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ABSTRACT 

 

The current design methodology for a drilled shaft foundation in cohesionless 

soil is primarily based on ultimate skin friction values of drilled shafts. In order to 

obtain these values for each soil type, load tests such as Osterberg test are designed 

and performed. The Osterberg test layout is designed to estimate the capacity of 

drilled shaft by applying an upward load during the test and then calculating the 

downward capacity assuming the upward and downward capacity are the same. This 

method is appropriate for soils not containing caliche layers because caliche layers 

bond to the shaft and prevent skin friction to reach its ultimate capacity during the 

load test. As long as ultimate skin friction is achieved, the location of O-cell with 

respect to any of existing soil layers is not an effective. Osterberg test results in soils 

containing caliche indicate that the ultimate skin friction is not achieved and 

shaft/caliche interaction is mostly elastic. In these cases, the behavior of the shaft 

when it is loaded from the bottom is different from when it is loaded from the top.  

This study will show that, the location of O-cell with respect to the caliche 

layers will influence the interpretation of test results. The study will investigate the 

current interpretation method when O-cell is installed at a location far from caliche 

and will compare the equivalent top-down load from test results to when the shaft is 

loaded from the top. The reason for discrepancies between the behavior of the shaft in 

these two loading scenario will be explained. Additionally, the interpretation for tests 

when O-cell is installed close to caliche will be investigated and the behavior of the 

shaft will be compared for upward and downward loading. The procedure is 

performed by collecting 30 Osterberg load tests in soils containing caliche. The test 
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layouts with O-cell installed at identified locations are selected. The 2-D finite 

element software PLAXIS 8 is then used to simulate the Osterberg tests. The models 

are calibrated using field Osterberg tests and then loaded conventionally from the top. 

The behavior of the shaft during top-down loading is compared to interpreted test 

results from Osterberg test. 

 A test layout with O-cell at a location far from the caliche layers shown to 

have a higher capacity during conventional loading compared to interpreted test 

results from Osterberg load test. On the other hand when O-cell is installed close to 

caliche, the top-down loading shows a similar behavior to interpreted test results from 

Osterberg load test.  In fact when O-cell and caliche layers are close to each other, the 

test layout is similar to the procedure performed to estimate rock socketed drilled 

shafts capacity.  

The results of this study will help engineers to have better understanding of 

the drilled shafts behavior in soils containing caliche by introducing an appropriate 

test design and interpretation of the test results. 
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1 Introduction 

The general design procedure for drilled shaft foundations in soils is primarily 

based on ultimate values of drilled shaft skin friction and end bearing capacity. The 

basic load transfer mechanisms were identified through early research on drilled 

shafts (O'Neil & Reese, 1973). This method is appropriate for soils in conventional 

geological settings not containing caliche layers. Caliche is the hard lithification of 

both fine-grained sediments and sand and gravel through secondary cementation by 

calcium and magnesium carbonate. 

Federal Highway code of design (Brown, Turner, & Castelli, 2010) suggests 

that, caliche can be treated as sedimentary rock for the purpose of foundation design. 

Therefore, the design parameters for drilled shafts in rocks are suggested for caliche. 

However, the load test results in Las Vegas indicate that the shaft and the 

caliche layers may act as a continuous plate attached monolithically to the shaft as 

shown in Figure 1-1. The shaft/caliche bond is very strong and in order to be broken a 

large amount of load is needed. Caliche layers are usually underlain by weak soils. 

The strength of caliche/shaft bond and the unconventional geological setting may 

cause the caliche to sustain the load by an additional strength parameter beside side 

resistance and end bearing. Caliche layers will aslo bend when loaded and an 

additional flexural strength may need to be considered for the competent caliche 

layers in the soil profile.  
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Figure 1-1 Monolith Behavior of Deep Foundation System 

 

Additionally, bi-directional load test results in soils containing caliche indicate 

that the ultimate skin friction is not achieved and shaft/caliche interaction ultimate 

side resistance is not achieved through the tests. Due to limited slippage between the 

shaft and the surrounding soil layers, the ultimate side resistance may not be 

achievable. Traditional interpretation method for this type of test is appropriate when 

the ultimate side resistance value is achieved.  

The presence of caliche layers will enforce limitations on the traditional 

method of test and design for drilled shafts. These limitations may mislead the 

engineers into unnecessarily conservative designs.  
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This study investigates the effect caliche layers on the behavior and design of 

drilled shafts in soils containing caliche. The current load test approach will be 

investigated and recommendations are suggested for soil profiles containing caliche. 

1.1 Scope of Research Project 

The research reported herein is concerned with the behavior of drilled shaft 

foundations constructed in soils containing caliche. The study focuses on competent 

caliche layers underlain by a weak geomaterial. The scope of these investigations is 

limited to the following: 

1. Investigating the behavior of drilled shafts foundations subjected to axial 

loading only 

2. Full-scale load tests on drilled shafts in predominantly sandy clay/clayey 

sand with caliche layers. 

3. The load test was performed in general accordance with ASTM D-1143 

"Quick Load Test Procedures" (2013) 

1.2 Research Objectives 

The overall objective was to verify the current Osterberg test interpretation for 

testing drilled shafts in soil profiles containing caliche. The objective was achieved in 

the following steps: 

1. Acquiring full-scale O-cell and conventional test data for drilled shafts in soil 

containing caliche along with their associated boring log and laboratory test 

data. 

2. Analyzing the validity of collected data. 
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3. Investigating the effect of caliche on the load tests in Las Vegas using finite 

element software PLAXIS 8. 

4. Identify the difference between upward and downward mobilization of the 

shaft in Las Vegas 

5. Introducing a step-by step procedure to design the drilled shafts properly in 

Las Vegas. 

1.3 Organization 

This dissertation consists of eight chapters. The detail of each chapter presents 

below:  

Chapter  1  provides  an  introduction,  background  history  of  drilled  shafts 

in Las Vegas caliche,  problem statements explaining the significance of the project, 

research objectives, and organization to provide a framework of the completed 

research.  

Chapter 2 describes the geology of Las Vegas Valley and the caliche layers. 

This chapter explains the potential impact of caliche layers on the design of drilled 

shaft and deep foundations. 

Chapter 3 presents a literature review on drilled shaft design in rocks, their 

side resistance and end bearing capacity. The information is used for the design of test 

drilled shafts in practice  

Chapter 4 provides background information on load test methodology for both 

conventional and bi-directional load test methods. The limitation and advantageous of 

each method is described. Additionally, the collected bi-directional test are evaluated 

in this chapter for further analytical purposes. 
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Chapter 5 focuses on modeling of Osterberg tests for a simplified soil profile 

with caliche. In this chapter an axisymmetric PLAXIS model is designed to compare 

the equivalent top-down load with a conventional load. The location of the O-cell 

with respect to caliche changes and the effect of this distance on the results will be 

explained. 

Chapter 6 focuses on modeling two cases where in the first one O-cell is 

installed far from caliche and in the second scenario O-cell is installed under the 

caliche layer. The models are created using finite element software PLAXIS 8. The 

models are calibrated using the field measurements from the tests. The calibrated 

models are loaded from the top and the equivalent top-down behavior is compared to 

the analytical top-down behavior from PLAXIS results. This chapter also explains the 

reason why O-cell location may change the results when the soil profile contains 

caliche layers  

Chapter 7 presents recommendations for appropriately designing the O-cell 

test to minimize the discrepancies between top-down behavior from analytical results 

and load test results. A step-by-step method is introduced to appropriately design the 

test shaft in soil profiles containing caliche layers. 
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2 Geology of Las Vegas 

Las Vegas is bounded on the west, south and east by mountains.  The 

mountains to the west and east of Las Vegas are composed primarily of limestone and 

dolomite, while the mountains to the south consist of tertiary volcanics.  

Unconsolidated sediments of sand, silt, and clay, thousands of meters thick, are found 

in the center of the valley (Rodgers, Tkalcic, McCallen, Larsen, & Snelson, 2006). 

Cemented soils are found in most parts of the Las Vegas valley.  These materials 

consist of sand and gravel particles cemented by calcium carbonate, or a finer-grained 

material consisting primarily of calcium, locally know as Caliche. 

2.1 Las Vegas Caliche 

Caliche is considered to be the hard lithification of both fine-grained sediments 

and sand and gravel through secondary cementation by calcium and magnesium 

carbonate (Cibor, 1983).  Lattman (1973) divides carbonate cementation in the valley 

into six categories according to its occurrence and origin. The mechanism of caliche 

formation is described by (Schlesinger, 1985) and others (Marion, Schlesinger, & 

Fonteyn, 1985; McFadden, Wells, & Dohrenwend, 1986). The caliche formation in 

the Valley is shown in 

 
2��� + 2��� →  ����+ 2��+ 2����

� 

����+ 2����
� →  ����� + ��� + ���   

(2-1) 

Researchers agree  that  most  thick caliches  form  under  aggrading  conditions 

and climatic reversals  which  cause  extensive  solution  and  redeposition (Frye & 

Leonard, 1967). deposition  by  rising  artesian ground  water  (Blake, 1901),  

deposition  by capillary  rise  of  ground  water  (W. T. Lee, 1905), deposition  by  a  

regionally  rising  water  table (Theis, 1936).  Thus accretions of caliche could 
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accumulate above and below a lithified layer. Along the southern apron, lithification 

can be attributed to Aeolian transport of cementing agent from the Spring Mountains. 

The term “caliche” loosely applies to any cemented soils encountered in the Valley. 

Yet, this material varies considerably in the degree of cementation, its thickness and 

lateral continuity, and strength characteristics. Caliche can be found in the semi-arid 

and desert regions of the western U.S., in Florida, and along the banks of the lower 

Mississippi River. These deposits are widespread and important bearing units for both 

shallow and deep foundations. The cemented zone can be several inches to five or 

more feet in thickness. 

2.2 Classification 

(Cibor, 1983) classifies the caliche layers in the Las Vegas, NV area based on 

their nomenclature and drilling characteristics. A summarization of drilling/sampling 

characteristics of caliche is brought in Table 2-1.  Table 2-1 explains the wide variety 

of material characteristics of cemented soils and suggests approaches for categorizing 

cemented soils and sampling strategies based on the categorization.  

There is no simple approach for establishing the strength or deformation 

characteristics of caliche due to the extensive variation in properties and behavior of 

this material. A common sense approach is usually used, as follows. A simple unit 

weight can help to determine whether the material is as dense as the high blow count 

responses indicate. It may be possible to either submerge a sample in water or simply 

add water to a piece of the intact sample to assess whether the cementing agent is 

soluble or if the material softens when inundated with water. 
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Table 2-1 : Classification and Drilling/Sampling  

Characteristics of Caliche, Las Vegas Valley (Cibor, 1983) 

Cemented 
coarse-grained 

deposits 

Cemented 
fine-grained 

deposits 

Hardness 
Classification 

Drilling Rates 
minutes/ft Description of Material and 

Drill 
Cuttings Without 

pulldown 
With 

pulldown 

Sand and gravel 
with scattered 
cementation 

Decomposed 
caliche with 
silt and clay 

Very Hard to 
lightly hard - - 

Variable matrix of uncemented 
soil and cemented zones. 
Samples obtained with split-
spoon or thick-walled sampler. 
Can be crumbled with fingers. 

Partially 
cemented sand 

and gravel 

Decomposed 
caliche 

Moderately 
hard 

< 5 < 3 

Cemented to varying degrees. 
Fine-grained deposits sampled 
with thick-walled sampler; 
coarse-grained samples cannot be 
obtained with thick-walled 
sampler. Drilling produces large, 
rounded cuttings. Cuttings can be 
broken with difficulty with hands 
or easily when hammered. 

Cemented sand 
and gravel 

Weathered 
caliche 

Hard 6 to 30 3 to 6 

Visible chemical alterations from 
fresh deposits. Compressive 
strength similar to fresh deposits. 
Slight secondary porosity. 
Samples obtained by coring 
techniques. Drill cuttings less 
than ½ inch in diameter. 
Fragments can be broken with 
difficulty by hammering. 

Fresh 
caliche 

Very hard 700 70 

No visible signs of chemical 
alteration. Non-porous. 
Resembles metamorphic or 
sedimentary rock. Drill cuttings 
less than 1/8 inch in diameter. 
Samples obtained by coring 
techniques. Fragments cannot be 
broken by hammering. 

 

If either of these responses is identified, a careful assessment must be made of 

whether the service conditions will result in the introduction of (and the effect of) 

water. If so, the strength of the soil should be evaluated for the uncemented state. 

Moreover the caliche can be fractured or competent, interbedded with uncemented 

soils or contain secondary solution cavities. There are a few in-situ and laboratory 

tests that can help understand if the caliche layers is competent enough for proposed 

engineering practice or not. Cemented material classified as very stiff or dense, and 

slightly to moderately hard can be excavated with conventional equipment and use of 
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ripper tooth. Caliche termed hard to very hard usually requires use of heavy 

excavation equipment such as a Ho-ram or headache ball. Blasting techniques are also 

employed for extensive excavation located away from developed areas.  

2.3 Caliche Impact on Foundation Design 

Cibor (1983) believed conventional methods of estimating settlement, which 

do not account for cementation, overestimate movement of foundations. The recent 

load tests and construction monitoring that were performed for a few projects in the 

Valley showed his assumption to be correct as the drilled shafts tend to displace a 

very small amount during the test and construction. The overestimated designs 

resulted in redundantly large and deep foundations for many projects in town. 

Recently a new approach was taken by Stone (2009) which account for the capacity of 

the caliche as a cemented material. The new foundation type consisting of a short pile 

system bonded to shallow cemented layers. The bonding of caliche layers together with 

short piles forms a caliche stiffened pile (CSP) foundation. This study indicates that 

increasing the pile length by 100 percent reduces the settlement by only 10 percent. The 

results show that caliche layers in Las Vegas Soil profile may interfere with the load 

distribution through the shaft length by sustaining majority of applied load. 
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3 Axial Capacity of Drilled Shafts in Rock Sockets 

FHWA suggests that, caliche can be treated as sedimentary rock for the 

purpose of foundation design (Brown et al., 2010). Uniaxial (unconfined) 

compressive strength should be measured in laboratory tests and design equations for 

nominal resistances given for rock can be applied to drilled shaft design.  

3.1 Side Resistance of Rock Sockets 

Side  resistance  in  rock  sockets  develops  in  one  of three  ways:  (1)  

through shearing of the bond between the concrete and the rock that develops when 

cement paste penetrates into the pores of the rock (bond); (2) sliding friction between 

the concrete shaft and  the  rock  when  the  cement  paste  does  not  penetrate  into  

the  pores  of the  rock  and when  the  socket  is  smooth  (friction);  and  (3)   

Interface dilation  of  an  unbonded  rock-concrete as shown in Figure 3-1. 

 

Figure 3-1: Interface dilation of an  unbounded  rock-concrete 

The  asperities  shear  off with increases  in  effective  stresses  in  the  rock  

asperities  around  the  interface. Dilational behavior is also accompanied by frictional 

behavior.  These phenomena occur simultaneously, with one being dominant.  Rock 

that  does not have  large pores or in which the  action of the drilling tool  forces  fine 
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cuttings  into  the pores  (or in which drilling mud plugs the pores),  thus  limiting  

filtration of the  cement paste into  the formation,  will  not  exhibit  the  bond  

condition.  Instead, rock-concrete interfaces will exhibit either the friction condition 

or the dilation condition.  This behavior may be more characteristic of argillaceous 

rock such as clay-shale than of carbonaceous or arenaceous rock, such as limestone or 

sandstone (Nam, 2004). Caliche or Calx is the Latin translation for limestone. For 

caliche the behavior may be similar to the second type of rocks where the friction and 

dilation are the dominant elements of skin friction. 

Researchers have been working on approximating the ultimate side resistance 

for shafts in rock for a long time. Typically, the ultimate side resistance value may be 

evaluated on the basis of mean uniaxial compressive strength of the rock as follow: 

 
���

��
= � �

��

��
�

�

 
(3-1) 

Where, qu= mean value of uniaxial compressive strength for the rock layer; Pa= 

atmospheric pressure; C= constant and n=exponent  

Regression coefficient used to analyze load test results. Many researchers have 

worked on the regression analysis of unit side resistance. A chronological summary of 

various researchers’ work are shown in Table 3-1. 

There is no simple approach for establishing the strength or deformation 

characteristics of caliche due to the extensive variation in properties and behavior of 

this material. A common sense approach is usually used, as follows. A simple unit 

weight can help to determine whether the material is as dense as the high blow count 

responses indicate. It may be possible to either submerge a sample in water or simply 

add water to a piece of the intact sample to assess whether the cementing agent is 

soluble or if the material softens when inundated with water. 
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Table 3-1: Unit Skin Friction Coefficients in Rock 

Reference C n Notes 
Rosenberg & Journeaux (1976) 1.09 0.52  

Horvath (1978) 1.04 0.5  
Horvath and Kenney (1979) 0.65 0.5 B > 400 mm 

Meigh and Wolski, (1979) 0.55 0.6 

qu/ pa between 4 and 7, they 
recommended a  

constant lower bound at f = 0.25 
qu. 

Williams, et al. (1985) 1.84 0.37  
Rowe and Armitage, (1984) 1.42 0.5  

Carter and Kulhawy, (1988; 1992a; 
1992b) 

1.42 0.5 C=0.63, n=0.5 for lower bound 

Reese and O'Neill, (1988)  0.65 1 qu/ pa > 19 
Reese and O'Neill, (1988) 0.15 1 17< qu/ pa < 19 
Reese and O'Neill, (1999) 0.65 1 qu/ pa > 50 
Zhang and Einstein (1999) 1.26 0.5  

Kulhawy, Prakoso, & Akbas (2005) 1 0.5  
 

Most of the authors in Table 3-1 recommend the use of Equation (3-1) with C= 1.0 for 

design of “normal” rock sockets. A lower bound value of C= 0.63 was proven to 

cover 90% of the load test results (Brown et al., 2010).  The term “normal” as used 

above applies to sockets constructed with conventional equipment and resulting in 

nominally clean sidewalls without resorting to special procedures or artificial 

roughening. Rocks that may be prone to smearing or rapid deterioration upon 

exposure to atmospheric conditions, water, or slurry, are outside the “normal” range 

and may require additional measures to insure reliable side resistance. O’Neill and 

Reese (1999) also applied an empirical reduction factor �� to account for the degree 

of rock fracturing. The resulting expression is: 

 
���

��
= 0.65���

��

��
 (3-2) 

Where, the coefficient �� is determined as a function of the estimated ratio of rock 

mass modulus to modulus of intact rock �
��

��
�. This ratio is estimated from the RQD 
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Artificial roughening of rock sockets through the use of grooving tools or other 

measures can increase side resistance compared to normal sockets. Regression 

analysis of the available load test data by Kulhawy and Prakoso (2007) suggests a 

mean value of C= 1.9 and n=0.5 with use of equation (3-1) for roughened sockets. It is 

strongly recommended that load tests or local experience be used to verify values of C 

greater than 1.0. However, the advantages of achieving higher resistance by sidewall 

roughening often justify the cost of load tests of the rock.  McVay, Townsend, & 

Williams (1992) also found  that  the  best  predictive results  for  Florida limestone  

resulted  when  the unconfined  compressive strength was combined  with the tensile 

strength from splitting tension tests. 

 ��� =
1

2
������ 

(3-3) 

Where, ��  is splitting tensile strength. McVay also claims that the ultimate bond 

strength is in close proximity to the rock’s cohesion value.  

A limited amount of data is reported on measured strength of the caliche. Cibor 

(1983) reports a range of 576 ksf to 1,440 ksf (4,000 to 10,000 psi) for compressive 

strength of competent caliche in the Las Vegas Valley. 

O’Neill  et  al. (1996) focused on predicting the resistance-settlement behavior of 

individual  axially  loaded  drilled  shafts  in  intermediate  geomaterials  (IGM’s).  

The  design  model  included  the  variables  described  earlier  and  has  a  sound 

analytical  basis.  Its appropriate  use,  however,  requires high-quality,  state-of-the-

practice sampling  and  testing  and  attention  to  construction  details.  The  method 

is  based  on  the finite  element  model  of  Hassan  (1994) . The authors give a 

simple method for estimating fs in the referenced report.  If the interface shear 

strength parameters are not known, the following approximation could be used: 
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 �� =
��

2
 (3-4) 

O’Neill et al. (1996) recommend using a series of tables from Carter and Kulhawy 

(1988; 1992a; 1992b) However, those tables can be included under one table, Table 

3-2, which gives adjusted apparent values of fmax. 

Table 3-2: Adjustment of fs for Presence of Soft Seams (M. O'Neill et al., 1996). 

 

Rowe  and  Armitage (1984) provided  theoretical  solutions  from  which  a 

comprehensive  design method  was  developed to  estimate rock  socket  settlement  

and  to assure safety against bearing failure. Rowe and Armitage (1987) outline a 

specific design method for soft rock, based on the LRFD concept. The, design values 

for unit side resistance and mass modulus of the rock are estimated from equations 

(3-5) and (3-6). 

 ����(���) = 0.7�[��(���)]�.� (3-5) 

 ��(���) = 0.7{215[��(���)]�.�} (3-6) 

RQD (%) 
fmax/fs 

Closed Joints Open Joints 

100 1 0.84 

70 0.88 0.55 

50 0.59 0.55 

20 0.45 0.45 

<20 -- -- 
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� = 0.45[��(���)]�.�  for clean sockets, with roughness R1, R2 and R3 (Pells, 

Rowe, & Turner, 1980) and � = 0.6[��(���)]�.� for clean sockets, with roughness 

R4 (Pells et al., 1980).  

Kulhawy and Phoon (1993) developed expressions for the unit side resistance  for 

drilled  shafts in soil  and  for rock  sockets  from the  analysis  of 127  load tests  in 

soil  and 114 load tests in rock. On the basis of the load test data, Kulhawy and Phoon 

also suggest that peak unit ide resistance, fmax, be computed in general for rock 

sockets from 

 
���

��
= � �

��

2��
�

�.�

 
(3-7) 

Ψ is quantitative roughness factor for design, the Ψ value for when the borehole is 

very rough (e.g., roughened artificially) is 3, 2 for normal drilling conditions, and 1  

for conditions that produce “gun-barrel-smooth” sockets. 

3.1.1 Rock/Shaft Joint Stiffness 

In a socket, the normal stresses against the geomaterial at the interface that are 

generated by dilation depend on the radial stiffness of the rock, which can crudely be 

characterized by its Young’s modulus (Nam, 2004). It may therefore be expected that 

rocks with low RQD’s will result in sockets with lower side resistance than rocks with 

higher RQD’s, for the same strength of intact rock. 

The observation is made that side shear failure does not always occur through 

the rock asperities. If the rock is stronger than the concrete, the concrete asperities, 

rather than the rock asperities, are sheared off. This effect is not likely to occur in the 

soft rock formations; however, in harder rock, the side resistance should be checked 
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considering both possibilities. This is often done at the design level by using both the 

qu of the rock and the f'c of the concrete in the design formulae for side resistance.  

3.2 Base Resistance of Rock Sockets 

Base resistance in rocks is more complex than in soil because of the wide 

range of possible rock mass types. Many failure modes are possible depending upon 

whether rock mass strength is governed by intact rock, fractured rock mass or 

structurally controlled by shearing along dominant discontinuity surfaces. 

Discontinuities can have a significant influence on the strength of the rock mass 

depending on their orientation and the nature of material within discontinuities (Pells 

& Turner, 1980).  

It is common to have information on the uniaxial compressive strength of 

intact rock (��) and the general condition of rock at the base of a shaft. Empirical 

relationships between nominal unit base resistance ( ��� ) and rock compressive 

strength can be expressed in the form: 

 ��� = ��
∗�� (3-8) 

Where, The value of ��
∗ is a function of rock mass quality and rock type, where rock 

Mass quality, in essence, expresses the degree of jointing and weathering. Analogous 

to the ultimate side shear resistance, many attempts have been made to correlate the 

end bearing capacity, ��� to the unconfined strength, �� of intact rock. Some of the 

suggested relations are shown in Table 3-3. 
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Table 3-3: Base Resistance of Rock Sockets 

Reference ��
∗ Notes 

Teng (1962) 5-8  
Coates (1966) 3  

Rowe and Armitage(1987) 2.7  
ARGEMA (1992) 4.5 ��� < 10��� 

 

Kulhawy and Goodman (1980) presented the following relationship originally 

proposed by Bishnoi (1968): 

 ��� = ����
∗ (3-9) 

Where � =correction factor depending on normalized spacing of horizontal joints 

(spacing of horizontal joints/shaft diameter); �=cohesion of the rock mass; and ��
∗= 

modified bearing capacity factor, which is a function of the friction angle � of the 

rock mass and normalized spacing of vertical joints. 

The Canadian Foundation Engineering Manual (1985) proposed that the ultimate 

bearing pressure can be calculated using the following equation 

 ��� = 3������ (3-10) 

In which: 

 ��� =
3 +

�
�

10 �1 + 300
�
��

�.� (3-11) 

s = spacing of the discontinuities; B = socket width or diameter; g = aperture of the 

discontinuities; � = 1 + 0.4 �
�

�
� ≤ 3.4 = depth factor; and L = socket length. In 

general the method will apply only if  
�

�
  ratios lie between 0.05 and 2.0 and the values 

of  
�

�
 is between 0 and 0.02. 
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It is common to design for frictional capacity and neglect end-bearing effects in shafts 

socketed into rocks. This is due to the need for inspection  and  cleaning  of  the  pile  

base  if  an  end-bearing  load  effect  is  included; however, the shaft bottom should 

always be partially cleaned of loose rock/soil (M. W. O'Neill & Reese, 1999). 

3.3 Summary 

A few published design methods for the estimation of the performance of 

drilled shafts in rocks have been reviewed. The most important parameters that affect 

the capacity of a drilled shaft socket in soft rock are the compression strength of the 

rock, the Young’s modulus of the  rock,  the  pattern  of  roughness  that  develops  on  

the  interface  due  to construction  (possibly  a  function  of drilling  tool  and  rock  

formation),  the diameter of the socket,  the presence or absence of smear on the 

socket walls, and the size, orientation and infill characteristics of the rock joints. The 

most important characteristics that influence the side resistance appear to be strength 

of the rock mass and the roughness of the sides of the borehole.  

site-specific field loading tests reduce some of the variability associated with 

predicting performance, the use of larger resistance factors are justified when loading 

tests are performed at the project site (Brown et al., 2010). Loading tests are 

performed for two general reasons:  

1) to obtain detailed information on load transfer in side and base resistance 

to allow for an improved design ("load transfer test"). 

2)  to prove that the test shaft, as constructed, is capable of sustaining a load 

of a given magnitude and thus verifying the strength and/or serviceability 

requirements of the design ("proof test"). 
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4 Load Test 

In spite of the most thorough efforts to correlate drilled shaft performance to 

geomaterial properties, the behavior of drilled shafts is highly dependent upon the 

local geology and details of construction procedures. This makes it difficult to 

accurately predict strength and serviceability limits from standardized design methods 

such as those given in this manual. Site-specific field loading tests performed under 

realistic conditions offer the potential to improve accuracy of the predictions of 

performance and reliability of the constructed foundations. Because site-specific field 

loading tests reduce some of the variability associated with predicting performance, 

the use of larger resistance factors are justified when loading tests are performed at 

the project site. 

The predominant methods used for static load testing of drilled shafts include 

conventional top-down static loading tests with a hydraulic jack and reaction system, 

bi-directional testing using an embedded jack, Each of these methods has advantages 

and limitations in certain circumstances and experienced foundation engineers (like 

mechanics) know how to use all the tools in their toolbox. A brief description of each 

of these methods is provided below. 

4.1 Conventional Top-Down Test 

The most reliable method to measure the axial performance of a constructed 

drilled shaft is to apply static load downward onto the top of the shaft in the same 

manner that the shaft will receive load from the structure. The most common reaction 

system used with a conventional static load test is comprised of a reaction beam with 

an anchorage system, as shown in Figure 4-1. 
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Figure 4-1: Conventional Static Load Test on a Drilled Shaft 

The recommended loading procedure for static testing follows the ASTM 

D1143 “Procedure A: Quick Test” loading method. This procedure requires that the 

load be applied in increments of 5% of the “anticipated failure load” which should be 

interpreted as the nominal axial resistance of the shaft. Each load increment is 

maintained for at least 4 minutes but not more that 15 minutes, using the same time 

interval for all increments. After completion of the test, the load should be removed in 

5 to 10 equal decrements, with similar unloading time intervals. Load, displacement, 

strain, and any other measurements should be recorded at periods of 0.5, 1, 2, and 4 

minutes and at 8 and 15 minutes if longer intervals are used. Periodic measurements 

of the movements of the reaction system are also recommended in order to detect any 
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unusual movements which might indicate pending failure of an anchor shaft or other 

component.  

4.1.1 Conventional Load Tests in Caliche  

The purpose of the test program was to determine ultimate failure parameters 

for the upper caliche deposit, the soil zone immediately below the upper caliche 

deposit, and the load distribution and settlement of a full scale pile at the design load 

of 1,500 tons (Stone Jr, 2009). The upper caliche deposit included a 2 foot thick soil 

layer from 14 to 16 feet below grade. A second layer of caliche was encountered at a 

depth of about 40 feet below grade, which was 7.5 feet in thickness.  The water level 

at the time of the boring was recorded at a depth of 19 feet.  The upper 2.5 feet of the 

cemented deposit is logged as a cemented sand and gravel material which usually has 

a lower strength than the caliche. 

From the first test, it was concluded that less than 10 percent of the applied top 

load was actually being applied to the test section due to friction in the upper soils and 

caliche.  Following the air drilling process to isolate the pile from the upper caliche, 

second test pile showed a geotechnical failure in friction of the soil below the upper 

caliche deposit.  The peak unit side shear resistance was about of 5 ksf.  An ultimate 

load transfer value of 25 ksf was obtained in the upper caliche zone following 

fracturing by pre-drilling, 

The study also showed that, the settlement for the introduce foundation systam 

is mostly controlled by caliche layers that bond the drilled shaft. 2-D and 3-D finite 

element software are utilized to predict the behavior and settlement of introduced 

foundation system.  
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4.2 Bi-directional Load Test (Osterberg Test) 

The method of bidirectional load test on bored piles was modified by 

Osterberg (1984) with the use of a loading device called an O-cell placed on or near 

the bottom of the pile, which when internally pressurized applies an equal upward and 

downward load and, thus separately determining the side shear and end-bearing. 

Osterberg cell (O-cell) bi-directional testing method enables relatively low-cost, high-

capacity static load testing of bored piles that were otherwise prohibitively expensive 

or technically impractical. The genius behind the innovation is a specially designed 

hydraulic jack (O-cell assembly) cast directly into the pile at a predetermined location 

shown in Figure 4-2. After curing or set-up, the O-cell is hydraulically pressurized 

from the surface, simultaneously loading the pile section above the O-cell and the pile 

section below it. By loading the pile internally, the pile component above the O-cell 

acts as reaction for loading the pile component below the O-cell, and vice-versa. As 

the load is applied during testing, electronic sensors measure the displacement of both 

pile sections. In this way, the O-cell simultaneously tests the end bearing and skin 

friction and quantifies their resistances individually, thereby maximizing the 

information obtained. 
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Figure 4-2: O-cell Installation in a Drilled Shaft (Caltrans, 1998) 

The O-cell method improves safety and saves time and money because of the 

reduced effort required to prepare for testing. While the O-cell test has become the 

premier method for static load testing of bored piles and auger cast in place piles. A 

schematic load test layout is show in Figure 4-3.  

The O-cell is bounded between two steel plates and the reinforcement cage is 

tack-welded to the steel plates to be able to carry the cage easily. During the load test 

tack-welds break and the two sections are loaded in opposite direction.  
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Figure 4-3: Osterberg Load Test 

The side resistance and end bearing capacity of the drilled shaft is measured easily 

using this method. The test is performed by O-cell expansion moving the upper and 

lower part of the shaft in opposite directions. An example of the produced results is 

brought in Figure 4-4. 

 

Figure 4-4: Typical bi-directional load test results after (J. O. Osterberg, 1998) 
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The results from bi-directional load test should be converted to results from a head-

down test. The succeeding assumptions are followed in order to convert the results: 

1- The shaft is considered rigid.                         

2- The side-shear deflection curve for upward displacement of the shaft in a 

bidirectional test is the same as the downward side-shear deflection 

component of a conventional top-down test when tested in rock. 

3- The end-bearing load-deflection curve obtained from an O-cell test is the same 

as the end-bearing load-deflection curve of a conventional top-down test. 

Pick an arbitrary point on the side shear curve (Upper Section). Find another point on 

the measured end bearing curve (Lower Section) which has the same deflection. Since 

the shaft is assumed incompressible, the top of the shaft moves down the same as the 

bottom in a head-down curve. Since the deflections at both points are the same, the 

load for a head-down test is the sum of side shear and end bearing. By repeating the 

process for several points, the equivalent top down curve equivalent to the measured 

side resistance and measured end bearing curve is determined as shown in Figure 4-5. 

 

Figure 4-5: Equivalent top loaded settlement curve after (J. O. Osterberg, 1998) 
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4.2.1 Elastic Shortening 

The elastic behavior of any column is clearly additional to any settlement in the soil. 

In general, the elastic shortening depends on the development of load transfer 

between the pile and the soil along its length, as well as on any free length or nearly 

friction free length at the pile head, and on the load being transferred at the pile base. 

Elastic shortening is not (as suggested) in general, a linear function for materials like 

concrete, but it may be assumed to follow an elastic function within the usual range of 

testing piles. A simplified method can be used, such as that proposed by Fleming 

(1992). The effect of duration of load needs to be taken into consideration. In most 

materials the creep effect can be significant and is particularly so for large movements 

(England, 1993). Russo et al. (2003) completed numerical simulations and showed 

that the original method is satisfactory when the pile slenderness ratio is less than 

approximately 20. Other researchers (Hossain, Omelchenko, & Haque, 2007; J. Lee & 

Park, 2008; Qudus, Osterberg, & Waxse, 2004; Zuo, Drumm, Islam, & Yang, 2004), 

however, reported that the equivalent top-loaded displacement curve that does not 

consider elastic shortening of the pile are stiffer than conventional top-down load-

displacement curves. These approaches neglects that the upward movement starts by 

mobilizing the stiffer shaft resistance at the depth of the cell, whereas the head-down 

test starts by mobilizing the less stiff load-movement response near the pile head and 

vice versa. A new approach have been presented by Kim and Mission (2010) 

presented a modified method for evaluating the elastic shaft shortening from the skin-

friction load component in a head-down test by using the measured data of the upward 

displacement curves in a bottom-up load test of a pile. Fellenius et. al (1999) has 

made several finite element method (FEM) studies of an OLT in which he adjusted 

the parameters to produce good load-deflection matches with the OLT up and down 
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load-deflection curves. According to Fleming (1992), the total elastic compression is 

the summation of the elemental shortening. Theoretical elastic compression in top 

loaded test based on pattern of developed side shear stress is calculated using 

Equation (A- 2. 

 �↓ = [(��)�↓
� + (1 − ��)�]

�

��
 (4-1) 

And to model the elastic compression of the upper section of the pile above the point 

of application of load, is calculated using  

 �↑ = [(��)�↑
�]

�

��
 (4-2) 

To estimate the top down elastic behavior, it is possible to subtract from the total for 

the section, as in equation (4-1), the elastic compression integrated already in the 

measured upward response, as in equation (A- 2. Alternatively, it can be recomputed, 

but now the friction is effective from the top. 

4.2.2 Disadvantageous of Osterberg Test Method 

There is little evidence that drilled shafts deriving axial resistance in soil 

exhibit any significance difference in behavior associated with direction of loading. 

Although not proven theoretically, the side-shear deflection curve for upward 

displacement of the shaft in a bi-directional test is the same as the downward side-

shear deflection component of a conventional top-down test when tested in rock (J. O. 

Osterberg, 1998). The assumption may be correct when the ultimate skin resistance is 

reached in the test.  

McVay et. al (1994) performed a numerical study to understand the different 

between upward and downward load distribution behavior in drilled shafts. They have 

pointed out differences between O-cell test conditions and top loading conditions in 
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rock that may require interpretation. The most significant difference is that 

compression loading at the head of a shaft causes compression in the concrete, 

outward radial strain (Poisson's effect), and a load transfer distribution in which axial 

load in the shaft decreases with depth as shown in Figure 4-6.  

 

Figure 4-6: Average Compressive Load in Shaft During Top Down and O-Cell Loading (Brown et al., 2010) 

Dilatancy at the shaft/rock interface adds to the effect, with the result that the 

normal stress at the shaft/rock interface may be less in the O-cell test than in a top-

down load test. Loading from an embedded O-cell also produces compression in the 

concrete but a load transfer distribution in which axial load in the shaft decreases 

upward from a maximum at the O-cell to zero at the head of the shaft. It is possible 

that different load transfer distributions could result in different distributions of side 

resistance with depth and, depending upon subsurface conditions, different total side 

resistance of a rock socket.  

Additionally, in shallow rock sockets under bottom-up (O-cell) loading 

conditions, a potential failure mode is by formation of a conical wedge-type failure 

surface (“cone breakout”). Obviously, this type of failure mode would not yield 

results equivalent to a shaft loaded in compression from the top. A construction detail 
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noted by Crapps and Schmertmann (2002) that could potentially influence loadtest 

results is the change in shaft diameter that might exist at the top of a rock socket.  

4.2.2.1 Current Practice for Interpretation of Osterberg tests 

Because of the different mechanisms of loading in a bidirectional test from 

those of a conventional top-down static load test a curve equivalent to applying the 

load at the top of a pile has to be constructed from the upward displacement side-

shear curve and downward displacement end-bearing curve. Osterberg’s (1998) 

original method for constructing the equivalent top-down load displacement curves 

assumes the pile to be rigid, in which the top and bottom are assumed to move the 

same amount and have the same displacement but different loads. The equivalent top-

download-displacement curve is constructed by adding the side shear to the end-

bearing in the same deflection. Osterberg (1998) and Peng et al. (1999) reported that 

the equivalent top-loaded displacement curves from the bidirectional load test results 

were in reasonable agreement with the conventional top-down test results when the 

pile deformations were small.  

Kim and Mission (2010) suggested that the current practice neglect that the 

soil profile may include a very strong material close to the surface and at a significant 

distance from the O-cell. The upward movement starts by mobilizing the less stiffer 

material, whereas the head-down test starts by mobilizing the stiffer material. The 

results would be different load-movement response near the pile head. The opposite 

of this scenario may also happen but this time the O-cell starts mobilizing the stiffer 

material. The second case is very similar to what happens in Drilled shafts socketed 

into rocks. 
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(Kwon, Choi, Kwon, & Kim, 2005) performed a bi-directional load test using 

Osterberg method and the conventional top-down load were executed on 1.5-m  

diameter cast-in-place concrete piles at the same time and site. The top-down 

equivalent curve constructed from the bidirectional load test results predicted the pile 

head settlement under the pile design load to be approximately one half of that 

predicted by the conventional top-down load test. However, after adding the elastic 

shortening of the pile the interpreted top-down curve shows similar results to 

conventional top-down test as shown in Figure 4-7. 

 

Figure 4-7: Load – Displacement Behavior for Interpreted test data from Osterberg test and conventional 
loading (Kwon et al., 2005) 

The test during the study by Kwon et. al. (2005) was performed in a rock 

socketed drilled shaft in a highly weathered rock. The strain gauges in these two tests 

are installed at different locations and the strain gauge zones do not reach their 

ultimate capacity limit.  
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Paikowsky et al. (2006) believes that differences between O-cell test 

conditions and top loading conditions that may require interpretation. The most 

significant difference is that compressional loading at the head of a shaft causes 

compression in the concrete, outward radial strain (Poisson’s effect), and a load 

transfer distribution in which axial load in the shaft decreases with depth. Loading 

from an embedded O-cell also produces compression in the concrete, but a load 

transfer distribution in which axial load in the shaft decreases upward from a 

maximum at the O-cell to zero at the head of the shaft. It is possible that different load 

transfer distributions could result in different distributions of side resistance with 

depth and, depending on subsurface conditions, different total side resistance of a rock 

socket. In shallow rock sockets under bottom-up (O-cell) loading conditions, a 

potential failure mode is by formation of a conical wedge-type failure surface (“cone 

breakout”). This type of failure mode would not yield results equivalent to a shaft 

loaded in compression from the top.  

Paikowsky et al. (2006) reviewed the available data that might allow direct 

comparisons between O-cell and conventional top-down loading tests on drilled 

shafts. Three sets of load tests reported in the literature and involving rock sockets 

were reviewed. FEM reported by Paikowsky et al. (2006) suggests that differences in 

rock-socket response between O-cell testing and top-load testing may be affected by 

(1) modulus of the rock mass, EM, and (2) interface friction angle, φi. Paikowsky first 

calibrated the FEM model to provide good agreement with the results of O-cell tests 

on full-scale rock-socketed shafts. In the FEM, load was applied similarly to the field 

O-cell test; that is, loading from the bottom upward. The model was then used to 

predict behavior of the test shafts under a compression load applied at the top and 

compared with the equivalent top-load settlement curve determined from O-cell test 
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results. Their study suggested that the equivalent top-load settlement curve derived 

from an O-cell load test may underpredict side resistance for higher displacements; 

that is, the O-cell derived curve is conservative.  

4.2.3 Osterberg test in Las Vegas 

The presence of caliche in Las Vegas soil profile requires a carefully designed 

Osterberg test. The most Competent caliche layers are usually located at 10 to 20 feet 

under the ground surface. Their thickness varies between 5 to 15 feet. Caliche is a 

very hard material and when loaded it shows great load bearing capacity. Therefore, it 

is important to test the caliche layers properly for a good estimation of shaft capacity.  

4.2.4 Osterberg Load Tests in Las Vegas 

A data base of 30 load tests is built for Las Vegas.  The database is 

collected for purposes described below: 

1) Identifying different load test layouts in Las Vegas and determining the 

most appropriate test layout when caliche layers are present. 

2) Studying the load distribution behavior of the drilled shafts in caliche 

A total  of 31  bidirectional load tests  are  summarized  in APPENDIX D,  

which gives general information about the load tests,  including test  location,    

caliche thickness,  shaft  geometry and the maximum load applied during the test. 

Since the performance of drilled shafts in rock varies depending upon its 

geologic formations,  load  test  data  for  drilled  shafts  in  caliche  were  

acquired  from  different locations in Las Vegas.  

The load test data were classified into four categories based on the 

location of O-cell during the test and distribution of caliche layers. Four different 
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scenarios are identified in Las Vegas. Different test layouts are described below: 

1) O-cell is installed above competent caliche layers 

2) O-cell is installed between competent caliche layers or in the caliche 

zone. 

3) O-cell is installed under the caliche very close to caliche. 

4) O-cell is installed under the competent caliche layer and far from 

caliche. 

Different test layouts can be seen in Figure 4-8 

 

Figure 4-8: Different Osterberg Test Layouts in Las Vegas 
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4.2.4.1 O-cell above Caliche 

Caliche layers usually show a great strength during the load tests and drilled 

shafts usually require a significant amount of load to be mobilized in soil profiles that 

have caliche layers. The most competent caliche layers usually occur in the upper 

sections of the soil profile. If the O-cell is installed above caliche the soil above it 

may not produce enough side resistance to fully mobilize the caliche layer. The result 

will be limited movement of the caliche in the downward mobilization of the lower 

part of the shaft and failing the upper section of the test shaft as shown in Figure 4-9.  

 

Figure 4-9: O-cell Load-Movement Curve 

 The applied load from O-cell is enough to fail the upper part of the test shaft 

but it is not close enough to mobilize the lower part as expected. The test did not 

provide the engineer with good measurements for caliche capacity. The results may 

be an unnecessary long shaft. 
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4.2.4.2 O-cell between Caliche Layers 

If the O-cell is installed between caliche layers or in the caliche zone, both 

upper and lower part of the shaft will develop enough resistance to measure the 

capacity of both caliche layers. The test results are expected to show limited to fully 

mobilization of upper and lower section of the shaft. The Load- Movement curve for 

this scenario is shown in Figure 4-10. 

 

Figure 4-10: O-cell Load-Movement Curve 

 

4.2.4.3 O-cell Under the Caliche (Close to Caliche) 

One of the appropriate load test layouts is when the O-cell is installed 

underneath the caliche layer and the lower shaft sections extends to a lower depth. 

The extension into lower depths provides enough resistance in the lower section of the 

shaft to mobilize the caliche in the upper section. Since caliche is stronger than typical 

soil layers in order to mobilize it larger amount of load needed compared to a general 

soil profile. In order to generate that load and prevent the early failure in the opposite 
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direction (lower section of the shaft), this section is extended into lower depths to 

provide the system with the counter resistance to balance out the resistance from 

caliche. The test layout results in failure of both lower section and upper section at the 

same time as shown in Figure 4-11. 

 

Figure 4-11: O-cell Load-Movement Curve 

 Traditionally, Osterberg test is designed in a way that ideally, the resistance 

from lower section of the shaft stays in balance with the resistance of the upper 

section of the shaft. In this layout this expectations are met.  

4.2.4.4 O-cell Under the Caliche (Far from Caliche) 

Unlike Previous scenario when the O-cell is installed far from caliche 

competent caliche layers, the lower section of the shaft may not provide enough 

resistance to withstand the reaction from the upper section. This scenario is the 

reverse of first scenario where the soil failed before mobilizing caliche layers except 

this time the lower part of the shaft fails before the upper section of the shaft. The test 
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layout results in failure lower section and limited mobilization of upper section is 

shown in. 

 

Figure 4-12: O-cell Load-Movement Curve 

The first and fourth scenario could both result in unnecessarily conservative 

designs since the measurements were not able to provide ultimate values in one of the 

shaft sections. 

Four different scenarios for load tests in caliche are introduced. By experience 

local engineering firm stopped designing the tests similar to the first scenario since 

the test results are more or less worthless. The second scenario where the O-cell is 

installed between two competent caliche layers may be a good layout to measure the 

capacity of both caliche layers in one test. Also, the results from the third scenario 

show that this test layout is a good way of measuring the capacity of upper and lower 

section of the shaft.  The fourth scenario as well as the first scenario could result in an 

unnecessarily long shaft. The third and fourth scenario are the most used test layouts 
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in Las Vegas and the author decided to simulate these two scenario and study the 

effect of O-cell location on the interpretation of test results. 

4.2.5 Reference Beam Readings 

The Osterberg test results are investigated for one of the projects at which the 

caliche layer is very close to the ground surface. Reference beam reading for the test 

preformed on this site is presented in Table 4-1. The readings are for the maximum 

applied load by the O-cell and after unloading. The values shown in this table indicate 

there is reversible or elstic movement in the reference beam during the test. 

Table 4-1: Reference Beam Movement 

  Reference beam 

Project Max  After Unloading 

Desert Inn  0.037 0.006 

 

Reference beam values are usually affected by the soil heave during the test 

when the body of the soil moves as the test shaft is driven upward. This value in a 

normal geological setting where no caliche exists is an irreversible value. During 

unloading it has been observed that the reference beam readings decrease significantly 

and will get close to zero. The reference beam reading indicates, there is another 

resisting element beside side resistance which behaves elastically. It could be 

perceived from the test results that the existing caliche layer might have been bent 

during the test and since the flexural behavior was completely elastic the reference 

beam readings decrease to zero after unloading. 

If the readings from reference beam remained the same during unloading it 

could be concluded that caliche does not bend during the loading and all the 

deformation is caused by sliding between the shaft and caliche but the value of 
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reference beam movement drops during unloading meaning the ground heave that 

occurred during the test is reversible. In conclusion if there is significant difference in 

the reference beam movement during the test and after unloading it means there is a 

reversible movement as a result of caliche presence that causes heaving during the 

test. 

As caliche occurs in deeper locations in the soil profile, the overburden soil 

resist the flexural deflection of caliche during the test. The reference beam readings 

when caliche is at a deeper location are usually irreversible meaning the deflection is 

mostly due to sliding between the shaft and soil/caiche layers. 

4.3 Validity of Load Test Data 

The gathered database includes all the Osterberg load tests in Las Vegas. One 

of the common problems that occur during the O-cell load test in soil profiles with 

caliche is the unrealistic readings from the strain gauges. In the provide data base the 

strain gauge readings have been studied carefully and any results that were to some 

extent unrealistic, were reported and eliminated before numerical calibration and 

analysis. The evaluation criteria are listed below: 

1) The strain gauges readings should be positive 

2) Strain gauges readings should be less than the maximum applied load by 

O-cell 

3) The strain gauge zone average movement should be less than the 

maximum movement of the drilled shaft in any direction. 

4) Load test that experienced local crushing in the shaft concrete should be 

identified. 
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5) If the total length of the shaft does not fall within the depths that contain 

caliche, that test report is eliminated. 

Following the mentioned criteria a few of the load test reports were set aside 

for the analysis purposes and the rest are eliminated from this study. 

- 4 of the tests are eliminated only because the average strain gauges zone 

movement exceeds the maximum shaft movement. Figure 4-13 shows the 

strain zone unit shear stress vs. average movement which has a maximum of 

0.32 in. On the other hand, Figure 4-14 shows the upward and downward shaft 

movement with the gross applied load from O-cell. It can be observed that the 

maximum upward movement of the shaft is less than the strain gauge zone 

average movement. The strain gauge zones average movement should be less 

than the shaft movement at all time. The incorrect calculation of conversion 

factors for strain gauge readings results in incorrect stiffness of the shaft and 

hence, the average movement values turn out to be incorrect. In order to use 

these four important test, these values should be fixed by reevaluating the 

stiffness of the shaft and recalculating the strain gauge zone movements. 
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Figure 4-13: Net Unit Shear vs. Upward Average Zone Movement for Echelon TS-2 (LoadTest, 2007) 

 

Figure 4-14: Load-Movement for Echelon TS-2 (LoadTest, 2007) 
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- 3 other tests are eliminated because the total length of the shaft does not fall 

within the depths that contain caliche. The tests are basically performed in a 

clayey to sandy type of material without any cemented layers present.  

Total of six tests are eliminated from the total numbers. The test for I-215 

Airport Connector project matches the criteria for the fourth extreme case where 

caliche is at a distance from the O-cell. The test for Palm resort matches the criteria 

introduced for the third case where caliche and O-cell are very close to each other and 

O-cell is installed under the caliche. The two selected tests are used individually to 

help calibrate the finite element model that simulates two of the most used test 

layouts. 
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5 Finite Element Modeling and Analysis 

In this chapter, finite element method (FEM) is performed by using PLAXIS 8 

program to simulate the drilled shaft under bi-directional (O-Cell) load test. The main 

objectives of this analysis are to study behavior of drilled shafts under bidirectional 

load, compare results with the field monitoring results and investigate force/stress 

distributions from shaft to surrounding soil and caliche layers. The test procedures of 

these three kinds of methods are simulated by the FEM model.  

The respective results of the tests are compared in the following sections and 

to check on the validity of the first Osterberg’s assumptions which was that the shaft 

resistance-movement curve for upward movement of the pile is the same as the 

downward side-movement component of a conventional head-down test. 

 Furthermore, the results of the finite element analyses are used to determine 

the parameters involved in the approximate design model. The modeling and analyses 

associated with the tests are performed using the commercially available software; 

PLAXIS 8 Professional version 8.2.1 (PLAXIS, 2004). The software provides potent 

capabilities of modeling geomaterial behavior and interface interaction. 

5.1 Finite Element Representation 

Different parts of the finite element modeling are individualized in this section 

by explaining the logic behind any selection in the model. Fifteen-node triangle 

axisymmetric elements were used to represent the concrete shaft, soil layers and 

caliche, which provide a second order interpolation for displacements. The element 

stiffness matrix was evaluated by numerical integration using a total of three Gauss 

stress points (PLAXIS, 2004). The O-cell part of the shaft is simulated as a one foot 
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empty void. The O-cell load is applied at the bottom of the upper section of the shaft 

for upward loading as well as the top of the lower section of the shaft for downward 

loading. The width of the mesh is assumed to be 150 ft. from the center of the shaft 

and the depth of the mesh is twice the length of the shaft. This is approximately about 

200 ft.  

5.2 Constitutive Models 

When the resolution of a geotechnical engineering problem is solved via Finite 

Element analyses, the most crucial step is the choice of the constitutive model for the 

soil. Constitutive model is what defines that if the soil model is created correctly and 

is in conformance with what happens in reality. For instance, within the elastic limits 

(working loading condition), the soil constitutive modeling have been based upon 

Hooke’s law of linear elasticity and for describing soil behavior under collapse state 

Coulomb’s law of perfect plasticity is used because of its simplicity in applications. 

The combination of the two is formulated in an elastic- perfectly plastic framework 

which is known as Mohr-Coulomb model.  The abovementioned constitutive models 

will be used in the PLAXIS models to define the relationship between forces and 

displacements. For each individual part of the numerical model, the constitutive 

model is assigned as follows: 

5.2.1 Drilled Shaft Concrete 

The  shaft concrete  was  assumed  to  be  an  isotropic,  homogeneous  and  

elastic solid with a Poisson's ratio  υ = 0.15, which is typical for drilled shaft (Hassan, 

1994).  
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5.2.2 Soil Layers 

Las Vegas soil stratigraphy consist of 7 to 8 significant soil types including, 

clayey Sand (SC), silty sand (SM), lean clay with traces of caliche or gravel (CL), fat 

clay (CH), sand and gravel (GP, GM, GC) and cemented layers such as cemented 

sand and gravel. The characteristic of each mentioned soil type could vary with depth 

or site location. A Mohr-Coulomb model used to represent the soil layers. The shear 

strength parameters of soil and caliche layers are provided in APPENDIX A. Finite 

element model is calibrated by varying these parameters to match the field load test 

results. Also calculation of Young’s modulus for soil and caliche layers is provide in 

APPENDIX B. 

5.3 Interface Model 

The interface element between the shaft concrete and soil layers are modeled 

as shown in Figure 5-1. The element chose to be part of the soil layer with 0.1 ft 

length. Interface elements are selected for each individual soil and caliche type. 

 

Figure 5-1: Interface Element in PLAXIS model 
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An  elastic-plastic  model  using  Mohr-Coulomb  criterion  was  used  to  

describe  the behavior  of  interfaces  for  the  modeling  of  mass concrete against soil 

layers presented in Table 5-1. These values are intended for mass concrete cast 

against the soil or rock foundation materials listed, and according to Brown, Turner, 

& Castelli (2010) should be suitable for cast-in-place drilled shafts as long as the 

concrete and soil interface was relatively rough.  

Table 5-1: Friction Angle for Mass Concrete against Soil (NAVFAC, 1982) 

Interface Materials 
Friction 

Angle, δ° 

Coefficient of 

Friction, tan δ 

Clean sound rock 35 0.7 

Clean gravel, gravel-sand mixtures, coarse sand 29 to 31 0.55 to 0.6 

Clean fine to medium sand, silty medium to coarse 

sand, silty or clayey gravel 
24 to 29 0.45 to 0.55 

Clean fine sand, silty or clayey fine to medium sand 19 to 24 0.34 to 0.45 

Fine sandy silt, nonplastic silt 17 to 19 0.31 to 0.34 

Very stiff and hard residual or preconsolidated clay 22 to 26 0.4 to 0.49 

Medium stiff and stiff clay and silty clay 17 to 19 0.31 to 0.34 

 

The strength properties of interfaces are linked to the strength properties of a 

rock layer and each data set has an associated strength reduction factor, Rinter, for 

interfaces as following (PLAXIS, 2004): 

5.4 Finite Element Material Color 

A color is assigned to each material through this study. The material color is 

shown in Table 5-2. 
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Table 5-2: Color Guide for PLAXIS material 

Hard Caliche  

Sandy Clay (CL)  

Cemented fine grained material (less strong caliche)  

Clayey Sand (SC)  

Stiff Clay (Usually Fat Clay)   

Sand and Gravel  

Gravelly Clay  or Gravelly Sand  

 

5.5 The effect of O-cell location on the interpretation of Test 

An Osterberg test is designed in a controlled soil environment to better 

understand the effect of O-cell distance to caliche layers on the interpretation of test 

results. A simple soil stratigraphy is selected with sandy clay soil type to perform this 

analysis. The soil profile includes a 10-ft. layer of caliche which at first is located at 

50 ft. bellow the ground surface as seen in Figure 5-2. The O-cell is installed under 

the caliche layer. The test is performed using the material properties shown in Table 

5-3. 

The test results are converted into equivalent top-down load displacement 

behavior. The equivalent test results are then compared to normal displacement of the 

shaft under loading from the top. The loads in this scenario are similar to what is 

selected for Osterberg test model. 
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Table 5-3: Material Properties for Sensitivity Case I 

Material Properties of Sensitivity Case 1 

Parameter Unit Concrete 
Sandy 
Clay 

Caliche 

Material Model   
Linear 
Elastic 

M-C M-C 

Type of Behavior   Drained Drained Drained 
Dry Unit Weight kcf 0.15 0.12 0.16 
Saturated Unit 

Weight 
kcf 0.15 0.13 0.16 

Young's Modulus ksf 500,000 4000 280,000 
Poisson's ratio   0.15 0.3 0.2 

Cohesion ksf -- 1 10 

Friction Angle Degree -- 28 35 

Interface Material 

Material Model Unit   M-C M-C 

Type of Behavior   -- Drained Drained 

Dry Unit Weight kcf -- 0.12 0.16 
Saturated Unit 

Weight 
kcf -- 0.13 0.16 

Young's Modulus ksf -- 4000 280,000 

Poisson's ratio   -- 0.3 0.2 
Cohesion ksf -- 0.3 10 

Friction Angle Degree -- 23 35 

 

Figure 5-2: Osterberg Test with 10 ft. Caliche close to O-cell 
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The caliche layer is moved to higher elevations further from the O-cell 

location. The equivalent load-settlement from Osterberg interpretation and Top-down 

load are compared again and the results are saved. Caliche layer is moved to higher 

elevation in each analysis. In the final analysis the caliche layer is located at the 

furthest possible location from O-cell Figure 5-3. The Equivalent top-down behavior 

from Osterberg test is again compared to top-down loading. 

 

Figure 5-3 Osterberg Test with 10 ft. Caliche far from O-cell 

Caliche and soil layer properties were kept the same for all the scenarios 

through this analysis. The only difference was the location of caliche with respect to 

O-cell.   
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5.5.1 Results and Discussion 

The results of this analysis show that location of O-cell with respect to caliche 

layer can affect the interpretation of test results. As shown in Figure 5-4, by 

increasing the distance between O-cell location during the test and caliche layer, the 

settlement ratio calculated from Osterberg test results interpretation and conventional 

top-down results will decrease. This figure shows that for the least discrepancies 

between the Osterberg equivalent top-down results and an actual top-down loading 

scenario, the O-cell should be installed as close as possible to the caliche layer. 

 

Figure 5-4: O-cell Location and Comparision of Upward and Downward Settlement 

 

The caliche layer may not be mobilized enough for measuring its capacity 

when the O-cell is at a far distance from this layer. The load generated by O-cell 

dissipates through the soil layers and a small portion reaches the caliche layer close to 

the ground surface. When loaded from the top the same caliche layer is mobilized 

more and produced more resistance resulting in less settlement than what is expected 

from interpretation of the test results.
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6 Case History Analysis 

The analysis using PLAXIS consisted of the following two steps: The first 

step was to apply the initial stresses due to the self-weight of caliche and soil layers. 

The second step to apply the structural loads. The analysis was verified by comparing 

the predicted load-settlement and t-z curves with those measured in field load tests. 

The analysis procedure is calibrated for three different cases depending on the 

location of caliche layers with respect to O-cell. To determine the difference between 

upward ultimate shaft resistance and downward ultimate shaft resistance is soils with 

caliche layers, two cases are designed and simulated using finite element software, 

PLAXIS 8. 

6.1.1 Case History I: Caliche at the Furthest Location from O-Cell 

The Osterberg test that was selected to be used for simulation purposes is for 

“I-215 Airport Connector” project. Caliche layers are concentrated very close to the 

ground surface and at the distant location from the O-cell as shown in Figure 6-1. 

Caliche layers are located at 18 and 30 feet and their thicknesses are 4 and 6 feet 

respectively. The boring log for this report is included in Appendix A. The O-cell is 

located at the depth of 80 ft. which is 50 ft. bellow the lower caliche layer and is 

loaded up to 3,316 kips.  The one strain gauge used in the upper part of the shaft is 

located at 50 ft. deep.  
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Figure 6-1: Schematic Section of Test Shaft 

The PLAXIS model is created using the axisymmetric option which is the 

closest tool to a 3-dimentional analysis in this version. Dimensions and material 

properties are assigned to each element. The interface element is assigned to the soil-

shaft interface. Very fine mesh is selected for the analysis purposes. The Osterberg 

test is performed in 15 loading stages up to 3316 kips. The same loading schedule is 
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applied to the PLAXIS model using the “Stage Construction” option. The water table 

is at 85 feet which is relatively low for Las Vegas soil profile. The PLAXIS model is 

shown in Figure 6-2. 

 

Figure 6-2: PLAXIS Simulations for I-215 and Airport Connector Load Test 

6.1.1.1 Step-1: Calibration and back analysis for Osterberg Test 

The Osterberg test for “I-215 Airport Connector” is simulated using PLAXIS 

8 to determine the correct material properties. The strength properties of soil layers 

and caliche are subject to change within the allowable range from laboratory data to 

match the field measurements. In the analysis for both the O-cell test and 
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conventional head-down test, the following settings were assigned and some 

assumptions were made: 

1) Axisymmetric model was adopted considering the boundary conditions 

of the pile load test.  

2) Mohr Coulomb failure criterion was used for soil types and caliche 

layers.  

3) Interface elements were incorporated along the shaft to simulate the 

soil-pile interaction and extend 0.1 ft. beyond shaft perimeter.  

4) The O-cell is simulated with a 1-ft thick hallow space. For upward and 

downward loading scenarios the shaft is loaded in the hollow space 

provided. 

5) According to the geotechnical description of the gathered borehole 

logs, all soils are sandy clay, clayey sand, stiff clay, cemented sand and 

gravel or caliche and behavior of all the soil strata can be assumed to 

be undrained since rapid loading method is used for Osterberg test. 

6) Most of the soils can be regarded as normally consolidated according 

to the laboratory consolidation test result, although some 

overconsolidation of the stiffer soils may be possible.  

7) No dilatancy effect of the soil was considered.  For caliche the 

dilatancy of 1 degree is assumed. 

8) The elastic compression of the pile is taken into account.  
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The calibrated PLAXIS model and actual Osterberg test Load-Movement 

curves are shown in Figure 6-3. There is a good match between the PLAXIS model 

and the actual test. The Calibration is only performed for the loading scenario 

unloading has not been addressed in this study. 

 

Figure 6-3: Osterberg Test Load- Movement Curve 
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6.1.1.2 Step-2: Material Properties and Soil Profile 

The ACI formula (Ec=57000√fc’) was used to calculate an elastic modulus for 

the pile concrete, in which fc’ was the concrete unconfined compressive strength and 

was reported to be 585,000 ksf. This combined with the area of reinforcing steel and 

nominal pile diameter, provided average pile stiffness (EA) of 7360000 kips in the 

upper cased portion of the shaft.  

No field test data on the effective soil properties such as c’ and φ’, undrained 

analysis with direct input of the undrained shear strength (Cu) and φ=φu are available 

for the soil model. Drained soil parameters were used instread of undrained strength 

properties. The drained strength parameters are determined based on the field 

investigation and range of accepted correlations in local practice and lab results. The 

soil properties that were adjusted according to the comparison on back-analysis result 

and measured data to get the best fit are summarized in Table 6-1 together with the 

shaft concrete characteristics. In the material section a different material is assigned 

for the interface element. The interface has the elastic characteristics of the original 

material with less strength. The strength reduction is shown by decreasing the value of 

φ and c. 
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Table 6-1: PLAXIS Material Properties for I-215 and Airport Connector 

Material Properties of I-215 and Airport Connector 

Parameter Unit Concrete 
Clayey 
Sand 

Sandy 
Clay 

Cemented Sand and Gravel Caliche Stiff Clay 

Material Model   
Linear 
Elastic 

M-C M-C M-C M-C M-C 

Type of Behavior   Drained Undrained Undrained Undrained Undrained Undrained 

Dry Unit Weight kcf 0.15 0.12 0.12 0.12 0.16 0.13 

Saturated Unit Weight kcf 0.15 0.12 0.13 0.13 0.16 0.13 

Young's Modulus ksf 445,600 1000 2000 4000 10,000 1000 

Poisson's ratio   0.15 0.3 0.3 0.3 0.2 0.4 

Cohesion ksf -- 0.1 0.3 0.1 150 0.1 

Friction Angle Degree -- 35 28 45 35 28 

Interface Material 

Material Model Unit   M-C M-C M-C M-C M-C 

Type of Behavior   -- Drained Drained Drained Drained Drained 

Dry Unit Weight kcf -- 0.12 0.12 0.12 0.16 0.13 

Saturated Unit Weight kcf -- 0.12 0.13 0.13 0.16 0.13 

Young's Modulus ksf -- 1000 2000 4000 10,000 1000 

Poisson's ratio   -- 0.3 0.3 0.3 0.2 0.4 

Cohesion ksf -- 0.1 0.3 0.1 150 0.1 

Friction Angle Degree -- 22 23 30 28 18 

57 
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6.1.1.3 Step 3: Conventional Loading 

The calibrated model is then used for conventional head-down loading 

scenario using the same amount of load applied by the O-cell except this time it is 

applied from the top shown in Figure 6-4.  

 

Figure 6-4: PLAXIS Simulation for Conventional Head-Down Loading 

The results of both loading scenarios are compared in the following sections in 

form of load transfer, t-z curves and global load-settlement graph. 

6.1.1.4 Load Transfer Curve 

The load transfer curves for both Osterberg and conventional loading are 

displayed in Figure 6-5. The soil layers between caliche and O-cell are carrying more 
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loads in the upward loading compared to when the test is being performed from the 

top. Figure 6-5 shows that more load has been carried by caliche layers in the 

conventional loading scenario.  

 

Figure 6-5: Load Transfer 

The load transfer curve shows that the top load of 6400 kips is decreased to 

about 4500 kips from 19 to 36 ft. while the load transfer curves of O-cell tests shows 

only a decrease of 500 kips within the same length. The PLAXIS shows that the 

amount of dissipated load in the caliche from the conventional loading scenario is 

more than three times of what is calculated using the traditional method. Since caliche 

layer is at a distant location from to O-cell, it may not be fully mobilized during the 

Osterberg test. Therefore, the measured load bearing capacity of caliche is a fracture 

of its full capacity. Unlike Osterberg test, similar load from the top can mobilize 

caliche more and consequently more unit shear stress will be developed.  
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6.1.1.5  t-z Curve 

The t-z curve from the Osterberg test result and calibrated model are compared 

to theoretical conventional loading. Figure 6-6 consists of t-z curve for points between 

strain gauge location at 50 feet and the top of the shaft at 20 feet. Figure 6-7 consists 

of t-z curve for the points between 50 and 80 ft. (O-cell location).   

As depicted in Figure 6-6 and Figure 6-7, the calibrated PLAXIS model gives 

fairly close result to the O-cell test; the shaft shear resistance in between 50-80 ft. is 

reaches its ultimate capacity of about 6 ksf during the load test while the shear 

resistance of shaft between 20-50 ft. reaches 3 ksf at a relatively linear-elastic 

condition. The same load is applied from the top and the unit shear resistance between 

20 to 50 ft. reaches to 6 ksf when the shear resistance between 50 and 80 ft barely gets 

close to 3 ksf. These results agree well with the assumption that the caliche layers 

located at a distant location from O-cell are not fully mobilized to develop their 

ultimate capacity.   
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Figure 6-6: t-z Curve between 20 -50 ft. 

 

Figure 6-7: t-z Curve between 50 -80 ft. 
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6.1.1.6 Equivalent Load-Settlement Curve 

The theoretical head-down load-settlement graph is re-constructed and 

compared with the equivalent load-movement curve traditionally obtained from O-

cell test results. Figure 6-8 shows the load- settlement results for the traditional 

method and the new analysis. For a certain displacement the associated load is less in 

the new analysis compared to what it is being used traditionally.  

 

Figure 6-8: Equivalent Load Settlement Curve for Traditional Method and Proposed Method 
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6.1.2 Case History II: Caliche Close To O-Cell 

The Osterberg test that was selected to be used for simulation purposes is for 

“Palm Resort” project. O-cell is installed closed to Caliche layers. There are 3 more 

drilled shaft tests in the database that have the same layout. PLAXIS 8 is used to 

simulate the Osterberg test. The O-cell is located at 40 ft. where the 15 ft. caliche 

ends. The strain gauges are located at 30 and 20 ft. in the shaft. The test layout can be 

seen in Figure 6-9. The O-cell is loaded up to 6128 kips during the test. 

 

Figure 6-9: Schematic Section of Test Shaft 
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The PLAXIS model is created using the axisymmetric option which is the 

closest tool to a 3-dimentional analysis in this version. Dimensions and material 

properties are assigned to each element. The interface element is assigned to the soil-

shaft interface. Very fine mesh is selected for the analysis purposes. The Osterberg 

test is performed in 10 loading stages up to 6128 kips. The same loading schedule is 

applied to the PLAXIS model using the “Stage Construction” option. The water table 

is at 22 feet which is right above the beginning of caliche layer. The PLAXIS model 

is shown in Figure 6-10. 

 

Figure 6-10: PLAXIS Simulations for Palm Load Test 
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6.1.2.1 Step-1: Calibration and back analysis for Osterberg Test 

The Osterberg test for “Palm Resort” is simulated using PLAXIS 8 to 

determine the correct material properties. The strength properties of soil layers and 

caliche are subject to change within the allowable range from laboratory data to match 

the field measurements. In the analysis for both the O-cell test and conventional head-

down test, the following settings were assigned and some assumptions were made: 

In the analysis for both the O-cell test and conventional head-down test, the 

similar settings as the first case history were assigned.  

The calibrated PLAXIS model and actual Osterberg test Load-Movement 

curves are shown in Figure 6-11. There is a good match between the PLAXIS model 

and the actual test. The Calibration is only performed for the loading scenario 

unloading has not been addressed in this study. 

 

Figure 6-11: Osterberg Test Load- Movement Curve 
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6.1.2.2 Step-2: Material Properties and Soil Profile 

The ACI formula (Ec=57000√fc’) was used to calculate an elastic modulus for 

the pile concrete, in which fc’ was the concrete unconfined compressive strength and 

was reported to be 445,000 ksf. This combined with the area of reinforcing steel and 

nominal pile diameter, provided average pile stiffness (EA) of 5600000 kips in the 

upper cased portion of the shaft.  

No field test data on the effective soil properties such as c’ and φ’, undrained 

analysis with direct input of the undrained shear strength (Cu) and φ=φu are available 

for the soil model. Undrained soil parameters were determined here according to the 

field investigation and range of accepted correlations in local practice and lab results 

which are mostly performed assuming a drained test environment. 

The material properties used to calibrate the PLAXIS model are presented in 

Table 6-2. In the material section a different material is assigned for the interface 

element. The interface has the elastic characteristics of the original material with less 

strength. The strength reduction is shown by decreasing the value of φ and c based on 

the reduction factors introduced by NAVFAC (1982). 
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Table 6-2: PLAXIS Material Properties for Palm 

Material Properties of Palm 

Parameter Unit Concrete 
Clayey 
Sand 

Sandy 
Clay 

Cemented Sand and Gravel Caliche 
Stiff 
Clay 

Material Model   
Linear 
Elastic 

M-C M-C M-C M-C M-C 

Type of Behavior   Drained Drained Drained Drained Drained Drained 

Dry Unit Weight kcf 0.15 0.12 0.12 0.12 0.16 0.13 

Saturated Unit Weight kcf 0.15 0.12 0.13 0.13 0.16 0.13 

Young's Modulus ksf 445,600 1000 1500 3000 560,000 1000 

Poisson's ratio   0.15 0.3 0.3 0.3 0.2 0.4 

Cohesion ksf -- 0.8 1 0.1 20 0.2 

Friction Angle Degree -- 35 28 45 35 30 

Interface Material 

Material Model Unit   M-C M-C M-C M-C M-C 

Type of Behavior   -- Drained Drained Drained Drained Drained 

Dry Unit Weight kcf -- 0.12 0.12 0.12 0.16 0.13 

Saturated Unit Weight kcf -- 0.12 0.13 0.13 0.16 0.13 

Young's Modulus ksf -- 1000 1500 3000 560,000 1000 

Poisson's ratio   -- 0.3 0.3 0.3 0.2 0.4 

Cohesion ksf -- 0.8 1 0.1 20 0.2 

Friction Angle Degree -- 22 23 30 28 18 

67 
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6.1.2.3 Step 3: Conventional Loading 

Similar to the first case, the calibrated model is used to model conventional 

head-down loading scenario using the same amount of load applied by the O-cell 

except this time it is applied from the top which is presented in Figure 6-12. 

 

Figure 6-12: PLAXIS Simulation for Conventional Head-Down Loading 

The results of both loading scenarios are compared in the following sections in 

form of load transfer, t-z curves and global load-settlement graph. 
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6.1.2.4 Load Transfer Curve 

The load transfer curves for both Osterberg and conventional loading are 

displayed in Figure 6-13. The caliche and soil layers carry a relatively similar load 

during the conventional loading compared to when the Osterberg test is being 

performed.  

 

Figure 6-13: Load Transfer 
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caliche. Accordingly, when the load is being applied from the top, the load transfer 

mechanism stays close to the measurements. Unlike the first case, caliche does not 

show any excessive capacity due to further mobilization. 

6.1.2.5 t-z Curve 

The t-z curve from the O-cell test and calibrated PLAXIS model are compared 

to theoretical conventional loading. Figure 6-14 includes t-z curves for points between 

strain gauges located at 35.3 feet and the top of the shaft at 8 feet. Figure 6-15 

includes t-z curves for the points between 35.3 and 48.1 ft. and, Figure 6-16 includes 

t-z curves for the points between 48.1 and 57 ft.  

 

Figure 6-14: t-z Curve between 10 – 20 ft. 
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Figure 6-15: t-z Curve between 20-30 ft. 

 

Figure 6-16: t-z Curve between 30 -40 ft. 
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It can be perceived from Figure 6-14, Figure 6-15 and Figure 6-16, that the 

model follows the same load-settlement path in all strain gauge zones, whether it is an 

Osterberg test or a conventional loading. The geomaterial close to the ground surface 

are mobilized more during a conventional loading compared to when they were 

loaded from the bottom during O-cell test. However, being mobilized more is not 

associated with more loads since they already reached failure during the Osterberg 

test and their capacity is known. The calibrated PLAXIS model gives fairly close 

result to the O-cell test. The results show that when the O-cell is placed close to the 

caliche layer the difference between upward and downward loading is minimal.  

6.1.2.6 Equivalent Load-Settlement Curve 

The theoretical head-down load-settlement graph is re-constructed and 

compared with the equivalent load-movement curve traditionally obtained from O-

cell test results. Figure 6-17 shows the load- settlement results for the traditional 

method proposed by Osterberg (1984) is comparable to when the shaft is loaded 

conventionally from the top. For a certain displacement points the associated load is a 

little more in the proposed method compared to what it is being used traditionally due 

to the presence of cemented geomaterial close to the ground surface.  
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Figure 6-17: Equivalent Load Settlement Curve for Traditional Method and Proposed Method 

6.1.3 Results and Discussion 

Two extreme scenarios were analyzed and the results were presented in the 

previous sections. The difference between the two scenarios was simply the 
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the existing caliche layer can carry more loads compared to what it is tested for. 

Theoretical elastic compression in top loaded test based on pattern of developed side 

shear stress is calculated using equation (6-1). 

 �↓ = [(��)�↓
� + (1 − ��)�]

�

��
 (6-1) 

And to model the elastic compression of the upper section of the pile above the point 

of application of load, is calculated using equation (6-2). 

 �↑ = [(��)�↑
�]

�

��
 (6-2) 

Where, C1 is the centroid of unit side friction values for the strain gauge zones in the 

upper shaft unit as seen on Figure 6-18. To estimate the top down elastic behavior, it 

is possible to subtract from the total for the section, as in equation (6-1), the elastic 

compression integrated already in the measured upward response, as in equation (6-2). 

Alternatively, it can be recomputed, but now the friction is effective from the top. 

 

Figure 6-18: Developed Side Shear Resistance 
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Figure 6-19: Unit Side Resistance and Load-settlement Comparison for O-cell test and Conventional Test 
(Case I) 

During the Osterberg test, the unit side resistance that is developed between 20 

and 50 ft. where the caliche exist is less than what is developed during the theoretical 

conventional loading of the shaft. The value of side resistance during a conventional 

load is at about 6 ksf which is almost twice what is developed during Osterberg test (3 

ksf). Since caliche is located at a far distance from the O-cell, it is not mobilized 

enough to develop full capacity. During the head-down load a better behavior of 

caliche and its capacity can be observed through the developed side resistance value. 

The increase in caliche side resistance will affect the calculations for elastic 

shortening. By increasing the side resistance between 20 and 50 ft. the value of 

centroid for side resistance values “C” increases. By implementing the new “C” value 

in equations (6-1)and (6-2) and the precedent calculations it can be understood that the 

elastic shortening of the shaft decreases. As a results, the settlement in the equivalent 

top-down load-settlement curve decreases. For certain settlement more load can be 

used to design the shaft. 
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For the second case the caliche is very close to the O-cell and because of that, 

it is mobilized as much as the equipment allows us. The other soil layers above 

caliche also partially developed their failure and capacity load through the test. When 

the same load is applied from the top, soil layers in between the caliche and load fail 

and show some excessive movement but no extra side resistance is developed through 

this process. The transferred load eventually reaches caliche and develops the same 

unit side resistance as was developed during the Osterberg test. Since there is small to 

no changes in the side resistance during different loading orientations, the value of 

“C” does not change. 

 Accordingly, the load settlement graph for this shaft is the same for both 

loading orientation as shown in Figure 6-20.  

 

Figure 6-20: Unit Side Resistance and Load-settlement Comparison for O-cell test and Conventional Test 
(Case II)



 

77 
 

7 CONCLUSIONS AND RECOMMENDATIONS 

The findings in this thesis are: 

1) It is concluded from the earlier FEM study that O-cell test result can provide 

different soil-pile interaction information as conventional head-down static 

loading test when the O-cell is installed in a relatively distant location to the 

most competent caliche.  

2) The FEM computation indicates that the shaft resistance-movement curve for 

upward movement of the pile is fairly comparable with the downward shaft 

resistance-movement component of a conventional head-down test when the 

O-cell is installed very close to the caliche layer.  

3) Selecting a proper installation location for O-cell increases the chance of 

failing caliche layers in side resistance. It is shown with a proper test design 

the side resistance of 25 ksf could be measured for caliche layers. 

4) Caliche layers that are located close to the ground surface show an extra 

deflection during the Osterberg test that can be interpreted as flexural 

deflection. The reference beam readings is reversible during unloading when 

caliche is very close to the ground surface meaning the a portion of total 

deflection can be dedicated to elastic bending of caliche layer.  

Based on this research effort, the following efforts should be taken to properly 

design an Osterberg load test in Las Vegas: 

1- Perform borings and obtain samples at least every 5 feet close to the 

ground surfac3e and 10 feet after 50 feet. 
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2- Coring and triaxial and unconfined compression tests for calculating the 

caliche capacity. 

3- Calculate the ultimate side resistance values for all soil layers and caliche. 

4- For caliche check the ultimate side resistance value with the pertinent 

empirical equations for rock.  

5- Locate the most competent caliche in the soil profile and install the O-cell 

under the caliche layer. 

6- Design the lower section of the shaft for downward loading in a way that 

the theoretical side resistance from lower section of the shaft is equal to 

the side resistance of the shaft from upper section + caliche 

7- Before performing the test, the test should be modeled with PLAXIS 2D 

and the equivalent top-down behavior from Osterberg test results should 

be compared to conventional top-down load. If there is descrepencies 

between the two, the shaft length in the lower section should be adjusted to 

minimize the descrepencies.  

8- Load test is performed and the results are used for design of production 

shaft. 

7.1 Recommendations for Further Research 

1) Ideally, side-by-side comparisons on identical test shafts constructed in the 

same soil profile containing caliche layer with similar characteristics and 

properties are needed to assess differences in upward and downward behavior 

of drilled shaft. it is expected that the potential differences, if any, will 
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eventually be identified and incorporated into interpretation methods for O-

cell testing.  

2) The bending of caliche should be investigated more thoroughly by acquiring 

more pertinent load test data. The data should include caliche at various 

location to understand the flexural capacity of caliche with respect to its 

location. It is expected that for deeper caliche layers the flexural behavior of 

caliche is less dominant compared to frictional behavior.  

3) Proper distribution of strain gauges will help achieve a realistic load 

distribution along the shaft length. For strain gauge measurements to 

accurately represent the average distribution, it is recommended to place them 

no closer than three pile diameters above and below the cell. 

4) The FEM analysis was performed with PLAXIS 8 during this study. The 

newer version of PLAXIS has more advanced constitutive models for rocks 

e.g. Drucker-Prager that can simulate the rock-socket behavior more realistic. 

Additionally, PLAXIS-3D could give more realistic results by simulating the 

whole project site using the borehole option provided in the latest version. 

5) Core sampling and unconfined compression test should be performed on the 

caliche in Las Vegas to be able to correlate the field load test data to 

theoretical methods for estimating caliche capacity that are introduced in the 

literature. 
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APPENDIX A 

Field and Laboratory Data 

INTRODUCTION 

A significant number of geotechnical investigations have been performed for 

various projects in Las Vegas mostly on the strip area which resulted in numerous 

borings and associated laboratory data.  Some of the data that was acquired from 

laboratory and field tests are categorized and analyzed to be used as input for the 

modeling and analysis chapter.  

GENERAL SOIL PROFILE IN LAS VEGAS 

Las Vegas soil stratigraphy consist of 7 to 8 significant soil types including, 

clayey Sand (SC), silty sand (SM), lean clay with traces of caliche or gravel (CL), fat 

clay (CH), sand and gravel (GP, GM, GC) and cemented layers such as cemented 

sand and gravel or caliche. A review of the boring data indicates the caliche layers 

could be continuous or segregated depending on the location of site, depth and age of 

caliche layer. The clay covers a wide range starting from very soft to very hard clay 

which can be recognized by the blow counts and lab tests on clayey material in this 

region. Layers of silty and clayey sand were also observed in some depth; partially 

cemented sand, specially when they are mixed with clay can be observed in some 

locations. 
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LAB DATA 

Soil testing results acquired for this study consist of, unit weight of caliche 

Atterberg Limits, unconfined compression, direct shear and triaxial tests.  The results 

of laboratory test are discussed in the following subchapters. 

ATTERBERG LIMITS (SOIL LAYERS) 

Atterberg Limits test data (ASTM D4318) for different job sites is gathered 

and documented. For each type of soil the liquid limit, plastic limit and the plasticity 

index is documented.  The variation of plasticity index values versus depth for each 

type of soil is shown in Figure A- 1. 

 

Figure A- 1: Plasticity Index vs. Depth for different Soil Types in Las Vegas 

DIRECT SHEAR TESTS (SOIL LAYERS) 

Direct shear test data (ASTM D3080) for different job sites was obtained and 

documented. Samples tested were obtained from ring samples. For each type of soil 
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strength parameters for each soil type is obtained. The variation of cohesion value vs. 

depth is shown in Figure A- 2. 

 

Figure A- 2: Cohesion vs. Depth for different Soil Types in Las Vegas 

ATTERBERG LIMITS AND SOIL STRENGTH PARAMETERS CORRELATION 

High quality undisturbed samples are difficult to obtain due to presence of 

caliche layers and cemented geomaterial so, the soil strength parameters are 

developed using correlations between plasticity index and friction angle (Terzaghi, 

1996).  For granular material and lean clay in the selected sites, the range of plasticity 

index (PI) and friction angle is shown in Figure A- 3.  

Furthermore, to understand the probability of occurrence of different friction 

angle and cohesion values for different soil types, the normal distribution of these two 

values are calculated and shown in Figure A- 4 and Figure A- 5, respectively. From 

the normal distribution curved it could be understood that the most probable value for 

“Gravelly”, “Sandy” and “Clayey” Type material is about 30, 28 and 20 degrees 

respectively.  
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Figure A- 3: Relationship Between φ' and PI of Clay Soils (Terzaghi, 1996) 

 

Figure A- 4: Normal Distribution of Friction Angle for Different Types of Soils in Las Vegas 

 

Figure A- 5: Normal Distribution of Cohesion values for Different Types of Soils in Las Vegas 
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A Mohr-Coulomb  model  as  an  elastic-plastic  model  is  used  to  represent  

the clayey and silty sand soil types. The Mohr-Coulomb strength parameters are 

selected from a normal distribution over the available lab results in Las Vegas. The 

cohesion and friction angle values are then calibrated for the model to match the 

results from the field load test. The normal distribution shown in Figure A- 5 shows 

that the most probable values for “c” in a clayey sand and lean clay/fat clay soil types 

are between 200-300 and 400-500 psf, respectively. Additionally, the normal 

distribution shown in Figure A- 4 shows that the most probable value for “φ” in a 

clayey and silty sand and lean/fat clay soil types are between 28-30 and  18-22 

degrees, respectively.  

Additioanlly, the normal distribution shown in Figure A- 4, shows that the 

most probable value for “φ” in gravelly soil type is between 30-35 degrees. An 

average unit weight of � = 0.12 
���

���
 and saturated unit weight of ���� = 0.13 

���

���
 is 

used for modeling the sand and gravel in this study. 

UNIT WEIGHT (CALICHE) 

Unit weight is the index that shows how dense a material is. Accordingly, to 

determine whether a caliche layer is competent for engineering purposes core samples 

from that layer should be collected and tested for classification purposes. Three 

triaxial tests were performed for I-15 and US-95 and the density vs. unconfined 

compression strength (UCS) is shown in Figure A- 6. 



 

85 
 

 

Figure A- 6: Density vs. UCS for Caliche core samples 

The value of UCS for this set of data is more than 8 ksi. In the following 

sections a relatively good comparison is made to differentiate between different types 

of caliche specimen. UCSs of 8 ksi and more are usually categorized as hard to very 

hard caliche layers. 

UNCONFINED COMPRESSION TEST (CALICHE) 

Some data are reported on measured strength of the caliche, but Cibor (1983) 
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of competent caliche in the Las Vegas Valley. Testing of caliche core samples is done 

according to unconfined compressive strength (UCS) testing (ASTM D2938).  During 

the construction of a few projects rock cores of caliche material were obtained.   

The values of UCS vs. core depths are shown in Figure A- 7. Most of the cores 

were taken from shallow depths down to 10 feet. For deeper specimen the value of 

UCS drops significantly compared to those from shallower depths. 
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Figure A- 7: UCS vs. Depth for caliche core data (Kleinfelder, 1996; Kleinfelder, 2001; Western 
Technologies, 1994) 

TRIAXIAL TESTING (CALICHE) 

A few numbers of Triaxial tests were reported for core samples from caliche 

in Las Vegas (Kleinfelder, 1996; Western Technologies, 1994). Undrained triaxial 

and unconfined compressive strength tests on caliche samples to determine values for 

the density, ultimate strength (UCS), Young’s modulus and Poisson’s ratio.  The tests 

were performed at a single confining pressure of 14 psi (Kleinfelder, 1996). All the 

specimen had a length to diameter ratio of more than 2 and according to the lab report 

they were all hand delivered in a good condition wrapped in plastic zip-lock bags for 

moisture preservation. 

The results from the triaxial tests are presented in different formats. The first 

Set of data is the relationship between Young’s Modulus and Depth of core specimen 

is shown in Figure A- 8. For Project I-15/US-95 the values of specimen Young’s 

modulus are relatively high compared to those obtained from Freemont Project site. It 

could be understood that two different range of Young’s modulus could be assigned 
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to caliche cores using this graph. On the other hand, if the values of Young’s Modulus 

are drawn vs. UCS of the caliche cores in Figure A- 9 and the graph shows a very 

good correlation between the two parameters that helps differentiate the caliche core 

samples obtained from these two projects. 

 

Figure A- 8: Young’s Modulus vs. Depth 

 

Figure A- 9: Young’s Modulus vs. UCS 

As shown in Figure A- 9, the UCS values from I-15/ US-95 are significantly 

higher than the ones obtained from Freemont Street project. Young’s Elastic modulus 

values of specimen obtained from I-15/US-95 are much higher than the ones obtained 

from Freemont Street Project. 
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These values are compared to the empirical formula introduced by American 

concrete institute (ACI Committee, American Concrete Institute, & International 

Organization for Standardization, 2008). 

 �� = 57000���
� (psi) (A- 1) 

The Young’s modulus obtained from equation (A- 1) is always on the upper 

bound of the values measured from triaxial tests. Base on the envelope drawn in 

Figure A- 10, until proven wrong from measurements and experiments, it could be 

concluded that the Young’s modulus values for caliche core specimen should not 

exceed those obtained for concrete cores with the same UCS values. 

 

Figure A- 10: Young’s Modulus vs. UCS with ACI upper bound envelope 
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nature of the test is categorized under undrained shear strength. For undrained shear 

strength tests the cohesion is calculated from equation (A- 2). 

 � =
��

2
 (A- 2) 

Where ��is the unconfined compression strength of rock core with a length to 

diameter ratio of equal or greater than 2. 

For caliche core tests in Las Vegas the cohesion values are drawn versus unconfined 

compression strength in Figure A- 11. 

 

Figure A- 11: Normal Distribution of Cohesion for Caliche in Las Vegas 
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In-situ tests are used to estimate soil and rock properties that are used for both 

design and construction of drilled shafts. In-situ tests offer several benefits in 

comparison to laboratory tests because of a larger volume of material, thus providing 

more accurate measurement of soil or rock mass behavior, Limitations of in-situ 

testing include ill-defined boundary conditions and soil disturbance caused by 

advancing the test device, both of which can be difficult to evaluate quantitatively. 

Therefore, relationships between in-situ measurements and soil or rock properties are 

largely empirical (Brown et al., 2010). The Field data included in this chapter cover 

common in-situ tests including Standard Penetration Test (SPT), Pressurementer test 

and Rock Quality Designation (RQD) 

STANDARD PENETRATION TEST 

The standard penetration test (SPT) is performed during the advancement of a 

soil boring to obtain a disturbed sample with the standard split spoon device and an 

approximate measure of the soil resistance. It is usually impossible to penetrate 

caliche layers due to their high density and strength. SPT sampling in caliche layers 

comes back in form of refusal numbers quite often. The test is a good identification of 

the presence of a caliche or cemented layers in the soil profile but it is not a good 

measurement to differentiate between various types and strength of caliche layers. 

Two completely different caliche layers could have the same SPT number but act 

completely different under loading condition.  Other types of tests such as density 

tests, UCS or triaxial test are better indicators of caliche strength. 

 

PRESSUREMETER TESTING AND ELASTIC MODULUS (SOIL) 
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The stiffness of a soil is represented by an engineering parameter termed a 

modulus. The elastic modulus is also the modulus that is most commonly measured 

from the results of the pressuremeter test. For the purposes of this study, the elastic 

modulus, which is the modulus of a soil in triaxial compression (Briaud, 2001), will 

be the modulus that is preferred because the elastic modulus is the modulus most 

typically used in standard deformation analyses.  

A few pressuremeter tests are performed in Las Vegas based on (ASTM 

D4719). The results of this testing are shown in for each layer at a specific depth in 

Figure A- 12. Since the data is obtained from one project site there is high chance that 

these values may not be the same for other site locations in Las Vegas yet still this is 

the best direct test results for calculating elastic modulus of soil layers. 

 

Figure A- 12: Elastic Modulus vs. Depth (Western Technologies, 2002) 

 Normal distribution of elastic modulus for different types of soil is also 

shown in Figure A- 13. 
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Figure A- 13: Normal Distribution of Elastic Modulus 

Cemented deposits can be classified for quality using standard rock quality 

determination (RQD) techniques from rock mechanics. 

RQD 

Cemented deposits can be classified for quality using standard rock quality 

designation (RQD) techniques from rock mechanics. RQD is equal to the sum of the 

lengths of sound pieces of core recovered, 4 inches or greater in length, expressed as a 

percentage of the length of the core run (Deere & Deere, 1989) A widely used index 

of rock quality is the RQD (ASTM D6032), shown in Figure A- 14 and defined as: 

 RQD =
Σ Length of soundcore pieces > 4 inches (100 mm)

Total core run length
 

(A- 3) 

 

A general description of rock mass quality based on RQD is given in Table A- 1. Its 

wide use and ease of measurement make it an important piece of information to be 

gathered on all core holes. Taken alone, RQD should be considered only as an 

approximate measure of overall rock quality. RQD is most useful when combined 
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with other parameters that account for rock strength, deformability, and discontinuity 

characteristics. 

 

Figure A- 14: RQD Determination from Rock Core (Deere & Deere, 1989) 

 

Table A- 1: Rock Quality Based on RQD (Brown et al., 2010) 

Rock Mass Description RQD 

Excellent 90 - 100 

Good 75 - 90 

Fair 50 – 75 

Poor 25 – 50 

Very Poor < 25 
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RQD is also used to estimate a side resistance reduction factor for shafts in fractured 

rock core segment lengths should be measured along the centerline or axis of the core, 

as shown in Figure A- 14. Only natural fractures such as joints or shear planes should 

be considered when calculating RQD. Core breaks caused by drilling or handling 

should be fitted together and the pieces counted as intact lengths. Drilling breaks can 

sometimes be distinguished by fresh surfaces. A set of data showing the relation 

between RQD and UCS values are shown in Figure A- 15. 

 

Figure A- 15: UCS vs. RQD in Caliche Core Data, Freemont Street Site (Western Technologies, 1994) 

Since the relationship between UCS and RQD is obtained from one of the 

projects in Las Vegas, the lack of data does not allow us to see a pattern in this 

relationship. As shown for different values of UCS, similar RQD values could be 

obtained. The more RQD data from different project sites helps understand the 

relationship between the two parameters. 

 

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9

R
Q

D

UCS (ksi)



 

95 
 

APPENDIX B 

Young’s modulus of the geomaterial is one of the most effective parameters 

for calculating elastic settlement in geotechnical problems. The Young’s modulus 

values for existing geomaterial in Las Vegas are studied. There are numerous studies 

by other researchers that introduce a range of acceptable values for different 

geomaterial.  

CLAYEY SAND – SILTY SAND (SC-SM) 

The elastic modulus for sandy material has been studied by a few researchers 

and a range of acceptable values are provided in Table B- 1. 

Table B- 1: Young’s Modulus Values for Sandy Material 

 

  Young’s Modulus 

Researcher Soil remark 
Loose 

(ksf) 

Medium 

(ksf) 

Dense 

(ksf) 

(Obrzud, 2010) Uniform 210-620 620-1044 1044-1670 

(U.S. Army Corps of Engineers, 

1990) 
- 200-500 - 500 - 2000 

(Bowles, 1988) - 210-522 - 522-1670 

 

INCREASE OF STIFFNESS (EINCREMENT) 

In real soils, the stiffness depends significantly on the stress level, which 

means that the stiffness generally increases with depth. When using the Mohr-

Coulomb model, the stiffness is a constant value. In order to account for the increase 

of stiffness with depth the Eincrement value should be used. This value is the increase of 
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stiffness with depth and it is calibrated based on the available field data shown in 

Figure B- 1. An average unit weight of � = 0.12 
���

���
 and saturated unit weight of 

���� = 0.13 
���

���
 is used for modeling the sandy material in this study. 

 

Figure B- 1: Elastic Modulus vs. Depth for Sandy Soil Types 

The trend in Figure B- 1 shows that for sandy material the elastic modulus 

increase about 23 ksf per unit depth (ft.) but limited to the values presented in Table 

B- 1.  For quarts sands the order of magnitude for dilatancy angle (ψ) is usually ψ=φ-

30°. For φ- values less than 30°, however, the angle of dilatancy is mostly zero 

(Bolton, 1986).  

SANDY CLAY, LEAN CLAY AND FAT CLAY (CL-CH) 

The elastic modulus for clayey material has been studied by a few researchers 

and a range of acceptable values are provided in Table B- 2. 
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Table B- 2: Young’s Modulus Values for Clayey Material 

 

  Young’s Modulus 

Researcher Soil remark 
Soft 

(ksf) 

Medium 

(ksf) 

Stiff 

(ksf) 

Hard 

(ksf) 

(Kézdi, 1980; Obrzud, 

2010; PRAT, BISCH, 

MILLARD, Mestat, & 

PIJAUDIER-CALOT, 

1995) 

Low to Medium 

Plasticity (CL) 
11-104 104-167 167-625 625-1460 

High Plasticity 

(CH) 
7-84 84-146 146-417 417-668 

(U.S. Army Corps of 

Engineers, 1990) 

- 100-400 400-1000 1000 - 2000 - 

Sandy Clay 500-4000 

Clay Shale 2000-4000 

(Bowles, 1988) 

- 104-522 315-1044 1044 - 2088 - 

Sandy Clay 525-5200 

Clay Shale 3200-100,000 

 

INCREASE OF STIFFNESS (EINCREMENT) 

In order to account for the increase of stiffness with depth the Eincrement value 

should be used. This value is the increase of stiffness with depth and it is calibrated 

based on the available field data shown in Figure B- 2.  

The trend in Figure B- 2 shows that for sandy material the elastic modulus 

increase about 28 ksf per unit depth (ft.) but limited to the values presented in Table 

B- 2. 
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Figure B- 2: Elastic Modulus vs. Depth for Clayey Soil Types 

 

INCREASE OF  COHESION (CINCREMENT) 

Additionally, PLAXIS has the option for the input clay layers in which 

cohesion increases with depth. In order to account for the increase in cohesion with 

depth the Cincrement values may be used. It is the increase of cohesion per unit depth 

and can be obtained using the lab results for clayey material shown in Figure B- 3. 

 

Figure B- 3: Variation in Clayey Soil Cohesion with Depth 
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It could be understood from Figure B- 3 that cohesion is relatively constant 

with depth for clayey material in Las Vegas. Accordingly, the value of Cincrement is 

selected to be zero “0” for clayey material in this research. Additionally, an average 

unit weight of � = 0.13 
���

���
 and saturated unit weight of ���� = 0.13 

���

���
 is used for 

modeling the clayey material in this study. 

SAND AND GRAVEL (GP, GM, GC) 

The gravel material encountered in Las Vegas typically consists of sand and 

gravel with some clay or silt fines.  This material is usually very dense in consistency 

with SPT N-values exceeding 50 to 100 blows per foot.  Thus, for dense gravel, we 

can assign nominally high strength parameters and an elastic modulus. Typical values 

for the elastic modulus from different researchers are provided in Table B- 3. 

Table B- 3: Young’s Modulus Values for Sand and Gravel 

  Young’s Modulus 

Researcher Soil remark 
Loose 

(ksf) 

Medium 

(ksf) 

Dense 

(ksf) 

(Kézdi, 1980; Obrzud, 

2010; PRAT et al., 1995) 

GW-SW 626-1670 1670-3340 3340-6683 

GM-SM 147-250 250-417 417-626 

(U.S. Army Corps of 

Engineers, 1990) 
- 2000-4000 

(Bowles, 1988) - 1044-2088 - 2088-4177 
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There is not enough data for Sand and Gravel soil type to show an increasing 

trend with depth in Young’s modulus. The value of Young’s modulus is kept constant 

with depth.  

CALICHE 

A Mohr-Coulomb constitutive model is used to represent the caliche layers. 

The caliche layers usually act elastically under service load conditions and due to its 

brittle characteristic, caliche failure happens in tension cracks. The linear Mohr-

Coulomb may not be the best representative model for caliche but it is easily applied 

and can be traced toward failure stages. Further calculation regarding caliche failure is 

performed using hand calculations to find the best constitutive model that can 

represent the failure of caliche. The triaxial tests indicate an elastic modulus similar to 

concrete. Based on ACI-318 correlations shown in APPENDIX A, Equation (A- 1) 

for evaluating the modulus of the caliche, one can make use of the expressions 

relating the unconfined compression strength to E for concrete. 

The compressive strength of the rock forming the walls of discontinuities will 

impact shear strength and deformability. Rock compressive strength categories and 

grade vary from extremely strong (> 250 MPa grade R6) to extremely weak (0.25 to 1 

MPa grade R0) (Sabatini, Bachus, Mayne, Schneider, & Zettler, 2002). For caliche, 

the range of UCS from triaxial tests came out to be between 14 to 75 MPa (2-11 ksi). 

According to Sabatini et al. (2002), caliche ranks as grade R3 and R4 based on its 

UCS values. 

CSIR CLASSIFICATION 
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The ISRM (1978) procedures, combined with core recovery and RQD, helps 

characterizing rock and rock mass. The CSIR classification system is the commonly 

used in the US. The CSIR classification system considers (1) compressive strength of 

the intact rock; (2) RQD value; (3) joint spacing; (4) condition of the joints; and (5) 

groundwater conditions. The overall rating of the rock mass, termed the rock mass 

rating (RMR), is calculated as the sum of the individual ratings for each of the five 

parameters minus the adjustment for joint orientation (if applicable) (Sabatini et al., 

2002). 

For Las Vegas caliche RMR evaluation can be observed in Table B- 4. Based 

on the RMR value caliche can be categorized into good rock class.  

Table B- 4: CSIR Classification of Caliche 

A. CLASSIFICATION PARAMETERS AND THEIR RATINGS  

1 

Strength of intact  
rock material  

Uniaxial 
compressive 

strength  
50 to 100 Mpa 

Relative Rating   7 

2 
Drill core quality RQD 50% 

Relative Rating   13 

3 
Spacing of joints  0.3 to 1 m 

Relative Rating   20 

4 
Condition of joints  Slightly rough surfaces separation <1mm  

Relative Rating   20 

5 
Ground water Water under moderate pressure 

Relative Rating   4 

 B. RATING AND ADJUSTMENT FOR JOINT ORIENTATIONS 

Strike and dip orientations of joint 0 

C. ROCK MASS CLASSES DETERMINED FROM TOTAL RATINGS 

RMR Rating  64 

Class No.  II 

Description Good Rock 

 

 

ROCK DEFORMATION MODULUS VALUES 
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Typically, the settlement of a rock foundation will be controlled by the 

deformation modulus corresponding to the overall rock mass and will not be 

controlled by the deformation modulus of intact rock (Sabatini et al., 2002). 

According to the study performed by Bieniawski (1978), the following equation for 

rock mass modulus, EM, exhibiting a RMR > 50 was developed: 

 ��(���) = 2��� − 100 (B- 1) 

For Las Vegas Caliche the value of Em comes out as 28 GPa ~ 576,000 ksf. 

The Young’s modulus obtained from equation (B- 1) is very close to the young’s 

modulus obtained from triaxial testings that were perfomed in Las Vegas. The elastic 

modulus for a good rock is an average of 600,000 ksf in this study and calibrated 

according to the field load test with an upper bound limited to equation (A- 1) from 

ACI-318 (2008). An average unit weight of � = 0.16 
���

��� and saturated unit weight of 

���� = 0.16 
���

��� is used for modeling the caliche in this study. 
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APPENDIX C 

Boring Log for I-215/Airport Connector 
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Boring Log for Palm
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APPENDIX D 

Table D- 1: Summary of Database Osterberg Load Test 

No. Project Name 
Caliche 

Depth (ft.) 

Caliche 
Thickness 

(ft.) 

Shaft 
Diamter 

(in.) 

Shaft 
Length (ft.) 

O-cell 
Depth (ft.) 

Top of The 
Shaft (ft.)  

Maximum O-cell Load 
(kips) 

1 Encore 

18 3 

48 106 50 20 6748 
24 10 

39 3 

47 6 

2 Westgate Tower 

21 15 

48 105 35 5 3964 

42 6 

53 3 

61 8 

77 8 

3 City Center (1) 

11 8 

48 117 60 5 4722 33 3 

44 7 

4 City Center (2) 

14 6 

48 112 60 9 4287 54 2 

66 1 

5 Mandalay Bay 

13 7 

48 97 39 14 7086 31 4 

71 4 
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119 

6 Turnberry 

23 7 

42 105 39 24 3070 34 5 

56 3 

7,8 Dessert Inn-2 Tests  

7 3 

48 128 43 0 5476 

12 2 

16 2 

40 5 

93 3 

9, 10 Venetian- 2 Tests 

8 1 

48 122 80 and 120 45 3077 

11 1 

13 4 

21 1 

29 1 

11 Echelon (1) 
30 10 

36 100 55 30 1959 
55 8 

12 Echelon (2) 

29 7 

48 100 50 40 3544 

55 4 

66 7 

90 3 

123 4 

146 4 

13 Echelon (3) 

12 6 

48 99 45 30 3684 
26 8 

51 4 

126 4 
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120 

14 Echelon (4) 

12 6 

48 99 45 30 5950 
26 8 

51 4 

126 4 

15 Fountain Bleau (1) 

8 1 

48 123 78 12 6164 40 1 

43 2 

16 Fountain Bleau (2) 

36 51 

48 123 65 10 6172 51 1 

60 2 

17 Palm 

23 18 

42 100 40 10 6128 50 5 

68 9 

18 P-1 

10 1 

48 62 57 8 3068 
13 1 

52 4 

65 4 

19 I-215/Airport Connector 

13 9 

48 103 80 19 3316 
30 6 

60 2 

69 1 

20 Trump 

18 16 

42 90 35 10 7358 36 16 

92 4 

21 Cendent 6 14 42 74 30 15 6400 

22 Panorama III (1) -- -- 48 96 80 15 4800 
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121 

23 Panorama III (2) -- -- 48 100 54 14 7202 

24 P-2 4 5 48 80 42 8 2901 

25 P-3 
6 1 

48 90 50 0 4098 
16 1 

26 P-4 -- -- 36 79 41 1 1399 Tons 

27 P-5 

6 6 

42 70 35 10 4088 27 3 

45 4 

28 P-6 -- -- 42 73 27 4 4914 

29 P-8 

14 2 

45 104 40 10 6365 

17 2 

25 2 

28 1 

31 2 

50 1 

70 1 

30 P-9 

19 2 

42 90 50 15 2978 35 3 

55 7 
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