conducted through the cathode catalyst layer, they 

will interact with hydroniums and oxygen molecules.  If four hydroniums, four 

electrons and two oxygen molecules share the same neighborhood then six water 

molecules will appear and replace those molecules.  

(3) The operating temperature should be considered and the thermodynamic 

properties of each species should be introduced in the simulation. 
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APPENDIX A 

NOMENCLATURE 

 

Symbol Name Unit 

D  base side of the container angstrom(Å) 

cr  radius of the carbon sphere angstrom(Å) 

N  number of spheres in the sphere packing algorithm - 

p  random number used to create the random vector - 

L(rij) the total Lennard-Jones potential energy of the system kJ per mol 

ii  
the Lennard-Jones potential for same specie 

interaction 
kJ per mol 

ij  the Lennard-Jones potential for mixed pair interaction kJ per mol 

ii  
the finite distance at which the inter-particle Lennard-

Jones potential of the same species is zero 
angstrom(Å) 

ij  
the finite distance at which the inter-particle Lennard-

Jones potential of the mixed pair molecule is zero 
angstrom(Å) 

M(rij) the total Morse potential energy of the system kJ per mol 

ii  
parameter which controls the width of Morse potential 

well  
angstrom-1(Å-1) 

m  the Morse potential parameter kJ mol-1Å2 

  
parameter which controls the width of random number 

pool 
- 

q  random number which controls the increment or 

decrement of the random vector’s magnitude  
- 

σ standard deviation  
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APPENDIX B 

THE LENNARD-JONES PARAMETERS 

        Mixed             Lennard-Jones parameters 

paired molecules     ε (kJ per mol)      σ (angstrom) 

Carbon-carbon    0.44    3.85 

Carbon-water     0.53    3.51 

Carbon-hydronium    2.82    3.19 

Carbon-oxygen    0.43    3.43 

Carbon-CO     0.62    3.81 

Carbon-CO2     0.86    4.15 

Carbon-iron     4.69    3.09 

Carbon-aluminum    4.09    3.24 

Water-water     0.65    3.17 

Water-hydronium    3.42    2.84 

Water-oxygen     0.53    3.08 

Water-CO     0.76    3.46 

Water-CO2     1.04    3.80 
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        Mixed             Lennard-Jones parameters 

paired molecules     ε (kJ per mol)      σ (angstrom) 

Water-iron     5.70    2.74 

Water-aluminum    4.97    2.89 

Hydronium-hydronium   18.04    2.52 

Hydronium-oxygen    2.78    2.76 

Hydronium-CO    4.00    3.14 

Hydronium-CO2    0.91    3.92 

Hydronium-iron    30.04    2.42 

Hydronium-aluminum   26.18    2.57 

Oxygen-oxygen    0.43    3.00 

Oxygen-CO     0.62    3.38 

Oxygen-CO2     0.85    3.72 

Oxygen-iron     4.64    2.66 

Oxygen-aluminum    4.04    2.81 

CO-CO      0.89    3.76 

CO-CO2      1.22    4.10 
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        Mixed             Lennard-Jones parameters 

paired molecules     ε (kJ per mol)      σ (angstrom) 

CO-iron      6.66    3.04 

CO-aluminum     5.81    3.19 

CO2-CO2     1.67    4.44 

CO2-iron      9.15    3.38 

CO2-aluminum    7.98    3.53 

Iron-iron      50.02    2.32 

Iron-aluminum    43.59    2.47 

Aluminum-aluminum     37.99    2.62 
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