
UNLV Theses, Dissertations, Professional Papers, and Capstones 

5-1-2014 

Co-Emulation of Scan-Chain Based Designs Utilizing SCE-MI Co-Emulation of Scan-Chain Based Designs Utilizing SCE-MI 

Infrastructure Infrastructure 

Bill Jason Pidlaoan Tomas 
University of Nevada, Las Vegas 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Computer Engineering Commons, Computer Sciences Commons, and the Electrical and 

Computer Engineering Commons 

Repository Citation Repository Citation 
Tomas, Bill Jason Pidlaoan, "Co-Emulation of Scan-Chain Based Designs Utilizing SCE-MI Infrastructure" 
(2014). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2152. 
http://dx.doi.org/10.34917/5836171 

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV 
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by 
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2152&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2152&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2152&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2152&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/5836171
mailto:digitalscholarship@unlv.edu


CO-EMULATION OF SCAN-CHAIN BASED DESIGNS UTILIZING SCE-MI 

INFRASTRUCTURE 

 

 

By: 

 

Bill Jason Pidlaoan Tomas 

 

 

Bachelor‟s Degree of Electrical Engineering 

Auburn University 2011 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the  

 

Masters of Science in Engineering – Electrical Engineering 

 

Department of Electrical and Computer Engineering 

Howard R. Hughes College of Engineering 

The Graduate College 

 

University of Nevada, Las Vegas 

May 2014



 ii  
 

  

 
THE GRADUATE COLLEGE 

We recommend the thesis prepared under our supervision by  

Bill Jason Pidlaoan Tomas 

entitled  

Co-Emulation of Scan-Chain Based Designed Utilizing SCE-MI 

Infrastructure 

is approved in partial fulfillment of the requirements for the degree of 

Master of Science in Electrical Engineering 

Department of Electrical and Computer Engineering  

 

 

Yingtao Jiang, Ph.D., Committee Chair 

Mei Yang, Ph.D., Committee Member 

Henry Selvaraj, Ph.D., Committee Member 

Evangelos Yfantis, Ph.D., Graduate College Representative 

Kathryn Hausbeck Korgan, Ph.D., Interim Dean of the Graduate College 

 

May 2014



 iii  
 

Abstract 
Simulation times of complex System-on-Chips (SoC) have grown exponentially as 

designs reach the multi-million ASIC gate range. Verification teams have adopted emulation as a 

prominent methodology, incorporating high-level testbenches and FPGA/ASIC hardware for 

system-level testing (SLT). In addition to SLT, emulation enables software teams to incorporate 

software applications with cycle-accurate hardware early on in the design cycle. The Standard for 

Co-Emulation Modeling Interface (SCE-MI) developed by the Accelera Initiative, is a widely 

used communication protocol for emulation which has been accepted by major electronic design 

automation (EDA) companies.  

Scan-chain is a design-for-test (DFT) methodology used for testing digital circuits. To 

allow more controllability and observability of the system, design registers are transformed into 

scan registers, allowing verification teams to shift in test vectors and observe the behavior of 

combinatorial logic. As SoC complexity increases, thousands of registers can be used in a design, 

which makes it difficult to implement full-scan testing. More so, as the complexity of the scan 

algorithm is dependent on the number of design registers, large SoC scan designs can no longer 

be verified in RTL simulation unless portioned into smaller sub-blocks.  To complete a full scan 

cycle in RTL simulation for large system-level designs, it may take hours, days, or even weeks 

depending on the complexity of the circuit. 

This thesis proposes a methodology to decrease scan-chain verification time utilizing 

SCE-MI protocol and an FPGA-based emulation platform. A high-level (SystemC) testbench and 

FPGA synthesizable hardware transactor models are developed for the ISCAS89 S400 

benchmark circuit for high-speed communication between the CPU workstation and FPGA 

emulator.  The emulation results are compared to other verification methodologies, and found to 

be 82% faster than regular RTL simulation. In addition, the emulation runs in the MHz speed 



 iv  
 

range, allowing the incorporation of software applications, drivers, and operating systems, as 

opposed to the Hz range in RTL simulation.  



v 
 

Acknowledgements 
The work of this thesis owes the utmost of gratitude to those who contributed to my 

academic, professional, and personal growth. Compiled over span of three and a half years, my 

thesis has been a collection of industrial experience in the electronic and design automation 

(EDA) industry, and a strong foundation of the electrical engineering field set by my professors.   

I would like thank my graduate advisor and professor/s, Dr. Yingtao Jiang and Dr. Mei 

Yang, for instilling the fundamental theorems, ideas, and principles for verifying digital designs 

using field programmable gate arrays (FPGAs). Through a mixture of challenging semester-long 

projects and hands-on lab experiments, Dr. Jiang and Dr. Yang ensured my readiness to enter the 

industry with experience utilizing the latest tools used by design verification engineers and 

system-on-chip designers. Dr. Jiang has also mentored me throughout my entire experience as a 

graduate student. He has allowed me to maintain my coursework, providing me flexibility in 

balancing the workload between being a student and a verification engineer.  

For the duration of my time as a hardware emulation product engineer, I would like to 

thank Kryzstof Szcur and Zbigniew Zalewski of Aldec, Inc. Krysztof and Zibi provided me the 

opportunity to learn the basics of FPGA-based emulation systems, often begin patient with me 

through numerous questions and run-time errors. Together, they both understood that young 

engineers brought new ideas to the table when solving existing problems in the emulation 

industry. Coupled with guidance in teaching the Standards Co-Emulation Modeling Interface 

(SCE-MI), my experience at with Krysztof and Zibi at Aldec allowed me to build on my 

verification experience by utilizing the latest in technology and standards.   



vi 
 

While studying for my bachelor‟s degree in computer engineering at Auburn University, 

I would like to give much appreciation and gratitude to Dr. Charles Stroud. Dr. Stroud provided 

me the opportunity to learn more about reconfigurable logic, placing me on his undergraduate 

research team working on fault simulation of embedded multiplier built-in-self-test (BIST). With 

his extensive background working at Bell Labs, Dr. Stroud taught me everything he knew about 

FPGAs, and undoubtedly, is the main reason why I chose digital hardware design and verification 

as my main focus in my career.  

 Lastly, I would like to thank my family and friends for keeping me focused on reaching 

my goals, all the while maintaining a sense of humility. The life lessons learned in being both a 

student and practicing engineer at times were overwhelming, but thanks to my family and friends, 

the weight on my shoulders always seemed manageable. 

  

 

 

 

 



  vii 
 

Table of Contents 
 

Abstract ........................................................................................................................................... iii 

Acknowledgements ......................................................................................................................... iv 

List of Tables .................................................................................................................................. ix 

List of Figures .................................................................................................................................. x 

Introduction ...................................................................................................................................... 1 

Scan Chain Scalability ................................................................................................................. 2 

Scan Insertion .............................................................................................................................. 3 

Abstraction Level of Verification ................................................................................................ 5 

Event-Based RTL Simulation Bottleneck .................................................................................... 7 

HW/SW Development Platforms & Debug ............................................................................... 10 

Standard Co-Emulation Modeling Interface (SCE-MI)
[19] ............................................................. 16 

Usage ......................................................................................................................................... 17 

Macro-based message passing interface .................................................................................... 17 

Untimed Software Level ........................................................................................................ 18 

Cycle-accurate Hardware Level ............................................................................................. 19 

Transactions ........................................................................................................................... 20 

Controlled and Uncontrolled Time ........................................................................................ 21 

Methodology Test Plan .................................................................................................................. 22 

Design Under Test – ISCAS S400 Benchmark ......................................................................... 22 

Test Bench & Plan ..................................................................................................................... 24 

RTL Simulation & Profiling ...................................................................................................... 26 

Simulation Acceleration............................................................................................................. 27 

Transaction-Based Emulation .................................................................................................... 31 

Modified Transaction-Based Emulation ................................................................................ 39 

FPGA-based Emulator
 [22] ...................................................................................................... 41 

Results & Analysis ......................................................................................................................... 42 

RTL Simulation Results ............................................................................................................. 42 

Simulation Acceleration Results ................................................................................................ 46 

Transaction-Based Emulation Results ....................................................................................... 49 



  viii 
 

Pass-Through Transactor ....................................................................................................... 49 

FSM Transactor ..................................................................................................................... 54 

Complexity Analysis .................................................................................................................. 56 

Resource Analysis ...................................................................................................................... 58 

Future Work ................................................................................................................................... 61 

Conclusion ..................................................................................................................................... 63 

Bibliography .................................................................................................................................. 66 

CV .................................................................................................................................................. 68 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of Tables 
 

Table 1: Xilinx FPGA Device Properties ........................................................................................ 3 

Table 2: Synthesizable vs. Non-Synthesizable Logic .................................................................... 28 

Table 3: Test Sequences................................................................................................................. 33 

Table 4: RTL Simulation Results .................................................................................................. 45 

Table 5: RTL Profiler Results ........................................................................................................ 46 

Table 6: Simulation Acceleration Synthesizable Logic ................................................................. 48 

Table 7: Synthesizable Logic with Debug Resources .................................................................... 48 

Table 8: Simulation Acceleration Results ...................................................................................... 49 

Table 9: Estimated vs. Measured Simulation Acceleration Speedup ............................................ 49 

Table 10: SCE-MI Pass Through Synthesizable Logic ................................................................. 50 

Table 11: SCE-MI Pass Through Synthesizable Logic Debug Resources .................................... 51 

Table 12: SCE-MI Pass Through Transactor Results .................................................................... 53 

Table 13: Pass Through Transactor Emulation Comparison ......................................................... 54 

Table 14: SCE-MI FSM Transactor Synthesizable Logic ............................................................. 55 

Table 15: SCE-MI FSM Transactor Synthesizable Logic Debug Resources ................................ 55 

Table 16: SCE-MI FSM Transactor Results .................................................................................. 56 

Table 17: SCE-MI Emulation Comparisons .................................................................................. 56 

Table 18: RTL Simulation Clock Cycle Workload ....................................................................... 57 

Table 19: SCE-MI Controlled Clock Cycle Results ...................................................................... 58 

 

 

 

 

 

 

 

 

 

 



x 
 

List of Figures 
 

Figure 1: UVM-based Test Environment......................................................................................... 6 

Figure 2: TLM-based Test Environment ......................................................................................... 7 

Figure 3: Scan Chain Event-based Simulation ................................................................................ 9 

Figure 4: Verification Techniques for Different Levels of Logic .................................................. 10 

Figure 5: Aldec FPGA-based Prototyping Platform HES-7 .......................................................... 12 

Figure 6: Speed-up vs. HDL Testbench Time ............................................................................... 14 

Figure 7: SCE-MI Infrastructure .................................................................................................... 18 

Figure 8: Untimed Testbench Models Connected to DUT ............................................................ 19 

Figure 9: SCE-MI Abstraction Bridge ........................................................................................... 20 

Figure 10: SCE-MI Clocking ......................................................................................................... 22 

Figure 11: DFF Scan Conversion .................................................................................................. 23 

Figure 12: Top-Level DUT with Scan FFs Instantiated................................................................. 24 

Figure 13: Testbench Reset Assertion ........................................................................................... 25 

Figure 14: S400 Scan Chain Test Sequence .................................................................................. 26 

Figure 15: RTL Simulation Test Environment .............................................................................. 27 

Figure 16: Simulation Acceleration Test Enviornment ................................................................. 29 

Figure 17: Splitting RTL Simulation Environment for Simulation Acceleration .......................... 30 

Figure 18: Emulation Setup Flow .................................................................................................. 31 

Figure 19: Testbench Scan Sequence............................................................................................. 34 

Figure 20: Transactor Pass Through Assignments ........................................................................ 35 

Figure 21: SCE-MI Message In-Port ............................................................................................. 36 

Figure 22: SCE-MI Message In-Port Software Implementation .................................................... 37 

Figure 23: SCE-MI Pass Through Test Environment .................................................................... 39 

Figure 24: SCE-MI FSM Test Environment .................................................................................. 40 

Figure 25: Transactor FSM Transitions ......................................................................................... 41 

Figure 26: Aldec HES-5 Prototyping Board .................................................................................. 42 

Figure 27: TCL Timer Processes ................................................................................................... 44 

Figure 28: Simulation Acceleration Emulation Setup ................................................................... 47 

Figure 29: SCE-MI Generated XML ............................................................................................. 52 

Figure 30: Resource Utilization for Acceleration and Emulation .................................................. 59 

Figure 31: LUT Utilization Pre/Post Debug Implementation ........................................................ 61 

 

 

 

 

 



1 
 

Introduction 
Integrated circuitry on a grand scale is prevalent in everyday human interaction. These 

systems range in complexity from small motor control circuits to large mobile phone system-on-

chips (SoC). As technological processes continue to advance, customers are demanding smaller, 

faster, and higher throughput devices. Engineers developing these very large scale integrated 

(VLSI) devices, are faced with the challenges of verifying systems which can consists of millions 

of gates, mixed-signal (digital and analog) implementations, and new physical characteristics. 

To gain controllability and observability into a digital system, designers utilize the „Scan-

Chain‟ testing methodology. This methodology transforms a register to a scan register 

(sometimes referred to as a scan flip-flop), by adding a multiplexer circuit at the input of the 

register, and a control signal which enables the designer to select between the primary IO and 

scan IO [1]. These registers are then serially connected to one another creating a scan chain. With 

the scan-chain signals tied to device IO, designers and verification engineers can serially input a 

test sequence, and observe the resulting output.  

The overall goal of this thesis is to address the issues of scan chain implementation in 

large scale SoC devices, and provide a solution which can be quickly integrated into the 

traditional digital design and verification flow. In the proceeding section, we observe problems 

regarding scan chain scalability when working with multi-million gate system designs. The next 

section will cover issues dealing with inserting scan logic into the design at the register transfer 

level (RTL). We will also discuss how the abstraction level of digital design verification is being 

elevated toward a software-based approach utilizing high-level models. This approach when 

coupled with scan chain presents new issues, since hardware developers and software engineers 

co-exist on the same platform. Next, the introduction will cover the bottleneck that event-based 



2 
 

RTL simulators when simulating scan chain designs. The section will conclude with covering 

HW/SW development platforms, in which scan chain designs can be run and debugged. 

 

Scan Chain Scalability 

Test methodologies have encountered many issues when dealing with large scale SoC 

designs, simply due to the magnitude and complexity of the SoC. Complete systems now 

encompass multiple blocks ranging from mixed-signal modules, embedded processors, 3
rd

 party 

intellectual property (IP), and more. Gate count of these systems can quickly grow as all these 

modules are put together to form a complete SoC device. Today, an average mobile SoC device is 

greater than 4M ASIC gates, and can utilize thousands of registers [2]. For scan chain designs, the 

increase in register count is directly dependent on the complexity of the full scan algorithm and 

test time [3]. The complexity for full scan method can be calculated as follow: 

1. A test vector takes „n‟ clock cycles to be completely shifted in serially to the scan chain 

and assert to the combinatorial logic (n+1). 

2. The total number of possible combinations for an „n‟ register scan chain is    since each 

register can exercise a 0 or 1 state.  

3. The last test vector takes „n‟ clock cycles to be completely shifted out serially from the 

scan chain.  

                                                      

                

Scan chain implementation transforms a single register to a scan register by 

implementing switch logic at the input. This transform causes an additional area penalty to the 

circuit, since every register in the design has to undergo the scan transformation. FPGA systems, 

platforms commonly used to verify digital designs, are limited by the number of look-up-tables 



3 
 

(LUTs) and flip flops available on the device. Although LUT count has steadily increased in 

FPGA devices, as shown in table 1 below for Xilinx FPGAs[3] [4] [5] , SoC designs are 

advancing at a faster pace than their technological counterpart.  

 Virtex-5 

(XC5VLX330T) 

Virtex-6 

(XC6VLX760) 

Virtex-7 

(XC7V2000T) 

Slices 51,840 118,560 305,400 

LUT Count 207,360 474,240 1,221,600 

Max Distributed RAM 

(Kb) 

3420 8,280 21,550 

 Table 1: Xilinx FPGA Device Properties  

 There exist variant scan methodologies, such as partial-scan, in which only a subset of all 

registers are transformed into a scan-chain mitigating the area penalty. This variance decreases 

the test time and area penalty, but also decreases the effectiveness of the test since all registers 

and logic are not tested [7]. For the remainder of this thesis, the scan methodology which will be 

used is the full-scan implementation, which utilizes all registers in the design. In addition to full 

scan, this thesis will utilize complete test vector set, meaning all possible combinations are 

exercised at the scan input. Test compression and automatic test pattern generation (ATPG) 

methodologies used to reduce the number of vectors to attain a certain fault coverage (FC%), are 

not used in this thesis. 

Scan Insertion 

Hardware designs typically begin with a user specifications outlining required IO, system 

functionality, and expected output. Designer engineers utilize hardware description languages 

(HDL) to characterize the system on the RTL level, to be able to observe signal data between 

synchronous elements. Verification engineers, often working concurrently with design engineers, 

develop testbenches which are used to verify that the circuit is functioning as expected. 



4 
 

Testbenches can vary in complexity from simple reset sequences, to comparing packet transfers 

between a master and slave device. For scan chain insertion, users have two choices to transform 

design RTL code: 

1. Manually manipulate the RTL – This includes coding the scan registers at the RTL 

level, and adding them to a design hierarchy.  This of course it not accomplished on 

the system level since it requires scan registers to be added to every block of the 

design. The top level only serves to instantiate connections between the modules, or 

in this focus, connect scan registers from one block to another The system level 

testbench will also require modification, since the system must be tested with the 

inserted scan chain. This includes toggling between test data from the user, and 

normal system functionality. Manually manipulating the RTL incurs a large time 

penalty, since it requires extra coding and verification, but does not require the extra 

cost in software test tools.  

 

2. EDA Design-for-Test (DFT) Insertion [8] – EDA vendors tool typically transform 

RTL code into a single synthesized netlist. This netlist maps RTL code to gate-level 

primitives for ASIC devices, or FPGA primitives for FPGA devices. For the latter, 

primitives are stored in FPGA libraries specific for each FPGA vendor. EDA tools 

input these FPGA libraries, and transform your design using primitives for the 

targeted device. For scan insertion, the user generally specifies test signals to be used 

in the design.  The DFT-insertion tool generally has its own libraries used for scan 

insertion, which modify the primitives used by the FPGA vendor. This way they can 

manipulate the netlist by adding scan logic to existing register primitives. Most 

software tools also contain scan compression algorithms and built-in fault simulators, 

which can generate automatic testbenches for the scan inserted design. Although this 



5 
 

allows for faster bring-up of the design, DFT-insertion tools can be quite expensive. 

For projects with a restricted budget, extra test software/hardware may not be 

feasible.  

The difficulty in using scan test for large SoC designs, is balancing the verification of 

scan logic and test time. Companies with large design teams have dedicated bandwidth for DFT-

implementation or have access to software tools. Most of the project time is consumed by 

verification engineers, since every mode and functionality of the circuit must be exercised in the 

testbench [9]. From the previous section, we can see that the complexity of the scan algorithm 

exponentially increases as the number of registers in the design increases. Since the testbench 

HDL has to be modified to observe data signals from the scan registers, this incurs a longer 

verification cycle if a large amount of registers are used.   

Abstraction Level of Verification 

When designing systems on the block level, hardware designers create testbenches 

specific to that blocks functionality. When block level specifications are finished, verification 

teams validate the top level, or system functionality. Tests on the system level are more complex 

than the block level, since the system usually has to communicate with outside interfaces which 

transmit real-time data.  For example, when developing a router, the DUT has to interface with a 

host workstation via Ethernet to observe packet transfers. To tackle the complexity of validating 

at the system-level, verification engineers typically utilize higher levels of abstraction with 

hardware verification languages (HVL). HVL‟s such as SystemVerilog, SystemC, C, and C++ 

contain libraries which contain sequencers, scoreboards, code coverage, and many other tools 

which aid in the verification process. Figure 1 showcases a test environment based of the 

universal verification methodology (UVM), a verification extension of the SystemVerilog 

language [10]. 



6 
 

 

Figure 1: UVM-based Test Environment 

Since higher levels of abstraction are being used to validate SoC designs, they should 

also incorporate test environments aimed specifically for scan design.  Classes and functions 

utilizing HVLs can be created to automatically handle each step in the scan process. This allows 

for different possibilities in handling scan data such as: dumping data to text files, comparing 

output vectors against a golden set, and utilizing software constructs for scan automation.  This 

however poses a challenge since design and verification engineers use different languages in 

accomplishing their goals.  

Design engineers utilize low-level of abstraction with Verilog and VHDL, while 

verification engineers mainly commonly SystemVerilog, SystemC, C, and C++.  While there has 

been a push for integration between HVLs and HDLs, typically engineering teams use this 

structure. For example, SystemC is an event-drive interface between high-level C++ and RTL, 

which provide SW engineers an environment to simulate hardware models [11]. These models, 

called transaction level modeling (TLM) blocks are written in C++ and can be simulated and 

connected to HW RTL models through a programming language interface (PLI). Moreover, 



7 
 

software engineers can utilize these high level HW models into an environment to test against 

while developing software drivers, applications, and operating systems [12]. Figure 2 showcases 

a complete verification environment encompassing TLM models with verification constructs 

available in HVLs. 

 

Figure 2: TLM-based Test Environment 

For scan based design in today SoC, a verification methodology must be developed 

which integrates high level verification, with low level functionality. These two environments and 

teams should be separated when establishing scan RTL and verification plans for the scan chain, 

but must utilize a standard process which encapsulates both into a single validation cycle. This 

will allow the verification team to develop test plans and TLM models with high levels of 

abstraction for HW/SW integration, while allowing HW engineers to reuse pre-existing RTL 

testbenches.  

Event-Based RTL Simulation Bottleneck 

The previous sections outlined various issues dealing with algorithm complexity and 

RTL issues when adding scan registers to large scale SoC systems. This section will discuss 

issues during verification of scan chain systems using RTL simulators. RTL simulation test time 

is dictated by the complexity of the test bench and the design, and the workstation CPU. Another 

factor is the RTL simulation tool used by the verification team. There are two types of RTL 



8 
 

simulators used for verification: event-based and cycle-based. Since the simulator we will be 

using (Aldec Riviera-PRO) in this thesis will be event-based, we will focus on its specific 

bottleneck. 

An event-based simulator updates whenever an event occurs, be it combinatorial or 

sequential [13]. Event-based simulators can capture transitions through a combinatorial datapath, 

which may not be aligned with a clock edge allowing users to capture issues such as glitches. 

Events are placed in a timing queue, which is evaluated in the order the events are placed [14]. In 

terms of CPU usage, a majority of the workload is utilized to update the events queue. For a 

design with a large number of events, the design queue will be constantly updated, leading to 

large simulation times. 

For scan chain verification, there exist a large number of events, since data must pass 

through both sequential and combinational paths in a single clock cycle. Figure 3 shows cases a 

scan chain operation, and how an event-based simulator would fill the timing queue. First is to 

assert test mode through all switch logic on the scan registers. Since all events are captured, the 

transition from normal mode to test mode is placed in the events queue for all scan registers. 

After inputting data the TDI pin, a clock is applied, and the state of each register changes. The 

clock transitions and register states changing are all added to the timing queue. After applying the 

complete vector into the chain, the test mode is de-asserted, and all switch logic must be 

transitioned back to normal mode. As previous, all state changes to the switch logic is then added 

to the queue. After a clock cycle is applied, register data must pass through combinational logic in 

which the numbers of events added are dependent on logic level/gates. If there is a large amount 

of combination logic between registers, than the events queue can grow quickly since there exists 

combination paths between all „n‟ number of registers. 

 



9 
 

Scan Chain Operation 

 

Event-based Simulation 

Queue 

Assert test mode Assert test mode 

Input TDI (single bit) Scan register 0 MUX switches to test mode 

. 

Scan register „n‟ MUX switches to test mode 

Apply clock Input TDI (single bit) 

Repeat for „N‟ number of registers and clock 

cycles until complete vector is shifted-in 

Apply clock 

De-assert test mode Repeat for „N‟ number of registers and clock 

cycles until complete vector is shifted-in 

Apply clock De-assert test mode 

Output TDO (single bit) Scan register 0 MUX switches to normal mode 

. 

Scan register „n‟ MUX switches to normal mode 

Repeat for    possible combinations Apply Clock 

 

 

Data signal changes through combinatorial path 0 

. 

. 

Data signal changes through combination path n 

 Output TDO (single bit) 

 Repeat for    possible combinations 

 

Figure 3: Scan Chain Event-based Simulation 



10 
 

    

  As seen how above, depending on the number of registers, and the combinatorial path 

between those registers, the event queue can grow very large. Since large SoC designs can 

contain thousands of registers, simulation time can take hours or even days depending on the 

system complexity. Also, a bulk of the transitions occurs between the combinatorial paths 

between all scan registers. To speed up this process, we need to utilize a development platform 

which will allow us to place the scan chain into hardware and remove it from the simulation 

environment.  

HW/SW Development Platforms & Debug 

In the previous sections, I discussed the challenges in verifying scan based designs such 

as: scan insertion, high level of abstraction with HVLs, and increased algorithm complexity when 

dealing with a large number of scan registers.  This section will address issues and use cases 

when utilizing different development platforms for scan testing. Each platform has advantages 

and disadvantages in terms of: speed, cost, debug capabilities, and bring-up.  Figure 4 showcases 

the various platforms with the different HW/SW levels which is applicable for verification [15]. 

 

Figure 4: Verification Techniques for Different Levels of Logic 



11 
 

For each platform, we will discuss use cases and how scan chain verification can be 

accomplished. The four main HW/SW development platforms for SoC designs are: 

1. Testbench (RTL) Simulation – This is the main way of verifying design blocks utilizing 

Verilog, VHDL, or SystemVerilog. Besides utilizing language specific constructs such as 

monitors, random sequence generators, waveform dumps, etc., verification 

methodologies such as UVM or OVM have made the verification process more complete. 

For scan testing, a user can simply initialize test vectors established from fault simulation 

into a text file, and use HDL constructs to feed the data serially into the scan data input. 

In similar fashion, data from the scan out can be outputted to a text file to be analyzed at 

a later time or compared to against a golden set.   The biggest advantage of using RTL 

simulation is that all signal transitions are presented to the user through waveform 

viewers, schematic editors, and various debug tools available for each EDA vendor. If 

there is an incorrect value in the scan out output, user can observe all signals in the chain 

as well as the current state all scan registers. This allows the user to quickly debug a 

broken scan chain. Although this is the lowest cost of all platforms, we see from the 

previous sections that large SoC designs incur very long simulation cycles. In this 

manner, a scan chain cannot quickly be verified on the system level because bugs can 

only be found at the end of the simulation run.  

 

2. FPGA-based Prototyping – Prototyping platforms, such as the Aldec HES-7 show in 

Figure 5 below, utilize FPGA place and route process with a generated bitstream which is 

implemented onto FPGA memory [16]. RTL is synthesized and mapped to FPGA 

primitives, which then runs through a placer which connects the primitives with FPGA 

interconnect. All data being passed through the FPGA place and route (PNR) process 

must be synthesizable, meaning the code must be able to be mapped onto FPGA 



12 
 

primitives. This does not include typical testbench constructs such: delays, initial values, 

or system functions.  

 

 

Figure 5: Aldec FPGA-based Prototyping Platform HES-7 

 

Most prototyping boards include peripherals and connectors, (PCIe, RS232, USB,) which 

the user can map design IO to a target device. Since the entire design is running in 

hardware, it is capable of running at faster clock frequency than RTL simulation. The 

disadvantage of using an FPGA-based prototype is there is little debug capabilities since 

signals cannot be observed using a waveform viewer [16]. On-board logic analyzers such 

as Xilinx ChipScope Pro and Altera SignalTap, mitigate the issue, but with a limited 

number of bits to be sampled, they do not provide a complete debug environment. 

Debugging a scan chain is difficult when implemented onto an FPGA, since users can 

only observe the scan in and scan out data. If a scan register contains an incorrect value, 

it must propagate through the entire chain before being observed at the output.   

 



13 
 

3. Acceleration/Emulation – Acceleration and emulation platforms combine the debugging 

environment from RTL simulation with the speed of an FPGA prototype. In these 

systems, a workstation with an RTL simulator directly connects to a FPGA prototype via 

high-speed interfaces (Ethernet, PCIe).  Emulation teams develop hardware drivers for 

the physical interface and a software library to establish communication between the 

hardware and software. From this point, users can utilize two different modes of 

operation: 

 

a. Simulation Acceleration
 [16]

 – With this mode, synthesizable constructs are 

implemented onto the FPGA hardware, while non-synthesizable (Testbench) 

constructs remain in the RTL simulator. Simulation acceleration is a signal-based 

interface, as data is passed serially through the high speed channel. This mode is 

faster than RTL simulation, if the majority of the simulation time is not spent 

inside the testbench. If the testbench contains a majority of the simulation time, 

than the emulator will spend a most of the time in the communication structure 

between the hardware and software. Most simulators have a profiler tool which 

allows the user to locate this module requires the largest amount of CPU usage 

and simulation time. With this information, the amount of speedup can be 

determined prior to running acceleration. In Figure 6 below, a table is show with 

the amount of speed up a design can attain depending on the time spend in the 

test bench. 



14 
 

 

Figure 6: Speed-up vs. HDL Testbench Time 

Modifying the test environment to have a majority being placed in the FPGA, 

allows for the fastest simulation acceleration run. In addition to the speed, the 

software library directly connects to an RTL simulator, allowing verification 

teams to observe signals implemented on HW. For scan design, the testbench will 

serially shift in/out data to the scan chain, leading to constant communication 

between hardware and software. If the test environment is not modified, the user 

will not be able to achieve fast simulation times.  

 

b. Transaction-based Emulation 
[17]

 – In transaction-based emulation, the 

communication channel utilizes transactions, as opposed to signals in simulation 

acceleration. This is accomplished with high level testbenches on the software 

side, and bus functional models (BFMs) which translate high level messages to 

low level signals which are input to the DUT. The translators are commonly 

referred to as transactors, and typically  implemented as finite state machines 

(FSMs), which send many signals to the DUT based on a single message. In this 

manner, a single message from the high level test bench, can equate to hundreds 

of clock cycles in hardware, and conversely hundreds of clock cycles in 

hardware, can equate to a single message when sent to the software. The 



15 
 

Accelera Systems Initiative, the creators of SystemC, developed the standard co-

emulation modeling interface (SCEMI), which defines a model for simulations to 

run in an emulation environment and vice versa. SCE-MI defines the 

communication between transactor/ message port models running in hardware 

(clock edges) and high-level testbenches (C/C++ processing). Debug can be 

accomplished in the RTL simulator, since the hardware encompasses the 

transactor and DUT within the FPGA. Signals sent from the software side 

(through the transactor) and the scan chain can be observed on the waveform 

viewer, allowing users to debug broken scan chains which have incorrect values. 

Since SCE-MI standards define all system clock operations (which includes the 

capability to „freeze‟ the clock) – users do have to worry about how clocking and 

reset synchronization occurs. 

 

4. Virtual Prototyping 
[18]

 – Virtual platforms allow software engineers to model system-

level behavior using TLM models. These high-level models can be paired with the 

development of a software stack, which can model the behavior of a system at real-time 

speeds. Today‟s virtual platform systems have a large portfolio of operating systems, 

peripherals, processors, bus models, and various blocks which are commonly found in 

SoC devices. Software engineers can utilize the TLM models for customer demos which 

can present an early reference model prior to hardware development. The disadvantage of 

using a virtual prototype is that they are not a good representation of cycle accurate 

hardware behavior. In hardware, data signals transition based on clock edges, while TLM 

models are processed serially line by line similar to a C/C++ program. Although 

SystemC models have improved since being developed in 1999 to model hardware 

closely, it cannot be directly translated to FPGA or ASIC gate primitives as easily as 

RTL. For scan design, the virtual prototypes utilize high level models, so a high-level 



16 
 

model for a serial communication device (ex. JTAG) can be directly connected to the 

scan chain. Engineers can utilize C/C++ debugging tools such as the GNU Debugger 

(GDB) to observe the software stack while signals transition in and out of the scan chain. 

Since these are high-level models, and will not be implemented into an FPGA, they are 

only representative of the hardware functionality, and not its implementation behavior.  

Depending on which platform is used for hardware and software development, the 

debugging capabilities for verifying scan chain implementation differs. The best option 

would be to utilize a transaction-based emulation platform, since the scan chain will 

implemented on hardware, and can be verified utilizing transactions from high-level 

testbenches. Another option available by some FPGA vendors is an FPGA-based emulation 

platform, which combines the capabilities of an FPGA-based prototyping board with a 

transaction-based emulator. With this test environment, virtual models available from virtual 

prototyping solutions can be directly connected to an emulator workstation via software TLM 

libraries developed by emulation vendors. With high-level models and verification constructs, 

the scan chain can be verified utilizing timing accurate behavior made available by hardware. 

Standard Co-Emulation Modeling Interface (SCE-MI)
[19] 

This thesis will utilize the SCE-MI standard, which was developed by Accelera in 2007 

for communication between hardware and software in emulation platforms. It is worth to note a 

description of the protocol, to better understand its basic architecture, and use cases when utilized 

by verification and design teams. Today, Emulation systems and prototyping platforms have 

emerged as popular verification tools when dealing with large scale SoC designs.  Unfortunately 

engineers have come to many roadblocks when dealing with such tools such as: no debug 

capabilities, slow emulation speed, and limited API provided by EDA vendors. The SCE-MI 

protocol was developed to solve the many issues presented by verification teams which were 

communication bottleneck between hardware and software. 



17 
 

Usage  

SCE-MI implements a communication infrastructure which allows messages 

(transactions) to be passed between high-level software models to the device under test 

implemented in hardware. Ports are established on both sides of the hardware and software link, 

and messages are conveyed through the link. Since the software side has no notion of a clock, 

which is commonly used to control events in hardware, data is processed in a „un-timed‟ fashion. 

The SCE-MI architecture is the bridge between the un-timed messages in software and the 

„timed‟ clock events occurring in hardware.  

Macro-based message passing interface 

There are three types of SCE-MI interfaces: macro-based, function-based, and pipes-

based.  For this thesis, we will be using function-based and omit the two latter interfaces.  There 

are 3 main environments when describing the SCE-MI macro-based interface: the hardware side, 

the software side, and the SCE-MI bridge. On the hardware side, SCE-MI defines a set of 

synthesizable message ports which relay messages to and from the software side. The transactor 

is a bus functional model, which translates high level calls from the software side to bit sequences 

for the DUT. The SCE-MI Infrastructure (shown in Figure 7 below) also contains dedicated clock 

and reset control logic to be able to control system clocks. 



18 
 

 

Figure 7: SCE-MI Infrastructure 

The software side on the host workstation contains a set of message port proxies, which 

are implemented as C++ objects which allow the SCE-MI API to access the channel. From the 

connection to the channel,  the proxy can connect to any untimed C model (UTC).  The SCE-MI 

bridge utilizes a dual –ready handshake, in which software proxies and hardware message ports 

use Receive/Transmit ready signals to inform the other side that it is ready to receive or send data. 

The bridge channel acts as bi-directional network socket, which carry the message, but it is the 

responsibility of the transactor to deliver cycle-accurate information to the DUT. 

Untimed Software Level 

 An untimed environment consists of system level model with a test structure utilizing 

C/C++ abstract data types (Figure 8 below). These testbench structures can operate a manner 

similar to RTL testbenches, but can incorporate object oriented programming (OOP) features 

such as classes, functions, etc. On this level, software engineers can connect the untimed-model 

to software applications, drivers, or operating systems to send real-time data to the DUT and 

analyze system-level outputs. Eventually the DUT is prepared with RTL models, which describes 

the model based on cycle-accurate events. This HDL representation of the DUT will eventually 

be compiled and synthesized onto a hardware platform. To save time however, the same test 



19 
 

structures which were used in the high-level model can be reused in emulation with low-level 

RTL models. 

 

Figure 8: Untimed Testbench Models Connected to DUT 

Cycle-accurate Hardware Level 

 For a cycle-accurate hardware model, the DUT is implemented based on clocked events 

which is a more accurate behavior compared to an untimed model on the software side. The SCE-

MI infrastructure enacts message ports on hardware, and defines how transaction can be sent to 

those ports from proxies established on the software side. Along with the message input/output 

ports are transactors, which translate the high level calls to a sequence of bits which are input 

stimuli to the DUT. Conversely output data from the DUT is processed in the transactor, and is 

sent to the software side.  The SCE-MI standard guarantees delivery of the untimed message 

through the transport layer established by the macro-based interface. Figure 9 below, there can 

multiple instantiations of transactors connected to multiple blocks with a DUT. For example, 



20 
 

multiple high-level testbenches can be testing PCIe, USB, and Ethernet interfaces simultaneously 

on a SoC DUT, by instantiating multiple transactor cores and software proxy models.   

 

Figure 9: SCE-MI Abstraction Bridge 

Transactions  

Transactions beginning on the software side are not constrained to any clocking structure 

or event as in hardware. With this capability, they can utilize many OOP techniques such as 

functions, classes, or Boolean vectors when sending data to the hardware. This allows passing 

messages by value or by reference, but whatever means is chosen, needs to be serialized prior to 

traveling over the communication channel.  It is the job of the proxy to construct the bit vector, 

based on what is sent from the software model.  Another job of the proxy is to analyze bit vectors 



21 
 

traveling from the hardware to the software side, since it needs to be sent to the software model 

(which can be a class, function, etc.).  

 The hardware side relies on the transactor core to apply stimulus to the DUT based on the 

input data delivered from the software side. Based on the data, the transactor applies a sequence 

of stimulus which relies on clock edges. Output data from the DUT, is processed from the 

transactor core, which is then sent back to the software side for post-processing and debug.  The 

data which is constructed back to an abstract data type in the software, can span over hundreds of 

clock cycles in hardware.  

Controlled and Uncontrolled Time 

There exist two different clocks in the SCE-MI infrastructure: uncontrolled clock 

(Uclock), and controlled clock (Cclock). Uncontrolled clock is the fastest clock available, and is 

usually provided by an oscillator on an emulator‟s hardware board. Controlled clock, is the DUT 

clock which feeds to all the registers in the system design. Data must be able to traverse the 

abstraction bridge from the software side to hardware, without interrupting the current operation 

occurring in hardware. When data is sent across the bridge to the message port of a transactor, the 

controlled clock „freezes‟ the Cclock and DUT operation, and enables the transactor operation 

through the Uclock. Figure 10 displays depicts how frozen cclock would appear on a waveform 

viewer. Since the top level of the system is running on Uclock, it can be interfaced with operating 

systems, such as Linux, which require a high speed environment to run applications. 



22 
 

 

Figure 10: SCE-MI Clocking 

Methodology Test Plan 

Design Under Test – ISCAS S400 Benchmark 

The DUT which will be used for this thesis is the 1989 International Symposium on 

Circuits and Systems (ISCAS89) S400 sequential benchmark circuit. The S400 is a netlist 

description of a traffic light controller, which contains 21 registers and 3 primary inputs and 6 

primary outputs [20]. The circuit is built with 58 inverters and 106 gates (11 ANDs + 36 NANDs 

+ 25 ORs + 34 NORs). The 400 in the circuit description, represents the number of interconnect 

lines among the circuit primitives. Amongst the primitives, is a low-level description of a register 

module built using inverters, tri-states, and NMOS transistors.  To modify the benchmark to 

include scan registers, a scan_dff module is defined using an RTL description (Figure 11 below). 



23 
 

 

 

 After the module is defined, all 21 scan registers are daisy-chained to another, with the 

first input and last output connected to test data in and test data out respectively. In addition, each 

register will have a reset signal to be able to reset the register to a known state prior to the scan 

sequence. A „ScanEnable‟ signal is also added to each register to be able to put each register into 

test mode or allow normal functionality when de-asserted. Figure 12 below shows the top level of 

the DUT with the first 3 scan registers connected to one another. The output of the first scan 

register (DFF_0) „TESTL‟ is connected directly to the second scan register (DFF_1) via 

ScanDataIn. The original signal is connected to the registers data input, and can be toggled with 

the ScanEnable signal. This daisy chain propagates through all 21 scan flip flops, and the output 

of DFF_21 is connected to the signal „out_DUT_to_xtor_ScanDataOut_Top‟ which feeds back to 

 

 
Figure 11: DFF Scan Conversion 



24 
 

the transactor. To verify the functionality of the DUT, a testbench will be generated exercising all 

possible vector inputs (             and verified using RTL simulation. 

 

Figure 12: Top-Level DUT with Scan FFs Instantiated 

Test Bench & Plan 

The testbench will verify the functionality of the circuit during RTL simulation. Prior to 

creating the testbench, a test plan needs to be created to exercise all modes of operation. Since we 

are primarily focusing on scan chain operation, we will need to create multiple test sequences for 

the DUT. The four test sequences which will be used are the reset toggle, scan enable toggle, scan 

sequence, and clock generation.  

 The first two test sequence puts the DUT into a known state, and enables operation of the 

scan chain. For the reset toggle in Figure 13, an active-high reset signal initializes all scan 

registers with a „0‟ value, allowing the DUT to clear any data which may be held during circuit 

initialization. During the testbench initialization, the reset is set low and is asserted/de-asserted 



25 
 

prior to the scan enable toggle sequence. The scan enable toggle sequence, allows the testbench to 

shift in test vectors serially into the test data in port of the first scan register. The scan enable de-

asserts when the vector is completely shifted into the scan-chain, capturing the output of the 

combination logical back into the scan chain registers. When the capture is finished, the scan 

enable is asserted once more, which shifts out the current vector in the chain while 

simultaneously shifting in the next vector in the test sequence. 

 

Figure 13: Testbench Reset Assertion 

The scan sequence serially shifts in test vectors in the DUT when the scan enable toggle 

sequence is occurring. For the scan sequence, we will exercise full-scan mode, which utilizes all 

    test vectors from all zeroes to all ones (Figure 14). Since the reset toggle sequence sets the 

registers to all zeroes, we can eliminate the first bit vector, and observe the output of combination 

logic without the first shift sequence. The next vector (21‟d1) is initialized with a counter, which 

increments after the last vector is completely shifted into the scan chain. The counter is 

constrained to      vectors, and when it reaches the upper-bound, the testbench automatically 



26 
 

exits following the last vector being shifted out. The clock generation, generates the clock pulse, 

which feeds the scan registers and controls the speed of the DUT. For this simulation we will set 

the clock speed to 100MHz with a force command in the simulators debug properties. The main 

focus during RTL simulation is to determine where the testbench is spending a majority of the 

simulation time in the testbench. Although the clock speed can be adjusted, the CPU will throttle 

the performance based on current processes occurring, CPU multi-thread capabilities, CPU cores 

available, etc. Using the simulators profiler tool, we can gather a better understanding of how the 

CPU handles different portions of the testbench [16].  

 

Figure 14: S400 Scan Chain Test Sequence 

RTL Simulation & Profiling  

 The modified ISCAS S400 netlist will be first simulated with the Aldec Riviera-PRO 

functional verification platform [21]. Test bench and test sequence will reside in the workstation 

CPU. RTL simulation serves as the median to verify circuit operation, and allow debugging using 

the waveform viewer tool. Another feature of Riviera-PRO is the schematic view of the system 

(Figure 15), which allows users to visualize data transfers between instances in the DUT. The 

testbench based on the test sequence in the prior section (full-scan) is implemented on a HP 



27 
 

Laptop with an Intel Core Duo CPU clocked at 2.13 GHz. Scripts are generated for the simulator 

to be able to run in  batch mode, allowing the CPU to run with less resources than running the 

simulator with a graphical user interface (GUI). To be able to benchmark the simulation run-time, 

Tcl scripts are created with processes which evaluate system time at the beginning and end of the 

simulation. 

 

Figure 15: RTL Simulation Test Environment 

 Two types of HDL simulation will be run: one run without profiler disabled and one with 

profiler enabled. The disabled profiler run, allows us to verify functionality and ensure the circuit 

is operating correctly, but does not allow us see the communication bottleneck between the DUT 

and the testbench. Since there are    possible vectors to be fed as primary inputs, profiler 

information is needed to assess the possible speedup that can be attained in simulation 

acceleration. 

Simulation Acceleration 

 To reduce the number of events occurring in the CPU, the DUT will be transferred to the 

FPGA hardware, and will connect physically to the workstation via PCIe connector.  The PCIe 

connector will facilitate information serially between the hardware and simulator via a co-

simulation interface. With this methodology, there are two portions of the HDL code: 

synthesizable and non-synthesizable.  



28 
 

 

Synthesizable (Implemented on FPGA) Non-Synthesizable (Remains in HDL 

Simulator) 

Ports  Delay statements 

Signals and variables Device initialization  

Procedures Assign statements 

Modules User defined primitives 

Functions  Force and release 

Tasks Time constructs 

Table 2: Synthesizable vs. Non-Synthesizable Logic 

 The DUT portion of the system (ISCAS S400) is a Verilog gate-level netlist, with a scan 

flip flop module inserted. Since the DUT is fully synthesizable, it is able to me mapped to FPGA 

LUTs and implemented onto hardware.  The testbench however contains numerous non-

synthesizable constructs which aid in the debugging process in addition to the waveform and 

schematic view. Such tasks include system functions ($display, $strobe, $finish, etc.) which allow 

output from the design to the simulator console, which can be dumped to a text file for offline 

debug. Scan chain vectors are fed in through dedicated test pins from external sources, so the test 

environment must simulate this correctly. The external source in this case will be the HDL 

simulator, which will serially input the vectors into each scan register in the DUT implemented 

onto the FPGA board (Figure 16). The resultant vector will feed out back to the testbench which 

will be outputted onto the console and waveform viewer. 



29 
 

 

Figure 16: Simulation Acceleration Test Enviornment 

Figure 17 below displays the separation between the system components which are non-

synthesizable and synthesizable. The emulation compiler, Aldec Hardware Emulation Solutions 

Design Verification Manager [22], automatically analyzed RTL sources, and distinguishes 

between code which will remain in the simulator, and code which will be implemented onto HW. 

The DUT is fully synthesizable and implemented to FPGA LUTs, while the testbench constructs 

remain in the HDL simulator. For this design, the non-synthesizable constructs include: Clock 

generation, Reset sequence, Scan Sequence, and Scan Enable Sequence. The sequences are 

described more in detail in the previous section describing the testbench. The communication 

between the HDL simulator and DUT are signal-based, meaning a single bit is transferred over a 

single-ended (SE) IO line available on the FPGA.  The design has 7 inputs and 7 outputs, 

requiring a total of 14 SE IO, but the speed of the simulation is dictated by the transferring of data 



30 
 

on these lines. 

 

Figure 17: Splitting RTL Simulation Environment for Simulation Acceleration 

 The advantage of using simulation acceleration is that the pre-existing testbench from 

RTL simulation can be reused. This is beneficial to SoC design teams which are separated into 

design and verification units, as there requires no modification to port the design to an 

acceleration system. Since the testbench containing all test sequences are already defined [16], 

they are ported directly into the emulator for analysis. The complete process for simulation 

acceleration is shown in Figure 13 below [23]. The design import stage of acceleration allows 

importing the FPGA design libraries or simulation libraries which were used during RTL 

simulation. Each file in the library in analyzed by the emulator, and automatically determines the 

synthesizable and non-synthesizable code. After the code is analyzed, the user selects a top-level 

instance, and configures the emulation options in the second stage. A user can instrument debug 

probes, partition design instances in multiple FPGAs, and synthesize the DUT with selected 

options with FPGA vendor tools. After running a place-and-route process, which physically maps 

the design to FPGA primitives, scripts are automatically generated which instantiate the 

communication between the hardware and simulator.  



31 
 

 

Figure 18: Emulation Setup Flow 

Transaction-Based Emulation 

To utilize transaction-based emulation, there needs to be modification to the done on the 

hardware and software side. The pre-existing testbench cannot be used, since the interface SCE-

MI interface uses transactions for communication, as opposed to signals in simulation 

acceleration. 

Software Side Modifications 

1. SystemC Testbench – The biggest change of the test environment will be converting the 

testbench sequences to high-level SystemC constructs. Whereas the RTL testbench relied 

on events such as the rising edge of a clock, the SystemC testbench focus more towards 

the implementation of the sequence, rather than its trigger events. This will be done 

through two primary functions: timulus and read. The purpose of the stimulus function is 

to generate all test sequences defined from the RTL testbench. Using C/C++ constructs 

they are converted to high-level implementation. The sequences are converted as follows: 

a. Clock Generation – The clock sequence no longer needs to be implemented in 

the testbench since the SCE-MI standard defines clock operations with the 

uncontrolled clock and controlled clock. Since the clock itself is required for 

hardware operation, two clock related ports must be defined to operate correctly: 



32 
 

clock port and clock control. These two ports are directly synthesized onto the 

FPGA, and have parameters which can be modified for multiple clocks, 

positive/negative edge triggers, duty cycle, and phase.  

b. Reset Toggle – Similar to clock generation, SCE-MI defines the reset sequence 

of the system with and uncontrolled and controlled reset parameter. The reset 

signals are defined in the clock control and clock port, which are directly 

synthesized onto the FPGA. User can modify HDL parameters to define the 

length of the reset sequence. 

c. Scan Enable Toggle – The scan enable toggle sequence is accomplished by 

generating a 7-bit vector (similar implementation to RTL 

simulation/acceleration), and setting the scan enable input high. For the TDI 

value, a value of 0x1 is shifted in after the reset. The data in the scan chain is 

shifted out, and verified when received by the results function in the testbench. 

After the reset sequence, all scan registers should have a value 0x0, and by 

shifting a value of 0x1 into chain, it verifies all registers can change states 

correctly. The stimulus function outputs are shown in following table: 

 

 

 

 

 

 

 



33 
 

Test Sequence Stimulus Function Results Function 

Clock Generation N/A  

(SCE-MI defines system clocks) 

N/A  

(SCE-MI defines system 

clocks) 

Reset Toggle N/A 

(SCE-MI defines Reset ) 

N/A 

(SCE-MI defines Reset ) 

 

Scan Enable Toggle 

-Scan Enable = 0 1 

-Test Mode = 0 1 

-Primary IO = X 

-Send testbit „1‟ 

-Scan Enable= 1 0 

Read output vector from 

message proxy, and display to 

output string construct. Verify 

bit vector is of value „1‟. 

 

 

Scan Sequence 

-Scan Enable = 0 1 

-Test Mode = 0 1 

-Primary IO = X 

-input all bit of first test vector 

serially to TDI pin with FOR loop 

-Scan Enable = 1 0 

-Increment test vector 

-Loop last 3 steps for all    vector 

Read output vector from 

message proxy, and display to 

output string construct 

Table 3: Test Sequences 

  

d. Scan Sequence – After the scan enable sequence, the shift register has been 

verified to switch reach the 0 state (reset sequence) and 1 state (scan enable 

sequence). For this SystemC testbench, there is a 7-bit message which will be 

sent to the hardware side. One of the inputs is a dedicated scan in port, which a 



34 
 

21-bit test vector will be serially shifted in. In Figure 19 on the left below, shows 

the shift and write sequence controlled by a FOR loop construct. The data is first 

shifted into hardware, and written to the message port. In the next section, a FSM 

is added to decrease the number of write tasks to the hardware. After the FOR 

loop has finished for all 21 bits, the data is checked if all     combinations have 

been exercised, and if not, the testbench deasserts the scan enable, and 

increments the test vector (shown in Figure 19 on the right). 

 

  

Figure 19: Testbench Scan Sequence 

2. SCE-MI Software Infrastructure Implementation –The software implementation of 

the SCE-MI infrastructure includes the message ports, service handlers, error detection, 

and other SCE-MI functionality. The Aldec HES-DVM emulator contains all necessary 

C/C++ files for implementing the SCE-MI software infrastructure [22]. The main focus 

of the end user (verification team/design team), is to create the high-level testbench and 

the transactor with hardware implementation. For this portion, the software SCE-MI 

implementation has been tested and verified to operate correctly. 

Hardware Side Modifications 

1. Transactor development 

a. Transactor core – The transactor core receives the transactions from the software 

side (inMessage) and sends them to the DUT as signals. For this implementation, 



35 
 

the SystemC testbench controls the shift sequence with a FOR loop, so data from 

the transactor core is passed connected directly to the DUT. This is sometimes 

referred to as a „dummy‟ transactor (shown in Figure 20), since there is no 

manipulation of data in the transactor core. In the next section, I will describe a 

FSM implementation in HW, which will decrease communication for bit shifts 

into the DUT. 

 

Figure 20: Transactor Pass Through Assignments 

b. SCE-MI Message Ports – The message port consists of an inPort and outPort. 

The outPort sends data from the transactor to the software side, and the inPort 

receives data from the software side to the transactor core. The message ports 

utilize a dual ready handshake protocol with three primary I/O‟s: ReceiveReady, 

TransmitReady, and message as shown in Figure 21 below. 

 



36 
 

 

Figure 21: SCE-MI Message In-Port 

When both the ReceiveReady and TransmitReady are asserted high, the message 

is sent to the destination across the channel. This occurs on the active edge of the 

Uclock, which allows the ports to be written and read to while DUT is still in 

operation. On the software side, when a message port is instantiated (whether it 

be in or out) in the testbench, a first-in first-out memory is created where 

instructions are stored prior to entering and leaving the proxy. The instruction 

from the testbench is sent to the FIFO, where the proxy will wait for the 

ReceiveReady on the hardware side. The proxy will assert a TransmitReady (for 

an inPort) or ReceiveReady (for an outPort) when the FIFO contains data, and 

flush the data out, when ready on the hardware side. Figure 22 below is the C++ 

implementation of the SCE-MI InPort developed by Aldec which is used in the 

SystemC TB.  

 



37 
 

 

Figure 22: SCE-MI Message In-Port Software Implementation 

  

c. SCE-MI Clock Port – The SCE-MI clock port provides the DUT with a 

controlled reset and clock. Through a set of parameters such as clock duty, clock 

ratio, phase, and reset cycles, the user can customize how timing and reset is 

handled in the circuit. For circuits with multiple clock frequencies, multiple clock 

ports have to be instantiated with parameters customized for each clock 

frequency. Since the system used in this thesis contains only a single global 

clock, one clock port and clock control is needed. If no parameters for the 

clocking are set, SCE-MI automatically generates a 1/1 ratio clock, a single clock 

with the highest frequency in the system. Most of the time, SCE-MI will grab this 

clock from oscillators available on the emulation board. Each EDA vendor 

provides the input clock for SCE-MI based on tests and delay analysis on a 

specific FPGA board. The end-user need not focus on the clock implementation 

in the HW, but only create the necessary clock port, which will call the correct 

frequency built on the emulation API.  

d. SCE-MI Clock Control – The SCE-MI clock control macro is a macro which 

aligns clock edges from the uncontrolled clock and controlled clock. This clock 

control enables freezing the DUT controlled clock, while still operating the 



38 
 

transactor to receive incoming data from the software side. The main advantage 

of this control module, which will be used in the modified core implementation, 

is the ability to perform operations on data while the DUT is still „frozen‟. 

ReadyForCclock is a signal in the control module that allows the DUT clock to 

advance. If data received from the software of the DUT needs to be analyzed, 

ReadyForCclock can be set low, which allows operation on the data from the 

DUT or software side to occur without the DUT clock running. 

To implement the transaction-based approach, there needs to be multiple changes in 

the hardware and software environment. This can be difficult, if verification teams 

are not accustomed to emulation environment. Standards such as SCE-MI continue to 

evolve, as verification teams adopt the standard to speed up verification for multi-

million gate SoC. With all the changes to the test environment, the block level of the 

system is shown in Figure 23 below. Two proxies will be instantiated on the software 

side, which will be to pass transactions to and from the HW. A C++ function called 

„Stimulus‟, will generate all the necessary signals, and generate the test vector which 

will be serially shifted into the inPort on the hardware side. The serial shifting is 

occurring in the software and is sent bit by bit to the inPort. This method will show 

that even though the transactor core and testbench is not optimized, it still incurs a 

speedup due to the high-level testbench and hardware implementation. The inPort 

will pass through a dummy transactor on the active edge of Uclock (which pauses the 

Cclock operating the DUT), and be sent directly to the IO of the DUT. The transactor 

will then activate Cclock, allowing the DUT data to propagate to the output signals. 

The output data is passed to the outPort, where it is serialized into a single bit vector, 

and sent to a Read function which analyzed the data and displays on the user console. 

The data can be stored in an output text file for later future analysis. 



39 
 

 

Figure 23: SCE-MI Pass Through Test Environment 

Modified Transaction-Based Emulation 

 For the next implementation, we will modify the previous approach by adding data 

manipulation inside the transactor core. Previously a 21-bit vector was generated in the software 

and serially shifted via a FOR loop to the dummy transactor core, which passed it directly to the 

DUT. For the modified implementation, the test vector will be generated in the software, but the 

entire vector will be within the message sent to the transactor core. This cuts out the serial 

processing of each bit to the inPort, and the number of writes/reads between the HW/SW 

interfaces. The message vector and signals will pass through the transactor core, which contains a 

FSM (Figure 24 below) that will serially shift data in to the DUT. 



40 
 

 

Figure 24: SCE-MI FSM Test Environment 

 The FSM machine (Figure 25), which is regulated by Uclock, will contain multiple state 

for all inPort/outPort calls, vector reads, and shifting. As the FSM cycles through all the states, 

the scan control signals also regulate the flow of data to the scan chain, as opposed to being in the 

testbench in the previous implementation. The inPort/outPort calls regulate the dual ready 

handshake protocol, which asserts appropriate signals before and after the shift sequence. After 

the shift sequence has finished, the output port transmits data, while new data is called to the 

inPort simultaneously. After new data is received the shift sequence begins again. The FSM must 

be reset appropriately, so all signals are initialized. The Ureset initializes all signals prior to the 

data exchange sequence between the hardware and software. This ensures that the FSM does not 

begin in an unknown state. 



41 
 

 

Figure 25: Transactor FSM Transitions 

FPGA-based Emulator
 [22]

 

The FPGA-based prototype solution which will be used for this thesis is the Aldec 

HES5XLX660EX (Figure 26 below), which utilizes two Xilinx XC5VLX330T FPGAs for a total 

capacity of 5 million ASIC gates. Users are able to connect the HES5 board to a host workstation 

via PCI Express x8 lane communication. A dedicated FPGA provides host interface logic when 

connecting the Aldec HES-DVM emulator with the FPGA prototyping board. On the board are 

two SO-DIMM sockets, which users can utilize up to 2GB of DDR2 memory for memory 

expansion. Also available are external clock inputs, on-board oscillators, and PLL circuitry for 

users to implement different clocking schemes in their SoC designs. Users can utilize 

daughterboard SAMTEC connectors, each with 124 LVDS to connect external targets to the 

FPGA prototyping board.  Since the DUT is fairly small, no partitioning will be needed which 

enables faster speed. If partitioning was required (large number of IO or large design capacity), 

the HES-5 provides 428 SE/ 219 LVDS IO for inter-FPGA communication. The data would need 



42 
 

some serial/de-serialization methodology which would enable multiple signals to be processes 

over a single IO or LVDS pair. 

 

Figure 26: Aldec HES-5 Prototyping Board 

Results & Analysis 
 

RTL Simulation Results 

 A Verilog testbench is generated for the S400 DUT, with processes executing each of the 

test sequences. The testbench is roughly ~150 lines of code, and includes the instantiation of the 

DUT module. Inside the testbench is a 21-bit count register, which increments after a test 

sequence is fully shifted into the scan chain. After the initial reset sequence, the count value is 

serially shifted into the test data input from least significant bit (LSB) to most significant bit. 

When the test vector is shifted in, a flag to stop the shift is asserted, and the capture process 

begins. The data in the scan chain passes through the gate-level logic, and is captured back into 

the scan registers. The data is then shifted out with the same Verilog process that shifts in the 

data. For all Verilog files, a timescale of 10ns period is used which equates to a 100MHz clock 



43 
 

frequency. The scan out vector is saved in a text file, and when beginning a new shift cycle, 

moves to a new line in the text file. 

 Using Aldec Riviera-PRO functional verification tool, compilation and simulation 

macros/scripts are created to automate the simulation process. The simulation process will be 

done through batch mode, which utilizes a command line interface as opposed to a graphical user 

interface, which requires a larger amount of CPU resources. To calculate the runtime of the 

simulation, a TCL script (Figure 27) captures the time of the CPU before and after the simulation 

run, and determines the difference between the two times. The time difference is then saved to 

text file, which can be observed after the simulation has finished. Riviera-PRO has a TCL based 

console, which allows the timer script to be integrated into the macro which runs the compilation 

and simulation. The timer process begins once the design is compiled and elaborated. The 

elaboration time, is the time required by the simulator to process the RTL source files, and 

establish the events queue. This time will not be include in the final run-time calculation, since it 

is EDA vendor dependent, and can differ depending on how the simulator processes the RTL 

code. After running through Riviera-PRO, the benchmark time for RTL simulation was 921 

seconds. The sequence ends with the Verilog $finish command after the last test vector is scanned 

out and saved to the text file. The test vectors will be later used as a baseline, or golden reference, 

when the test environment is ported to simulation acceleration and emulation. 



44 
 

 

Figure 27: TCL Timer Processes 

 The next step is a simulation run with profiler to determine which portions of the test 

environment (DUT + TB) take a majority of the total simulation time. To activate profiler, 

Riviera-PRO uses special debug switches during compilation, which analyzes the design structure 

for debug purposes. This analysis however requires additional effort by the CPU to analyze the 

data since there is a large amount of data compared to a simulation run without profiler. 

Typically, design profilers or debug capabilities are meant for regression testing since they 

elongate the simulation run-time. After including the additional debug switches to the 

compilation scripts, the design was re-run with the data shown in the table below. The original 

simulation time of 921 seconds increased to 1346 seconds when profiler was activated, a 

difference of 421 seconds compared to the original run. 

 

 



45 
 

 Simulation Time (s) 

RTL Simulation 

(DUT + TB) 

921 

RTL Simulation w/ Profiler 

(DUT +TB) 

1346 

  

Total Profiler Time 421 

Table 4: RTL Simulation Results 

The profiler calculates CPU ticks for each process accessed during the test time, along 

with all sub-processes which are called. Clock generation is a continuous process which runs in 

sequence of all events of the design. Since the DUT operates on clock generated sequences, the 

clock process took a majority of the CPU resources during the simulation. Withholding the clock 

generation sequence gives us a better understanding of the test sequences that directly correlate to 

the scan chain sequence. The profiler reported the following results for simulation time 

percentages. The TB and DUT had near equal amounts at 44.71% and 55.29% respectively. Of 

the testbench processes, the reset sequence totaled 1.2%, the scan enable sequence 7.3%, and 

36.21% for the scan sequence. The largest portion of the testbench is circulated around the scan 

sequence, since it requires running all test vectors through the scan chain serially. The DUT alone 

takes about 55.29% of the simulation time, which correlates to the shifting between scan registers 

and the combinatorial datapath. With the profiler results, we can estimate the amount of speedup 

which we can achieve with simulation acceleration.  

 

 

 



46 
 

Module Simulation Time (%) Simulation Time (s) 

TB 44.71 411.78 

Reset Sequence 1.2 11.05 

Scan Enable Sequence 7.3 67.23 

Scan Sequence 36.21 333.49 

S400 DUT 55.29 509.22 

Table 5: RTL Profiler Results 

To estimate the speedup for acceleration, we need to use the percentage of the HDL 

simulator time spent in the testbench. This portion of test environment includes all non-

synthesizable HDL logic which cannot be implemented on FPGA fabric, and must remain in the 

HDL simulator. Since the testbench is driver logic for the DUT, it will need to communicate the 

signals over the physical link to the acceleration platform. If the majority of the acceleration time 

is spent in the testbench and physical link, the speedup factor will not be large. The relationships 

between the two are indirectly proportional as the simulator time % increases the speedup factor 

decreases. With a testbench percentage at 44.71%, the simulation acceleration factor can be 

estimated at about 2.23x faster than RTL simulation. This would mean with the testbench 

implemented in the HDL simulator and the DUT synthesized onto FPGA logic, we can expect to 

see a simulation time of roughly 440-450 seconds with simulation acceleration.    

Simulation Acceleration Results 

 With simulation acceleration, the existing test environment can be reused without any 

modification. Prior to running simulation acceleration, we need to setup the test environment with 

Aldec HES emulation software. The emulator process, described in earlier sections, takes in RTL 

sources files and splits all synthesizable and non-synthesizable logic. The synthesizable logic is 

then translated into FPGA flip flop and LUT primitives who are mapped onto FPGA fabric. In 

Figure 28 below, the design structure (TB + DUT) is shown with the DUT module mapped onto 



47 
 

hardware. The DUT itself can be manually separated and partitioned amongst separate FPGAs, 

but since we are targeting speed as the end result, it is best to place all logic into a single FPGA. 

The emulator then scans the design hierarchy, and provides a report on all the resources used 

when the design is translated using Xilinx synthesis tool 

 

Figure 28: Simulation Acceleration Emulation Setup 

The DUT portion requires only 21 of 207360 flip flops (scan registers), and 53 of 207360 

look-up tables of the Xilinx Virtex-5 FPGA. Since the DUT will be synthesized onto hardware, 

the signals within the design will not be observable. To be able to debug the design, additional 

instrumentation needs to be implemented for each signal the user chooses to debug. The number 

of signals needed to debug is directly proportional to the amount of logic added by the emulator. 

Since we need to observe all primary IO and internal signals which connect all scan chains, I 

mark all signals and IO as „static debug‟ signals. During the acceleration run, the debug data is 

captured with additional registers, and can be analyzed within the RTL simulator. In addition to 

debug instrumentation, additional logic is required for the interface logic and the emulation 

controller. The controller interface provides the necessary signals to be able to connect to the host 

workstation over the physical channel. Aldec HES-5 board comes with an additional „interface 

FPGA‟ which houses this emulation interface, so user logic availability is not reduced [16].  After 

user chooses debug and partition options, the design is resynthesized with the logic added into the 

netlist. Prior to place and route, the emulator provides an updated resource report which includes 



48 
 

the DUT and emulator inserted logic. In the second table below, we see that the emulator inserted 

81 additional registers and 10 additional look-up tables for the debug logic. This equates to a flip 

flop percent increase of 385/71% and 18.86% for look-up tables. We find that although, 

simulation acceleration provides an increase in speed, it requires additional area to be able to 

debug signals. This is a tradeoff between speed and debug which I will discuss further in detail in 

later sections. 

Synthesizable Logic (DUT) 

Resources Amount Used / Amount Available 

Flip Flops 21/ 207360 (0%) 

Look-Up Tables 53/207360 (0%) 

Table 6: Simulation Acceleration Synthesizable Logic 

 

Synthesizable Logic (DUT + Emulator Logic) 

Resources Amount Used / 

Amount Available 

Additional 

Resources Required 

by Emulator 

% Increase 

Flip Flops 102/ 207360 (0%) 81 385.71 

Look-Up Tables 63/207360 (0%) 10 18.86 

Table 7: Synthesizable Logic with Debug Resources 

After the place and route process, a bit file is generated, along with the necessary scripts 

to instantiate the acceleration. The scripts just need to be integrated into the design directory, 

which in this case, is the original simulation directory. After connecting the scripts to the design 

directory, the simulation acceleration is run. After the run, the benchmark text file is observed for 

the new simulation time, in addition to ensuring that the golden vectors are matched correctly 

from the original simulation run. The table below shows the acceleration results. Compared to the 



49 
 

original RTL simulation time of 921 seconds, the simulation acceleration time is 435 seconds, a 

time difference of 486 seconds faster than RTL simulation.  

 Simulation Time (s) 

RTL Simulation 921 

Simulation Acceleration 435 

  

Time Difference 486 

Table 8: Simulation Acceleration Results 

 

Expected Speedup from Profiler Actual Speedup Attained 

2.23x 2.11x 

Table 9: Estimated vs. Measured Simulation Acceleration Speedup 

Looking at the 2.23x expected speedup determined by the profiler, we attained a speedup 

value of 2.11x during the acceleration run. The delta between the two speedup values is due to the 

PCIe physical channel, in which signals have to traverse as they pass from the hardware side to 

the software side. If the number of signals is large, and there is constant communication between 

the two interfaces, the speedup factor can decrease. Using the profiler tool with the simulation 

acceleration run, we can see that the PCIe physical link takes up 10% of the simulation run, as the 

other 90% is testbench logic. Since the DUT portion is no longer computed by the CPU, there are 

less instructions and events to process by the simulator, thus speeding up the simulation time. 

Transaction-Based Emulation Results 

Pass-Through Transactor 

To accomplish transaction-based emulation, changes needed to be made to the testbench 

and RTL. A SystemC testbench is created which generates a test vector, and serially shifts it to 

the DUT via message ports implemented onto the FPGA. In addition to the message ports, clock 



50 
 

ports and clock control modules are implemented onto hardware which control the system clock 

and reset. The top-level portions of the design which will be implemented with the emulator are 

the DUT, transactor core, and clock ports. The transactor core instantiates the message ports and 

clock control modules, as well as the logic which translated the top-level message to low-level 

signals which will be sent to the DUT.  Prior to implementation on hardware, Aldec provides a 

SCE-MI simulation environment, which allows users simulate SCE-MI modules with the DUT 

prior to moving to hardware. In this test environment, the testbench is a SystemC executable, 

while the hardware portion is simulated in the RTL simulation. After verifying that transactions 

are correct in the waveform, I move the design into the emulation tool. 

Design import in the emulator tool automatically recognizes SCE-MI module definitions, 

and sets up the proper environment variables for emulation. Since the emulation platform will 

contain the SCE-MI modules, transactor logic, and the DUT, the area is much greater as 

compared to simulation acceleration. The area used for emulation with the pass through transactor 

is 64 flip flops and 97 LUTs prior to implementing any debug logic. This is 43 flip flops and 44 

LUTs greater than simulation acceleration. 

Synthesizable Logic (DUT + Transactor Logic + SCE-MI Modules) 

Resources Amount Used / Amount Available 

Flip Flops 64/ 207360 (0%) 

Look-Up Tables 97/207360 (0%) 

Table 10: SCE-MI Pass Through Synthesizable Logic 

With emulation, there are two options for debugging. Dynamic debugging is an option 

which utilizes Xilinx readback, which reads FPGA registers dynamically during run-time, 

allowing the user to pause the emulation run [24]. The advantage is that debug instrumentation is 

lessened, since debugging it done through a Xilinx standard process. The disadvantage is that the 

readback process can be long, if the placement tool spreads the logic throughout the FPGA fabric. 



51 
 

Another option is to utilize the debugging process used in simulation acceleration, which 

instruments more logic, but doesn‟t affect the simulation time as much as the readback. For this 

process, we use the later process, and instrument additional logic, since the design is fairly small. 

With additional debug probes, the logic grows to 102 flip flops and 143 LUTs, a percent increase 

of 59.37% and 47.42% respectively compared to no debug logic added.  

Synthesizable Logic (DUT + SCE-MI Modules + Emulator Logic) 

Resources Amount Used / 

Amount Available 

Additional 

Resources Required 

by Emulator 

% Increase 

Flip Flops 102/ 207360 (0%) 38 59.37 

Look-Up Tables 143/207360 (0%) 46 47.42 

Table 11: SCE-MI Pass Through Synthesizable Logic Debug Resources 

After the logic is implemented through the transactor, the emulator outputs an XML file 

(shown in Figure 29 below) in addition to scripts containing information regarding the message 

and clock ports in the hardware. The XML provides all parameters to each module such as 

message port width, clock port duty cycle, clock port ratio, reset cycles, etc. The XML file along 

with the scripts, are processed by the SystemC TB, which sets up the parameters for the proxies 

on the testbench side. Also, the FIFOs are set up on the incoming and outgoing ports determined 

by the width provided in the XML. 



52 
 

 

Figure 29: SCE-MI Generated XML 

The open source SystemC initiative (OSCI) and TLM standards can be downloaded from 

the Accelera Systems Initiative website [11]. This file contains all the required headers and C++ 

files required to process SystemC files. After being downloaded, a SystemC testbench can be 

processed using any Linux terminal in a similar fashion processing a C/C++ file. The SystemC 

testbench cycles through all tests described in earlier sections, and use the terminal console to 

display messages to the user. To determine the simulation time, the testbench captures the time 

before and after the simulation, in a similar fashion to simulation acceleration. The HES emulator 

also provides two frequencies, the system frequency and the DUT frequency. The system 

frequency is the uncontrolled clock which feeds the transactor. Uncontrolled clock runs freely, 

and if the user were to integrate a software application, driver, or operating system, this is the 

frequency it would be able to operate. The DUT frequency is the controlled clock, which feeds 

directly to the registers in the scan design. It is worth to note that since the uncontrolled clock is 

running freely, it is generally faster than the DUT frequency. For this measure, we will look at the 

simulation run-time, DUT frequency, and number of reads from the software side from the 

hardware side. The number of reads from the testbench is the data being passed directly from the 

SystemC testbench to the hardware. The emulator does some internal packing of vectors being 

passed from the software to hardware, so there may be optimizations done on the read cycles 

occurring.  



53 
 

The SystemC testbench is started from a Linux console with the scripts generated by the 

emulator and the XML file. For the pass through transactor implementation, the results are shown 

in the table below. The total emulation time is 379 seconds, not including the time to download 

the bit file to the FPGA. The system frequency (uncontrolled) clock is 8.33 MHz, and the DUT 

frequency is 254.75 KHz with a read value of 3,241,936. The transactions being read back by the 

SystemC testbench analyzes each vector, and saves them to a text file in a similar fashion the 

golden vectors are used in RTL simulation. Prior to benchmarking the emulation, the vectors 

were verified against the golden vector for correctness. 

Description Value 

Emulation Time 379 seconds 

System Frequency 8.33 MHz 

DUT Frequency 254.75 KHz 

Read Value 3241936 

Table 12: SCE-MI Pass Through Transactor Results 

Comparing the emulation run time to RTL simulation and simulation acceleration, 

emulation is 2.43x faster than simulation, but only 1.14x faster than simulation acceleration with 

a difference of 56 seconds. This is due to the structure of the transactor core, since the pass 

through transactor serially shifts in data from the testbench to the DUT, a similar test environment 

as simulation acceleration. Compared to RTL simulation with a time difference of 542 seconds, 

verification of the scan chain has been reduced by 58.8%. For large designs, this percentage can 

equate to hours or even days based on the complexity of the DUT. To optimize the emulation 

results, the transactor core needs to be modified in a way that reduces the number of reads from 

the SystemC testbench.  After some vector compacting and optimizations to the proxy and 

message ports by the emulator, there is a total of 3241936 reads from the hardware side to the 

software side. Since the hardware side has to read the data from the software during each clock 



54 
 

cycle, the number of reads can be large. This value is the bottleneck between the hardware and 

software in a similar manner the testbench is in simulation acceleration. Reducing this number 

will increase the bandwidth between the two interfaces, and allow for a faster emulation. 

 Simulation Time (s) 

RTL Simulation 921 

Simulation Acceleration 435 

Transaction- Based Emulation  

(Pass Through Transactor) 

379 

  

Time Difference between Emulation and 

Simulation Acceleration 

56 

Time Difference between Emulation and 

RTL Simulation 

542 

Table 13: Pass Through Transactor Emulation Comparison  

FSM Transactor 

 The FSM transactor core is a modified transactor which incorporates a FSM to serially 

shift in data sent from the software side. The software side sends a complete 21-bit test vector, 

and the transactor core has states which send each bit to the DUT. All control signals such as the 

scan enable and message calls to the software are maintained by the transactor FSM. The 

modifications are done on both the software and hardware side prior to porting the source files 

into the emulation setup tool. Compared to the pass-through transactor in the previous approach, 

the FPGA area is larger since it incorporates more logic. For the amount of synthesizable logic 

(show in table below), the FSM transactor implementation uses 148 flip flops and 206 LUTs. 

Compared to the pass-through transactor implementation, the FSM transactor uses 84 additional 

flip flops and 109 additional LUTs. For debug instrumentation, the same signals probed for debug 



55 
 

in the pass-through are used in the FSM implementation. This allows reuse of scripts which 

initialize all debug instrumentation. With the debug logic added (shown in table below), the total 

area used is 193 flip flops and 264 LUTs, an increase of 30.40% for flip flops and 28.15 for 

LUTs. 

Synthesizable Logic (DUT + Transactor Logic + SCE-MI Modules) 

Resources Amount Used / Amount Available 

Flip Flops 148/ 207360 (0%) 

Look-Up Tables 206/207360 (0%) 

Table 14: SCE-MI FSM Transactor Synthesizable Logic 

 

Synthesizable Logic (DUT + SCE-MI Modules + Emulator Logic) 

Resources Amount Used / 

Amount Available 

Additional 

Resources Required 

by Emulator 

% Increase 

Flip Flops 193/ 207360 (0%) 45 30.40 

Look-Up Tables 264/207360 (0%) 58 28.15 

Table 15: SCE-MI FSM Transactor Synthesizable Logic Debug Resources 

Re-running the emulation with the FSM transactor yields the following results (shown in 

tables below). The total emulation time is 158 seconds with a system frequency of 8.33 MHz. The 

DUT frequency is 681.84 KHz, and has a read value of 1383556. Comparing both emulation 

implementations, the FSM transactor is 221 seconds faster (2.4x speedup). Since the read value 

has been reduced by a value of 1858380 reads (57.23% decrease), the transactor does not have to 

freeze the controlled clock to the DUT as much as the pass-through transactor implementation. 

This allows the controlled clock feeding the DUT to run a faster clock rate. The FSM transactor 

implementation runs at 681.84 KHz, while the pass-through transactor runs at 254.75 KHz, a 



56 
 

difference of 427.09 KHz (167.65% increase).The system frequency is dictated by on-board 

oscillators, which are set by emulation vendors based on board IO skew, internal testing, and  

worst case scenarios. Since the system frequency remains the same at 8.33 MHz for both 

emulation implementations, the oscillators must be locked at 8.33 MHz as a ceiling value for each 

FPGA on the HES-5 prototyping board.  

Description Value 

Emulation Time 158 seconds 

System Frequency 8.33 MHz 

DUT Frequency 681.84 KHz 

Read Value 1383556 

Table 16: SCE-MI FSM Transactor Results 

 

 Pass-through 

Transactor 

FSM Transactor Difference 

Emulation Time 379 seconds 158 seconds 221 seconds 

System 

Frequency 

8.33 MHz 8.33 MHz - 

DUT Frequency 254.75 KHz 681.84 KHz 427.09 KHz 

Read Value 3241936 1383556 1858380 

Table 17: SCE-MI Emulation Comparisons 

 

Complexity Analysis 

As we discussed in the introduction, the complexity of scaling scan chain designs is 

dictated by a complexity of              . Scan methodologies such as partial-scan 

works to reduce the complexity by creating a subset of the test vector set to implement the scan 

chain versus all possible combinations. Since we are using a full-scan methodology, we must 



57 
 

work on reducing the shift-in/shift-out process since we will be using all possible test vectors. In 

this this thesis we optimize the shift-in/out process by using various RTL simulation and 

hardware verification, but each of these methodology has a specific bottleneck. 

RTL profiler showcases how the CPU handles each process in the test environment 

which includes the testbench and the DUT. The testbench took up 44.71% of the total complexity, 

which a majority of the time was in the scan sequence. If we apply the complexity algorithm for 

the S400 scan-chain DUT, we incur a complexity of 

                                        . Applying the profiler results to the 

complexity, the testbench takes about 20628015 clock cycles, which will remain in the RTL 

simulator environment. The other 25509349 clock cycles will be implemented onto FPGA 

primitives in the hardware emulator.  As the testbench percentage increases, more clock cycles 

will remain in the testbench, increasing the time of the simulation. Table 18 below shows that as 

the testbench percentage increases, the larger the number of clock cycles implemented in the 

HDL simulator. 

Testbench Percentage Clock Cycles Implemented in TB 

80 46137365*.8 = 36909892 

60 46137365*.6 = 27682419 

40 46137365*.4 = 18454946 

20 46137365*.2 = 9227473 

Table 18: RTL Simulation Clock Cycle Workload 

SCE-MI provides a run-time API which allows users to probe the controlled and 

uncontrolled clock. The controlled clock is the number of running cycles in the DUT, while the 

uncontrolled clock is the free-running clock dictated by the board hardware. In the SystemC 

testbench, a debug function was created to probe the number of controlled clock sequences for the 



58 
 

scan sequence. The results for the controlled clock reading for both SCE-MI runs are shown in 

table 19 below.  

SCE-MI Run Controlled Clocks Required for Test 

Pass-Through 25211651 

FSM 8238807 

Table 19: SCE-MI Controlled Clock Cycle Results 

FSM implementation controlled the scan sequence within the transactor, so the serial 

shifting which took a majority of the test time, was handled outside of the DUT. We can see that 

comparing the FSM to the overall complexity of the scan chain, that the FSM transactor runs 5.6x 

faster than the estimated 46137365 clock cycles. The pass through implementation incurs a 

speedup of 1.71x, a smaller value due to the serial shifting from the SystemC testbench which 

connects directly to the DUT inputs from the registered data from the transactor. From this 

information, we can conclude that the RTL simulation and acceleration speedup is based on the 

complexity of the testbench, while for SCE-MI emulation, the speedup is dependent on the 

complexity of the transactor. 

Resource Analysis 

Transitioning from simulation acceleration to emulation, we see a steady linear growth of 

FPGA resources used. Although the S400 if a fairly small design, today‟s SoC designs push the 

max of FPGA resource utilization and are bound by a finite set of resources. Adding additional 

resources to the DUT may require a larger emulation platform with multiple FPGAs, which 

incurs a larger cost. Emulation capabilities such as debug, automatic partitioning, and memory 

interfaces generally are added by the EDA vendor through custom IP with a small (around 5-10% 

FPGA utilization) footprint. However, some emulation tools (ex. Debug probes) can have a large 

effect on FPGA resources, requiring the user to utilize other debug methodologies such as debug 

daughter boards and logic analyzers.   



59 
 

The chart bellows shows the resource utilization (LUTs and Flip Flops) for each 

acceleration and emulation run.  In simulation acceleration, only 21 FFs were required (scan-FFs) 

since we were reusing the existing test environment in RTL simulation. As we moved toward 

FSM emulation, we increased flip flop to 148, a growth of 127 flip flops. Since we are adding 

more resources onto the FPGA (transactor + SCE-MI modules) for emulation, the utilization 

grows depending on the complexity of the transactor. This is evident when comparing the pass-

through emulation run with the FSM emulation run. Since the pass-through transactor just 

connected signals between the SystemC TB and the DUT, the amount of logic required was not 

that large. Compared to simulation acceleration, the pass-through transactor only required 64 flip 

flops and 97 LUTs, a difference of 43 flip flops and 44 LUTs. The main bottleneck when 

additional resources are utilized in emulation is the complexity of the transactor. Also, if the DUT 

requires multiple transactors to test separate functionality (ex. Transactor for ingoing and 

outgoing traffic to a USB port), than the number can increase.   

 

Figure 30: Resource Utilization for Acceleration and Emulation 

Debug probes have a large effect on speed and FPGA resources utilized in simulation 

acceleration and emulation. To be able to bring design top-level ports or internal signals 



60 
 

synthesized on FPGA into a waveform environment for debug requires additional logic 

implemented by the emulator. Since the emulator encases the DUT with a wrapper connecting the 

internal logic to the external interface – additional registers/LUTs need to be implemented to 

bring those signals to the top-level of the wrapper. If a large amount of signals need to be 

debugged, than more registers are requires. As the number of registers/LUTs increase, the number 

of events occurring between the hardware and software interfaces increases,  having an effect on 

simulation speed. The chart below shows how the LUTs increase pre-debug and the final reported 

number in PNR. Prior to debug in the pass-through emulation run, the LUT count was 97, and 

grew to 143 (47.42% percent change) after debug signals were implemented. This increase was 

due to a large number of wide (32-bit) signals which were messages from both the inPort and 

outPort SCE-MI modules. In addition to DUT top-level signals, SCE-MI control signals (clocks, 

resets, etc) were also required to validate the incoming and outgoing transmission of data. Also, 

as the transactor complexity increased, more signals were required for debug to verify the 

transactor logic was correct after PNR occurs and module is implemented onto the FPGA. The 

FSM emulation run required 206 LUTs pre-debug, and 264 LUTs were reported during the PNR 

process. Since the transactor core was implemented with a state machine with multiple states 

controlling the scan sequence, the LUT count increase was greater than the other two runs. For 

the pass-through run, the LUT count increases by 46 while the FSM transactor increased the LUT 

count by 58 LUTs. As the complexity of the transactor logic increases, the number of signals 

required for debugging increases since the logic needs to be verified in conjunction with the 

DUT, that proper data is being sent and received. A strategy many verification teams utilize is 

inserting debugging probes only during regression runs to save on emulation time. The initial 

emulation is run, and if the data is found to be incorrect, than additional time and resources is 

utilized to debug the circuit. This saves time and FPGA utilization, since multiple designs can be 

verified in parallel implementing debug probes only when necessary. 



61 
 

 

Figure 31: LUT Utilization Pre/Post Debug Implementation 

 

Future Work 
With the results attained from the acceleration and emulation runs, there are multiple 

possibilities for future work with emulation and DFT methodologies. These configurations focus 

on attaining a faster emulation run (higher system speed) and/or utilizing the SystemVerilog 

verification language. 

 The first option for a faster emulation run would be to implement a fully synthesizable 

testbench within the FPGA hardware. In the emulation run, test vectors were created in the 

SystemC testbench and sent to the FSM transactor which serially shifted in the data to the DUT. 

For future work, a synthesizable system could be created which generates the vectors from some 

counting logic, and serially shifts the data through a shift register connected to the scan-in port. 

Another shift register can be used at the output to serially shift the data out. A global reset can be 

used for the DUT and test logic to initialize the registers and scan flip flops so all sequential logic 

is initialized to a known state. With a fully synthesizable testbench, the entire system can be 

implemented onto the FPGA fabric of a prototyping board without any emulation system, for 



62 
 

high-speed verification at a lower cost. However, there are multiple issues which the users must 

address [15]. First, the size of the DUT and the synthesizable testbench might not fit onto a single 

FPGA device, requiring partitioning the system across multiple FPGAs. This is challenge since 

each FPGA has a limited number of IO available for each device. Data would need to be 

serialized/de-serialized across the IO, which would add an extra degree of complexity since the 

user must guarantee the system functionality (timing, correctness, etc) across multiple devices.  

Next, the user would have to address the limited scope of debugging with an FPGA prototype. 

FPGA vendors provide logic analyzer tools which are limited by the availability of block RAM 

which is used to store data during debugging [25]. Concluding, the fully synthesizable testbench 

provides a faster run, but engineers must address multiple issues. Larger systems will need to be 

partitioning across multiple devices using some serialization/deserialization logic, and there are 

few debugging options when working with a pure prototyping system [26]. 

Another possibility for future work is to utilize the SystemVerilog hardware verification 

language. SystemVerilog provides multiple benefits when integrating its verification capabilities 

with SCE-MI emulation [27]. The SystemVerilog language is quickly becoming the language of 

choice amongst verification teams with the adoption of the universal verification methodology, an 

Accelera standard used to verify integrated circuits with such tools as checkers, number 

generators, scoreboards, etc [10]. SCE-MI 2.1 takes advantage of the SystemVerilog Direct 

Programming Interface (DPI), which directly accesses C/C++ functions from HDLs [19]. In this 

thesis emulation run, the transactor logic packed the data which was received and transmitted via 

the message ports. SystemVerilog DPI allows users to define the C/C++ function, and call it 

directly from the hardware. In this fashion, the actual transaction between both interfaces is the 

function call which is defined by the user, simplifying the emulation implementation. Also, as 

opposed to the macro SCE-MI approach, the SystemVerilog DPI SCE-MI implementation does 

not have a pre-defined API, allowing users to create their own functions for the system. The 



63 
 

challenges in utilizing SystemVerilog DPI SCE-MI stem from its continued growth of 

capabilities. The flexibility of the DPI interface integrates many of the C/C++ constructs with 

hardware, which a synthesis tools must recognize prior to moving to FPGA fabric [28]. Vendors 

such as Verific, create SystemVerilog parsers which analyze and elaborate SystemVerilog code 

[29]. This code must be directly connected to the C/C++ functions written on the software side. 

Next, not many SystemVerilog constructs are synthesizable, which poses problems when 

implementing on the FPGA device. Common constructs in C/C++ such as multipliers and 

dividers, need to be translated into FPGA blocks (block RAMs, embedded DSP cores). The 

parser and synthesis tool must work together to ensure proper utilization rates are met, and that 

the logic is properly translated into FPGA blocks. 

Conclusion 
The main goal of this thesis was to integrate scan testing methodology with 

acceleration/emulation platforms for faster verification and increased performance. During my 

research, new standards (such as SCE-MI) and hardware verification languages (SystemVerilog, 

SystemC) were being utilized to move the abstraction level of verification higher than the typical 

HDL approach. FPGA-based emulation platforms provide significant speedup for a wide variety 

of applications across multiple industries. My original contribution for this thesis would be to 

utilize a SCE-MI infrastructure for testing scan-chain implemented designs on an FPGA-based 

prototype for reduced verification time and increased system performance. 

Multiple methodologies were researched prior to determining which configuration would 

result in the emulation run with the largest speedup. These methodologies (RTL Simulation, 

Simulation Acceleration, Transaction-based emulation) were first analyzed against a set of 

various factors such as: HW/SW bottleneck, ease of porting from RTL simulation, debugging 

constraints, cost, etc. From these constraints, the test environments were created for each 

configuration. For RTL simulation, the DUT portion was modified to implement scan flip flops, 



64 
 

and a Verilog testbench was created to exercise all possible combinations. The RTL simulation 

environment was reused for simulation acceleration, as the Aldec emulation tool partitioned the 

synthesizable code onto the FPGA-based prototype, as the non-synthesizable code remained in 

the HDL simulator. Next, to move to transaction-based emulation, the test environment had to be 

modified for a high-level SystemC testbench, and additional macro modules which were needed 

to implemented SCE-MI infrastructure. In addition to the macro modules, transactor logic had to 

be created to manipulate high-level message from the software interface to low-level bits for the 

DUT. During the emulation run, two types of transactor modules were created: pass-through 

(dummy) and FSM to showcase how transactor logic can have an effect on emulation speed and 

performance.  

The results from all the runs showcased how utilization of transaction-based emulation 

can achieve reduced verification time and an increase in system performance. During RTL 

simulation, we verified the scan-chain ISCAS S400 benchmark circuit in 921 seconds, and while 

reusing the same test environment accomplished an acceleration time of 435 seconds. This 2.11x 

speedup from RTL simulation allowed us to maintain a level of visibility of internal signals 

utilizing the static debugging capabilities of the emulator. Although there was a degree of 

overhead due to the addition of debugging logic, the signals were able to be viewed on the RTL 

simulators waveform viewer for online and offline use. Moving to the transaction-based 

emulation environment, we saw an emulation time of 379 seconds for the pass-through transactor, 

and 158 seconds for the FSM transactor. Compared to the RTL simulation implementation, the 

FSM transactor was able to accomplish a 5.8x speedup, with a maximum system frequency of 

8.33 MHz. With emulation, the FSM transactor was able to completely offload the scan-in and 

scan-out process to the hardware, decreasing the scan complexity by a factor of   .  

Future areas of research and improvements to this thesis were presented which would 

enable faster emulation times and the integration of different HVLs (SystemVerilog and SystmC). 



65 
 

Fully synthesizable testbenches allow the entire system to be implemented onto hardware, but 

presents many issues with limited debugging capabilities and partitioning a system across 

multiple FPGAs. SCE-MI standard can be integrated with the SystemVerilog DPI interface 

allowing users to make direct calls to software without a pre-defined API. This provides 

verification teams with the flexibility to define function calls which will become the transaction 

data between the hardware and software interfaces. Although the flexibility of the SCE-MI 

SystemVerilog provides multiple uses, much of the language capabilities need to be parsed and 

elaborated with special compilers.  These compilers must be able to map the SystemVerilog 

constructs in a manner which does not require a high utilization rate in the FPGA. 

The results of this thesis allow large scale scan-chain based SoC designs to be verified in 

a high-speed environment. Running the system in the sub-megahertz range as accomplished in 

transaction-based emulation, also allows verification teams to integrate software early in the 

verification cycle. Integrating high-level testbenches with the latest in emulation standards allows 

a wider set of verification techniques to be implemented as opposed to typical HDL testbenches. 

In addition, the integration of scan testing and acceleration/emulation platforms, allow for more 

complex DFT methods to be developed and tested on a large scale system,  decreasing the time to 

market for products. 

 

 

 

 

 



66 
 

 

Bibliography 
 

[1]  M. Abramovici , M. A. Breuer and A. D. Friedman, “Digital Systems Testing and 

Testable  

Design,” IEEE Press, 1990.  

 

[2]  Bricaud, P., “Who drives SoC Chips: Application or Silicon,” Seminaire Intech‟ 

Sophia,2003. PDF file. 

 

[3]  Kim, Insoo; Min, Hyoung Bok, "Operation about multiple scan chains based on system-

on-chip," SoC Design Conference, 2008. ISOCC '08. International , vol.02, no., pp.II-

191,II-194, 24-25 Nov. 2008 doi: 10.1109/SOCDC.2008.4815716 

 

[4]  Xilinx. “Virtex-5 Family Overview”. Web. 6 Feb. 2009. 

http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf 

 

[5]  Xilinx. “ Virtex-6 Family Overview”. Web. 19 Jan. 2012. 

http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf 

 

[6]  Xilinx. “7 Series FPGAs Overview”. Web. 18 Feb. 2014. 

http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf 

 

[7]  Bennetts, R. G.; Beenker, F. P M, "Partial scan: what problem does it solve?," European 

Test Conference, 1993. Proceedings of ETC 93., Third , vol., no., pp.99,106, 19-22 Apr 

1993 

doi: 10.1109/ETC.1993.246528 

 

[8]  Cadence Design Systems. “Encounter DFT Architect Datasheet”. Web. 2013. 

http://www.cadence.com/rl/Resources/datasheets/6083_EncTestArch_DS2.pdf 

 

[9] Gavrielov, M.“Addressing the Verification Bottleneck.” EETimes. Web. 13 Dec. 1999. 

http://www.eetimes.com/document.asp?doc_id=1275994 

 

[10]  "UVM/OVM." - Mentor Graphics. N.p., n.d. Web. 11 Mar. 2014. 

 

[11]  Accellera Property Specification Language Reference Manual (2004). Web. 

http://www.accellera.org 

 

[12]  Aldec. “Using FPGA Prototyping Board as an SoC Verification and Integration 

Platform”. Aldec White Paper. 25 May 2010. PDF. 

 

[13]  Nardi, Alessandra. “Digital Systems Verification”.  File last modified 17 Oct. 2002. 

Microsoft Powerpoint File. www.lsi.die.upm.es/.../simulacion.x2.pdf 

 

[14]  Jun, Young-Hyun; Hajj, I.N.; Lee, Sang-Heon; Park, Song-Bai, "High speed VLSI logic 

simulation using bitwise operations and parallel processing," Computer Design: VLSI in 

http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.cadence.com/rl/Resources/datasheets/6083_EncTestArch_DS2.pdf
http://www.accellera.org/
http://www.lsi.die.upm.es/.../simulacion.x2.pdf


67 
 

Computers and Processors, 1990. ICCD '90. Proceedings, 1990 IEEE International 

Conference on , vol., no., pp.171,174, 17-19 Sep 1990 doi: 10.1109/ICCD.1990.130193 

 

[15]  Cadence Design Systems. “Concurrent Hardware/Software Development Platforms 

Speed System Integration and Bring-Up”.Web. 2013. 

http://www.cadence.com/rl/Resources/white_papers/system_dev_wp.pdf 

[16]  Aldec. “Accelerate SoC with newer generation FPGAs”. Aldec White Paper.2013. PDF 

[17]  Aldec. “HES Verification with TLM”. Aldec White Paper.2013. PDF 

[18]  Aldec. “HES Integration With Imperas OVP”. Aldec White Paper.2013. PDF 

[19] Standard Co-Emulation Modeling Interface (SCE-MI) Reference Manual, ver. 2.1, 

Accellera Interfaces Technical Committee, Jan. 21, 2011 

[20] "International Symposium on Circuits and Systems | International Symposium on Circuits 

and Systems. " International Symposium on Circuits and Systems. Web. 11 Mar. 2014. 

[21] "Riviera-PRO - Functional Verification - Products - Aldec." Riviera-PRO 

Functional Verification -Products - Aldec. Web. 11 Mar. 2014. 

[22]  "HES-DVM - Emulation - Products - Aldec." HES-DVM - Emulation - Products - 

Aldec. Web. 11 Mar. 2014. 

[23] Aldec. “Simulation Acceleration with HES”. Aldec White Paper.2013.PDF. 

[24]  Xilinx. “Configuration and Readback of Virtex FPGAs Using JTAG Boundary Scan”. 

Web. 14 Feb. 2007. 

http://www.xilinx.com/support/documentation/application_notes/xapp139.pdf 

[25] Aldec. “ARM Cortex SoC Prototyping for Industrial Applications”. Aldec White Paper. 

2013. Web. http://www.aldec.com/en/downloads/private/492 

[26]  Ruan, A.W.; Huang, H. C.; Li, C. Q.; Song, Z. J.; Liao, Y.B.; Tang, W., "Debugging 

methodology for a synthesizable testbench FPGA emulator," Integrated Circuits (ISIC), 

2011 13th International Symposium on , vol., no., pp.593,596, 12-14 Dec. 2011 doi: 

10.1109/ISICir.2011.6131932 

[27] Tomas, Bill. "Integrating SystemVerilog and SCE-MI for Faster Emulation 

Speed." Aldec Blog. Aldec, 2013. Web. 13 Mar. 2014. 

http://www.aldec.com/en/company/blog/55--integrating-systemverilog-and-sce-mi-for-

faster-emulation-speed. 

[28]  Synopsys. “SystemVerilog, A Design and Synthesis Perspective”. Web. 2014. 

http://www.synopsys.com/Community/Interoperability/Documents/devforum_pres/2003o

ct/Synthesis_perspective.pdf 

[29]  "Verific Design Automation -- Verilog/SystemVerilog/VHDL Front Ends 

(parsers/analyzers/elaborators)." Verific Design Automation -- 

Verilog/SystemVerilog/VHDL Front Ends (parsers/analyzers/elaborators). Web. 13 Mar. 

2014. 

http://www.cadence.com/rl/Resources/white_papers/system_dev_wp.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp139.pdf
http://www.aldec.com/en/downloads/private/492
http://www.synopsys.com/Community/Interoperability/Documents/devforum_pres/2003oct/Synthesis_perspective.pdf
http://www.synopsys.com/Community/Interoperability/Documents/devforum_pres/2003oct/Synthesis_perspective.pdf


68 
 

CV 

BILL JASON P. TOMAS 
390 Elan Village Ln. #101 | San Jose, CA 95134 

Cell (Preferred): (706) 536-0494 | Office (Preferred): (408) 914-6015 | btomas@cadence.com  

 

EDUCATION 
 Master of Science in Electrical Engineering; May 2014 (Expected) 

  University of Nevada, Las Vegas 

  GPA: 3.95/4.0 

  Thesis Topic: Co-Emulation of Scan-Chain Based Designs Utilizing SCE-MI 

Infrastructure  

 Bachelors of Electrical and Computer Engineering; August 2011  

  Auburn University; Auburn, AL 

  GPA: 3.55/4.0 

  Honors: Cum Laude 

 

QUALIFICATIONS 
Digital Hardware Design and Verification Languages: Verilog and VHDL, SCE-MI (Co-

Emulation) 

FPGA Hardware: Xilinx Spartan-3, Xilinx Virtex-5, Xilinx Virtex-7 

Hardware Tools: Aldec Riviera-PRO, Aldec Active-HDL, Aldec HES-DVM (Emulation Setup 

Software), Aldec HES-5 (FPGA based Prototyping Board), Xilinx ISE/Vivado, Altera Quartus II, 

Mentor Graphics ModelSim, Synopsys Design Compiler, Synopsys DFT Compiler (Scan Design), 

Synopsys TetraMax ATPG  

Programming Languages: C; C++; Java  

 

ACADEMIC RESEARCH 
Master‟s Thesis Topic: Co-Emulation of Scan-Chain Based Designs Utilizing SCE-MI Infrastructure  

Implemented and functionally verified ISCAS S298 RTL benchmark circuit for Scan design 

with RTL Simulation and bit-level acceleration utilizing Xilinx Virtex-5 FPGA prototyping board. 

Developed synthesizable transactor with Verilog HDL and SystemC testbench which can 

communicate with SCE-MI infrastructure for transaction-level co-emulation increasing run-time speed 

and performance. 
 

PROFESSIONAL EXPERIENCE 
Member of Technical Staff- HW December 2013 – current  

Cadence Design Systems. – San Jose, CA  

 

Product Engineer August 2012 – November 2013 

Aldec Inc. – Henderson, NV 

 Coordinate and manage Aldec Hardware Assisted Verification Line consisting of SoC / ASIC 

prototyping Board (HES-7) and Emulation Design Verification Manager (Simulation 

Acceleration & Transaction-Level Co-Emulation). 

 Automated and ported customer RTL design for Hardware emulation utilizing debugging 

probes, memory mapped RTL models, and partitioning schemes. 

 Provided post-sales technical expertise during installation, implementation, and maintenance of 

Hardware Emulation products 

 Established and refined product requirements based on customer interactions  

 

Test Engineer June 2012 – August 2012 

BMM Compliance – Las Vegas, NV 



69 
 

 Verified manufacturer‟s source code (C++, C, and JAVA) adhered to jurisdictional regulation 

and technical standards 

 Statistical analysis of gaming device and game probabilities 

 Utilized Slot-Accounting-System and Gaming-to-System protocol simulators 

 Developed hardware and software test cases for electrical gaming machines (EGMs)  

 Certified four game suites for operation in Panama, Peru, and US regions utilizing National 

Indian Gaming Commission standards. 

 
Graduate Assistant August 2011 – Jun 2012 

Academic Success Center; University of Nevada- Las Vegas; Las Vegas, NV 

  Created and ran university wide tutoring lab for multi-disciplinary engineering students  

   Oversight of three tutors by managing administrative paperwork and ensuring adherence to 

department regulations 

   Tutor freshmen to senior level electrical and computer engineering, civil engineering, 

mathematics, and physics courses. 

 
Computer Architecture Lab January 2011 – May 2011 

Department of Electrical and Computer Engineering; Auburn University; Auburn, AL 

  Designed a RISC CPU in VHDL modeling language 

  Verification via Mentor Graphics “ModelSim EE” simulator on SUN workstations, and 

implementation on Xilinx Spartan-3 FPGA 

  Design included Instruction Set Architecture, Datapath, and Control Unit 

 

Digital System Design Lab; August 2010 – December 2010 

Department of Electrical and Computer Engineering; Auburn University; Auburn, AL 

 Schematic capture, design verification, and simulation of combination and sequential logic 

circuits using Xilinx ISE and ModelSim 

 VHDL modeling, simulation, and synthesis in a Xilinx Spartan-3 FPGA  

 Analyze and design hierarchical digital systems implemented using Xilinx MicroBlaze Soft 

Processor 

 Develop and simulate register-level models of hierarchical digital systems 
 

Undergraduate Research Assistant; January 2010 – May 2010 

Department of Electrical and Computer Engineering; Auburn University; Auburn, AL 

 Fault Simulation on Field Programmable Gate Array (FPGA) Multipliers  

 Research in DFT techniques for FPGAs 

 Research on Built-In-Self-Test (BIST) approaches  

 Study the basic elements and operations of FPGA‟s  

 Funded by National Science Foundation Grant# NSF-CNS-0708962-B 
 

 

PUBLICATIONS & LIVE WEBINARS 

 Aldec White paper- Bill Jason P. Tomas & Louie De Luna, “Accelerate SoC Simulation 

Time of Newer Generation FPGAs” 

 Aldec White paper- Bill Jason P. Tomas, “ARM Cortex SoC Prototyping Platform for 

Industrial Applications” 

 Aldec Live Webinar- Bill Jason P. Tomas, “ASIC / SoC Prototyping with Aldec’s new 

HES-7 Prototyping Board” 

 Student Journal-Bill Jason P. Tomas, Charles E. Stroud, “Fault Simulation of 

Embedded Multiplier Built-In-Self-Test”, Seventh Annual Auburn Undergraduate 

Research Forum, 2010  


	Co-Emulation of Scan-Chain Based Designs Utilizing SCE-MI Infrastructure
	Repository Citation

	Scan Chain Emulation

