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ABSTRACT

A Study of Ekeland’s Variational Principle and Related Theorems and

Applications

by

Jessica Robinson

�David Costa �, Examination Committee Chair

Professor of Mathematical Sciences

University of Nevada, Las Vegas

Ekeland’s Variational Principle has been a key result used in various areas of

analysis such as fixed point analysis, optimization, and optimal control theory. In

this paper, the application of Ekeland’s Variational Principle to Caristi’s Fixed Point

Theorem, Clarke’s Fixed Point Theorem, and Takahashi’s Minimization theorem is

the focus. In addition, Ekeland produced a version of the classical Pontryagin Mini-

mum Principle where his variational principle can be applied. A further look at this

proof and discussion of his approach will be contrasted with the classical method of

Pontryagin. With an understanding of how Ekeland’s Variational Princple is used

in these settings, I am motivated to explore a multi-valued version of the principle

and investigate its equivalence with a multi-valued version of Caristi’s Fixed Point

Theorem and Takahashi’s Minimization theorem.
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CHAPTER 1

INTRODUCTION

In 1972, Ekeland proved an important result in nonlinear analysis. Since then,

Ekeland’s Variational Principle (EVP for short) has been proven equivalent with

other theorems such as Caristi’s Fixed Point Theorem and Takahashi’s Minimization

Theorem. This fundamental theorem is seamlessly connected to other results that

are used in a myriad of mathematical areas.

Theorem 1.1 (Ekeland’s Variational Principle-weak form). Let X be a complete

metric space. Let F : X → R∪{+∞} be a lower semi-continuous function, which is

bounded below. Then for any � > 0, there exists v ∈ X such that

F (v) ≤ infXF + �,

∀w ∈ X, F (v)− �d(v, w) ≤ F (w).

Ekeland also stated a stronger form and gave a visualization in order to geomet-

rically interpret the theorem.

Theorem 1.2 (Ekeland’s Variational Principle-strong form). Let X be a complete

metric space. Let F : X → R∪{+∞} be a lower semi-continuous function which is
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bounded below. Let � > 0 and a point u ∈ X be given such that

F (u) ≤ infXF + �.

Then ∀λ > 0 there exists some point v ∈ X such that

F (v) ≤ F (u), (1.1)

d(u, v) ≤ λ, (1.2)

F (v)− �

λ
d(v, w) < F (w) ∀w �= v. (1.3)

A visualization of EVP (strong form) is shown in Figure 1.1.

Figure 1.1: EVP

In the above diagram, taking λ = 1, we design a line with slope equal to −� =

− tan θ. Then, the theorem guarantees that for any given � there is a point (v, F (v))
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such that if we create an open downwards cone with that point as its vertex and having

angle 2θ, the function values for all other inputs will stay above the cone. Essentially,

this theorem says that when a function isn’t guaranteed to have a minimum there

is a “good” approximate substitute. Under these conditions of lower semicontinuity

and bounded below the best you can get is an approximate minimum. By requiring

X to be a Banach space and F differentiable, EVP can be thought of as obtaining an

approximate minimum with also a small derivative. Coupling this with the “Palais-

Smale condition” a function must achieve its minimum and therefore have a critical

point. These results are essential in areas of nonlinear analysis and optimization

theory.

Outside of these applications, EVP provides equivalences with other important

theorems, which we present in Chapter 2. While these results have been known for

some time, they illustrate how useful EVP is in making connections with different

areas of mathematics. By using EVP the proofs of these results are quite short and

simple. The method of arriving at these equivalences are found also in Chapter 4

when considering set valued versions.

One area that will be discussed as an application of EVP is Control Theory.

Beginning with a review of variational methods we find motivation for the formulation

of Pontryagin’s Maximization Principle. Then, we shall give an example of how the

principle is applied. Ekeland’s Variational Principle also yields an “approximate”

Pontryagin Minimum Principle. We will discuss how Ekeland’s version compares to

Pontryagin’s.
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With the centralization that EVP provides, it has been a goal of many to generalize

it. Various versions of Ekeland’s Variational Principle have been presented since

its initial presentation in 1972. There are three ways in which to alter Ekeland’s

Principle: change the space, the metric, or the function type. Recently, various people

have proven the equivalence of these different Ekeland-type theorems with different

corresponding versions of Caristi’s Fixed Point Theorem and Takahashi Minimization

Theorem. In this paper we wish to only look at changing the function from a single-

valued function to a multi-valued one, which initially began with work by Nemath[14],

Tammer [18], and Isac [12]. In 1997 Chen and Huang [5] sought to unify the work

of these collegues. Here we will examine an approximate multivalued version of EVP

presented by Chen and Huang in [3]. Finally, by considering a generalized EVP by

Chen and Huang, we investigate the similarities in proving this EVP’s equivalence

with set-valued Caristi Fixed Point Theorem and set-valued Takahashi minimization

result. In conclusion, we will again highlight the significance of the original EVP and

that of current research being done on this topic.
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CHAPTER 2

FIXED POINT RELATIONSHIPS

In the following chapter we review the equivalences between the original Ekeland’s

Variational Principle and other influential theorems. The proof techniques used here

appear to also be effective in proving set-valued versions as we will see in Chapter 4.

EVP equivalence with Caristi’s Fixed Point Theorem

Theorem 2.1 (Caristi’s Fixed Point Theorem). Let X be a complete metric space.

Let F : X → R∪{+∞} be a lower semi-continuous function which is bounded

below. Let T : X → 2X be a multivalued mapping such that

F (w) ≤ F (v)− d(v, w) ∀v ∈ X, ∀w ∈ Tx.

Then there exists x0 ∈ X such that x0 ∈ Tx0.

Theorem 2.1, hereby referred to as CFPT, has many applications in Ordinary and

Partial Differential Equations (see e.g. [6]). Theorem 1.2 and Theorem 2.1 are proven

equivalent in [10]. We present the proof here of its equivalence with EVP as we will

want to compare with the set valued proofs in Chapter 4.
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EVP⇒CFPT

Proof. Suppose � = 1. Then we know by EVP that there exists x0 ∈ X such that the

following holds for all y ∈ X, y �= x0

F (x0) < F (y) + d(x0, y),

i.e.,

F (x0)− F (y) < d(x0, y) (1)

Claim: x0 ∈ Tx0. Indeed if x0 /∈ Tx0, then y �= x0 ∀y ∈ Tx0 by CFPT we get

F (y) ≤ F (x0)− d(x0, y),

i.e.,

d(x0, y) ≤ F (x0)− F (y). (2)

Inequalities (1) and (2) give

F (x0)− F (y) < d(x0, y) ≤ F (x0)− F (y),

a contradiction. Therefore x0 ∈ Tx0.
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EVP⇐CFPT

In order to prove the reverse implication (CFPT=⇒EVP) we also use a proof by

contradiction.

Proof. Let us define d1(x, y) = �d(x, y) which is an equivalent distance in X. Define

T (x) = {y ∈ X : F (x) ≥ F (y) + d1(x, y); y �= x} for each x ∈ X and T (x) �= ∅ ∀x ∈

X. T (x) is a multivalued map, which satisfies

F (y) ≤ F (x)− d1(x, y),

so that according to CFPT, there is a fixed point x0 ∈ T (x0). However if x0 is in

T (x0), we have violated the definition of T (x). Thus a contradiction.

EVP equivalence with Takahashi

Definition 2.1 (Takahashi’s Condition). Let Z := {z ∈ X : F (z) = inf F} be the

set of possible minimizers of the function F .

The Takahashi condition says the following:

∃α0 > 0, such that ∀x ∈ X \ Z, ∃ y �= x where the following inequality holds:

F (y) + α0d(y, x) ≤ F (x).

Theorem 2.2 (Takahashi’s Minimization Theorem [11]). Let X be a complete metric

space.
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Let F : X → R∪{+∞} be a lower semi-continuous function which is bounded

below. Assume that F satisfies the Takahashi condition. Then there exists some

x0 ∈ X such that

F (x0) = inf F.

Initially, Takahashi demonstrated his theorem implied EVP. Then in [11] the re-

verse implication was also presented.

EVP⇒ Takahashi

Proof. Let 0 < α < α0. Then by EVP, there exists x ∈ X such that

F (x) < F (y) + αd(x, y) ∀x �= y.

But by Takahashi Condition, ∀z ∈ X \ Z, ∃ y �= z such that

F (y) + αd(y, z) ≤ F (z).

The above two inequalities can only hold together if x ∈ Z. Thus Z �= ∅. So we are

guaranteed that there exists an x0 ∈ X such that F (x0) = inf F.

8



Clarke’s Fixed Point Theorem

It turns out that Ekeland’s Variational Principle also implies a different fixed point

theorem due to Clarke in [?].

Theorem 2.3 (Clarke’s Fixed Point Theorem). Let X be a closed convex subset of

a Banach Space.

Suppose f : X → X is continuous, and there exists σ ∈ (0, 1) such that for any

x ∈ X, f(x) �= x, there exists y ∈ [x, f(x)] \ {x} , such that

d(f(x), f(y)) ≤ σd(x, y).

Then f(x) has a fixed point.

It should be noted the above condition is referred to as a directional contrac-

tion where [x, f(x)] := {z ∈ X | d(x, z) + d(z, f(x)) = d(x, f(x))} represents the line

segment connecting x and f(x). It is easy to check that every contraction is a di-

rectional contraction. Thus, Clarke’s Fixed Point Theorem generalizes Banach Fixed

Point Theorem although uniqueness is not guaranteed. An example is presented in

[?] where Clarke’s Theorem applies and Banach does not.

Proof. Apply EVP to F (a) = d(a, f(a)) since it is clearly bounded below and contin-

uous with 0 < � < 1− σ. We know ∃b ∈ X such that ∀z ∈ X

F (b)− �d(z, b) < F (z), z �= b

9



i.e.

d (b, f(b))− �d(z, b)) < d(z, f(z)) (a)

Assume f(b) �= b. By f(x) being a directional contraction there exists z �= b,

z ∈ [b, f(b)], i.e.

d(b, z) + d(z, f(b)) = d(b, f(b)) = F (b)

satisfying

d(f(z), f(b)) ≤ σd(z, b). (b)

Now apply the reverse triangle inequality to get

d(z, f(z))− d(z, f(b) ≤ d(f(b), f(z)) ≤ σd(z, b). (c)

Substitute d(b, z) + d(z, f(b)) = d(b, f(b)) into (a) to get

d(b, z) + d(z, f(b))− d(z, f(z)) < �d(z, b). (d)

Combining inequalities (c) and (d) results in

d(b, z) ≤ (�+ σ)d(z, b).

This is a contradiction since �+ σ < 1.

10



Summary

While many of the results presented in this chapter have been known for some time,

it is still interesting to note the far reaching effects of Ekeland’s Variational Principle.

Currently we have the following relationships CFPT⇐⇒ EVP ⇐⇒ Takahashi. This

shows there is an equivalence between a fixed point theorem and an minimization

theorem through Ekeland’s Variational Principle, and the proofs are straightforward.
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CHAPTER 3

APPLICATIONS

Ekeland’s Variational Principle has been a useful tool in Control Theory. Here

we will consider a classic result in Control Theory known as Pontryagin’s Principle.

Pontryagin’s Principle can be stated either for finding a minimum or maximum. Some

special cases include free end-point vs fixed end-point. In the original proof, the au-

thor states the principle for the most general setting. This will not be necessary for

what is to be explored here. We will briefly consider the setup from Euler-Lagrange

equations to motivate Pontryagin’s Principle. Then we give the statement of Pontrya-

gin’s Maximum Principle (PMP) specifically for the free end-point problem without

running cost. This version is the most closesly associated with Ekeland’s approximate

PMP. We will discuss the relationship between the original version and Ekeland’s ver-

sion. In addition we mention work by Tammer [17] involving an approximate PMP

for set-valued functions.

Preliminaries on Calculus of Variations

First we must investigate the motivation for PMP by reviewing original techniques

in the Calculus of Variations.

The basic problem can be presented as the following:

12



Let a smooth function L : Rn × Rn → R, L = L(x, v) be given (L is called the

“Lagrangian”), and let T > 0, x0, x1 ∈ Rn be given.

Find a curve x
∗(·) : [0, T ] → Rn that minimizes the functional

I [x(·)] :=
ˆ T

0

L(x(t), ẋ(t))dt (I)

among all functions x(·) satisfying x(0) = x
0 and x(T ) = x

1

Now suppose we have found x
∗(·) that does minimize the function I. How is x∗(·)

characterized? To discover the answer we must look at the Euler-Lagrange Equations.

NOTATION: We often write L = L(x, v), where x denotes the position and v

denotes the velocity. The partial derivatives of L are denoted by

∂L

∂xi
= Lxi ,

∂L

∂vi
= Lvi (1 ≤ i ≤ n)

Theorem 3.1 (Euler-Lagrange Equations). Let x∗(·) solve the calculus of variations

problem (I). Then x
∗(·) solves the Euler-Lagrange differential equations below

d

dt
[∇vL (x∗(t), ẋ∗(t))] = Lxi (x

∗(t), ẋ∗(t)) . (3.1)

The implication of Theorem 3.1 is that the solution of the original calculus of

variations problem (if it exists) will be among the solutions of the Euler-Lagrange

differential equation. The proof of Theorem 3.1 is omitted here (see e.g. [8]).

Now we want to see how can one convert the Euler-Lagrange equations into a

13



system of first order ODE.

Definition 3.1 (generalized momentum). For the given curve x(·), define

p(t) := ∇vL (x(t), ẋ(t)) (0 ≤ t ≤ T )

We call p(t) the generalized momentum. Using this definition and the following

hypothesis we can rewrite Euler-Lagrange into a system of ODE’s.

Hypothesis: Assume that for all x, p ∈ Rn we can solve the equation

p = ∇vL(x, v) (3.2)

for v in terms of x and p (i.e v = v(x, p)).

Definition 3.2 (Hamilitonian). Define the dynamical system’s HamiltonianH : Rn×

Rn → R by the formula

H(x, p) = p · v(x, p)− L (x,v (x, p))

where v is defined above.

NOTATION: The partial derivatives of H are denoted by

∂H

∂xi
= Hxi ,

∂H

∂pi
= Hpi (1 ≤ i ≤ n)

14



Theorem 3.2 (Hamiltonian dynamics). Let x(·) solve the Euler-Lagrange equations

and define p(·) as above. Then the pair (x(·), p(·)) solves the Hamilitonian equations:






ẋ(t) = ∇pH (x(t), p(t))

ṗ(t) = −∇xH (x(t), p(t))

(3.3)

Furthermore, the mapping t �→ H (x(t), p(t)) is constant.

The proof of this theorem is also omitted here (See [8]).

Now given this background information, we construct the setting for Pontryagin’s

Principle.

PROBLEM: Given A ⊆ Rm and also f : Rn × A → Rn. We denote the set of

admissible controls by

A = {α (·) : [0,∞) → A |α (·) measurable} .

Then given α (·) ∈ A, we solve the following evolution system






ẋ(t) = f(x(t),α(t)) (0 ≤ t ≤ T )

x(0) = x
0

(ODE)

and introduce the “terminal payoff functional”

P [α (·)] = g(x(T )) (P)

15



for a given g : Rn → R. Then P is to be maximized. With the above terminal payoff

functional, the Hamiltonian is defined as

H(x, p,α) = f(x,α) · p.

Theorem 3.3 (Pontryagin’s Maximization Principle). Assume that α∗(t) is an op-

timal control for the above problem, with a corresponding optimal trajectory x
∗(t).

Then there exists a function p
∗ : [0, T ] → Rn such that

ẋ
∗(t) = ∇pH (x∗(t), p∗(t),α∗(t))

and

ṗ
∗(t) = −∇xH(x∗(t), p∗(t),α∗(t)) (0 ≤ t ≤ T ) (ADJ)

and

H(x∗(t), p∗(t),α∗(t)) = max
α∈A

H(x∗(t), p∗(t),α) (0 ≤ t ≤ T ). (M)

Futhermore, the mapping t �→ H (x∗(t), p∗(t),α∗(t)) is constant.

Finally we also have the terminal condition

p
∗(T ) = ∇g (x∗(T )) . (T)

The proof of PMP can be found in [8].

16



REMARKS: We refer to the identities (ADJ) as the adjoint equations and (M) as

the maximazation principle. Notice that (ODE) and (ADJ) resemble the structure of

Hamilton’s equations above. Also note another way of writing (ADJ) is the following

ṗ
i∗(t) = −Hxi (x

∗(t), p∗(t),α∗(t))

= −
n�

j=1

∂fj

∂xi
(x∗(t),α∗(t))p∗j(t).

This corresponds closely to Ekeland’s version.

Example of Pontryagin’s Maximum Principle

Now we present an example of this version of Pontryagin without any running

cost from [8].

Example 3.1 (Commodity Trading). Here is a simple model for trading a commodity,

say wheat. We let T be the fixed length of trading period, and introduce the following

variables:

y(t) = money on hand at time t

w(t) = amount of wheat owned at time t

α(t) = rate of buying or selling wheat

q(t) = price of wheat at time t (known)

λ = cost of storing a unit amount of wheat for a unit of time

We require that the price of wheat q(t) is known for the entire trading period. We

17



also assume that the rate of selling and buying is constrained:

|α(t)| ≤ M,

where α(t) > 0 means wheat is being bought and α(t) < 0 means wheat is being

sold. The purpose of the problem is to maximize the holdings at the end time t = T ,

meaning we want the sum of cash and value of wheat to be at a premium. This is

modeled with the following payoff functional

P [α(·)] = y(T ) + q(T )w(T ). (P)

Therefore y(T)+q(T)w(T) represents the g(x(T)) in the Pontryagin setup. The ODE

is as follows 




ẏ(t) = −λw(t)− q(t)α(t)

ẇ(t) = α(t).

(ODE)

Note the above pair (y(t), w(t)) represents the x(t) in the Pontryagin set up. Now we

will apply PMP to find the optimal buying and selling strategy. First compute the

Hamilitonian

H(x, p,α) = f(x,α) · p

i.e.

H(y, w, p, t,α) = p1 (−λw − q(t)α) + p2α.
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Then the adjoint equation ṗ(t) = −∇xH(x(t), p(t),α(t)) now reads as






ṗ1 = 0

ṗ2 = λp1

(ADJ)

with terminal condition

p(T ) = ∇g (x(T )) . (3.4)

In our case g(y, w) = x+ q(T )w. Hence the above becomes






p1(T ) = 1

p2(T ) = q(T )

(T)

We can thensolve for the costate by integrating and using the terminal conditions i.e.






p1(t) ≡ 1

p2(t) = λ(t− T ) + q(t).

By maximation principle (M), we know

H(y, w, p, t,α) = max
|α|≤M

{p1(t) (−λw(t)− q(t)α) + p2(t)α}

= −λp1(t)w(t) + max
|α|≤M

{α (−q(t) + p2(t))} .
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So the optimal control or rate of buying or selling wheat can be described as

α(t) =






M q(t) < p2(t)

−M q(t) > p2(t).

Note. This optimal control says that one should buy as much wheat as possible when

the price of wheat is below a certain threshold, but then one should sell as much wheat

as possible when the price has now gone above that same threshold. Remember that

p2(T ) = q(T ) when t = T . This is an example of a so-called bang-bang control.

From the statement of PMP it is fundamental that there exist an optimal control

and corresponding trajectory that solves the (ODE). The conditions of PMP guaran-

tee to maximize the Payoff functional. Note that above we formulated the Maximum

principle for the purposes of seeing an example. However all the prior work can be

done for the minimum principle with a slightly different definition of the Hamilito-

nian. This is sufficient background to now consider a result on Ekeland’s approximate

PMP.

Ekeland’s Approximate PMP

Here is Ekeland’s approximate version on the Pontryagin Minimal Principle which

is an application of the weak form of Ekeland Variational Principle.

Theorem 3.4 (Approximate Pontryagin). Let g : Rn → R be a C
1 function. For

every � > 0 there exists a measurable control α∗(t) ∈ A with a corresponding trajectory
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x
∗(t) that solves the differential equation (ODE) and is such that

�p∗, f(x∗
,α

∗)� ≤ min
α∈A

�p∗, f(x∗
,α)�+ �, (H)

g(x∗(T )) ≤ inf g(x(T )) + �,

for almost every t ∈ [0, T ] and where p
∗(t) solves the following:

dp
∗

dt
= −

n�

j=1

∂fj

∂x
(x∗(t),α∗)p∗j(t), (ADJ)

p
∗(T ) = g

� (x∗ (T )) . (T)

Proof. Let A be the set of all measurable controls α : [0, T ] → K, where K is a

compact metrizable space with the following metric

d(a, b) = meas {t ∈ [0, T ] : a �= b}

By a Lemma in [7] this space of measurable controls is a complete metric space.

Consider the function

F : α → g(x(T ))

where α ∈ A, x is a corresponding solution of the (ODE). This F function is shown

continuous and bounded below in [7]. Therefore we will apply weak form of Ekeland’s
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Variational Principle. There exists α∗ ∈ A such that

F (α∗) < inf F + �

F (α) ≥ F (α∗)− �d(α,α∗) ∀α ∈ A

The second equation can be further analyzed by taking into account the differential

equation ẋ(t) = f(x(t),α(t)) which holds almost everywhere on [0, T ] . Take any t0

where the differential equation holds, and any k0 ∈ K, and define aτ ∈ A, τ ≥ 0 by:






aτ (t) = k0 t ∈ [0, T ] ∩ (t0 − τ, t0)

aτ (t) = α
∗(t) t /∈ [0, T ] ∩ (t0 − τ, t0)

Notice that d(aτ ,α∗) = τ when τ is small enough. Denote the trajectory associated

with aτ as xτ . Therefore F (xτ ) = g(xτ (T )). Using this in the EVP inequality we

arrive at

g(xτ (T )) ≥ g(x∗(T ))− �τ ∀τ

Hence we can see that the derivative of g with respect to τ is bounded below:

d

dτ
g(xτ (T )) |τ=0≥ −�.

However through a linearization argument the left hand side can be calculated as the
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following (see [7])

d

dτ
g(xτ (T )) = �f(t0, x∗

, k0)− f(t0, x
∗
,α

∗(t0), p(t0)� ≥ −�. (*)

This completes the proof since k0 was taken to be any element in the target space of

the control functions and t0 is any point in [0, T ] where the (ODE) holds.

In Ekeland’s approximate version whenever � = 0, one can see essentially Pon-

tryagin’s Principle. However Ekeland’s approximate version always holds even if an

optimal control does not exist. Ekeland admits in [6] that this approximate Pon-

tryagin Principle may be less than desirable given a particular problem. Even if � is

small, the solution may become highly irregular such that the result is inadequate for

any practical application. The approximate Pontryagin displays another prominent

usage of EVP. In [17], Tammer develops a similar approximate Pontryagin Principle

only in the setting of multi-objective optimal control problems. Tammer mirrors Eke-

land’s approach starting with a vector-valued function F and complete metric space

X. The proof uses a set-valued EVP given by Tammer. Then, following along the

lines of Ekeland, Tammer eventually shows a corresponding statement to (*) with

respect to set-valued functions. Tammer’s application of the set-valued EVP once

again demonstrates the significance of EVP to mathematical problems.
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CHAPTER 4

MULTI-VALUED EVP

As stated in the introduction recent work has been done to formulate EVP type

statements in other areas of mathematics. This has been accomplished by chang-

ing one of the follow: the space, the metric or the function type. By generalizing

EVP, it can be applied to more mathematical situations. Changing the function from

single-valued to multi-valued was first explored by Nemeth (1986), Tammer (1992),

and Isac (1996). However each of these multi-valued versions had varying condi-

tions on the function. Then in 1997, Chen and Huang [5] unified these results in “A

unifed approach to the existing three types of variational principles for vector valued

functions.” The set-valued EVP they prove in that paper requires very generalized

conditions for set valued function and the space. From that version Chen and Huang

derive a version, which they prove equivalent to set valued Caristi Fixed Point The-

orem and set valued Takahashi. At the end of this chapter we will consider these

proofs for comparision to their originl counterparts. In addition, Chen and Huang

explored � − solutions of a set valued function which led to a strong EVP that is

similar to original. This result is the most closely associated with our goal of keeping

as much as possible of the original EVP intact and only changing to a multi-valued

function.
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Set Valued Function Background

For this section we will let X be a set and Y be a locally convex topological

space. K ⊆ Y is a nonempty, nontrivial, pointed, closed, convex cone with nonempty

interior intK. A pointed cone is one such that K ∩ −K = {0}. A convex cone is

such that K +K ⊂ K and ∀λ ≥ 0, λK ⊂ K. K induces the following partial order

in Y : ∀ y1, y2 ∈ Y, y1 ≤k y2 iff y2 − y1 ∈ K.

In Ekeland’s original variational principle the function needed to be proper, lower

semi-continuous, and bounded below. In comparison we will need the set valued

mapping to be proper, upper semicontinuous, bounded below, and compact valued.

We will define these terms for set-valued mappings.

Definition 4.1. A set valued mapping F : X → 2Y is called proper, if dom(F ) �= ∅.

Definition 4.2 (upper semicontinuity). Let X be a topological space. A set-valued

mapping F : X → 2Y is said to be upper semicontinuous at x0 ∈ X if for any

neighborhood U of F (x0), there exists a neighborhood V of x0 such that

F (x) ⊂ U, ∀x ∈ V.

If F is upper semicontinuous at every x ∈ X, then we say F is upper semicontin-

uous on X.

Definition 4.3 (lower semicontinuity). Let X be a topological space. A set-valued

mapping F : X → 2Y is said to be lower semicontinuous at x0 ∈ X if for any

y0 ∈ F (x0) and any neighborhood U of y0, there exists a neighborhood V of x0 such
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that

F (x) ∩ U �= ∅, ∀x ∈ V.

If F is lower semicontinuous at every x ∈ X, then we say F is lower semicontinuous

on X.

Note. The definition of upper semicontinuity can be thought of as the regular def-

inition of continuity when the function is single-valued. However in the setting of

set-valued mappings there are examples of functions that are upper semicontinuous

but not lower semicontinuous and vice versa.

Example 4.1. Note in the following example that the function is not lower semicon-

tinuous at x = 0, but it is upper semicontinuous.

f(x) =






0 x < 0

[−1, 1] x = 0

0 x > 0

Meanwhile the next function is lower semicontinuous at x = 0, but not upper

semicontinuous.

f(x) =






[−1, 1] x < 0

0 x = 0

[−1, 1] x > 0

Definition 4.4. A set valued mapping F : X → 2Y is said to be bounded below on
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X, if ∃ y ∈ Y such that

F (x)− y ⊂ K, ∀x ∈ X.

Definition 4.5. A set valued mapping F : X → 2Y is said to be compact valued if

∀x ∈ X, F (x) is a compact subset of Y .

Also, in order to prove the Chen-Huang version of EVP we will need to introduce

a few other definitions.

Definition 4.6. Let α ∈ intK. Given F : X → 2Y and � > 0, x� ∈ X is called an

�− solution of F if ∃y� ∈ F (x�) such that

[F (x�)− y
�] ∩ [−K \ {0}] = ∅ (4.1)

and

[F (x)− y
� + �α] ∩ [−K \ {0}] = ∅, ∀x ∈ X \ {x�} (4.2)

Note. When � = 0 in the above definition, then the y
∗ is referred to as an “efficient

point” of the set F (X) =
�

x∈domF
F (x) as defined below.

Definition 4.7 (efficient points). The set of efficient points for A ⊂ Y is defined by

E(A) =: {a ∈ A | [A− a] ∩ [−K \ {0}] = ∅} .

The following lemma is straightforward.
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Lemma 4.1 (domination property [3]). If B ⊆ Y is compact and nonempty, then for

any y0 ∈ B, there exists y1 ∈ E(B) such that y1 ≤k y0.

Theorem 4.2 (� − solutions of F). Given a set valued mapping F : X → 2Y that

is proper, compact valued, and bounded below, and � > 0, there exists an x̄ ∈ X and

ȳ ∈ F (x̄) such that

[F (x̄)− ȳ] ∩ [−K \ {0}] = ∅ (a)

[F (x)− ȳ + �α] ∩ [−K \ {0}] = ∅ ∀x ∈ X \ {x̄} (b)

Remark. Notice this theorem gives sufficient conditions for x̄ to be an � − solution

of a function.

Proof. Suppose by contradiction that there exists a real number �0 > 0 such that the

conclusions of Theorem 4.2 do not hold. Then choose an arbitrary x1 ∈ domF and

y1 ∈ F (x1). Since F (x1) is compact we can apply Lemma 4.1, to get y�1 ∈ E (F (x1))

such that y�1−y1 ∈ −K. At this time conclusion (b) is assumed to not hold. Therefore

∃x2 ∈ X and y2 ∈ F (x2) such that

(y2 − y
�
1 + �0α) ∈ −K.

Since F (x2) is compact, we can again apply Lemma 4.1 to deduce ∃y�2 ∈ E (F (x2))

such that (y�2 − y2) ∈ −K. This combined with the above statement would yield

(y�2 − y
�
1 + �0α) ∈ −K.
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Once again conclusion (b) does not hold for y�2. Therefore ∃x3 ∈ X and y
�
3 ∈ E (F (x3))

such that

(y�3 − y
�
2 + �0α) ∈ −K.

Continuing this way, one obtains sequences {xn} ⊂ X and {y�n} ⊂ E (F (xn)) such

that

�
y
�
i − y

�
i−1 + �0α

�
∈ −K, i = 2 . . . .

Then, summing the above for i = 2, ..., n, gives

n�

i=2

�
y
�
i − y

�
i−1 + �0α

�
= y

�
n − y

�
1 + (n− 1)�0α ∀n ≥ 2

It follows that
�
y
�
n − y

�
1

n− 1
+ �0α

�
∈ −K ∀n ≥ 2.

Since F is bounded below, ∃y ∈ Y such that y�n − y ∈ K for all n ∈ N. Then we get

y − y
�
n

n− 1
+

y
�
n − y

�
1

n− 1
+ �0α =

�
y − y

�
1

n− 1
+ �0α

�
∈ −K.

Now, letting n → ∞, we have that �0α ∈ −K. However this is impossible by the

assumptions � > 0 and α ∈ intK. This completes the proof of �− solution theorem.
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Visualizing the �− solution Theorem

Recall that the original EVP gave a visual interpretation of existence of a cone

such that the function would always stay above the said cone. We want to check

whether we can visualize the set valued theorem in a similar manner.

Example 4.2. Suppose we have the following single valued function f : R → R,

K = R+, α ∈ IntK where f(x) = sin(x).

Notice this function trivially meets the criteria of being bounded below, compact

valued, and proper.(See Figure 4.1)

! !"# $"% &"' ("& ' '"# )"%

*$

*!")

!")

$

Figure 4.1: f(x)=sin(x)

Now let’s evaluate if we have met the conclusions (a) and (b). We can see in

the case of a single valued function that [F (x̄)− ȳ] ∩ [−K \ {0}] = ∅ is true because

ȳ = F (x̄). Clearly {0} ∩ [−K \ {0}] = ∅. Also, [F (x)− ȳ + �α] ∩ [−K \ {0}] = ∅ in
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the case of the single valued function, can be read as the following:

f(x)− ȳ + �α ≥ 0,

i.e.

f(x) ≥ ȳ − �α.

We realize that finding the ȳ can always be accomplished because the function is

bounded below. So in the single-valued case if f(x) ≥ M ∀x ∈ X holds, we can find

ȳ satisfying

M ≥ ȳ − �α,

which renders (b) true. In fact, in this example −1 ∈ E (F (x)).

We infer that the above example is typical and Theorem 4.2 holds true for any

single valued function bounded below. However, M = inf F may not be an efficient

point of F (X) as the next example shows. Let’s consider a different singled valued

function that does not attain its minimum.

Example 4.3. Suppose we have the following single valued function f : R → R,

where f(x) = exp(−x).
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Figure 4.2: f(x)=exp(-x)

In the above example as long as ȳ ≤ �α then the conclusions of �− solution theorem

will be satisfied. However, in this example, there are no efficient points. Indeed any

such ȳ = F (x̄) will not satisfy

F (x)− ȳ ≥ 0 ∀x ∈ X.

As we see, in the single valued case, boundedness from below with existence of a

minimum is necessary and sufficient for existence of efficient points. Note also that,

in the single-valued case, with Y = R, the requirement of α > 0 is superfluous (� > 0

suffices). The next example shows the need of α ∈ intK when Y = R2.

Example 4.4. Suppose g : [0, 2π) → R2, K = [0,∞) × [0,∞), where g(t) =

(cos(t), sin(t)).
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Figure 4.3: circle

In this example, g(t) is bounded below because y = (−1,−1) will suffice to move

the circle to inside the cone. Also, g(t) is compact because the image is just a single

point. Let’s check if the conclusions of the �− solution theorem are met. Once again

the first statement is true vacuously because g(t̄) = ȳ, hence {0} ∩ −K \ {0} = ∅.

The second statement in this example shows the necessity of α ∈ intK. One can

think of g(t) + �α as shifting the function by a vector towards the cone. Then the

� − solution theorem says that there exists some ȳ ∈ g(t̄), which shifts the function

out of the negative cone. This can be illustrated in the following way.
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Figure 4.4: circle shifted

In the above diagram we picked t = 3π
2 , ȳ = (0,−1). It turns out that (0,−1) ∈

E (F (x)). This example has several points that are efficient points. Earlier we es-

tablished that the attainment of a minimum produced efficient points. Are there

examples when Y = R2 that do not have efficient points, but do have �− solutions?

The next example answers the question in the affirmative.

Example 4.5. Suppose g :
�
−π

2 ,
π
2

�
→ R2 where g(t) = (t, tan(t)).
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Figure 4.5: tan inverse
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This function is trivially compact valued, bounded below, and proper, thus meet-

ing the conditions of the �− solution theorem, and given any �α, one can find the ȳ

by solving the following inequality:

(0,−π

2
) ≥K ȳ − �α.

However, this example has no efficient points. Indeed any such ȳ = g(t̄) will not

satisfy

[g(t)− ȳ] ∩ [−K \ {0}] = ∅ ∀t ∈
�
−π

2
,
π

2

�
.

In summary, these examples demonstrate that �− solutions of single-valued func-

tions are connected to the infimum inequality of the original EVP. Let’s restate the

infimum inequality using the ideas of set-valued functions.

y0 = F (x0) ≤ infF + �

0 ≤ infF − y0 + �

To convert this inequality into a statement using a cone, we must add the α as follows

[infF − y0 + �α] ∩ [−K \ {0}] = ∅.

If the above statement is true for the infimum of the function, which is bounded
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below, then it should be true for any other value of the function. Thus we arrive at

[F (x)− y0 + �α] ∩ [−K \ {0}] = ∅

When the infimum is not attained but the function is bounded below, the y0 can be

specifically calculated based on the �α given. When the infimum is attained it does

not matter the �α that is given, one can always choose an efficient point to be y0 .

Strong-set valued EVP

Using the idea of � − solutions from the last section Chen and Huang [4], give a

strong form of EVP for set valued functions, which we will refer to as SVEVP.

Theorem 4.3 (SVEVP). Let (X, d) be a complete metric space, Y be a locally con-

vex Hausdorff space, and K be a nontrivial, pointed, closed and convex cone with

nonempty interior intK and α ∈ intK. Let F : X → 2Y satisfy the following:

(i) F is proper on X;

(ii) F is compact valued;

(iii) F is upper semicontinuous on X;

(iv) F is bounded below on X.

Also, one is given a real number � > 0 and x1 ∈ dom(F ) and y1 ∈ F (x1) such that

(v) x1 is an �− solution of F .

Then, for any real number λ > 0, there exists x2 ∈ dom(F ), y2 ∈ F (x2) such that

(vi) y2 ≤K y1;
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(vii) d(x1, x2) ≤ λ;

(viii) x2 is an �− solution of F ;

(ix)
�
F (x)− y2 +

�
λd(x, x2)α

�
∩ [−K] = ∅ ∀x ∈ X \ {x2}.

It is interesting to see that in the proof of this theorem Chen and Huang use the

original Ekeland’s Variational Principle to achieve most of the conclusions. However in

order to understand the proof, we will need some information regarding a scalarization

function.

Definition 4.8 (nonlinear scalarization function). Given (X, d) a complete metric

space, and Y , K, and α ∈ IntK as stated earlier. A scalarization function φ : Y → R

is defined as

φ(y) = min {t : y ∈ tα−K} .

Some properties of this scalarization function are given below.

Lemma 4.4 ([3]). The above function φ is a monotone, subadditive, and convex

continuous function.

Property. The following properties can be observed from the definition of the non-

linear scalarization function.

φ(y) ≤ t ⇔ y ∈ αt−K, (4.3)

i.e.

φ(y) > t ⇔ y /∈ αt−K. (4.4)
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Now we show the proof of the SVEVP by breaking it down into four parts below.

Proof of SVEVP. Part I: Let’s consider a set valued mapping F1 = X → 2Y defined

as

F1(x) = {y ∈ F (x) : y ≤K y1} = F (x) ∩ [y1 −K] .

The assumption that F is proper leads us to find y1 ∈ F1(x1). Thus F (x)∩ [y1 −K] �=

∅ proving F1(x) is proper. Also the assumption that F (x) is compact valued and

bounded below easily shows that F1(x) is also compact valued and bounded below.

Part II. Now define a real function

f(x) = min {φ(y − y1) : y ∈ F1(x)} if x ∈ dom(F1)

f(x) = ∞ if x /∈ dom(F1).

This is the function we wish to show that meets the conditions of the original Eke-

land’s Variational Principle. Therefore let’s show that f is bounded below, lower

semicontinuous, and proper.

PROPER: By the assumption that x1 is an �− solution, there exists y1 ∈ F (x1)

such that [F (x1)− y1] ∩ [−K \ {0}] = ∅ which yields x1 ∈ dom(F1) and f(x1) =

min {φ(y − y1) : y ∈ F1(x1)} ≥ 0. On the other hand if we choose y = y1 in the

above then we get that f(x1) ≤ φ(y1 − y1) = 0. Putting these two inequalities

together gives f(x1) = 0.

BOUNDED BELOW: Since F1 is bounded below, ∃y ∈ Y such that F1(x) ⊂

y +K and φ(x) is monotone, then f(x) must be bounded below.
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LOWER SEMICONTINUOUS: In order to show f is lower semicontinuous,

we only need to show that ∀t ∈ R, A = {x ∈ X : f(x) ≤ t} is closed. Suppose xn ∈ A

and xn → x
�. We want to show x

� ∈ A. By the definition of f , ∃yn ∈ F1(xn) where

yn ≤K y1 such that

φ(yn − y1) ≤ t (4.5)

and

(yn − y1) ∈ −K. (4.6)

Since F is upper semicontinuous at x�, for any neighborhood U around F (x�), there

exists a neighborhood V around x
� such that F (x) ⊂ U ∀x ∈ V . Given δ > 0,

take a covering of F (x�) with open balls having diameter equal to δ
2 . Then we

denote the union of these open balls U . Take {xk1} ∈ V with F (xk1) ⊂ U . Hence

there is yk1 in one of the balls such that if you pick another element zk1 in that ball

one will have d(yk1 , zk1) ≤ δ
2 . We can repeat this argument to get ykn and zkn for

n ∈ N such that d(ykn , zkn) ≤ δ
2n . Thus ykn − zkn → 0. However since F (x�) is

compact, zkn has a convergent subsequence such that zknl
→ y

� where y
� ∈ F (x�).

From this, we can deduce that yknl
→ y

�. Finally, we know that y
� ≤K y1 and

y
� ∈ F1(x�), hence y

� ∈ [F (x�) ∩ (y1 −K)]. This implies by definition of f that

f(x�) = minφ(y� − y1) ≤ t. Therefore x
� ∈ A which demonstrates that A is closed.

Part III. Now apply the original EVP to f . Therefore ∀λ > 0, there exists

x2 ∈ X such that

f(x2) ≤ f(x1) = 0, (a)

39



d(x1, x2) ≤ λ, (b)

f(x) +
�

λ
d(x, x2) > f(x2) ∀x ∈ X \ {x2} . (c)

Part IV. Finally each of the conclusions (vi)-(ix) of this theorem 4.3 are reached.

We omit the details here (see [3]).

SVEVP is most closely associated with the original EVP. Both versions require

a complete metric space, the function to be bounded below, and the conclusions are

similar. However the single-valued function is required to be lower semicontinuous

and the multi-valued function is required to be upper semicontinuous. The set-valued

version also has this extra requirement of the cone. This is necessary when dealing

with a set-valued function. The compact valued condition on the function is required

because of the set-valued nature of the functions. If we interpret the compact valued

definition for single-valued functions, then every single-valued function is compact

valued. Therefore in the single-valued setting, the requirement that the function be

compact valued is redundant.

In the next section, for comparision reasons with the single-valued situation, we

state corresponding set-valued versions of Caristi and Takahashi Theorems. The main

idea is to make evident the similarities in the corresponding proofs of equivalence.

For that, rather than going into the details of all definitions we will only state the

corresponding theorems and the assumptions needed for these theorems to hold.
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Generalized EVP

Assumptions (A1). Let Y be a locally convex space, K ⊂ Y is a nonempty, non-

trivial, convex cone. Y is ordered by K. Let K0 ⊂ K be a K bound regular complete

convex cone, K0 ∩ −K ⊂ −K0. Let (X, r) be a complete K0 metric space. Let

F : X → 2Y be a strict set-valued map such that ∀x ∈ X F (x) has the domination

property and F is bounded below on X1 = {x ∈ X : [y0 −K] ∩ F (x) �= ∅} . Also one

of the following conditions must also hold.

(I) K is closed and F is submonotone with respect to K, ∀a ∈ X, r(a, .)is contin-

uous with respect to the topology of X induced by r.

(II) ∀x0 ∈ X, y0 ∈ F (x0), and a net {xx} ⊂ X, xx → x̄ ∈ X and yx ∈ F (xx) such

that yx−y0+�r(xx, x0) ∈ −K, it follows ∃ȳ ∈ F (x̄) such that ȳ−y0+�r(x̄, x0) ∈ −K

where � > 0.

Theorem 4.5 (GSVEVP). Let (A1) hold. Then ∃x� ∈ X and y
� ∈ E (F (x�)) such

that

y
� ≤K y0 (4.7)

[F (x)− y
� + r(x, x�)] ∩ [−K] = ∅ ∀x ∈ X \ {x�} (4.8)

This theorem can be shown equivalent with the following set-valued Caristi Fixed

Point Theorem.

Theorem 4.6 (SVCFPT). Let (A1) hold. Let T : X → 2Y be a set valued map such

that

(b) ∀x̄ ∈ X1, ∀ȳ ∈ F (x̄) and ȳ ≤K y0, ∃x ∈ T (x̄) and y ∈ F (x) such that
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[y − ȳ + r(x, x̄)] ∈ −K.

Then ∃x� ∈ X1 and y
� ∈ F (x�) such that

y
∗ ≤K y0 (4.9)

x
� ∈ T (x�) (4.10)

Next we provide the proofs of equivalence between theorems 4.5 and 4.6. Again

we emphasize the similar nature of the proofs with the single-valued ones.

SVEVP⇒SVCFPT

Proof. From Theorem 4.5 we know ∃x� ∈ X and y
� ∈ E (F (x�)) such that

y
� ≤K y0, (4.11)

[F (x)− y
� + r(x, x�)] ∩ [−K] = ∅ ∀x ∈ X \ {x∗} . (4.12)

We want to show x
∗ ∈ T (x∗). By contradiction assume x ∈ T (x∗)\{x�} and y ∈ F (x).

Then by Theorem 4.6 y−y
�+ r(x, x�) ∈ −K, but this contradicts the above line.

SVEVP⇐SVCFPT

Proof. Define T (x) := {w ∈ X \ {x} : ∃y1 ∈ F (w) and y2 ∈ F (x) y1 − y2 + r(x, w) ∈ −K} .

By contradiction suppose that 4.5 does not hold, meaning ∀x̄ ∈ X1, ȳ ∈ F (x̄) with
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ȳ ≤K y0, ∃w ∈ X \ {x̄} and y1 ∈ F (w) such that

y1 − ȳ + r(x̄, w) ∈ −K

Since this satisfies 4.6 there should exist x� ∈ T (x�). However by definition of T (x),

x
� cannot be in the set. Thus contradiction.

Finally, Chen and Huang also give a set-valued Takahashi Theorem under the

same (A1) assumptions and show its equivalence to SVEVP.

Theorem 4.7 (SVT). Let (A1) hold. In addition assume

∀x̄ ∈ X, ȳ ∈ F (x̄) with ȳ ≤K y0, there exists x1 ∈ X1 such that [F (x1)− ȳ] ∩

[−K \ {0}] �= ∅, it follows that ∃x2 ∈ X1 \ {x̄} and y2 ∈ F (x2) such that y2 − ȳ +

r(x̄, x2) ≤K 0.

Then ∃x� ∈ X1 and y
� ∈ E (F (x�)) with y

� ≤K y0 such that

[F (x)− y
�] ∩ [−K \ {0}] = ∅, ∀x ∈ X \ {x�} .

SVEVP⇒SVT

Proof. From Theorem 4.5 ∃x� ∈ X1 and y
� ∈ E (F (x�)) such that

y
� ≤K y0
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[F (x)− y
� + r(x, x�)] ∩ [−K] = ∅ ∀x ∈ X \ {x�} .

We now want to show that

[F (x)− y
�] ∩ [−K \ {0}] = ∅ ∀x ∈ X \ {x�} .

Otherwise ∃x1 ∈ X \ {x�} and y1 ∈ F (x1) such that y1 − y
� ∈ −K \ {0}. Then

x1 ∈ X1 and y1 ≤K y0. Using the added assumption of Theorem 4.7, there exist

x2 ∈ X1 \ {x�} and y2 ∈ F (x2) such that

y2 − y
� + r(x�

, x2) ≤K 0.

However this contradicts [F (x)− y
� + r(x, x�)] ∩ [−K] = ∅ ∀x ∈ X \ {x�} .

As in the single-valued case we only show the forward implication. Again note the

similarity in the proof here and the proof for the single-valued version. As already

mentioned earlier, the (A1) assumptions are very general and require more back-

ground in set-valued functions and cone metric spaces. Chen and Huang have found

the conditions that make the proofs of the set-valued versions follow a similar path to

the proofs of the single-valued versions. Perhaps such a technical and general setting

is indeed necessary to create connections to Caristi and Takahashi in the set-valued

case.
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CHAPTER 5

CONCLUSION

Even after the publication of EVP in 1972, it still has wide applications across

various areas of mathematics. One of the most important ideas of EVP is that in

the absence of a known minimum, one can use EVP to get close to a minimum. An

interpretation of this idea when a function is bounded below and differentiable in

Banach space provides that the derivative must also be small. This result is used

extensively in optimization and control theory. In the exposition of EVP, we first

conveyed the importance of EVP’s connection with other known results: Caristi’s

and Clarke’s Fixed Point Theorems and Takahashi’s Minimization Theorem. Then in

Chapter 3, we explored the background that led to Pontryagin’s minimum principle.

In addition, we gave Ekeland’s approximate version of Pontryagin Principle.

The initial applications of EVP pose the question, “Can the theorem be gener-

alized by changing from a single-valued function to a multi-valued function?” Un-

fortunately, a direct transformation using the same proof techniques of Ekeland are

insufficient. In Chapter 4, we discovered that many authors were successful in giving

various set-valued EVP’s. The differences presented in these versions are the assump-

tions on the space, metric and function. Chen and Huang formulated �−solutions of

a set-valued function in which they use for a closely associated strong form of EVP
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for set-valued functions. They also unite other authors work to give a set-valued weak

form of EVP. By comparing the original EVP wth Chen and Huang’s generalized ver-

sion we recognize that despite different assumptions, the proofs of equivalence with

corresponding Caristi’s and Takahashi’s results are remarkably similar.

Recent work with set-valued EVP versions have been used in applications to vec-

tor optimization problems and vector equilibrium problems (see [1] and references

therein). Results related to existence and well posedness in regards to vector opti-

mization are current areas of research (e.g.[4]). With the multitude of EVP set-valued

versions presented over the past two decades, the necessity has arisen to sort out the

relationships amongst them. Some EVP versions have be proven as merely more

specific cases through various lemmas. However others stand alone in sharp con-

trast from one another. For example in [9], the authors note how their EVP version

differs from that of Chen and Huang. This has created a splintering of generalized

EVPs. However each version has particular uses. In summary, EVP continues to be

a necessary tool for various mathematical areas of research.
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