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ABSTRACT

EXACT CONTROLLABILITY OF THE LAZER-MCKENNA
SUSPENSION BRIDGE EQUATION

by

Lanxuan Yu

Dr. Zhonghai Ding, Examination Committee Chair
Professor, Mathematics

University of Nevada, Las Vegas, USA

It is well known that suspension bridges may display certain oscillations under

external aerodynamic forces. Since the collapse of the Tacoma Narrows suspension

bridge in 1940, suspension bridge models have been studied by many researchers.

Based upon the fundamental nonlinearity in suspension bridges that the stays con-

necting the supporting cables and the roadbed resist expansion, but do not resist

compression, new models describing oscillations in suspension bridges have been de-

veloped by Lazer and McKenna [Lazer and McKenna (1990)]. Except for a paper

by Leiva [Leiva (2005)], there have been very few work on controls of the Lazer-

McKenna suspension bridge models in the existing literature. In this dissertation, I

use the Hilbert Uniqueness Method and the Leray-Schauder’s degree theory to study

two exact controllability problems of the Lazer-McKenna suspension bridge equation.

The first problem is to study the exact controllability of the single Lazer-McKenna

suspension bridge equation with a locally distributed control. Unlike most of the ex-

isting literatures on exact controllability of nonlinear systems where the nonlinearity

was always assumed to be C1-smooth, the nonlinearity in the Lazer-McKenna suspen-

sion bridge equation is not C1-smooth, which makes the exact controllability problem

iii



challenging to study. It is proved that the control system is exactly controllable. The

key step is to establish an observability inequality of the auxiliary linear control prob-

lem. The proof of such an inequality relies on deriving a Carleman estimate.

The second problem studied in this dissertation is the exact controllability problem

of the single Lazer-McKenna suspension bridge equation with a piezoelectric bending

actuator. It is proved that the control system is exactly controllable when the location

of the actuator is carefully chosen. The proof of exact controllability is based upon

establishing an Ingham inequality for nonharmonic Fourier series.
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CHAPTER 1

INTRODUCTION

Suspension bridge is a common type of civil engineering structures. The his-

tory of suspension bridges can be dated back to the eighth century when the ancient

Chinese constructed suspension bridges by laying planks between pairs of iron chains,

essentially providing a flexible deck resting on cables. Similar bridges were built in

various parts of the world during subsequent centuries. The modern era of suspen-

sion bridges did not begin until 1808 when an American engineer named James Finley

patented a system for suspending a rigid deck from a bridge’s cables. A suspension

bridge consists of a horizontal roadbed; two pylons; two main cables suspended be-

tween two pylons; and vertical stays connecting the roadbed and main cables. Since

any load applied to the roadbed is transformed into tensions in main cables, both

main cables must be anchored at each end of the suspension bridge. A configuration

of suspension bridge is given in Figure 1.1.

Figure 1.1. Suspension bridge configuration
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Suspension bridges usually have longer center spans and lighter weights than other

types of bridges. They have better performances in withstanding earthquake move-

ments than those heavier and more rigid bridges. Moreover, suspension bridges have

less construction costs than other bridges. Except for installation of initial temporary

cables, the waterway can remain open while a suspension bridge is built above. The

recent developments of high-strength cables and girders have led the construction

of suspension bridges into a new era. According to the Wikipedia [Wikipedia (a)],

among the ten world’s longest suspension bridges, nine of them were built in last two

decades. The Akashi Kaikyo suspension bridge in Japan (Figure 1.2), completed in

1998, has the longest center span (6532 ft) among all existing suspension bridges in

the world.

Figure 1.2. The Akashi Kaikyo suspension bridge [Wikipedia (a)]

Since suspension bridges are relatively light and flexible, they are all susceptible

to external aerodynamic loads such as wind. The increase in center-span length
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Figure 1.3. Swaying and buckling of the first Tacoma Narrows suspension bridge in
relatively mild windy condition [Wikipedia (b)]

and pylon height raises many concerns about the dynamic behavior of long-span

suspension bridges. It is well known that a long-span suspension bridge may display

certain dangerous oscillations under extreme dynamic loads, and the large amplitude

oscillations could cause fatigue or failure of this type of bridges. The collapse of the

first Tacoma Narrows suspension bridge is one of the most striking examples. The

first Tacoma Narrows suspension bridge had a center span of 2800 ft, and was opened

on July 1, 1940. Shortly after the construction was finished, it was discovered that

the bridge would sway and buckle dangerously in relatively mild windy conditions in

the area (Figure 1.3). It collapsed on November 7, 1940, due to a wind blowing at a

speed of 42 mph (Figure 1.4).

The report by the Federal Works Agency [Amann et al. (1941)] determined that

the collapse of the first Tacoma Narrows suspension bridge was due to a never-before-
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Figure 1.4. Collapse of the first Tacoma Narrows suspension bridge [Wikipedia (b)]

seen twisting mode: coupled torsional and longitudinal oscillations. However, the

report was inconclusive to the precise causes of the bridge failure. Nevertheless,

the report has created a widespread demand for a comprehensive investigation of

dynamic oscillation problems in suspension bridges in order to understand the causes

of such destructive oscillations, and to develop design techniques to prevent their

recurrence in future. A systematic study of the mathematical theory of suspension

bridges appears to be initiated by Bleich, McCullough, Rosecrans and Vincent [Bleich

et al. (1950)] in 1950. From then on, extensive studies of dynamics of suspension

bridges were carried out [Abdel-Gha↵er (1982); Pittel and Jakubovic (1969); Scanlan

(1978b,a); Selberg (1961); Wiles (1960)]. In the early studies of the failure of the

Tacoma Narrows suspension bridge, linear suspension bridge models were derived and

analyzed, and the causes of the bridge failure was attributed to resonance. However,

this explanation contradicts to the findings reported by the Federal Works Agency.
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The following paragraph is quoted from the FWA report [Amann et al. (1941)] on

the collapse of the first Tacoma Narrows suspension bridge.

It is very improbable that resonance with alternating vortices plays an im-

portant role in the oscillations of suspension bridges. First, it was found

that there is no sharp correlation between wind velocity and oscillation

frequency, as is required in the case of resonance with vortices whose fre-

quency depends on the wind velocity.... It seems that it is more correct

to say that the vortex formation and frequency is determined by the oscil-

lation of the structure than that the oscillatory motion is induced by the

vortex formation.

Based upon the observation of the fundamental nonlinearity in suspension bridges

that the stays connecting the supporting cables and the roadbed resist expansion, but

do not resist compression, new models describing oscillations in suspension bridges

have been developed by Lazer and McKenna in 1990 [Lazer and McKenna (1990)].

The new models are described by systems of coupled nonlinear partial di↵erential

equations.

Consider a simplified suspension bridge configuration which consists of a main

cable, a horizontal roadbed and stays connecting the roadbed to the main cable, see

Figure 1.5. The pylons and side-spans are not considered. The main cable is modeled

by the vibrating string with both ends being fixed. The horizontal roadbed is modeled

by the vibrating beam with both ends being simply supported. The stays are modeled

by the one-sided springs which resist expansion but do not resist compression. Let
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Figure 1.5. A simplified suspension bridge configuration

u(x, t) denote the downward deflection of the main cable, and w(x, t) denote the

downward deflection of the roadbed. The following suspension bridge model was

proposed by Lazer and McKenna [Lazer and McKenna (1990)] in 1990,
8

>

>

>

>

<

>

>

>

>

:

mcutt �Quxx �K(w � u)+ = mcg + f1(x, t),
mbwtt + EIwxxxx +K(w � u)+ = mbg + f2(x, t)
u(0, t) = u(L, t) = 0,
w(0, t) = w(L, t) = 0,
wxx(0, t) = wxx(L, t) = 0,

(1.1)

where (w � u)+ = max{w � u, 0}; L is the roadbed of length L; mc and mb are the

mass densities of the cable and the roadbed, respectively; Q is the tensile strength

constant of the cable; EI is the roadbed flexural rigidity; K is the Hooke’s constant

of the stays; f1 and f2 represent the external periodic aerodynamic forces.

Assume further that the main cable is immovable, one then obtains the well-known

Lazer-McKenna suspension bridge equation [Lazer and McKenna (1990)],
8

<

:

mbwtt + EIwxxxx +Kw+ = mbg + f(x, t),
w(0, t) = w(L, t) = 0,
wxx(0, t) = wxx(L, t) = 0.

(1.2)
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The Lazer-McKenna suspension bridge systems (1.1) and (1.2) were obtained by

ignoring the torsional oscillation of the roadbed due to its relatively small scale of am-

plitude. Based upon the Lazer-McKenna suspension bridge models, Ahmed [Ahmed

(2004)] proposed in 2004 the following general suspension bridge model describing

both torsional and longitudinal oscillations by considering a simplified suspension

bridge configuration which consists of two parallel main cables, a horizontal roadbed

and stays connecting both sides of the roadbed to the main cables. Let u(x, t) and

v(x, t) denote the downward deflections of two main cables, w(x, t) denote the down-

ward deflection of the roadbed, ✓(x, t) denote the angular deflection of the roadbed

from the horizontal plane about the centerline of the roadbed.
8

>

>

<

>

>

:

mcutt �Quxx � F1(u, w, ✓) = mcg + f1(x, t),
mcvtt �Qvxx � F2(v, w, ✓) = mcg + f2(x, t),
mbwtt + EIwxxxx + F1(u, w, ✓) + F2(v, w, ✓) = mbg + f3(x, t),
I✓tt + ↵✓xx + ` cos ✓[F1(u, w, ✓)� F2(v, w, ✓)] = f4(x, t),

(1.3)

where
⇢

F1(u, v, w, ✓) = K(w + ` sin ✓ � u)+,
F2(u, v, w, ✓) = K(w � ` sin ✓ � v)+,

(1.4)

and ⇠+ = max{⇠, 0} for ⇠ 2 R. The boundary conditions are given as
8

<

:

u(0, t) = u(L, t) = 0, v(0, t) = v(L, t) = 0,
w(0, t) = w(L, t) = 0, wxx(0, t) = wxx(L, t) = 0,
✓(0, t) = ✓(L, t) = 0.

(1.5)

In this general suspension bridge model, 2` and L are the width and length of the

roadbed, respectively, I = 2m`2 is the moment of inertia about the roadbed center-

line, ↵ = 2`2EI, F1(u, v, w, ✓) and F2(u, v, w, ✓) are the restoring forces of the stays,

and fi, 1  i  4, represent nonconservative aerodynamic forces.

The Lazer-McKenna suspension bridge equation (1.2) has been studied exten-

sively in the literature. By using the variational methods and the critical point the-

7



ory, multiple large amplitude periodic oscillations have been found theoretically and

numerically by Lazer, McKenna and their collaborators (see [Choi et al. (1993a, 1991,

1993b); Glover et al. (1989); Humphreys (1997); Humphreys and McKenna (1999);

Lazer and McKenna (1990, 1987)] and references therein). By using the variational

methods, the existence of large amplitude periodic oscillations in the Lazer-McKenna

suspension bridge system (1.1) has been studied by Ding [Ding (2001, 2002b,a,c,

2003)]. However, the general suspension bridge model (1.3)-(1.5) for torsional and

longitudinal oscillations has not been studied in depth yet in the existing literature.

It has been known that a narrow and very flexible suspension bridge has a low

degree of internal damping, which makes it susceptible to detrimental jitter from vi-

brations and flutters. Active controls are required to suppress oscillations quickly in

bridge structures. A classical method to study the exact controllability of a linear

control system is the Hilbert Uniqueness Method (HUM) introduced by Lions [Lions

(1988)]. A key step of this method is to establish a related observability inequality.

When adopting this method for an semilinear control system, an auxiliary linear sys-

tem needs to be introduced to prove the observability inequality. One then applies

the Leray-Schauder degree theory to derive the exact controllability of the nonlinear

control system. The controllability for linear and semilinear wave equations has been

studied extensively by many researchers (see [Zuazua (1993); Li and Z (2000); Zhang

(2000)] and references therein). In last two decades, there are many literatures dis-

cussing the exact controllability of the linear plate equations (see [Tucsnak (1996);

Crépeau and Prieu (2001); Zhang (2001); Fu (2012)], etc). The recent progresses on

the study of controllability/observability of linear and semilinear wave equations can

8



be found in a review paper by Hongheng Li, Qi Lü and Xu Zhang [LI et al. (2010)].

However except a paper by Ahmed and Harbi [Ahmed and Harbi (1998)] (1998)

on the stabilization of the Lazer-McKenna suspension bridge equation (1.2) with a

linear internal damping and a paper by Leiva [Leiva (2005)] on exact controllability

of the Lazer-McKenna suspension bridge equation (1.2) with a distributed control

over the whole roadbed, there has been very little discussion of control of suspen-

sion bridges in the existing literature. The objective of this Dissertation is to study

the exact controllability of the Lazer-McKenna suspension bridge equation (1.2). We

study two di↵erent types of controls on the roadbed: locally distributed control and

piezoelectric actuator. Both control problems are motivated by the recent develop-

ments and applications of smart materials. For example, the piezoelectric actuators

have gained wide acceptance for active control in many structural systems due to

their light weight, better bending moment control and low power consumption.

We study first in this Dissertation the exact controllability of the Lazer-McKenna

suspension bridge equation with the locally distributed control. Consider

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

@2w

@t2
+
@4w

@x4
+Kw+ = �!(x)u(x, t), x 2 ⌦, t > 0,

w(0, t) = w(⇡, t) = 0, t > 0,
@2w

@x2
(0, t) =

@2w

@x2
(⇡, t) = 0, t > 0,

w(x, 0) = w0(x),
@w

@t
(x, 0) = w1(x), x 2 ⌦,

(1.6)

where w+ = max{0, w}, ! = (a, b) ✓ (0, ⇡) = ⌦, �!(x) is the characteristic function

of !, (w0, w1) are given initial data in appropriate spaces, and u(x, t) is the control.

System (1.6) is exactly L2�controllable at time T if there exists control u 2 L2(! ⇥

9



(0, T )) such that the solution of the system satisfies the final state condition

w(x, T ) =
@w

@t
(x, T ) = 0, x 2 ⌦.

Unlike most of the existing literatures on exact controllability of nonlinear systems

where the nonlinearity was always assumed to be C1-smooth, the nonlinearity w 7!

w+ in (1.6) is not C1-smooth, which makes the exact controllability problem of (1.6)

challenging to study. We study this problem by using the Hilbert Uniqueness Method

and the Leray-Schauder’s degree theory. The key step is to establish an observability

inequality of the auxiliary linear control problem of (1.6). The proof of such an

inequality relies on establishing a Carleman estimate.

We then study the exact controllability of the Lazer-McKenna suspension bridge

equation with a piezoelectric bending actuator. Consider

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

@2w

@t2
+
@4w

@x4
+Kw+ = u(t)

d

dx
[�b(x)� �a(x)] , x 2 ⌦, t > 0,

w(0, t) = w(⇡, t) = 0, t > 0,
@2w

@x2
(0, t) =

@2w

@x2
(⇡, t) = 0, t > 0,

w(x, 0) = w0(x),
@w

@t
(x, 0) = w1(x), x 2 ⌦,

(1.7)

where 0  a < b  ⇡, �a(x) and �b(x) are the Dirac delta functions, and u(t) is

the control. System (1.7) is exactly L2�controllable at time T if there exists control

u 2 L2(0, T ) such that the solution of the system satisfies the final state condition

w(x, T ) =
@w

@t
(x, T ) = 0, x 2 ⌦.

Tucsnak [Tucsnak (1996)] has studied the linear case of (1.7) when the nonlinear

term Kw+ is dropped, and showed that the linear case is exact controllable only if

a+ b

2⇡
2 A and

b� a

2⇡
2 A, where A is the set of irrational numbers in (0, 1) such that

10



⇢ 2 A if and only if there exists a constant C > 0 such that min
n2Z

|q⇢ � n| � C

q
for

any q 2 N. By using the Hilbert Uniqueness Method and the Banach Contraction

Mapping, we obtain the similar controllability result. The proof of the observability

inequality of the auxiliary linear control problem of (1.7) is based upon establishing

an Ingham inequality for nonharmonic Fourier series.

The organization of this Dissertation is as follows. In Chapter 2, we first introduce

and discuss the nonharmonic Fourier series. Then we prove an Ingham inequality

when the gap goes to infinity, which will be used in the discussion of the exact

controllability of the suspension bridge control system with a piezoelectric actuator.

In Chapter 3, we discuss the exact controllability of the suspension bridge control

system with a local distributed control (1.6), and prove that the system is exactly

L2�controllable. A Carleman estimate will be established and used to prove the

related observability inequality. In Chapter 4, we discuss the exact controllability of

the suspension bridge control system with a piezoelectric bending actuator (1.7), and

prove that the system is exactly L2�controllable. Some further discussions of the

controllability of the Lazer-McKenna suspension bridge equation and future work are

given in Chapter 5.

11



CHAPTER 2

NONHARMONIC FOURIER SERIES

2.1 Introduction

For any f 2 L1[�⇡, ⇡], it is well known that f(x) can be expressed by the Fourier

series

a0 +
1
X

n=1

(an cosnx+ bn sinnx),

where a0 =
1

2⇡

Z ⇡

�⇡

f(x)dx, an =
1

⇡

Z ⇡

�⇡

f(x) cosnxdx, bn =
1

⇡

Z ⇡

�⇡

f(x) sinnxdx. The

Fourier theorem [Fourier (1822)] indicates that the Fourier series converges to f(x)

pointwisely on [�⇡, ⇡]. If f(x) is piecewise continuous on [�⇡, ⇡], then

a0 +
1
X

n=1

(an cosnx+ bn sinnx) =

8

>

<

>

:

f(x) if f is cont. at x;
1

2
[f(x�) + f(x+)] if f has jump

discontinuity at x.

By using the Euler Formula, ei✓ = cos ✓ + i sin ✓,

cosnx =
1

2
(einx + e�inx),

sinnx =
1

2i
(einx � e�inx),

the Fourier series can be expressed as

f(x) =
1
X

n=�1
cne

inx,

where cn =
1

2⇡

Z ⇡

�⇡

f(x)einxdx. Furthermore, when f 2 L2[�⇡, ⇡], by the Bessel’s

inequality, we have

1
X

n=�1
|cn|2 

1

2⇡

Z ⇡

�⇡

|f(x)|2dx =
1

2⇡
kfk22.

12



In fact, the Parseval’s Theorem gives

1
X

n=�1
|cn|2 =

1

2⇡
kfk22. (2.1)

and {einx}1n=�1 forms a complete orthogonal basis of L2[�⇡, ⇡].

Now let {�n} ⇢ R satisfying �n+1 > �n, define nonharmonic Fourier series

1
X

n=�1
cne

i�nt,

where {cn} ⇢ C. The theory of nonharmonic Fourier series is concerned with the

completeness and expansion properties of {ei�nt} in Lp[�⇡, ⇡]. Paley and Wiener

[Paley and Wiener (1934)] first introduced and studied the nonharmonic Fourier se-

ries. The study of nonharmonic Fourier series is closely related to the study of entire

function.

A natural question is: if f(t) =
1
X

n=�1
cne

i�nt 2 L2(I), do there exist C1, C2 > 0

such that

C1

1
X

n=�1
|cn|2 

�

�

�

�

�

1
X

n=�1
cne

i�nt

�

�

�

�

�

2

L2(I)

 C2

1
X

n=�1
|cn|2. (2.2)

A.E. Ingham [Ingham (1936)] showed that if �n��n�1 � � > 0 and T =
⇡ + ✏

�
>
⇡

�

C1

N 0
X

n=N

|cn|2 

�

�

�

�

�

N 0
X

n=N

cne
i�nt

�

�

�

�

�

2

L2(�T,T )

 C2

N 0
X

n=N

|cn|2.

Further results have been given by many researchers ([Zygmund (1959); Ball and

Slemrod (1979); Beurling (1989); Haraux (1989); Young (2001)]).

J. M. Ball and M. Slemrod showed if limn!1(�n � �n�1) � � > 0 and T >
2⇡

�
,

(2.2) is true for I = (0, T ). They also pointed out in a remark that the Ingham

inequality is true for any |I| > 0 if the gap of {�n} goes to infinity. They referred

13



the proof of such a claim should be similar to the study of Lacunary series by A.

Zygmund in his book ”Trigonometric series” [Zygmund (1959)].

The Lacunary series was first introduced by Zygmund [Zygmund (1959)]. Let

{nk} ✓ N and
nk+1

nk

> q > 1, define the Fourier series as

1
X

k=1

(ak cos(nkx) + bk sin(nkx)) =
1
X

k=1

Ak(x).

Note that the Lacunary series is a special type of nonharmonic Fourier series that

requires

nk+1

nk

> q > 1 ) |nk+1 � nk| ! 1 as k ! 1.

Unfortunately, this cannot be applied to our problem since
nk+1

nk

> q > 1 is not

satisfied.

For the Lazer-McKenna suspension bridge equation, we need to show (2.2) for any

|I| > 0 if the gap of nonharmonic Fourier series goes to infinity and
�n+1

�n
! 1. The

Arne Beurling’s Theorem [Beurling (1989)] may lead to the answer but the proof is

profound. We will give a direct proof to show that if lim
n!1

(�n � �n�1) = 1, (2.2) is

true for any |I| > 0.

2.2 Upper bound for the L2-norm of nonharmonic Fourier series

First, we show the right half of inequality (2.2) for all nonharmonic Fourier series.

Some preparation of entire functions is needed.

Definition 2.1. An entire function f(z) is said to be of exponential type ⌧ > 0 if

14



there exists a constant C > 0 such that

|f(z)|  Ce⌧ |z|, 8z 2 C.

Theorem 2.1. (Plancherel-Pólya) If f(z) is an entire function of exponential type

⌧ , and if for some p > 0,
Z 1

�1
|f(x)|pdx < 1,

then
Z 1

�1
|f(x+ yi)|pdx  ep⌧ |y|

Z 1

�1
|f(x)|pdx.

Theorem 2.2. (Paley-Wiener)[Paley and Wiener (1934)] Let f(z) be an entire func-

tion such that

|f(z)|  CeA|z|, 8z 2 C

for A > 0 and C > 0, and

Z

R
|f(x)|2dx < 1. Then there exists a function � 2

L2[�A,A] such that

f(z) =

Z A

�A

�(t)eiztdt.

Theorem 2.3. Let f(z) be an entire function of exponential type ⌧ . Suppose for some

p > 1,
Z 1

�1
|f(x)|pdx < 1.

If {�n} is an increasing sequence of real numbers such that

�n+1 � �n � ✏ > 0,

then

X

n

|f(�n)|p  B

Z

R
|f(x)|pdx,

where B is a constant that depends only on p, ⌧ and ✏.

15



Proof. Since |f(z)|p is subharmonic, we have

|f(z0)|p  1

2⇡

Z 2⇡

0

|f(z0 + rei✓)|pd✓, z0 2 C, r > 0.

Then

|f(z0)|p  1

⇡�2

Z Z

|z�z0|�

|f(z)|pdxdy, 8z0 2 C, � > 0.

Then

X

n

|f(�n)|p  1

⇡�2

X

n

Z Z

|z|<�

|f(�n + z)|pdxdy

 1

⇡�2

X

n

Z �

��

Z �

��

|f(�n + x+ yi)|pdxdy

=
1

⇡�2

X

n

Z �

��

Z �n+�

�n��

|f(x+ yi)|pdxdy.

Let � =
✏

2
, the {(�n� �,�n+ �)} are pairwise disjoint, hence by the Plancherel-Pólya

Theorem (Theorem 2.1)

X

n

|f(�n)|p  1

⇡�2

Z �

��

Z 1

�1
|f(x+ yi)|pdxdy

 1

⇡�2

Z �

��



ep⌧ |y|
Z 1

�1
|f(x)|pdx

�

dy

= B

Z 1

�1
|f(x)|pdx.

Theorem 2.4. If {�n} is a separated sequence of real numbers, then for any A > 0,
�

�

�

�

�

X

n

cne
i�nt

�

�

�

�

�

2

2

 M
X

n

|cn|2 in L2[�A,A].

Proof. If � 2 L2[�A,A], then an = h�, ei�nti =

Z A

�A

�(t)e�i�ntdt is first the value of

f(�n) of the entire function

f(z) =

Z A

�A

�(t)e�iztdt.
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By the Paley-Wiener Theorem (Theorem 2.2), f is an entire function of exponential

type A, hence by Theorem 2.3

X

n

|an|2 =
X

n

|f(�n)|2  B

Z

R
|f(x)|2dx < 1 .

Define a mapping T : L2[�A,A] ! `2 by T (�) = {h�, ei�nti}. Thus T has a closed

graph. By the closed graph theorem, there exists a M > 0 such that

X

n

�

�h�, ei�nti
�

�

2  Mk�k22.

Let �(t) =
X

n

cne
i�nt, where

X

n

|cn|2 < 1. Then

k�k42 = |h�,�i|2 =

�

�

�

�

�

X

n

c̄nh�, ei�nti

�

�

�

�

�

2


X

n

|cn|2
X

n

�

�h�, ei�nti
�

�

2

 Mk�k22
X

n

|cn|2.

Then

k�k22  M
X

n

|cn|2.

That is
�

�

�

�

�

X

n

cne
i�nt

�

�

�

�

�

2

2

 M
X

n

|cn|2.

Remark 2.1. If
X

n

|cn|2 < 1, then
k
X

n=�k

cne
i�nt converges to a function f 2 L2[�A,A],

and kfk22  M
X

n

|cn|2. Note A > 0 is arbitrary.

There remains the lower bound of

�

�

�

�

�

X

n

cne
i�nt

�

�

�

�

�

2

2

to be estimated.
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2.3 Ingham inequality - with gap going to infinity

First, a classical version of Ingham inequality is given below.

Theorem 2.5. Let A > 0 be given. If {�n} ⇢ R is a separated sequence satisfying

�n+1 � �n � � >
⇡

A
.

Then there exists a D > 0 such that, for any {cn} 2 `2,

D
X

n

|cn|2 

�

�

�

�

�

X

n

cne
i�nt

�

�

�

�

�

2

2

in L2[�A,A] .

Proof. Let f(t) =
X

n

cne
i�nt, then f 2 L2[�A,A]. WLOG, let A = ⇡. If k(t) is any

integrable function on R, and let

K(x) =

Z

R
k(t)eixtdt .

Then

Z 1

�1
k(t)|f(t)|2dt =

Z 1

�1
k(t)

X

m,n

cmc̄ne
i�mte�i�ntdt =

X

m,n

cmc̄nK(�m � �n).

Choose

k(t) =

(

cos
t

2
, if |t|  ⇡,

0, if |t| > ⇡.

Then

K(x) =
4 cos⇡x

1� 4x2
.

Thus

X

m,n

K(�m � �n)cmc̄n =

Z 1

�1
k(t)|f(t)|2dt 

Z ⇡

�⇡

|f(t)|2dt = kfk22.

18



Let

X

m,n

K(�m � �n)cmc̄n =
X

m=n

K(0)cmc̄n +
X

m 6=n

K(�m � �n)cmc̄n

= 4
X

n

|cn|2 +
X

m 6=n

K(�m � �n)cmc̄n.

Note that K is even, and |cmc̄n| 
1

2
[|cm|2 + |cn|2], then

�

�

�

�

�

X

m 6=n

K(�m � �n)cmc̄n

�

�

�

�

�


X

m 6=n

1

2

⇥

|cm|2 + |cn|2
⇤

|K(�m � �n)|

=
X

n

|cn|2
X

m,m 6=n

|K(�m � �n)|.

Note that |�m � �n| � |m� n|� > 1. Thus

X

m,m 6=n

|K(�m � �n)| 
X

m,m 6=n

4

4(m� n)2�2 � 1
<

8

�2

1
X

k=1

1

4k2 � 1

=
4

�2

1
X

k=1

✓

1

2k + 1
� 1

2k � 1

◆

=
4

�2
.

Then

X

m,n

K(�m � �n)cmc̄n � 4
X

n

|cn|2 � 4

�2

X

n

|cn|2 = 4

✓

1� 1

�2

◆

X

n

|cn|2.

Remark 2.2. 1. D =
4A

⇡

✓

1� 1

�2

◆

;

2. There are many generalized version of the Ingham Inequality. For example:

{�n} ✓ C, �n = an + bni, |bn|  B > 0. An equivalent version of the Ingham

Inequality: Let {�n} ✓ R be a separated sequence satisfying

|�n+1 � �n| � � > 0.
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Then, for any interval I ⇢ R such that |I| > 2⇡

�
, there exists D1 > 0 and

D2 > 0 such that

D1

X

n

|cn|2 
Z

I

|f(t)|2dt  D2

X

n

|cn|2

for any {cn} 2 `2, where f(t) =
X

n

cne
i�nt.

Note that this theorem may not be applied if the length of interval is relatively

small.

Theorem 2.6. [Zygmund (1959)] Let P (x) =
X

k

Ak(x) be a Lacunary series. Let

I ⇢ [0, 2⇡] and |I| > 0.

(a) There exists a � > 0 and k0 > 0 such that

��1|I|1
2

X

k�k0

�

a2k + b2k
�


Z

I

|P (x)|2dx  �|I|1
2

X

k�k0

�

a2k + b2k
�

.

(b) If
P

Ak(x) converges to zero on I, then the series vanishes identically on I.

Example 2.1.
1
X

n=1

�

an cos(n
2x) + bn sinn

2x
�

,
nk+1

nk

! 1 as k ! 1, but nk+1 � nk =

(k + 1)2 � k2 = 2k + 1 ! 1 as k ! 1.

Remark 2.3. Zygmund’s result can not be applied to the case in the control theory.

Here let us introduce Arne Beurling’s Theorem that can indicate (2.2) for non-

harmonic Fourier series with gap goes to infinity.

Let {�n} ⇢ R be a separated sequence satisfying �n+1 > �n, that is inf
n 6=m

|�n��m| �

↵ > 0. Let ⇤ = {�n}. Define n+(r) to be the largest number of points from ⇤ to be

found in an interval of length r.
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Definition 2.2. The upper density of ⇤ is defined by

D+(⇤) = lim
r!1

n+(r)

r
.

Remark 2.4. The limit exists due to the subadditivity of n+(r), n+(r + s)  n+(r) +

n+(s), for all r > 0, s > 0.

Theorem 2.7. (Arne Beurling)[Beurling (1989)] Let {�n} be a separated sequence

of real numbers satisfying �n+1 > �n. If |I| > 2⇡D+, then there exists D1 > 0 and

D2 > 0 such that

D1

X

n

|cn|2 
Z

I

|f(t)|2dt  D2

X

n

|cn|2, (2.3)

where f(t) =
X

n

cne
i�nt. If |I| < 2⇡D+, then (2.3) does not hold.

Let {�n} ⇢ R+ be separated sequence satisfying �n+1 > �n and lim
n!1

(�n+1��n) =

1. For any � > 0, there exists a n0 > 0 such that

�n+1 � �n � �, when n � n0.

Then

n+(k�)  n0 + k � 1.

Thus

n+(k�)

k�
 n0 + k � 1

k�
.

Then

D+(⇤) = lim
r!1

n+(r)

r
= lim

k!1

n+(k�)

k�
 1

�
.

Since � > 0 is arbitrary, we have D+(⇤) = 0. There we have the following theorem.
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Theorem 2.8. Let {�n} ⇢ R be a separated sequence satisfying �n+1 > �n and

lim
n!1

|�n+1 � �n| = 1. For any I ⇢ R and |I| > 0, there exists D1 > 0 and D2 > 0

such that

D1

X

n

|cn|2 
Z

I

|f(t)|2dt  D2

X

n

|cn|2,

where f(t) =
X

n

cne
i�nt.

Example 2.2. For any T > 0,

D1

1
X

n=1

(a2n + b2n) 
Z T

0

 1
X

n=1

(an cosn
2t+ bn sinn

2t)

!2

dt  D2

1
X

n=1

(a2n + b2n).

This is the expected result. To give a direct proof, an extension of A. Haraux’s

Theorem [Haraux (1989)] needs to be introduced first.

Theorem 2.9. Let {�n}1n=1 ⇢ R be separated sequence, that is, inf
n 6=m

|�n��m| � ↵ > 0.

Let I ⇢ R be an interval such that |I| > 2⇡/↵. Assume there exist C1 > 0 and C2 > 0

such that

C1

1
X

n=1

|cn|2 
Z

I

|f(t)|2dt  C2

1
X

n=1

|cn|2,

where f(t) =
1
X

n=1

cne
i�nt. Let �0 2 R and �0 /2 {�n}1n=1, µ0 = inf

n 6=m,n,m�0
|�n��m| > 0.

Thus there exists D1 > 0 and D2 > 0 such that

D1

1
X

n=0

|cn|2 
Z

I

|g(t)|2dt  D2

1
X

n=0

|cn|2, (2.4)

where g(t) =
1
X

n=0

cne
i�nt.

Proof. WLOG, let I = [0, T ] and T > T0. Choose ✏ > 0, such that T � ✏ > T0. Let

{cn} 2 `2, that is,
1
X

n=0

|cn|2 < 1. Then (2.4) is equivalent to

D1

1
X

n=0

|cn|2 
Z T

0

|g0(t)|2dt  D2

1
X

n=0

|cn|2,
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where g0(t) = c0 +
1
X

n=1

cne
i(�n��0)t = c0 +

1
X

n=1

cne
iµnt, µn = �n � �0.

Let

h(t) =
1

✏

Z ✏

0

[g0(t+ ⌘)� g0(t)]d⌘, t 2 [0, T � ✏] = [0, T 0].

Then

h(t) =
1
X

n=1

cn
✏



eiµn✏ � 1

iµn

� ✏

�

eiµnt.

Note that |µn| � µ0 > 0, then there exists a � = �(µ0) > 0 such that

�

�eiµn✏ � 1
�

� = 2
�

�

�

sin
µn✏

2

�

�

�

 ✏|µn|(1� �).

Thus

1

✏

�

�

�

�

eiµn✏ � 1

iµn

� ✏

�

�

�

�

=

�

�

�

�

eiµn✏ � 1

iµn✏
� 1

�

�

�

�

� 1�
�

�

�

�

eiµn✏ � 1

iµn✏

�

�

�

�

� 1� (1� �) = � > 0.

Thus, by the assumption, T 0 = T � ✏ > T0,

Z T 0

0

|h(t)|2dt � C1

1
X

n=1

�

�

�

�

eiµn✏ � 1

iµn✏
� 1

�

�

�

�

2

|cn|2 � C1�
2

1
X

n=1

|cn|2.

Note that

Z T 0

0

|h(t)|2dt =

Z T 0

0

�

�

�

�

1

✏

Z ✏

0

[g0(t+ ⌘)� g0(t)]d⌘

�

�

�

�

2

dt  C3

Z T

0

|g0(t)|2dt.

Therefore
Z T

0

|g0(t)|2dt � C1�2

C3

1
X

n=1

|cn|2.

Note that

|c0|2 =
1

T

Z T

0

|c0|2dt

 1

T

Z T

0

[|c0 � g0(t)|+ |g0(t)|]2 dt

 2

T



Z T

0

|c0 � g0(t)|2dt +
Z T

0

|g0(t)|2dt
�

.
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Since

Z T

0

|c0 � g0(t)|2dt =
Z T

0

�

�

�

�

�

1
X

n=1

cne
iµnt

�

�

�

�

�

2

dt

 C2

1
X

n=1

|cn|2  C2C3

C1�2

Z T

0

|g0(t)|2dt.

We have

|c0|2  2

T

✓

1 +
C2C3

C1�2

◆

Z T

0

|g0(t)|2dt.

Thus
1
X

n=0

|cn|2 


2

T

✓

1 +
C2C3

C1�2

◆

+
C3

C1�2

�

Z T

0

|g0(t)|2dt.

Then
Z T

0

|g0(t)|2dt � D1

1
X

n=0

|cn|2.

The following is the main result of this chapter.

Theorem 2.10. Let {�n} ⇢ R be a separated sequence satisfying �n+1 � �n > 0 and

lim
n!1

|�n+1 � �n| = 1. For any I0 ⇢ R and |I0| > 0, there exists D1 > 0 and D2 > 0

such that

D1

X

n

|cn|2 
Z

I0

|f(t)|2dt  D2

X

n

|cn|2,

where f(t) =
X

n

cne
i�nt.

Proof. WLOG, let {�} ⇢ R+. Since lim
n!1

(�n+1 � �n) = 1, there exists a n0 > 0 such

that

|�n+1 � �n| � � >
2⇡

|I0|
= �0.
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By the Theorem 2.5, for any |I| > |I0|, there exists D1 > 0 and D2 > 0 such that

D1

X

n�n0

|cn|2 
Z

I

|f0(t)|2dt  D2

X

n�n0

|cn|2,

where f0(t) =
1
X

n=n0

cne
i�nt. By using Theorem 2.9 and the mathematical induction,

there exists D0
1 and D0

2 such that

D0
1

X

n

|cn|2 
Z

I

|f(t)|2dt  D0
2

X

n

|cn|2,

where f(t) =
X

n

cne
i�nt.
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CHAPTER 3

EXACT CONTROLLABILITY OF THE
LAZER-MCKENNA SUSPENSION BRIDGE EQUATION

WITH DISTRIBUTED CONTROL

3.1 Question and Literatures

In the past few decades, researchers focused on the analytic properties of solu-

tions of suspension bridge models. They have been trying to explain the reasons of

large amplitude oscillations and torsional oscillations that may cause the collapse of

suspension bridges. A natural question is: are the oscillations controllable? In this

chapter, we will prove the exact controllability of the suspension bridge equation pro-

posed by Lazer and McKenna [Lazer and McKenna (1990)] with a distributed control.

The key step is to establish a Carleman estimate for an auxiliary linear system, and

similar estimation has been given for wave equation by Xu Zhang [Zhang (2000)].

Let ⌦ = (0, ⇡), ! = (a, b) be an interval with 0  a < b  ⇡. Consider the

nonlinear system

@2w

@t2
(x, t) +

@4w

@x4
(x, t) +Kw+(x, t) = u(x, t)�!, x 2 ⌦, t > 0, (3.1)

w(0, t) = w(⇡, t) = 0,
@2w

@x2
(0, t) =

@2w

@x2
(⇡, t) = 0, t > 0, (3.2)

w(x, 0) = w0(x),
@w

@t
(x, 0) = w1(x), x 2 ⌦, (3.3)

with u(x, t) 2 L2(! ⇥ (0, T )) and initial data {w0, w1} 2 Y2 ⇥ L2(⌦), where Y2 will

be introduced next. It is known that the system (3.1)-(3.3) admits a unique solution
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w satisfying the following regularity

w 2 C([0, T ];Y2)
\

C1([0, T ];L2(⌦)).

Definition 3.1. We say system (3.1)-(3.3) is exactly L2�controllable at time T > 0

if there exists control u 2 L2(!⇥ (0, T )) such that the solution of the system satisfies

the final state condition

w(x, T ) =
@w

@t
(x, T ) = 0, x 2 ⌦. (3.4)

We will show in this chapter system (3.1)-(3.3) is exactly L2�controllable at time

T .

3.2 Notation and Lemmas

Let ⌦ = (0, ⇡) in this chapter. Now introduce the function spaces (Y↵)↵2R.

Definition 3.2. For ↵ 2 R, define Y↵ =

( 1
X

n=1

an sin(nx)
�

�

�

1
X

n=1

n2↵a2n < 1
)

, and for

any f =
1
X

n=1

an sin(nx) 2 Y↵, kfk2Y↵
=

1
X

n=1

n2↵a2n.

Remark 3.1. We have the following properties of Y↵:

• Y↵ is a closed subspace of H↵(⌦), for ↵ > 0;

• Y0 = L2(⌦);

• Y�↵ is the dual space of Y↵, for ↵ > 0.

Remark 3.2. By the Sobolev Imbedding Theorem [Adams (1978)], we have H↵(⌦) ,!

L1(⌦) for ↵ >
1

2
. Since Y↵ is a closed subspace of H↵(⌦), we also have Y↵ ,! L1(⌦)

for ↵ >
1

2
.
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Consider the following linear system

@2v

@t2
+
@4v

@x4
+ a(x, t)v = b(x, t), x 2 ⌦, t > 0, (3.5)

v(0, t) = v(⇡, t) = 0,
@2v

@x2
(0, t) =

@2v

@x2
(⇡, t) = 0, t > 0, (3.6)

v(0) = v0,
@v

@t
(0) = v1, x 2 ⌦, (3.7)

where a 2 L1(⌦ ⇥ (0, T )), b 2 L2(⌦ ⇥ (0, T )) and {v0, v1} 2 Y2 ⇥ L2(⌦). It

is straightforward to show that system (3.5)-(3.7) admits a unique solution v 2

C([0, T ];Y2)
T

C1([0, T ];L2(⌦)).

For system (3.5)-(3.7), define its total energy by

E(t) =
1

2

 

�

�

�

�

@v

@t

�

�

�

�

2

L2(⌦)

+

�

�

�

�

@2v

@x2

�

�

�

�

2

L2(⌦)

!

.

We have the following result.

Lemma 3.1. Let T > 0 be given. For every solution of (3.5)-(3.7), we have

E(t) 
⇣

E(0)(1 + kak1) + kbk2L2(⌦⇥(0,T ))

⌘

e
⇣
1+2

p
kak1

⌘
t
. (3.8)

Proof. Let � = kak1 and define the perturbed energy

E�(t) = E(t) +
�

2
kvk2L2(⌦).

Taking derivative we have

dE�(t)

dt
=

Z

⌦

@2v

@t2
@v

@t
dx+

Z

⌦

@3v

@t@x2

@2v

@x2
dx+ �

Z

⌦

@v

@t
vdx.

Applying (3.5) and integrating by parts yields

dE�(t)

dt
=

Z

⌦

(� � a)v
@v

@t
dx+

Z

⌦

b
@v

@t
dx.
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Thus we have the following estimate

dE�(t)

dt
 2�kvkL2(⌦)

�

�

�

�

@v

@t

�

�

�

�

L2(⌦)

+ kbkL2(⌦)

�

�

�

�

@v

@t

�

�

�

�

L2(⌦)

 �

 

p
�kvk2L2(⌦) +

1
p
�

�

�

�

�

@v

@t

�

�

�

�

2

L2(⌦)

!

+
1

2
kbk2L2(⌦) +

1

2

�

�

�

�

@v

@t

�

�

�

�

2

L2(⌦)

=
1

2

�

�

�

�

@v

@t

�

�

�

�

2

L2(⌦)

+ �
p
�kvk2L2(⌦) +

p
�

�

�

�

�

@v

@t

�

�

�

�

2

L2(⌦)

+
1

2
kbk2L2(⌦)

 (1 + 2
p
�)E�(t) +

1

2
kbk2L2(⌦).

By Gronwall’s Inequality we may obtain

E�(t) 
✓

E�(0) +
1

2

Z t

0

e�(1+2
p
�)skbk2L2(⌦)ds

◆

e(1+2
p
�)t


✓

E�(0) +
1

2
kbk2L2(⌦⇥(0,T ))

◆

e(1+2
p
�)t.

Therefore

E(t)  E�(t) 
✓

E(0) +
�

2
kv0k2L2(⌦) +

1

2
kbk2L2(⌦⇥(0,T ))

◆

e(1+2
p
�)t


⇣

E(0)(1 + kak1) + kbk2L2(⌦⇥(0,T ))

⌘

e
⇣
1+2

p
kak1

⌘
t
.

Lemma 3.2. System (3.5)-(3.7) is time-reversible, that is, for any given T > 0,

the initial state

⇢

v(x, 0),
@v

@t
(x, 0)

�

can be determined uniquely from the final state
⇢

v(x, T ),
@v

@t
(x, T )

�

.

Proof. System (3.5)-(3.7) admits a unique solution

v 2 C([0, T ];Y2)
\

C1([0, T ];L2(⌦))
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Thus

⇢

v(x, T ),
@v

@t
(x, T )

�

2 Y2 ⇥ L2(⌦). Now consider the following system

@2u

@t2
+
@4u

@x4
+ a(x, t)u = b(x, t), x 2 ⌦, t > 0, (3.9)

u(0, t) = u(⇡, t) = 0,
@2u

@x2
(0, t) =

@2u

@x2
(⇡, t) = 0, t > 0, (3.10)

u(x, T ) = v(x, T ),
@u

@t
(x, T ) =

@v

@t
(x, T ), x 2 ⌦. (3.11)

We need to show u = v.

Let ⌧ = T � t, ū(x, ⌧) = u(x, T � ⌧), we have system (3.9)-(3.11) is equivalent to

@2ū

@⌧ 2
+
@4ū

@x4
+ a(x, T � ⌧)⌧u = b(x, T � ⌧), x 2 ⌦, ⌧ < T, (3.12)

ū(0, T � ⌧) = ū(⇡, T � ⌧) = 0,
@2ū

@x2
(0, T � ⌧) =

@2ū

@x2
(⇡, T � ⌧) = 0,

⌧ < T, (3.13)

ū(x, 0) = v(x, T ),
@ū

@⌧
(x, 0) = �@v

@t
(x, T ), x 2 ⌦. (3.14)

Obviously, system (3.12)-(3.14) admits a unique solution

ū = u 2 C([0, T ];Y2)
\

C1([0, T ];L2(⌦)).

Moreover, let w = v � u. Thus w satisfies the following

@2w

@t2
+
@4w

@x4
+ a(x, t)w = 0, x 2 ⌦, 0 < t < T, (3.15)

w(0, t) = w(⇡, t) = 0,
@2w

@x2
(0, t) =

@2w

@x2
(⇡, t) = 0, 0 < t < T, (3.16)

w(x, T ) = 0,
@w

@t
(x, T ) = 0, x 2 ⌦. (3.17)

Change variable as ⌧ = T � t, w̄(x, ⌧) = w(x, T � ⌧), we obtain

@2w̄

@⌧ 2
+
@4w̄

@x4
+ a(x, T � ⌧)w̄ = 0, x 2 ⌦, 0 < ⌧ < T, (3.18)
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w̄(0, T � ⌧) = w̄(⇡, T � ⌧) = 0,
@2w̄

@x2
(0, T � ⌧) =

@2w̄

@x2
(⇡, T � ⌧) = 0,

0 < ⌧ < T, (3.19)

w̄(x, 0) = 0,
@w̄

@⌧
(x, 0) = 0, x 2 ⌦. (3.20)

Define the energy

E(⌧) =
1

2

 

�

�

�

�

@w̄

@⌧

�

�

�

�

2

L2(⌦)

+

�

�

�

�

@2w̄

@x2

�

�

�

�

2

L2(⌦)

!

, E(0) = 0.

By Lemma 3.1 we have

E(⌧)  E(0)(1 + kak1)e
⇣
1+2

p
kak1

⌘
⌧
= 0.

Thus the solution of system (3.18)-(3.20) satisfies

@2w̄

@x2
= 0,

@w̄

@⌧
= 0.

Applying boundary and initial value conditions, we have w̄ ⌘ 0. That is w ⌘ 0. So

u ⌘ v, system (3.5)-(3.7) is time-reversible.

Define linear operator D : Y2 ! Y�2 as

�! d4�

dx4.

hD�,�i = h�, D�i.

D is self-adjoint. Moreover

hD�,�i =
Z ⇡

0

✓

d2�

dx2

◆2

dx � 0.

Thus D is a positive operator. Since hD�,�i = 0,
d2�

dx2
= 0. So � = c1 + c2x. By

applying boundary value conditions we get � ⌘ 0. Therefore D is invertible. We have
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a inverse D�1 =

✓

d4

dx4

◆�1

: Y�2 ! Y2 is also positive, and we have

h�, D�1(�)i = k�k2Y�2
.

Consider the following system

@2�

@t2
(x, t) +

@4�

@x4
(x, t) + a(x, t)�(x, t) = 0, x 2 ⌦, t > 0, (3.21)

�(0, t) = �(⇡, t) = 0,
@2�

@x2
(0, t) =

@2�

@x2
(⇡, t) = 0, t > 0, (3.22)

�(x, 0) = �0(x),
@�

@t
(x, 0) = �1(x), x 2 ⌦, (3.23)

with potential a(x, t) 2 L1((⌦)⇥ (0, T )) and {�0,�1} 2 L2(⌦)⇥ Y�2.

Lemma 3.3. Let � be the solution of system (3.21)-(3.23) and 0  t1 < s1 < s2 <

t2  T be given. Then there is a constant C > 0 depends only on kak1, t1, t2, s1, s2

such that
Z s2

s1

�

�

�

�

@�

@t

�

�

�

�

2

Y�2

dt  C

Z t2

t1

k�k2L2(⌦)dt.

Proof. Let r(t) 2 C2([t1, t2]) be a positive function chosen later. By multiplying

both sides of equation (3.21) by r(t)D�1(�) and integrating the resulting equation on

⌦⇥ (t1, t2), we get

Z t2

t1

Z

⌦

@2�

@t2
r(t)D�1(�)dxdt =

Z

⌦

@�

@t
r(t)D�1(�)

�

�

�

�

t2

t1

dx

�
Z t2

t1

Z

⌦

@�

@t
r(t)D�1

✓

@�

@t

◆

dxdt �
Z t2

t1

Z

⌦

@�

@t
r0(t)D�1(�)dxdt,

Z t2

t1

Z

⌦

@4�

@x4
r(t)D�1(�)dxdt =

Z t2

t1

Z

⌦

@2�

@x2
r(t)D�1

✓

@2�

@x2

◆

dxdt.

This is

Z t2

t1

r(t)

�

�

�

�

@�

@t

�

�

�

�

2

Y�2

dt =

Z t2

t1

r(t)k�k2L2(⌦)dt +

Z t2

t1

Z

⌦

r(t)a(x, t)�D�1(�)dxdt
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�
Z t2

t1

Z

⌦

@�

@t
r0(t)D�1(�)dxdt +

Z

⌦

@�

@t
r(t)D�1(�)

�

�

�

�

t2

t1

dx.

By choosing r(t) such that r(t1) = r(t2) = r0(t1) = r0(t2) = 0, r(t) = 1 8 t 2 [s1, s2]

with t1 < s1 < s2 < t2,
|r00|2

r
2 L1(t1, t2), we obtain

Z

⌦

@�

@t
r(t)(D�1�)

�

�

�

�

t2

t1

dx=0,

Z t2

t1

Z

⌦

r(t)a(x, t)�D�1(�)dxdtkak1
Z t2

t1

k�k2Y�2
dt  kak1

Z t2

t1

k�k2L2(⌦)dt,

�
Z t2

t1

Z

⌦

@�

@t
r0(t)D�1(�)dxdt=�1

2

Z t2

t1

r0(t)
d

dt
k�k2Y�2

dt

=
1

2

Z t2

t1

r00(t)k�k2Y�2
dt  C1

Z t2

t1

k�k2L2(⌦)dt,

where C1 = max
t2[t1,t2]

|r00(t)|
2r(t)

. Therefore, above all yield

Z s2

s1

�

�

�

�

@�

@t

�

�

�

�

2

Y�2

dt  C

Z t2

t1

k�k2L2(⌦)dt,

where C = 1 + kak1 + C1.

Lemma 3.4. Let �(·) be the solution of system (3.21)-(3.23). Define

Ē(t) , 1

2

 

k�k2L2(⌦) +

�

�

�

�

@�

@t

�

�

�

�

2

Y�2

!

.

Then there exists positive constant A > 0 such that

Ē(t)  AĒ(s)(1 + kak21)2e
⇣
2+4

p
kak1

⌘
T
, 8 t, s 2 [0, T ].

Proof. Decompose the solution �(x, t) of system (3.21)-(3.23) as

�(x, t) = p(x, t) + q(x, t),

33



such that respectively p(x, t) and q(x, t) are the solutions of

@2p

@t2
(x, t) +

@4p

@x4
(x, t) = 0, x 2 ⌦, t > 0, (3.24)

p(0, t) = p(⇡, t) = 0,
@2p

@x2
(0, t) =

@2p

@x2
(⇡, t) = 0, t > 0, (3.25)

p(x, 0) = �0(x),
@p

@t
(x, 0) = �1(x), x 2 ⌦, (3.26)

and

@2q

@t2
(x, t) +

@4q

@x4
(x, t) + a(x, t)q(x, t) = �a(x, t)p(x, t), x 2 ⌦, t > 0. (3.27)

q(0, t) = q(⇡, t) = 0,
@2q

@x2
(0, t) =

@2q

@x2
(⇡, t) = 0, t > 0. (3.28)

q(x, 0) = 0,
@q

@t
(x, 0) = 0, x 2 ⌦. (3.29)

Solve system (3.24)-(3.26), we can get

p(x, t)=
1
X

n=1

 

r

2

⇡

Z ⇡

0

�0(y) sinnydy cosn2t

+

r

2

⇡

Z ⇡

0

1

n2
�1(y) sinnydy sinn2t

!

· sinnx,

p0(x, t)=
1
X

n=1

 

� n2

r

2

⇡

Z ⇡

0

�0(y) sinnydy sinn2t

+

r

2

⇡

Z ⇡

0

�1(y) sinnydy cosn2t

!

· sinnx.

Easily we have

kpk2L2(⌦)=
1
X

n=1

 

r

2

⇡

Z ⇡

0

�0(y) sinnydy cosn2t +

r

2

⇡

Z ⇡

0

1

n2
�1(y) sinnydy sinn2t

!2

2
1
X

n=1

2

4

 

r

2

⇡

Z ⇡

0

�0(y) sinnydy cosn2t

!2

+

 

r

2

⇡

Z ⇡

0

1

n2
�1(y) sinnydy sinn2t

!2
3

5

2
⇣

k�0k2L2(⌦) + k�1k2Y�2

⌘

= 4Ē(0),
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�

�

�

�

@p

@t

�

�

�

�

2

Y�2

=
1
X

n=1

1

n4

 

�n2

r

2

⇡

Z ⇡

0

�0(y) sinnydy sinn2t

+

r

2

⇡

Z ⇡

0

�1(y) sinnydy cosn2t

!2

 2
1
X

n=1

2

4

 

r

2

⇡

Z ⇡

0

�0(y) sinnydy sinn2t

!2

+
1

n4

 

r

2

⇡

Z ⇡

0

�1(y) sinnydy cosn2t

!2
3

5

 2
⇣

k�0k2L2(⌦) + k�1k2Y�2

⌘

= 4Ē(0).

Thus

kpk2L2(⌦) +

�

�

�

�

@p

@t

�

�

�

�

2

Y�2

 8Ē(0), 8 t 2 [0, T ].

Apply Lemma 3.1 to system (3.27)-(3.29) with v = q, v0 = v1 = 0 and b = �ap. We

obtain

kqk2Y2
+

�

�

�

�

@q

@t

�

�

�

�

2

L2(⌦)

 kapk2L2(⌦⇥(0,T ))e
⇣
1+2

p
kak1

⌘
t

 kak2kpk2L2(⌦⇥(0,T ))e
⇣
1+2

p
kak1

⌘
t

 4Tkak21Ē(0)e
⇣
1+2

p
kak1

⌘
t
.

Choose A⇤ = max{8, 4T}, we get

Ē(t)  A⇤Ē(0)(1 + kak21)e
⇣
1+2

p
kak1

⌘
t
, 8 t 2 [0, T ].

By the time-reversibility (Lemma 3.2) of system (3.5)-(3.7) we have

Ē(0)  A⇤Ē(s)(1 + kak21)e
⇣
1+2

p
kak1

⌘
s
, 8 s 2 [0, T ].
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Therefore

Ē(t)  (A⇤)2Ē(s)(1 + kak21)2e
⇣
1+2

p
kak1

⌘
(t+s)

 AĒ(s)(1 + kak21)2e
⇣
2+4

p
kak1

⌘
T
.

3.3 A Carleman estimate

To prove the observability inequality, we need to establish a Carleman estimate

for the di↵erential operator

Lw = wtt + wxxxx

on Q = [0, T ]⇥ ⌦ where ⌦ = (0, ⇡) and T > 2⇡ be given.

Since T > 2⇡, one can choose a x0 2 R \ ⌦ such that T > 2R1 > 2⇡ where

R1 = max
x2⌦

|x� x0|. Let R0 = min
x2⌦

|x� x0|, then R1 > R0 > 0. Since T > 2R1, there

exist constants c 2 (0, R0/2) and ↵ 2 (0, 1) such that

R2
1 < c2 + ↵

✓

T

2

◆2

. (3.30)

In fact, one can choose c = ✏R1 with ✏ being su�ciently small, and

4R2
1(1� ✏2)

T 2
< ↵ <

4R2
1

T 2
. (3.31)

Define

a(t, s, x) =
1

2

"

|x� x0|2 � ↵

✓

t� T

2

◆2

� ↵

✓

s� T

2

◆2
#

,

✓ = e�a(t,s,x). (3.32)
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Then

axxx = axxxx = 0, ats = 0, atx = 0, asx = 0. (3.33)

Let

Pu = utt + uss + uxxxx.

We establish first the following inequality which play an essential role to derive the

Carleman estimate.

Theorem 3.1. Let u 2 C4([0, T ]⇥[0, T ]⇥⌦). There exist constants �0 = �0(⌦, T, x0)

> 0 and C0 = C0(⌦, T, x0,�0) > 0 such that the following inequality holds

✓2|Pu|= ✓2|uss + utt + uxxxx|2

�C0(�
7v2 + �3v2t + �3v2s + �5v2x + �3v2xx + �v2xt + �v2xs + �v2xxx)

+(M3)t + (M4)s + (M5)x, 8� � �0, (3.34)

where M3, M4, M5 are given by

M3 =�2�atv
2
t + 2�atv

2
s � 2�atv

2
xx + 2�atC1v

2
x � 2�atA1v

2

�4�asvsvt � 8�axvxxxvt + 2B1vtvx + 18�4ata
2
xaxxv

2 � 18�3a2xaxxvvt,

M4 =�2�asv
2
s + 2�asv

2
t � 2�asv

2
xx + 2�asC1v

2
x � 2�asA1v

2

�4�atvtvs � 8�axvxxxvs + 2B1vsvx + 18�4asa
2
xaxxv

2 � 18�3a2xaxxvvs,

M5 =�4�(atvtvxxx � atvtxvxx)� 4�atC1vtvx � 4�(asvsvxxx � asvsxvxx)

�4�asC1vsvx + 8�axvxxtvt � 8�axxvxtvt � 4�axv
2
xt + 8�axvxxsvs

�8�axxvxsvs � 4�axv
2
xs � 4�axv

2
xxx � 4�axC1v

2
xx + 4�axA1v

2
x

�8�axA1vvxx + 8�(axA1)xvvx � 4�(axA1)xxv
2 � B1v

2
t � B1v

2
s
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+2B1vxvxxx +B1xxv
2
x � 2B1xvxvxx � B1v

2
xx +B1C1v

2
x

+A1B1v
2 + 36�4axa

2
xaxxv

2
x � 72�4a3xaxxvxxv + 72�4a3xaxxvxv

�36�4[(a3xaxx)xxv
2]x � 9�3B1a

2
xaxxv

2 � 18C1�
3a2xaxxvxv

�18�3a2xaxxvxxxv + 36�3axa
2
xxvxxv + 18�3a2xaxxvxxvx

�36�3a3xxvxv � 36�3axa
2
xxv

2
x.

Proof. Let v = ✓u, then u =
1

✓
v = e��a(x,t,s)v. Then

ut =
1

✓
[vt � �atv],

utt =
1

✓
[vtt � 2�atvt + (��att + �2a2t )v],

us =
1

✓
[vs � �asv],

uss =
1

✓
[vss � 2�asvs + (��ass + �2a2s)v],

ux =
1

✓
[vx � �axv],

uxx =
1

✓
[vxx � 2�axvx + (��axx + �2a2x)v],

uxxx =
1

✓
[vxxx � 3�axvxx + (3�2a2x � 3�axx)vx + (��3a3x + 3�2axaxx � �axxx)v],

uxxxx =
1

✓
[vxxxx � 4�axvxxx + (6�2a2x � 6�axx)vxx + (�4�3a3x + 12�2axaxx

�4�axxx)vx + (�4a4x � 6�3a2xaxx + 3�2a2xx + 4�2axaxxx � �axxxx)v].

Then we have

✓2|Pu|2 = ✓2(uss + utt + uxxxx)
2

=
�

[vtt � 2�atvt + (��att + �2a2t )v] + [vss � 2�asvs + (��ass + �2a2s)v]

+[vxxxx � 4�asvxxx + (6�2a2x � 6�axx)vxx + (�4�3a3x + 12�2axaxx)vx

+(�4a4x � 6�3a2xaxx + 3�2a2xx)v]
 2
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=
�

vtt � 2�atvt + vss � 2�asvs + vxxxx � 4�axvxxx + (6�2a2x � 6�axx)vxx

+(�4�3a3x + 12�2axaxx)vx + [�4a4x � 6�3a2xaxx + 3�2a2xx + (��att + �2a2t )

+(��ass + �2a2s)]v
 2

=(I1 + I2 + I3)
2,

where

I1 =�2�atvt � 2�asvs � 4�axvxxx +B1vx,

I2 = vtt + vss + vxxxx + C1vxx + A1v,

I3 =�9�3a3xaxxv,

A1 =�4a4x + 3�3a2xaxx + 3�2a2xx � �att + �2a2t � �ass + �2a2s,

B1 =�4�3a3x + 12�2axaxx,

C1 =6�2a2x � 6�axx.

Thus

✓2|Pu|2 = (I1 + I2 + I3)
2 � 2I1I2 + 2I1I3 + 2I2I3. (3.35)

We first compute

2I1I2 = 2(�2�atvt�2�asvs�4�axvxxx+B1vx)(vtt+vss+vxxxx+C1vxx+A1v). (3.36)

By using (3.33) , we have

�4�atvtvtt =�2�at(v
2
t )t = 2�attv

2
t � 2�(atv

2
t )t,

�4�atvtvss =�2�[attv
2
s � (atv

2
s)t + (2atvtvs)s],

�4�atvtvxxxx =2�[�2(atvtvxxx � atvtxvxx)x � (atv
2
xx)t + attv

2
xx],
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�4�atvtC1vxx =�2�[�2(atC1)xvtvx + (atC1)tv
2
x � (atC1v

2
x)t + (2atC1vtvx)x],

�4�atA1vtv=2�[(atA1)tv
2 � (atA1v

2)t],

�4�asvsvtt =�2�[assv
2
t � (asv

2
t )s + (2asvsvt)t],

�4�asvsvss =2�assv
2
s � 2�(asv

2
s)s,

�4�asvsvxxxx =2�[�2(asvsvxxx � asvsxvxx)x � (asv
2
xx)s + assv

2
xx],

�4�asC1vsvxx =�2�[�2(asC1)xvsvx + (asC1)sv
2
x � (asC1v

2
x)s + (2asC1vsvx)x],

�4�asA1vsv=2�[(asA1)sv
2 � (asA1v

2)s],

�8�axvxxxvtt =�2�[4(axvxxxvt)t � 4(axvxxtvt)x + 4(axxvxtvt)x

+2(axv
2
xt)x � 6axx(vxt)

2],

�8�axvxxxvss =�2�[4(axvxxxvs)s � 4(axvxxsvs)x + 4(axxvxsvs)x

+2(axv
2
xs)x � 6axx(vxs)

2],

�8�axvxxxvxxxx =�4�[(axv
2
xxx)x � axxv

2
xxx],

�8�axvxxxC1vxx =4�[(axC1)xv
2
xx � (axC1v

2
xx)x],

�8�axvxxxA1v=�4�
�

3(axA1)xv
2
x � (axA1)xxxv

2 � (axA1v
2
x)x

+2(axA1vvxx)x � 2[(axA1)xvvx]x + [(axA1)xxv
2]x
 

,

2B1vxvtt =�2B1tvtvx +B1xv
2
t � (B1v

2
t )x + 2(B1vtvx)t,

2B1vxvss =�2B1svsvx +B1xv
2
s � (B1v

2
s)x + 2(B1vsvx)s,

2B1vxvxxxx =2(B1vxvxxx)x + 3B1xv
2
xx + (B1xxv

2
x)x � B1xxxv

2
x

�2(B1xvxvxx)x � (B1v
2
xx)x,

2B1vxC1vxx =(B1C1v
2
x)x � (B1C1)xv

2
x,
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2B1vxA1v=�(A1B1)xv
2 + (A1B1v

2)x.

Next we compute 2I1I3,

2I1I3 = 2(�2�atvt � 2�asvs � 4�axvxxx +B1vx)(�9�3a2xaxxv). (3.37)

By using (3.33) , we have

�4�at(�9�3a2xaxx)vtv=�2�
�

� 9[�3ata
2
xaxxv

2]t + 9[�3ata
2
xaxx]tv

2
 

,

�4�as(�9�3a2xaxx)vsv=�2�
�

� 9[�3asa
2
xaxxv

2]s + 9[�3asa
2
xaxx]tv

2
 

,

�8�ax(�9�3a2xaxx)vxxxv=�4�
�

[�9�3a3xaxx]xxxv
2 + 27[�3a3xaxx]xv

2
x

�9[�3a3xaxxv
2
x]x + 18[�3a3xaxxvxxv]x

�18[�3a3xaxxvxv]x + 9[(�3a3xaxx)xxv
2]xx

 

,

2B1(�9�3a2xaxx)vxv= [B1(�9�3a2xaxx)v
2]x � [B1(�9�3a2xaxx)]xv

2.

Next compute 2I2I3,

2I2I3 = 2(vtt + vss + vxxxx + C1vxx + A1v)(�9�3a2xaxxv). (3.38)

By using (3.33) , we have

2(�9�3a2xaxx)vttv=�18[�3a2xaxxvvt]t + 18(�3a2xaxx)tvvt + 18�3a2xaxxv
2
t ,

2(�9�3a2xaxx)vssv=�18[�3a2xaxx)vvs]s + 18(�3a2xaxx)svvs + 18�3a2xaxxv
2
s ,

2C1(�9�3a2xaxx)vxxv=�18[�3C1a
2
xaxxvvx]x + 18[�3C1a

2
xaxx]xvvx + 18�3C1a

2
xaxxv

2
x,

2A1(�9�3a2xaxx)v
2 =�18�3A1a

2
xaxxv

2,

2(�9�3a2xaxx)vxxxxv=�18(�3a2xaxxvxxxv)x + 18(2�3axa
2
xxvxxv)x

+18(�3a2xaxxvxxvx)x � 18(2�3a3xxvxv)x � 18(2�3axa
2
xxv

2
x)x

�18�3a2xaxxv
2
xx + 72�3a3xxv

2
x.

41



Thus, it follows from (3.35)-(3.38) that

✓2|Pu|2 � M1 +M2 + (M3)t + (M4)s + (M5)x, (3.39)

where

M1 =2�attv
2
t � 2�attv

2
s + 2�attv

2
xx � 2�(atC1)tv

2
x + 2�(atA1)tv

2

�2�assv
2
t + 2�assv

2
s + 2�assv

2
xx � 2�(asC1)sv

2
x + 2�(asA1)sv

2

+12�axx(vxt)
2 + 12�axx(vxs)

2 + 4�axxv
2
xxx + 4�(axC1)xv

2
xx

�12�(axA1)xv
2
x + 4�(axA1)xxxv

2 +B1xv
2
t +B1xv

2
s + 3B1xv

2
xx

�B1xxxv
2
x � (B1C1)xv

2
x � (A1B1)xv

2 + 2�[at(�9�3a2xaxx)]tv
2

+2�[as(�9�3a2xaxx)]sv
2 � 4�[ax(�9�3a2xaxx)]xxxv

2

+12�[ax(�9�3a2xaxx)]xv
2
x � [B1(�9�3a2xaxx)]xv

2

�2(�9�3a2xaxx)v
2
t � 2(�9�3a2xaxx)v

2
s � 18�3a2xaxxv

2
xx

�2C1(�9�3a2xaxx)v
2
x + 2A1(�9�3a2xaxx)v

2 + 72�3a3xxv
2
x,

M2 =4�(atC1)xvtvx + 4�(asC1)xvsvx � 2B1tvtvx � 2B1svsvx

�4(�9�3a2xaxx)tvvt � 4(�9�3a2xaxx)svvs

�4[C1(�9�3a2xaxx)]xvvx,

M3 =�2�atv
2
t + 2�atv

2
s � 2�atv

2
xx + 2�atC1v

2
x � 2�atA1v

2

�4�asvsvt � 8�axvxxxvt + 2B1vtvx � 2�at(�9�3a2xaxx)v
2

+2(�9�3a2xaxx)vvt,

M4 =�2�asv
2
s + 2�asv

2
t � 2�asv

2
xx + 2�asC1v

2
x � 2�asA1v

2

�4�atvtvs � 8�axvxxxvs + 2B1vsvx � 2�as(�9�3a2xaxx)v
2
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+2(�9�3a2xaxx)vvs,

M5 =�4�(atvtvxxx � atvtxvxx)� 4�atC1vtvx � 4�(asvsvxxx � asvsxvxx)

�4�asC1vsvx + 8�axvxxtvt � 8�axxvxtvt � 4�axv
2
xt

+8�axvxxsvs � 8�axxvxsvs � 4�axv
2
xs � 4�axv

2
xxx

�4�axC1v
2
xx + 4�axA1v

2
x � 8�axA1vvxx + 8�(axA1)xvvx

�4�(axA1)xxv
2 � B1v

2
t � B1v

2
s + 2B1vxvxxx +B1xxv

2
x � 2B1xvxvxx

�B1v
2
xx +B1C1v

2
x + A1B1v

2 � 4�ax(�9�3a2xaxx)v
2
x

+8�ax(�9�3a2xaxx)vxxv � 8�ax(�9�3a2xaxx)vxv

+4�[(ax(�9�3a2xaxx))xxv
2]x +B1(�9�3a2xaxx)v

2

+2C1(�9�3a2xaxx)vxv � 18�3a2xaxxvxxxv + 36�3axa
2
xxvxxv

+18�3a2xaxxvxxvx � 36�3a3xxvxv � 36�3axa
2
xxv

2
x.

Rewrite M1 as

M1 =D1v
2 +D2v

2
t +D3v

2
s +D4v

2
x +D5v

2
xx

+12�axx(vxt)
2 + 12�axx(vxs)

2 + 4�axxv
2
xxx, (3.40)

where

D1 =2�(atA1)t + 2�(asA1)s + 4�(axA1)xxx � (A1B1)x

+2�[at(�9�3a2xaxx)]t + 2�[as(�9�3a2xaxx)]s

�4�[ax(�9�3a2xaxx)]xxx � [B1(�9�3a2xaxx)]x,

+2A1(�9�3a2xaxx),

D2 =2�att � 2�ass +B1x � 2(�9�3a2xaxx),
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D3 =2�ass � 2�att +B1x � 2(�9�3a2xaxx),

D4 =�2�(atC1)t � 2�(asC1)s � 12�(axA1)x � B1xxx � (B1C1)x

+12�[ax(�9�3a2xaxx)]x � 2C1(�9�3a2xaxx) + 72�3a3xx,

D5 =2�att + 2�ass + 4�(axC1)x + 3B1x � 18�3a2xaxx.

Rewrite M2 as

M2 = [4�(atC1)x � 2B1t]vtvx + [4�(asC1)x � 2B1s]vsvx

+[�2(�9�3a2xaxx)t]vvt + [�2(�9�3a2xaxx)s]vvs

+[�2(C1(�9�3a2xaxx))x]vvx.

By (3.32), we have

ax = x� x0, at = �↵
✓

t� T

2

◆

, as = �↵
✓

s� T

2

◆

,

axx = 1, att = �↵, ass = �↵,

A1 = �4(x� x0)
4 + 3�3(x� x0)

2 + 3�2 + 2�↵

+�2↵2

✓

t� T

2

◆2

+ �2↵2

✓

s� T

2

◆2

,

C1 = 6�2(x� x0)
2 � 6�,

B1 = �4�3(x� x0)
3 + 12�2(x� x0).

Since |x� x0| > R0 on ⌦, we have the following asymptotes,

D1 =10�7(x� x0)
6 +O(�6),

D2 =6�3(x� x0)
2 +O(�2),

D3 =6�3(x� x0)
2 +O(�2),
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D4 =60�5(x� x0)
4 +O(�4),

D5 =42�3(x� x0)
2 +O(�2).

Thus it follows from (3.40) that

M1 =
⇥

10�7(x� x0)
6 +O(�6)

⇤

v2 +
⇥

6�3(x� x0)
2 +O(�2)

⇤ �

v2t + v2s
�

+
⇥

60�5(x� x0)
4 +O(�4)

⇤

v2x +
�

42�3(x� x0)
2 +O(�2)

�

v2xx

+12�(vxt)
2 + 12�(vxs)

2 + 4�v2xxx.

Note that

M2 = [4�(atC1)x]vtvx + [2�(asC1)x]vsvx + [�4(C1(�9�3a2xaxx))x]vvx

=



�48↵�3
✓

t� T

2

◆

(x� x0)

�

vtvx +



�48↵�3
✓

s� T

2

◆

(x� x0)

�

vsvx

+[108�5(x� x0)
4 � 108�4(x� x0)

2]xvvx

=



�48↵�3
✓

t� T

2

◆

(x� x0)

�

vtvx +



�48↵�3
✓

s� T

2

◆

(x� x0)

�

vsvx

+[432�5(x� x0)
3 +O(�4)]vvx

��12↵�3T [(x� x0)
2v2t + v2x]� 12↵�3T [(x� x0)

2v2s + v2x]

��5[1296(x� x0)
2v2 + 36(x� x0)

4v2x].

Thus

M1 +M2 � [10�7(x� x0)
6 +O(�6)]v2

+[(6� 12↵T )�3(x� x0)
2](v2t + v2s)

+[24�5(x� x0)
4 +O(�4)]v2x

+[42�3(x� x0)
2 +O(�2)]v2xx + 12�(vxt)

2 + 12�(vxs)
2 + 4�v2xxx.
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By (3.31), ↵T is small when T is su�ciently large. Then there exists a C0 > 0,

depending on x0, ⌦ and T , such that

M1 +M2 � C0(�
7v2 + �3v2t + �3v2s + �5v2x + �3v2xx + �v2xt + �v2xs + �v2xxx).

Thus, (3.34) follows from (3.39).

With Theorem 3.1, we are ready to introduce and prove a Carleman estimate for

the beam equation with a potential,
8

<

:

wtt + wxxxx = qw, x 2 ⌦, t > 0,
w(t, 0) = w(t, ⇡) = 0, t > 0,
wxx(t, 0) = wxx(t, ⇡) = 0, t > 0,

(3.41)

where q 2 L1(Q).

Next we introduce the following notations.

Let Ti = T/2�✏iT and T 0
i = T/2+✏iT for i = 0, 1 with 0 < ✏0 < ✏1 < ✏2 < ✏3 <

1
2 .

LetQ = (0, T )⇥(0, T )⇥⌦ andQ! = (0, T )⇥(0, T )⇥!. LetQi = (Ti, T 0
i )⇥(Ti, T 0

i )⇥⌦

for i = 0. 1, 2, 3. Let x0, c and ↵ be defined as before and satisfy (3.30). Let a(t, s, x)

and ✓ be defined in (3.32). For any b > 0, define

Q(b) = {(t, s, x) 2 R⇥ R⇥ ⌦ | a(t, s, x) > b2}.

By choosing ✏1 2 (0, 1/2) to be su�ciently close to 1/2, we then have Q(c) ⇢ Q1.

Note that {T/2} ⇥ {T/2} ⇥ ⌦ ⇢ Q(c). For any small ✏ > 0, there exists ✏0 2 (0, ✏1)

such that

Q0 ⇢ Q(c+ 2✏) ⇢ Q(c+ ✏) ⇢ Q(c) ⇢ Q1. (3.42)

Introduce the following transformation which plays a critical role in the sequel,

u(t, s, x) =

Z t

s

w(⌧, x)d⌧, (3.43)

46



where w is the weak solution of (3.41). Then u satisfies
8

>

>

<

>

>

:

utt + uss + uxxxx =

Z t

s

q(⌧, x)ut(⌧, s, x)d⌧,

u(t, s, 0) = 0, u(t, s, ⇡) = 0,
uxx(t, s, 0) = 0, uxx(t, s, ⇡) = 0.

(3.44)

We will prove the following Carleman estimate.

Theorem 3.2. Let ! = (a, b) ⇢ (0, ⇡) = ⌦. Assume T > 2⇡ and q 2 L1(Q).

Suppose u 2 C4(Q) satisfy (3.44). Then there exists a �⇤ > 0, depending only on ⌦,

T and q, such that

Z

Q0

�

�7u2 + �3u2
t + �3u2

s + �5u2
x + �3u2

xx + �u2
xt + �u2

xs + �u2
xxx

�

dtdsdx

D1e
D2�

Z

Q!

(u2
t + u2

s)dtdsdx

+D3

Z

Q1

[u2 + u2
t + u2

s + u2
x + u2

xx + u2
xxx]dtdsdx, � � �⇤, (3.45)

where D1 > 0, D2 > 0 and D3 > 0 are constants depending on ⌦, T and !.

Proof. The proof of (3.45) is lengthy, and can be divided into several steps.

Step 1. Suppose x0 < 0. Let a < l1 < b with l1 being very close to b, and

!1 = (0, l1) and !2 = (0, b). Then !1 ⇢ !2 ⇢ ⌦ and ! ⇢ !2.

Define µ 2 C1(⌦; [0, 1]) by

µ(x) =

⇢

1, x 2 !1;
0, x 2 ⌦ \ !2.

(3.46)

Define � 2 C1(Q; [0, 1]) by

�(t, s, x) =

⇢

1, (t, s, x) 2 Q(c+ 2✏);
0, (t, s, x) 2 Q \ Q(c+ ✏).

(3.47)

Let y(t, s, x) = �(t, s, x)µ(x)u(t, s, x). Then y(t, s, x) satisfies
8

>

>

<

>

>

:

ytt + yss + yxxxx = F (t, s, x),
y(t, s, 0) = 0, yxx(t, s, 0) = 0,
y(t, s, b) = 0, yx(t, s, b) = 0,
yxx(t, s, b) = 0, yxxx(t, s, b) = 0,

(3.48)
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where

F (t, s, x)=�µ

Z t

s

q(⌧, x)ut(⌧, s, x)d⌧ + (P(µ�))u+ 2µ�tut + 2µ�sus

+4(µ�)xxxux + 6(µ�)xxuxx + 4(µ�)xuxxx.

Let

v(t, s, x) = e�a(t,s,x)y(t, s, x) = ✓y(t, s, x).

By applying Theorem 3.1 and integrating (3.34) over Q, we have the following in-

equality,

Z

Q1
T
{x2!2}

�

�7v2 + �3v2t + �3v2s + �5v2x + �3v2xx + �v2xt + �v2xs + �v2xxx
�

dtdsdx

C0

"

Z

Q1
T
{x2!2}

✓2|F (t, s, x)|dtdsdx�
Z T 0

1

T1

Z T 0
1

T1



M5

�

�

�

x=b

x=0

�

dtds

#

, � � �0, (3.49)

where C0 > 0 is a constant depending only on ⌦, T and x0; and M5 is defined in

Theorem 3.1. Note that, by (3.42) and (3.47),

Z

Q1
T
{x2!2}

⇥

(M3)t + (M4)s
⇤

dtdsdx = 0.

Step 2. We now estimate

Z T 0
1

T1

Z T 0
1

T1



M5

�

�

�

x=b

x=0

�

dtds.

Note that M5 can be rewritten as

M5(t, s, x) = L1(t, s, x) + L2(t, s, x), (3.50)
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where L1 and L2 are given by

L1 =�4�atvtvxxx � 4�atC1vtvx � 4�asvsvxxx � 4�asC1vsvx

+8�axvxxtvt � 8�axxvxtvt + 8�axvxxsvs � 8�axxvxsvs

�8�axA1vvxx + 8�(axA1)x � 4�(axA1)xxv
2 � B1v

2
t � B1v

2
s + A1B1v

2

+8�ax(�9�3a2xaxx)vxxv � 8�ax(�9�3a2xaxx)vxv

+4�[(ax(�9�3a2xaxx))xxv
2]x +B1(�9�3a2xaxx)v

2

+2C1(�9�3a2xaxx)vxv � 18�3a2xaxxvxxxv

+36�3axa
2
xxvxxv � 36�3a3xxvxv,

L2 =�4axv
2
xxx � 4�axC1v

2
xx + 4�axA1v

2
x + 2B1vxvxxx +B1xxv

2
x

�2B1xvxvxx � B1v
2
xx +B1C1v

2
x � 4�ax(�9�3a2xaxx)v

2
x

+4�atvtxvxx + 4�asvsxvxx � 4�axv
2
xt � 4�axv

2
xs

+18�3a2xaxxvxxvx � 36�3axa
2
xxv

2
x.

By the boundary conditions in (3.48), we have

L1(t, s, x)
�

�

�

x=b

x=0
= 0, L2(t, s, b) = 0. (3.51)

Thus we only need to look at

L2(t, s, x)
�

�

�

x=b

x=0
= �L2(t, s, 0). (3.52)

Note that

L2

�

�

�

x=0
=
n

(�4�ax)v
2
xxx + (�4�axC1 � B1)v

2
xx + (2B1)vxvxxx

+[4�axA1 +B1xx +B1C1 � 4�ax(�9�3a2xaxx)]v
2
x � 2B1vxvxx
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+4�atvtxvxx + 4�asvsxvxx � 4�axv
2
xt � 4�axv

2
xs

+18�3a2xaxxvxxvx � 36�3axa
2
xxv

2
x

o

�

�

�

x=0
.

Since vxx(t, s, 0) = 2�ax(t, s, 0)vx(t, s, 0), we have

L2

�

�

�

x=0
=
n

(�4�ax)v
2
xxx + 2B1vxvxxx + [4�2a2x(�4�axC1 � B1) + 36�4a3xaxx

+4�axA1 +B1xx +B1C1 � 4�ax(�9�3a2xaxx)� 4�axB1 � 36�3axa
2
xx]v

2
x

+8�2ataxvtxvx + 8�2asaxvsxvx � 4�axv
2
xt � 4�axv

2
xs

o

�

�

�

x=0

=
n

� 4�(x� x0)v
2
xxx � [100�5(x� x0)

5 +O(�4)]v2x � 8↵�2t(x� x0)vxvtx

�8↵�2s(x� x0)vxvsx � 4�(x� x0)v
2
xt � 4�(x� x0)v

2
xs

+2(�4�3(x� x0)
3 + 12�2(x� x0))vxvxxx

o

�

�

�

x=0
.

Then

L2(t, s, 0)=
n

� (x� x0)
h

4�v2xxx + [100�5(x� x0)
4 +O(�4)]v2x + 8↵�2tvxvtx

+8↵�2svxvxs + 4�v2xt + 4�v2xs + 2[4�3(x� x0)
2 � 12�2]vxvxxx

io

�

�

�

x=0
.

Note that

8↵�2
✓

t� T

2

◆

vxvtx + 4�v2xt

=

✓

2
p
�vxt + 2↵�

3
2

✓

t� T

2

◆

vx

◆2

� 4↵2�3
✓

t� T

2

◆2

v2x,

8↵�2
✓

s� T

2

◆

vxvsx + 4�v2xs

=

✓

2
p
�vxs + 2↵�

3
2

✓

s� T

2

◆

vx

◆2

� 4↵2�3
✓

s� T

2

◆2

v2x,

8�3(x� x0)
2vxvxxx + 4�v2xxx =

h

2
p
�vxxx + 2�

5
2 (x� x0)

2vx
i2

� 4�5(x� x0)
4v2x.

Since x0 < 0, we have L2(t, s, 0)  0 for � is su�ciently large, that is, � � �1 for
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some �1 > �0. Therefore, by (3.50)-(3.52), we have

Z T 0
1

T1

Z T 0
1

T1



M5

�

�

�

x=b

x=0

�

dtds � 0.

Hence, (3.49) becomes

Z

Q1
T
{x2!2}

�

�7v2 + �3v2t + �3v2s + �5v2x + �3v2xx + �v2xt + �v2xs + �v2xxx
�

dtdsdx

C0

Z

Q1
T
{x2!2}

✓2|F (t, s, x)|2dtdsdx, � � �1. (3.53)

Note that v(t, s, x) = ✓y(t, s, x). By using the Hölder inequality, we have

Z

Q1
T
{x2!2}

✓2
�

�7y2 + �3y2t + �3y2s + �5y2x + �3y2xx + �y2xt + �y2xs + �y2xxx
�

dtdsdx

C1

Z

Q1
T
{x2!2}

✓2|F (t, s, x)|2dtdsdx � � �1, (3.54)

where C1 > 0 is a constant depending only on ⌦, x0 and T .

Step 3. Next, we estimate

Z

Q1
T
{x2!2}

✓2|F (t, s, x)|2dtdsdx.

Note that

Z

Q1
T
{x2!2}

✓2|F (t, s, x)|2dtdsdx

=

Z

Q1
T
{x2!2}

✓2


µ�

Z t

s

q(⌧, x)ut(⌧, s, x)d⌧ + (P(µ�))u+ 2µ�tut + 2µ�sus

+4(µ�)xxxux + 6(µ�)xxuxx + 4(µ�)xuxxx

�2

dtdsdx

 2

Z

Q1
T
{x2!2}

✓2
�

�

�

�

µ�

Z t

s

q(⌧, x)ut(⌧, s, x)d⌧

�

�

�

�

2

dtdsdx+ 2

Z

Q1
T
{x2!2}

✓2


(P(µ�))u

+2µ�tut + 2µ�sus + 4(µ�)xxxux + 6(µ�)xxuxx + 4(µ�)xuxxx

�2

dtdsdx

=2I1 + 2I2. (3.55)
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We then estimate I1 and I2 separately.

I1 
Z

Q1
T
{x2!2}

✓2
✓

Z t

s

q(⌧, x)ut(⌧, s, x)d⌧

◆2

dtdsdx

=

Z

Q1
T
{x2!2}

✓2
 

Z T/2

s

q(⌧, x)ut(⌧, s, x)d⌧ +

Z t

T/2

q(⌧, x)ut(⌧, s, x)d⌧

!2

dtdsdx

 2

Z

Q1
T
{x2!2}

✓2
✓

Z s

T/2

q(⌧, x)ut(⌧, s, x)d⌧

◆2

dtdsdx

+2

Z

Q1
T
{x2!2}

✓2
✓

Z t

T/2

q(⌧, x)ut(⌧, s, x)d⌧

◆2

dtdsdx

=2

Z

Q1
T
{x2!2}

✓2
✓

Z s

T/2

q(⌧, x)us(t, ⌧, x)d⌧

◆2

dtdsdx

+2

Z

Q1
T
{x2!2}

✓2
✓

Z t

T/2

q(⌧, x)ut(⌧, s, x)d⌧

◆2

dtdsdx,

where we have used ut(⌧, s, x) = �us(t, ⌧, x) by (3.43). Note that r = kqkL1(Q).

Then

Z

Q1
T
{x2!2}

✓2
✓

Z t

T/2

q(⌧, x)ut(⌧, s, x)d⌧

◆2

dtdsdx

=

Z

!2

Z T 0
1

T1

Z T/2

T1

✓2
 

Z T/2

t

q(⌧, x)ut(⌧, s, x)d⌧

!2

dtdsdx

+

Z

!2

Z T 0
1

T1

Z T 0
1

T/2

✓2
✓

Z t

T/2

q(⌧, x)ut(⌧, s, x)d⌧

◆2

dtdsdx

 T

2

Z

!2

Z T 0
1

T1

Z T/2

T1

✓2
Z T/2

t

(q(⌧, x)ut(⌧, s, x))
2 d⌧dtdsdx

+
T

2

Z

!2

Z T 0
1

T1

Z T 0
1

T/2

✓2
Z t

T/2

(q(⌧, x)ut(⌧, s, x))
2 d⌧dtdsdx

 Tr2

2

Z

!2

Z T 0
1

T1

Z T/2

T1

✓2
Z T/2

t

u2
t (⌧, s, x)d⌧dtdsdx

+
Tr2

2

Z

!2

Z T 0
1

T1

Z T 0
1

T/2

✓2
Z t

T/2

u2
t (⌧, s, x)d⌧dtdsdx

 Tr2

2

Z

!2

Z T 0
1

T1

Z T/2

T1

Z T/2

t

✓2u2
t (⌧, s, x)d⌧dtdsdx

+
Tr2

2

Z

!2

Z T 0
1

T1

Z T 0
1

T/2

Z t

T/2

✓2u2
t (⌧, s, x)d⌧dtdsdx,
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where we have used 0 < ✓(t, s, x)  ✓(⌧, s, x) when T1  t  ⌧  T/2 or T/2  ⌧ 

t  T 0
1. Then, by interchanging the integration order of t and ⌧ , we have

Z

Q1
T
{x2!2}

✓2
✓

Z t

T/2

q(⌧, x)ut(⌧, s, x)d⌧

◆2

dtdsdx

 T 2r2

4

Z

!2

Z T 0
1

T1

Z T/2

T1

✓2u2
t (⌧, s, x)d⌧dsdx

+
T 2r2

4

Z

!2

Z T 0
1

T1

Z T 0
1

T/2

✓2u2
t (⌧, s, x)d⌧dsdx,

=
T 2r2

4

Z

!2

Z T 0
1

T1

Z T 0
1

T1

✓2u2
t (t, s, x)dtdsdx

=
T 2r2

4

Z

Q1
T
{x2!2}

✓2u2
tdtdsdx.

Similarly, we have

Z

Q1
T
{x2!2}

✓2
✓

Z s

T/2

q(⌧, x)us(t, ⌧, x)d⌧

◆2

dtdsdx

 T 2r2

4

Z

Q1
T
{x2!2}

✓2u2
sdtdsdx.

Thus, by (3.30) and (3.42), we have

I1 
T 2r2

2

Z

Q1
T
{x2!2}

✓2(u2
t + u2

s)dtdsdx

=
T 2r2

2



Z

Q1
T
{x2!}

✓2(u2
t + u2

s)dtdsdx+

Z T 0
1

T1

Z T 0
1

T1

Z a

0

✓2(u2
t + u2

s)dtdsdx

�

 T 2r2

2



Z

Q!

✓2(u2
t + u2

s)dtdsdx+ e�(c+2✏)2
Z T 0

1

T1

Z T 0
1

T1

Z a

0

(u2
t + u2

s)dtdsdx

�

 T 2r2

2



eC2�

Z

Q!

(u2
t + u2

s)dtdsdx+ e�(c+2✏)2
Z

Q1

(u2
t + u2

s)dtdsdx

�

, (3.56)

where C2 is a constant depending on ⌦, !, T and x0. By using (3.46) and (3.47), we

estimate I2 which is defined in (3.55).

I2 =

Z

Q1
T
{x2!2}

✓2


(P(µ�))u+ 2µ�tut + 2µ�sus + 4(µ�)xxxux
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+6(µ�)xxuxx + 4(µ�)xuxxx

�2

dtdsdx

=

Z

(Q(c+✏)\Q(c+2✏))
T
{x2!2}

✓2


(P(µ�))u+ 2µ�tut + 2µ�sus + 4(µ�)xxxux

+6(µ�)xxuxx + 4(µ�)xuxxx

�2

dtdsdx

C3

Z

(Q(c+✏)\Q(c+2✏))
T
{x2!2}

✓2[u2 + u2
t + u2

s + u2
x + u2

xx + u2
xxx]dtdsdx

C3e
�(c+2✏)2

Z

(Q(c+✏)\Q(c+2✏))
T
{x2!2}

[u2 + u2
t + u2

s + u2
x + u2

xx + u2
xxx]dtdsdx

C3e
�(c+2✏)2

Z

Q1

[u2 + u2
t + u2

s + u2
x + u2

xx + u2
xxx]dtdsdx, (3.57)

where C3 > 0 depends on l2, ⌦, !.

Step 4. By using (3.55)-(3.57), it follows from (3.54) that

Z

Q1
T
{x2!2}

✓2
�

�7y2 + �3y2t + �3y2s + �5y2x + �3y2xx + �y2xt + �y2xs + �y2xxx
�

dtdsdx

C4e
C2�

Z

Q!

(u2
t + u2

s)dtdsdx

+C5e
�(c+2✏)2

Z

Q1

[u2 + u2
t + u2

s + u2
x + u2

xx + u2
xxx]dtdsdx, � � �1, (3.58)

where C4 and C5 are constants depending on ⌦, ! and T and r. By (3.42), (3.46)

and (3.47), we have

Z

Q1
T
{x2!2}

✓2
�

�7y2 + �3y2t + �3y2s + �5y2x + �3y2xx + �y2xt + �y2xs + �y2xxx
�

dtdsdx

=

Z

Q(c+✏)
T
{x2!2}

✓2
�

�7y2 + �3y2t + �3y2s + �5y2x

+�3y2xx + �y2xt + �y2xs + �y2xxx
�

dtdsdx

� e�(c+2✏)2
Z

Q(c+2✏)
T
{x2!1}

�

�7u2 + �3u2
t + �3u2

s + �5u2
x

+�3u2
xx + �u2

xt + �u2
xs + �u2

xxx

�

dtdsdx

� e�(c+2✏)2
Z

Q0
T
{x2!1}

�

�7u2 + �3u2
t + �3u2

s + �5u2
x

+�3u2
xx + �u2

xt + �u2
xs + �u2

xxx

�

dtdsdx.
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Thus it follows from (3.58) that

Z

Q0
T
{x2!1}

�

�7u2 + �3u2
t + �3u2

s + �5u2
x + �3u2

xx + �u2
xt + �u2

xs + �u2
xxx

�

dtdsdx

C4e
C2�

Z

Q!

(u2
t + u2

s)dtdsdx

+C5

Z

Q1

[u2 + u2
t + u2

s + u2
x + u2

xx + u2
xxx]dtdsdx, � � �1. (3.59)

Step 5. Now, suppose x0 > ⇡. Let a < l2 < l1 < b with l2 being very close to a,

and !3 = (l2, ⇡) and !4 = (a, ⇡). Then !3 ⇢ !4 ⇢ ⌦ and ! ⇢ !4. By repeat the

procedure similar to Steps 1-4, we obtain that, there exists a �2 > 0, depending on

⌦, !, x0 and T , such that

Z

Q0
T
{x2!3}

�

�7u2 + �3u2
t + �3u2

s + �5u2
x + �3u2

xx + �u2
xt + �u2

xs + �u2
xxx

�

dtdsdx

C6e
C7�

Z

Q!

(u2
t + u2

s)dtdsdx

+C8

Z

Q1

[u2 + u2
t + u2

s + u2
x + u2

xx + u2
xxx]dtdsdx, � � �2, (3.60)

where C6, C7 and C8 are constants depending on ⌦, !, x0 and T . By letting �⇤ =

max{�1,�2} > 0, C9 = max{C2, C7}, C10 = 2max{C4, C6}, C11 = 2max{C5, C8}, it

follows from (3.59) and (3.60) that

Z

Q0

�

�7u2 + �3u2
t + �3u2

s + �5u2
x + �3u2

xx + �u2
xt + �u2

xs + �u2
xxx

�

dtdsdx

C10e
C9�

Z

Q!

(u2
t + u2

s)dtdsdx

+C11

Z

Q1

[u2 + u2
t + u2

s + u2
x + u2

xx + u2
xxx]dtdsdx, � � �⇤. (3.61)
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3.4 Observability Inequality

Now we are ready to show the observability inequality which is the key step of

proving exact controllability. Consider
8

<

:

wtt + wxxxx = qw, x 2 ⌦, t > 0,
w(t, 0) = w(t, ⇡) = 0, t > 0,
wxx(t, 0) = wxx(t, ⇡) = 0, t > 0,

(3.62)

where q 2 L1(Q).

Theorem 3.3. Let ! = (a, b) ✓ ⌦ and 0 < t1 < t2 < T . For every solution

w 2 C(0, T ;L2(⌦)) satisfies (3.62), there exists a constant C > 0 such that for

T > 2⇡
Z t2

t1

Z

⌦

w2dxdt  C

Z

Q!

w2dtdx,

where C depends only on r = kqk1, T , t1, t2, ! and ⌦.

To prove this theorem, we need the following lemmas.

Lemma 3.5. Let w 2 C4(Q) be a solution of (3.62). Define a new energy function

G(t) by

G(t) =
1

2

Z

⌦

[w2 + w2
t + w2

xx]dx.

Then

G(t)  G(s)e2T (1+r), 8 t, s 2 [0, T ],

where r = kqk1.

Proof. By integration by parts, we have

dG

dt
=

Z

⌦

[wwt + wtwtt + wxxwxxt]dx

=

Z

⌦

[wwt + wtwtt + wxxxxwt]dx
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=

Z

⌦

[wwt + q(x, t)wtw]dx

 (1 + r)

Z

⌦

(w2 + w2
t )dx

 (1 + r)G(t).

Thus, by the Gronwall’s inequality, we have

G(t)  e(1+r)tG(0), t 2 [0, T ].

By the time reversibility, we then have

G(0)  e(1+r)sG(s), 8 s 2 [0, T ]. (3.63)

Thus

G(t)  e2(1+r)TG(s), 8 t, s 2 [0, T ]. (3.64)

Lemma 3.6. Let w 2 C4(Q) be a solution of (3.62). Let 0 < t1 < s1 < s2 < t2 < T

be given. Then there exists a constant C > 0 such that

Z s2

s1

Z

⌦

w2
t dxdt  C

Z t2

t1

Z

⌦

[w2 + w2
xx]dxdt,

where C depends only on r = kqk1, T , t1, t2, s1 and s2.

Proof. Define µ 2 C1(R; [0, 1]) by

µ(t) =

⇢

1, s1  t  s2,
0, R\(t1, t2).

By multiplying (3.62) by µ(t)w and integrating over (t1, t2)⇥ ⌦ we have

Z t2

t1

Z

⌦

µ(t)w[wtt + wxxxx]dxdt =

Z t2

t1

Z

⌦

qµ(t)w2dxdt.
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Then, by integration by parts, we have

Z t2

t1

Z

⌦

[µ0(t)wwt � µ(t)w2
t + µ(t)w2

xx]dxdt =

Z t2

t1

Z

⌦

qµ(t)w2dxdt.

Then

Z t2

t1

Z

⌦

µ(t)w2
t dtdx=

Z t2

t1

Z

⌦

[qµ(t)w2
xx � µ(t)w2 � µ0(t)wwt]dxdt

=

Z t2

t1

Z

⌦



qµ(t)w2
xx � µ(t)w2 +

1

2
µ00(t)w2

�

dxdt

C

Z t2

t1

Z

⌦

[w2 + w2
xx]dxdt,

where C depend on r and T . By the definition of µ(t), we have

Z s2

s1

Z

⌦

w2
t dxdt  C

Z t2

t1

Z

⌦

[w2 + w2
xx]dxdt.

Proof of Theorem 3.3.

Let w(x, t) 2 C4(Q) be the solution of system (3.62) with initial data {w0, w1}

2 Y4⇥Y2. Let u(t, s, x) =

Z t

s

w(⌧, x)d⌧ . u satisfies (3.44). By Theorem 3.2, we have

Z

Q0

�

�7u2 + �3u2
t + �3u2

s + �5u2
x + �3u2

xx + �u2
xt + �u2

xs + �u2
xxx

�

dtdsdx

D1e
D2�

Z

Q!

(u2
t + u2

s)dtdsdx

+D3

Z

Q1

[u2 + u2
t + u2

s + u2
x + u2

xx + u2
xxx]dtdsdx, � � �⇤.

Next, we estimate

Z

Q1

u2
xxxdtdsdx. Let ✏2 > 0 satisfies 0 < ✏1 < ✏2 <

1

2
, T2 =

T

2
�✏2T ,

T 0
2 =

T

2
+ ✏2T , then 0 < T2 < T1 < T 0

1 < T 0
2 < T . Define

h(t, s) = (t� T2)(T
0
2 � t)(s� T2)(T

0
2 � s).
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By multiplying (3.44) by huxx, and integrating both sides of the equation over Q2,

we then have

Z

Q2

hu2
xxxdtdsdx=

Z

Q2

[htutxux + hsusxux + hu2
tx + hu2

sx]dtdsdx

�
Z

Q2

huxx[

Z t

s

q(⌧, x)ut(⌧, s, x)d⌧ ]dtdsdx

C12

Z

Q2

[u2
t + u2

s + u2
x + u2

tx + u2
sx + u2

xx]dtdsdx.

Thus

Z

Q1

u2
xxxdtdsdx

1

(✏2 � ✏1)4T 4

Z

Q1

hu2
xxxdtdsdx

 1

(✏2 � ✏1)4T 4

Z

Q2

hu2
xxxdtdsdx

 C12

(✏2 � ✏1)4T 4

Z

Q2

[u2
t + u2

s + u2
x + u2

tx + u2
sx + u2

xx]dtdsdx.(3.65)

Then it follows from (3.61) that

Z

Q0

�

�7u2 + �3u2
t + �3u2

s + �5u2
x + �3u2

xx + �u2
xt + �u2

xs + �u2
xxx

�

dtdsdx

C10e
C9�

Z

Q!

(u2
t + u2

s)dtdsdx

+C13

Z

Q2

[u2 + u2
t + u2

s + u2
x + u2

xt + u2
xs + u2

xx]dtdsdx, � � �⇤. (3.66)

By the definition of u, denote Q! = (0, T )⇥ !, we then have

Z

Q0

�

�3w2 + �5w2
x + �3w2

xx + �w2
xxx

�

dtdx

C10e
C9�

Z

Q!

w2dtdx+ C14

Z

Q2

[w2 + w2
x + w2

xx]dtdsdx, � � �⇤, (3.67)

where C13 > 0 and C14 > 0 are constants depending on ⌦ and T .

By the interpolation inequality (Lemma 4.10 in [Adams (1978)]), then exist con-

stants C15 > 0 and C16 > 0 such that

Z

Q2

w2
xdtdx  C15

Z

Q2

w2dtdx+ C16

Z

Q2

w2
xxdtdx. (3.68)
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Then

Z

Q0

�

�3w2 + �5w2
x + �3w2

xx + �w2
xxx

�

dtdx

C10e
C9�

Z

Q!

w2dtdx+ C17

Z

Q2

[w2 + w2
xx]dtdsdx, � � �⇤.

Then

�3
Z

Q0

�

w2 + w2
t + w2

xx

�

dtdx

C10e
C9�

Z

Q!

w2dtdx+ �3
Z

Q0

w2
t dxdt

+C17

Z

Q2

[w2 + w2
xx]dtdsdx, � � �⇤. (3.69)

By Lemma 3.6, we have

�3
Z

Q0

(w2 + w2
t + w2

xx)dtdxC10e
C9�

Z

Q!

w2dtdx+ C�3
Z

Q2

(w2 + w2
xx)dxdt

+C17

Z

Q2

(w2 + w2
xx)dxdt

=C10e
C9�

Z

Q!

w2dtdx+ C18

Z

Q2

(w2 + w2
xx)

C10e
C9�

Z

Q!

w2dtdx+ C18

Z

Q2

(w2 + w2
t + w2

xx)dxdt,

where C18 = C�3 + C17, and C is the constant is the constant in Lemma 3.6.

Thus

2�3
Z T 0

0

T0

G(t)dt  C10e
C9�

Z

Q!

w2dtdx+ 2C18

Z T 0
2

T2

G(t)dt,

where G(t) is defined in Lemma 3.5. By Lemma 3.5, we have

2�3(T 0
0 � T0)e

�2(1+r)TG(s)

 C10e
C9�

Z

Q!

w2dtdx+ 2C18(T
0
2 � T2)e

2(1+r)TG(s), 8 s 2 [0, T ].

Then by chooseing � large enough, say � > �3, we then have

G(s)  C10eC9�

2�3(T 0
0 � T0)e�2(1+r)T � 2C18(T 0

2 � T2)e2(1+r)T

Z

Q!

w2dtdx = C19

Z

Q!

w2dtdx.
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Then for any 0 < t1 < t2 < T ,

Z t2

t1

G(t)dt  TC19

Z

Q!

w2dtdx,

that is,
Z t2

t1

Z

⌦

(w2 + w2
t + w2

xx)dxdt  TC19

Z

Q!

w2dtdx.

Thus
Z t2

t1

Z

⌦

w2dxdt  TC19

Z

Q!

w2dtdx.

For every w 2 C(0, T ;L2(⌦)), choose {(w0
n(x), w

1
n(x))}1n=1 ⇢ Y4 ⇥ Y2 such that,

wn(x, t), the solution of system (3.62) with initial data (w0
n(x), w

1
n(x)), converges to

w in C(0, T ;L2(⌦)) as n ! 1. Moreover

Z t2

t1

Z

⌦

w2
ndxdt  TC19

Z

Q!

w2
ndtdx 8n � 1.

Therefore, by the density argument, we have for every w 2 C(0, T ;L2(⌦)) satisfies

(3.62), there exists some constant C > 0 such that

Z t2

t1

Z

⌦

w2dxdt  C

Z

Q!

w2dtdx.

⇤

The following is the observability inequality.

Theorem 3.4. Let ! = (a, b) ✓ ⌦. There exists a constant C > 0 such that for

all T > 2⇡ and every solution � of system (3.21)-(3.23) with initial data {�0,�1} 2

L2(⌦)⇥ Y�2, we have

k{�0,�1}k2  C

Z

!⇥(0,T )

|�|2dxdt,
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where k{�0,�1}k2 =
⇣

k�0k2L2(⌦) + k�1k2Y�2

⌘

and C depends only on kak1, T , ! and

⌦.

Proof. Since � 2 C(0, T ;L2(⌦)) and T > 2⇡. Thus by Theorem 3.3, we have

Z t2

t1

k�k2L2(⌦)dt  Ck�k2L2(!⇥(0,T )). (3.70)

Choose 0 < t1 < s1 < s2 < t2 < T . By Lemma 3.3, we get for some constant C⇤ > 0

2

Z t2

t1

k�k2L2(⌦)dt �
Z t2

t1

k�k2L2(⌦)dt+

Z t2

t1

k�k2L2(⌦)dt

�
Z t2

t1

k�k2L2(⌦)dt+ C⇤
Z s2

s1

�

�

�

�

@�

@t

�

�

�

�

2

Y�2

dt

� C⇤⇤
Z s2

s1

Ē(t)dt. (3.71)

Combining (3.70) and (3.71), we have, for some constant C1 > 0

Z s2

s1

Ē(t)dt  C1e
4T 2�k�k2L2(!⇥(0,T )).

By Lemma 3.4, we have

Z s2

s1

Ē(t)dt � 1

T
(1 + kak21)�2e

�
⇣
2+4

p
kak1

⌘
T
Ē(0).

Therefore, we conclude that for some constant C2 > 0

Ē(0)  C2(1 + kak21)2e
⇣
2+4

p
kak1

⌘
Tk�k2L2(!⇥(0,T )).

This is

k{�0,�1}k2  2C2(1 + kak21)2e
⇣
2+4

p
kak1

⌘
T
Z

!⇥(0,T )

|�|2dxdt.
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3.5 Main Theorem

Consider the nonlinear system

w00(x, t) +
@4w

@x4
(x, t) +Kw+(x, t) = u(x, t)�!, x 2 ⌦, t > 0, (3.72)

w(0, t) = w(⇡, t) = 0,
@2w

@x2
(0, t) =

@2w

@x2
(⇡, t) = 0, t > 0, (3.73)

w(x, 0) = w0(x),
@w

@t
(x, 0) = w1(x), x 2 ⌦, (3.74)

with u(x, t) 2 L2(! ⇥ (0, T )) and initial data {w0, w1} 2 Y2 ⇥ L2(⌦). We have the

following main theorem.

Theorem 3.5. Let T > 2⇡, then for all initial data {w0, w1} 2 Y2 ⇥ L2(⌦), system

(3.72)-(3.74) is exactly L2�controllable on [0, T ].

Proof. To show that system (3.72)-(3.74) is exactly controllable, we look at the fol-

lowing problem. For any given ⇠ 2 L1(⌦⇥ (0, T )), find a control u = u(x, t; ⇠) such

that the solution w = w(x, t; ⇠) of

@2w

@t2
(x, t) +

@4w

@x4
(x, t) +Kg(⇠)w(x, t) = u(x, t)�!, x 2 ⌦, t > 0, (3.75)

w(0, t) = w(⇡, t) = 0,
@2w

@x2
(0, t) =

@2w

@x2
(⇡, t) = 0, t > 0, (3.76)

w(x, 0) = w0(x),
@w

@t
(x, 0) = w1(x), x 2 ⌦, (3.77)

satisfies

w(x, T ) = 0,
@w

@t
(x, T ) = 0, (3.78)

where here g is the Heavy-side function.

By using the HUM to show that such control u exists, we need to solve the
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following systems

@2�

@t2
(x, t) +

@4�

@x4
(x, t) +Kg(⇠)�(x, t) = 0, x 2 ⌦, t > 0, (3.79)

�(0, t) = �(⇡, t) = 0,
@2�

@x2
(0, t) =

@2�

@x2
(⇡, t) = 0, t > 0, (3.80)

�(x, 0) = �0(x),
@�

@t
(x, 0) = �1(x), x 2 ⌦, (3.81)

@2 

@t2
(x, t) +

@4 

@x4
(x, t) +Kg(⇠) (x, t) = �(x, t)�!, x 2 ⌦, t > 0, (3.82)

 (0, t) =  (⇡, t) = 0,
@2 

@x2
(0, t) =

@2 

@x2
(⇡, t) = 0, t > 0, (3.83)

 (x, T ) =
@ 

@t
(x, T ) = 0, x 2 ⌦. (3.84)

Define the linear operator

⇤⇠ : L
2(⌦)⇥ Y�2 ! L2(⌦)⇥ Y2

by

⇤⇠{�0,�1} =

⇢

�@ 
@t

(x, 0), (x, 0)

�

.

⇤⇠ is continuous. Then the problem reduces to show the existence of {�0,�1} 2

L2(⌦)⇥ Y�2 such that

⇤⇠{�0,�1} = {�w1(x), w0(x)}, (3.85)

that is,  , the solution of system (3.82)-(3.84), satisfies

 (x, 0) = w0(x),
@ 

@t
(x, 0) = w1(x).

Multiplying (3.82) by � and integrating by parts yields

h⇤⇠{�0,�1}, {�0,�1}i =
Z

!⇥(0,T )

|�|2dxdt, 8 {�0,�1} 2 L2(⌦)⇥ Y�2.
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Apply Theorem 3.4 to system (3.79)-(3.81), we have

Z

!⇥(0,T )

|�|2dxdt � Ck{�0,�1}k2. (3.86)

Therefore, ⇤⇠ is an isomorphism from L2(⌦) ⇥ Y�2 to L2(⌦) ⇥ Y2. Then, equation

(3.85) has a unique solution {�0,�1} = {�0(x; ⇠),�1(x; ⇠)}. And with this solution

we can solve for �.

Now we have the function

u(x, t) = �(x, t; ⇠)

is the unique control with which the solution of system (3.75)-(3.77) satisfies (3.78).

Thus, for every ⇠ 2 L1(⌦⇥ (0, T )), we have got a unique control �(x, t; ⇠) 2 L2(⌦⇥

(0, T )) and the solution w 2 C([0, T ];Y2)
T

C1([0, T ];L2(⌦)). By the embedding

theorem Y2 ,! L1(⌦) we deduce that w 2 L1(⌦⇥ (0, T )).

All of above, we have constructed a nonlinear operator

F : L1(⌦⇥ (0, T )) ! L1(⌦⇥ (0, T ))

by F (⇠) = w, where w is the solution of (3.75)-(3.77) with the control u defined

above.

It is easy to show that F is a bounded operator. Moreover, by the compactness

of embedding

C([0, T ];Y2)
\

C1([0, T ];L2(⌦)) ⇢ L1(⌦⇥ (0, T )),

we obtain that F is a continuous operator that maps bounded sets of L1(⌦⇥ (0, T ))

into relatively compact sets of itself. Thus the operator F : L1(⌦ ⇥ (0, T )) !

L1(⌦⇥ (0, T )) is compact.
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Next step is to show the existence of a fixed point of F . If ⇠ = w 2 L1(⌦⇥(0, T ))

is a fixed point of F , then ⇠ = w 2 C([0, T ];Y2)
T

C1([0, T ];L2(⌦)) and w satisfies

(3.1)-(3.3) and (3.4). Therefore, when ⇠ = w the corresponding control u(x, t; ⇠) is the

control function we expect for system (3.1)-(3.3). Now use Leray-Schauder’s degree

theory to prove the existence of a fixed point of F .

Define the nonlinear operator

F✏ : [0, 1]⇥ L1(⌦⇥ (0, T )) ! L1(⌦⇥ (0, T ))

by

F✏(⇠) = F (✏, ⇠).

F✏ is the compact operator defined as before by replacing the nonlinearity g by ✏g in

system (3.75)-(3.77). The operator F✏ is compact and F0(⇠) = F (0, ⇠) is independent

of ⇠. Therefore, in order to conclude the existence of a fixed point for F1 = F , it is

su�cient to prove that all the solutions w of the equation

F (✏, w) = w,

with ✏ 2 [0, 1] have an uniform bound for w in L1(⌦⇥ (0, T )). By the construction

of F , the above equation is equivalent to the system

@2w

@t2
(x, t) +

@4w

@x4
(x, t) + ✏Kw+(x, t) = �(x, t)�!, x 2 ⌦, t > 0, (3.87)

w(0, t) = w(⇡, t) = 0,
@2w

@x2
(0, t) =

@2w

@x2
(⇡, t) = 0, t > 0, (3.88)

w(x, 0) = w0(x),
@w

@t
(x, 0) = w1(x), x 2 ⌦, (3.89)

w(x, T ) =
@w

@t
(x, T ) = 0, x 2 ⌦, (3.90)
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@2�

@t2
(x, t) +

@4�

@x4
(x, t) + ✏Kg(w)�(x, t) = 0, x 2 ⌦, t > 0, (3.91)

�(0, t) = �(⇡, t) = 0,
@2�

@x2
(0, t) =

@2�

@x2
(⇡, t) = 0, t > 0. (3.92)

By multiplying (3.87) by � and integrating by parts, we obtain

Z

!⇥(0,T )

|�|2dxdt = �hw1,�0i+ hw0,�1i.

By the Cauchy-Schwarz inequality, we have

Z

!⇥(0,T )

|�|2dxdt  C0

⇥

k�0kL2(⌦) + k�1kY�2

⇤

,

with C0 = C0

�

kw0kY2 , kw1kL2(⌦)

�

. By combining with (3.86), there exists a positive

constant C⇤ such that

k�0kL2(⌦) + k�1kY�2  C⇤. (3.93)

Now apply Lemma 3.1 to the solution of system (3.87)-(3.92)

1

2

 

�

�

�

�

@w

@t

�

�

�

�

2

L2(⌦)

+ kwk2Y2

!


⇣

E(0)(1 +Kkgk1) + k�k2L2(!⇥(0,T ))

⌘

e
⇣
1+2

p
Kkgk1

⌘
t
.

Notice here kgk1 = 1, and t 2 (0, T ). Using the continuity of the embedding Y2 ⇢

L1(⌦) we conclude that, for B > 0 large enough

kwk2L1(⌦⇥(0,T ))  B

✓

E(0) +

Z

!⇥(0,T )

|�|2dxdt
◆

eBT .

Since E(0) =
1

2

⇣

kw1k2L2(⌦) + kw0k2Y2

⌘

is bounded and (3.93), we have shown that

kwk1 is uniformly bounded.

Thus the theorem has been proved.
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CHAPTER 4

EXACT CONTROLLABILITY OF THE
LAZER-MCKENNA SUSPENSION BRIDGE EQUATION

WITH PIEZOELECTRIC ACTUATORS

4.1 Question and Literatures

In this chapter, we will discuss the exact controllability of the Lazer-McKenna

suspension bridge equation with piezoelectric actuators. The linear plate equation

with piezoelectric actuators has been studied in [Tucsnak (1996)]. More control prob-

lems of plate equation with di↵erent type of controls have been discussed by many

researchers (like [Zhang (2001); Leiva (2005); Fu (2012)], etc). Does the semilinear

system with piezoelectric actuators have the same regularity and exact controllability?

We will prove that the semilinear system with piezoelectric actuators has the same

regularity as linear system and is also exact controllable under certain conditions.

Let us consider a single nonlinear Lazer-Mckenna suspension bridge system

@2w

@t2
+
@4w

@x4
+Kw+ = u(t)

d

dx
[�b(x)� �a(x)] , x 2 ⌦, t > 0, (4.1)

w(0, t) = w(⇡, t) = 0,
@2w

@x2
(0, t) =

@2w

@x2
(⇡, t) = 0, t > 0, (4.2)

w(x, 0) = w0(x),
@w

@t
(x, 0) = w1(x), x 2 ⌦, (4.3)

where ⌦ = (0, ⇡), 0 < a < b < ⇡ representing the locations of the actuator, and �µ

is the Dirac mass at the point µ. The control u : [0, T ] ! R is a function of the time

variation of the voltage applied to the actuator.
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Definition 4.1. We say system (4.1)-(4.3) is exactly L2�controllable at time T > 0

if there exists a control u 2 L2(0, T ) such that the solution of the system satisfies the

final state condition

w(x, T ) =
@w

@t
(x, T ) = 0, x 2 ⌦. (4.4)

We will show in this chapter system (4.1)-(4.3) is exactly L2�controllable at time

T . An auxiliary linear system will be introduced. The corresponding observability

inequality will be proved by using the Ingham inequality (Theorem 2.10).

4.2 Notation and Lemmas

We use the same notation of function spaces Y↵ as in Chapter 3.

Lemma 4.1. For real-valued functions f1 and f2 on ⌦, we have

kf+
1 � f+

2 kL2(⌦)  kf1 � f2kL2(⌦).

Moreover, for any f 2 Y1, we have kf+kY1  kfkY1,and kfkL2(⌦)  kfkY1.

Proof. First we want to show |f+
1 � f+

2 |  |f1 � f2|.

If f1 > 0, f2 > 0, |f+
1 � f+

2 | = |f1 � f2|;

If f1  0, f2  0, |f+
1 � f+

2 | = 0  |f1 � f2|;

If f1  0, f2 > 0, |f+
1 � f+

2 | = |f2|  |f1|+ |f2| = |f1 � f2|;

If f1 > 0, f2  0 |f+
1 � f+

2 | = |f1|  |f1|+ |f2| = |f1 � f2|.

thus

kf+
1 � f+

2 k2L2(⌦) =

Z

⌦

|f+
1 � f+

2 |2dx 
Z

⌦

|f1 � f2|2dx = kf1 � f2k2L2(⌦).
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Note that kfk2Y1
=

1
X

n=1

n2a2n, where f =
1
X

n=1

an sin(nx) 2 Y1. It is straightforward to

get for any f =
1
X

n=1

an sin(nx) 2 Y1

kfkL2(⌦) =

 1
X

n=1

a2n

!

1
2


 1
X

n=1

n2a2n

!

1
2

= kfkY1 .

Now for any f 2 Y1, we have f =
1
X

n=1

an sin(nx) and
1
X

n=1

n2a2n < 1. Thus

kfk2L2(⌦) =

Z ⇡

0

|f |2dx =
⇡

2

1
X

n=1

a2n  ⇡

2

1
X

n=1

n2a2n =
⇡

2
kfk2Y1

,

and

�

�

�

�

df

dx

�

�

�

�

2

L2(⌦)

=

Z ⇡

0

�

�

�

�

df

dx

�

�

�

�

2

dx =
⇡

2

1
X

n=1

n2a2n =
⇡

2
kfk2Y1

.

Thus f 2 H1
0 (⌦). Hence Y1 ⇢ H1

0 (⌦).

On the other hand, for any f 2 H1
0 (⌦) ⇢ L2(⌦), f =

1
X

n=1

an sin(nx) because

{sin(nx)}1n=1 is an orthogonal basis of L2(⌦).
df

dx
2 L2(⌦) implies

1
X

n=1

n2a2n < 1.

Therefore f 2 Y1, H1
0 (⌦) ⇢ Y1, hence Y1 = H1

0 (⌦). By the Pöintcare Inequality, the

norm of H1
0 (⌦) can be defined by kf ||H1

0 (⌦) =

 

Z ⇡

0

�

�

�

�

df

dx

�

�

�

�

2

dx

!

1
2

. Thus kfkH1
0 (⌦) =

kfkY1 .

For any f 2 H1
0 (⌦), f(x) = f+(x)� f�(x). So

df

dx
=

d

dx
(f+)(x)� d

dx
(f�)(x).

Then

Z ⇡

0

�

�

�

�

df

dx

�

�

�

�

2

dx =

Z ⇡

0

�

�

�

�

df+

dx

�

�

�

�

2

dx � 2

Z ⇡

0

df+

dx
· df

�

dx
dx +

Z ⇡

0

�

�

�

�

df�

dx

�

�

�

�

2

dx.
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Note that

df+

dx
· df

�

dx
= 0, on ⌦.

Thus

Z ⇡

0

�

�

�

�

df

dx

�

�

�

�

2

dx =

Z ⇡

0

�

�

�

�

df+

dx

�

�

�

�

2

dx +

Z ⇡

0

�

�

�

�

df�

dx

�

�

�

�

2

dx.

Therefore

kf+kH1
0 (⌦) =

 

Z ⇡

0

�

�

�

�

df+

dx

�

�

�

�

2

dx

!

1
2


 

Z ⇡

0

�

�

�

�

df

dx

�

�

�

�

2

dx

!

1
2

= kfkH1
0 (⌦).

By using the equivalence of k · kY1 and k · kH1
0 (⌦), we have

kf+kY1  kfkY1 .

We now introduce some results in diophantine approximation. For a real number

�, define

|||�||| = min
n2Z

|�� n|.

Let A denote the set of all irrationals � 2 [0, 1] such that � can be expressed by a

continued fraction of {0, a1, · · · , an, · · · } with {an} being bounded. Note that A is

an uncountable set with zero Lebesgue measure [Cassals (1996)].

Lemma 4.2. [Lang (1966)] A number � 2 (0, 1) is in A if and only if there exists a

constant C > 0 such that

|||q�||| � C

q

for any positive integer q.
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Consider linear system

@2w̃

@t2
+
@4w̃

@x4
= u(t)

d

dx
[�b(x)� �a(x)] , x 2 ⌦, t > 0, (4.5)

w̃(0, t) = w̃(⇡, t) = 0,
@2w̃

@x2
(0, t) =

@2w̃

@x2
(⇡, t) = 0, t > 0, (4.6)

w̃(x, 0) = w̃0(x),
@w̃

@t
(x, 0) = w̃1(x), x 2 ⌦. (4.7)

Proposition 4.1. [Tucsnak (1996)] Suppose that w̃0 2 Y1, w̃1 2 Y�1. Then the initial

and boundary value problem (4.5)-(4.7) admits a unique solution having the regularity

w̃ 2 C([0, T ], Y1)
\

C1([0, T ], Y�1).

Proposition 4.2. [Tucsnak (1996)] Suppose that
a+ b

2⇡
and

b� a

2⇡
belong to the set

A. Then all initial data

⇢

w̃(x, 0),
@w̃

@t
(x, 0)

�

in Y3 ⇥ Y1 are exactly L2-controllable

in (a, b) at time T , for any T > 0. That is, there exists u 2 L2(0, T ) such that the

solution w̃ of system (4.5)-(4.7) satisfies the condition

w̃(x, T ) =
@w̃

@t
(x, T ) = 0, x 2 ⌦.

For ⌧ 2 [0, T ], consider the homogeneous initial and boundary value system

@2V̄

@t2
(x, t) +

@4V̄

@x4
(x, t) = 0, x 2 ⌦, t 2 (0, ⌧), (4.8)

V̄ (0, t) = V̄ (⇡, t) = 0,
@2V̄

@x2
(0, t) =

@2V̄

@x2
(⇡, t) = 0, t 2 (0, ⌧), (4.9)

V̄ (x, ⌧) = 0,
@V̄

@t
(x, ⌧) = g(x), x 2 ⌦. (4.10)

We have the following lemma shows the regularity of the solution.

Lemma 4.3. [Tucsnak (1996)] For any g 2 Y�1, the initial and boundary value

problem (4.8)-(4.10) admits a unique solution having the regularity

V̄ 2 C([0, T ], Y1)
\

C1([0, T ], Y�1).
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Moreover, for any � 2 (0, ⇡) the function
@V̄

@x
(�, ·) is in L2(0, T ) and there exists a

constant C > 0 such that

�

�

�

�

@V̄

@x
(�, ·)

�

�

�

�

L2(0,T )

 CkgkY�1 .

Lemma 4.4. For any u(t) 2 L2(0, T ) and a, b 2 (0, ⇡), there exists some constant

C0 > 0 such that
�

�

�

�

�

1
X

n=1

p
2(cos(na)� cos(nb))

n
p
⇡

Z t

0

u(s) sin(n2(t� s))ds sin(nx)

�

�

�

�

�

2

L1(0,T ;Y1)

 C0ku(t)k2L2(0,T ).

Proof. For system (4.5)-(4.7), let W (x, t) = w̃(u1)� w̃(u2) and U(t) = u1(t)� u2(t).

Clearly they satisfy the following system

@2W

@t2
+
@4W

@x4
= U(t)

d

dx
[�b(x)� �a(x)] , x 2 ⌦, t > 0, (4.11)

W (0, t) = W (⇡, t) = 0,
@2W

@x2
(0, t) =

@2W

@x2
(⇡, t) = 0, t > 0, (4.12)

W (x, 0) = 0,
@W

@t
(x, 0) = 0, x 2 ⌦. (4.13)

Assume g 2 C1
0 (⌦) is arbitrary, and V̄ (x, t) is the solution of system (4.8)-(4.10).

Multiply (4.11) by V̄ (x, t) and integrate by parts we may have

Z ⇡

0

W (x, ⌧)g(x)dx =

Z ⌧

0

U(t)



@V̄

@x
(b, t)� @V̄

@t
(a, t)

�

dt.

By Lemma 4.3, we may obtain

�

�

�

�

Z ⇡

0

W (x, ⌧)g(x)dx

�

�

�

�

=

�

�

�

�

Z ⌧

0

U(t)



@V̄

@x
(b, t)� @V̄

@t
(a, t)

�

dt

�

�

�

�

 CkUkL2(0,T )kgkY�1 .

Thus we have kW (x, ·)k2Y1
 C0kUk2L2(0,T ), 8 0 < ⌧ < T for some constant C0, which

gives us

kW (x, t)k2L1(0,T ;Y1)  C0kUk2L2(0,T ). (4.14)
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Let W (x, t) =
P1

n=1 an(t) sin(nx). Since

�b(x)� �a(x) =
1
X

n=1

 

r

2

⇡
n(cos(na)� cos(nb))

!

sin(nx).

This yields for all n � 1

a00n(t) + n4an(t) = U(t)

r

2

⇡
n(cos(na)� cos(nb)),

an(0) = 0, a0n(0) = 0.

It is straightforward to verify that

W (x, t) =
1
X

n=1

p
2(cos(na)� cos(nb))

n
p
⇡

Z t

0

U(s) sin(n2(t� s))ds sin(nx).

Apply (4.14), we can get

�

�

�

�

�

1
X

n=1

p
2(cos(na)� cos(nb))

n
p
⇡

Z t

0

U(s) sin(n2(t� s))ds sin(nx)

�

�

�

�

�

2

L1(0,T ;Y1)

 C0kU(t)k2L2(0,T ).

Since u1, u2 are arbitrary in L2(0, T ), we have the estimation in this lemma is true.

4.3 Existence and Regularity

Theorem 4.1. If w0 2 Y1, w1 2 Y�1, then the initial and boundary value problem

(4.1)-(4.3) admits a unique solution with regularity

w 2 C([0, T ], Y1)
\

C1([0, T ], Y�1).

Proof. By Proposition 4.1, system (4.5)-(4.7) with initial condition w̃(x, 0) = w0(x),

@w̃

@t
(x, 0) = w1(x) admits a unique solution w̃ 2 C([0, T ], Y1)

T

C1([0, T ], Y�1).
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Now let V = w � w̃. Thus system (4.1)-(4.3) is equivalent to the following system:

@2V

@t2
+
@4V

@x4
= �K (V + w̃)+ , x 2 ⌦, t > 0, (4.15)

V (0, t) = V (⇡, t) = 0,
@2V

@x2
(0, t) =

@2V

@x2
(⇡, t) = 0, t > 0, (4.16)

V (x, 0) = 0,
@V

@t
(x, 0) = 0, x 2 ⌦. (4.17)

We only need to show system (4.15)-(4.17) admits a unique solution.

It is straightforward to obtain

V (x, t) =

Z t

0

Z ⇡

0

G(x, y, t� s)(V + w̃)+dyds, (4.18)

where

G(x, y, t� s) = �
1
X

n=1

p
2Kp
⇡n2

sin(nx) sin(ny) sin(n2(t� s)).

Define a mapping F on L2(0, T ;Y1) by

F (v) =

Z t

0

Z ⇡

0

G(x, y, t� s)(v + w̃)+dyds.

First we show F is a bounded contraction mapping from L2(0, T ;Y1) to L2(0, T ;Y1).

Assume V1, V2 2 L2(0, T ;Y1). Then

F (V1)(x, t) � F (V2)(x, t)

=

Z t

0

Z ⇡

0

G(x, y, t� s)
�

(V1 + w̃)+ � (V2 + w̃)+
�

(y, s)dyds

=�
1
X

n=1

"p
2Kp
⇡n2

Z t

0

Z ⇡

0

sin(ny) sin(n2(t� s))
�

(V1 + w̃)+ � (V2 + w̃)+
�

(y, s)dyds

#

· sin(nx),

kF (V1)� F (V2)k2Y1

=
1
X

n=1

2K2

⇡n2

✓

Z t

0

Z ⇡

0

�

(V1 + w̃)+ � (V2 + w̃)+
�

(y, s) sin(ny) sin(n2(t� s))dyds

◆2

.
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By Hölder’s inequality and Lemma 4.1

kF (V1) � F (V2)k2Y1


1
X

n=1

K2

n2

Z t

0

 

r

2

⇡

Z ⇡

0

�

(V1 + w̃)+ � (V2 + w̃)+
�

sin(ny)dy

!2

ds

·
Z t

0

sin2(n2(t� s))ds,

kF (V1) � F (V2)k2L2(0,T ;Y1)

 TK2

Z T

0

Z t

0

1
X

n=1

1

n2

 

r

2

⇡

Z ⇡

0

�

(V1 + w̃)+ � (V2 + w̃)+
�

sin(ny)dy

!2

dsdt

 TK2

Z T

0

Z T

0

1
X

n=1

1

n2

 

r

2

⇡

Z ⇡

0

�

(V1 + w̃)+ � (V2 + w̃)+
�

sin(ny)dy

!2

dsdt

 T 2K2

Z T

0

1
X

n=1

 

r

2

⇡

Z ⇡

0

�

(V1 + w̃)+ � (V2 + w̃)+
�

sin(ny)dy

!2

ds

= T 2K2

Z T

0

�

�(V1 + w̃)+ � (V2 + w̃)+
�

�

2

L2(⌦)
ds

 T 2K2

Z T

0

k(V1 + w̃)� (V2 + w̃)k2L2(⌦) ds

= T 2K2

Z T

0

kV1 � V2k2L2(⌦) ds  T 2K2

Z T

0

kV1 � V2k2Y1
ds

= T 2K2 kV1 � V2k2L2(0,T ;Y1)
.

Thus when T is small enough, F is a contraction mapping in L2(0, T ;Y1). By the

Banach Contraction Mapping Principle, (4.18) admits a unique solution.

For any V 2 L2(0, T ;Y1),

kF (V )k2L2(0,T ;Y1)

=

Z T

0

1
X

n=1

2K2

⇡n2

✓

Z t

0

Z ⇡

0

(V + w̃)+(y, s) sin(ny) sin(n2(t� s))dyds

◆2

dt

TK2

Z T

0

1
X

n=1

1

n2

Z t

0

 

r

2

⇡

Z ⇡

0

(V + w̃)+(y, s) sin(ny)dy

!2

dsdt
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TK2

Z T

0

Z T

0

1
X

n=1

1

n2

 

r

2

⇡

Z ⇡

0

(V + w̃)+(y, s) sin(ny)dy

!2

dsdt

T 2K2

Z T

0

�

�(V + w̃)+
�

�

2

Y1
ds  T 2K2

Z T

0

k(V + w̃)k2Y1
ds

= T 2K2 k(V + w̃)k2L2(0,T ;Y1)

 2T 2K2
⇣

kV k2L2(0,T ;Y1) + kw̃k2L2(0,T ;Y1)

⌘

.

Thus F is a bounded mapping from L2(0, T ;Y1) to L2(0, T ;Y1).

Next we show V 2 C([0, T ], Y1).

V (x, t+ ⌧) � V (x, t)

=�
1
X

n=1

 

Z t+⌧

0

Z ⇡

0

p
2Kp
⇡n2

sin(ny) sin(n2(t+ ⌧ � s))(V + w̃)+(y, s)dyds

!

sin(nx)

+
1
X

n=1

 

Z t

0

Z ⇡

0

p
2Kp
⇡n2

sin(ny) sin(n2(t� s))(V + w̃)+(y, s)dyds

!

sin(nx)

=�
1
X

n=1

 

Z t

0

Z ⇡

0

p
2Kp
⇡n2

sin (ny)
⇥

sin (n2(t+ ⌧ � s))� sin (n2(t� s))
⇤

·(V + w̃)+(y, s)dyds

!

sin (nx)

�
1
X

n=1

 

Z t+⌧

t

Z ⇡

0

p
2Kp
⇡n2

sin(ny) sin(n2(t+ ⌧ � s))(V + w̃)+(y, s)dyds

!

sin(nx).

Thus

kV (·, t+ ⌧) � V (·, t)k2Y1

 2K2
1
X

n=1

 

Z t

0

Z ⇡

0

p
2p
⇡n

sin(ny)
⇥

sin(n2(t+ ⌧ � s))� sin(n2(t� s))
⇤

·(V + w̃)+(y, s)dyds

!2

+2K2
1
X

n=1

 

Z t+⌧

t

Z ⇡

0

p
2p
⇡n

sin(ny) sin(n2(t+ ⌧ � s))(V + w̃)+(y, s)dyds

!2

 2K2
1
X

n=1

"

Z t

0

 

Z ⇡

0

p
2np
⇡
(V + w̃)+(y, s) sin(ny)dy

!2

ds
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·
Z t

0

✓

sin(n2(t+ ⌧ � s))� sin(n2(t� s))

n2

◆2

ds

#

+2K2
1
X

n=1

"

Z t+⌧

t

 

Z ⇡

0

p
2np
⇡
(V + w̃)+(y, s) sin(ny)dy

!2

ds

·
Z t+⌧

t

✓

sin(n2(t+ ⌧ � s))

n2

◆2

ds

#

.

Notice

An =

Z t

0

1

n4
[sin(n2(t+ ⌧ � s))� sin(n2(t� s))]2ds

=

Z t

0

1

n4



2 cos(n2(t+
⌧

2
� s)) sin

✓

n2⌧

2

◆�2

ds


Z t

0

4

n4
sin2

✓

n2⌧

2

◆

ds 
Z t

0

4

n4

�

�

�

�

sin

✓

n2⌧

2

◆

�

�

�

�

ds


Z t

0

4

n4
· n

2⌧

2
ds 

Z t

0

2

n2
⌧ds  ⌧T, for alln � 1, (4.19)

Bn =

Z t+⌧

t

✓

sin(n2(t+ ⌧ � s))

n2

◆2

ds 
Z t+⌧

t

1

n4
ds

 1

n4
⌧  ⌧, for alln � 1. (4.20)

From (4.19), (4.20) and Lemma 4.1, we obtain

kV (·, t+ ⌧)�V (·, t)k2Y1
 2⌧TK2

1
X

n=1

Z t

0

 

Z ⇡

0

p
2np
⇡
(V + w̃)+(y, s) sin(ny)dy

!2

ds

+2⌧K2
1
X

n=1

Z t+⌧

t

 

Z ⇡

0

p
2np
⇡
(V + w̃)+(y, s) sin(ny)dy

!2

ds

=2⌧TK2

Z t

0

k(V + w̃)+k2Y1
ds + 2⌧K2

Z t+⌧

t

k(V + w̃)+k2Y1
ds

 2⌧(TK2 +K2)

Z T

0

k(V + w̃)+k2Y1
ds

=2⌧(TK2 +K2)k(V + w̃)k2L2(0,T ;Y1).

Therefore

kV (x, t+ ⌧) � V (x, t)k2L2(0,T ;Y1) =

Z T

0

kV (x, t+ ⌧)� V (x, t)k2Y1
dt
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 2⌧(T 2 + T )K2k(V + w̃)k2L2(0,T ;Y1).

Thus

lim
⌧!0

kV (x, t+ ⌧)� V (x, t)k2L2(0,T ;Y1) = 0.

It implies V 2 C([0, T ];Y1), so by Proposition 4.1 we get that

w 2 C([0, T ];Y1), (4.21)

and this gives us

@2w

@x4
2 C([0, T ];Y�3). (4.22)

Since w satisfies equation (4.1), from the above it follows that

@2w

@t2
2 L2((0, T );Y�3). (4.23)

Using the intermediate derivative theorem [Lions and Magenes (1972)], from (4.21)

and (4.23) we obtain that

@w

@t
2 L2((0, T );Y�1). (4.24)

From (4.21) to (4.24), by applying the general lifting result from [Lasiecka and Trig-

giani (1988)] we conclude

w 2 C([0, T ];Y1)
\

C1([0, T ];Y�1).

4.4 Main Theorem

Theorem 4.2. Suppose that
a+ b

2⇡
and

b� a

2⇡
are in set A. Let T be small enough.

Then for all initial data {w0(x), w1(x)} 2 Y3 ⇥ Y1, system (4.1)-(4.3) is exactly
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L2-controllable.

Proof. Since we can’t apply the HUM method directly to this nonlinear system, we

split our system first. Let w̄ denote the solution of the linear system

@2w̄

@t2
+
@4w̄

@x4
= u(t)

d

dx
[�b(x)� �a(x)] , x 2 ⌦, t > 0, (4.25)

w̄(0, t) = w̄(⇡, t) = 0,
@2w̄

@x2
(0, t) =

@2w̄

@x2
(⇡, t) = 0, t > 0, (4.26)

w̄(x, 0) = w0(x)� v(x, 0),
@w̄

@t
(x, 0) = w1(x)� @v

@t
(x, 0), x 2 ⌦, (4.27)

w̄(x, T ) = 0,
@w̄

@t
(x, T ) = 0, x 2 ⌦, (4.28)

where v is the solution of nonlinear system

@2v

@t2
+

@4v

@x4
+ K[v + w̄]+ = 0, x 2 ⌦, t > 0, (4.29)

v(0, t) = v(⇡, t) = 0,
@2v

@x2
(0, t) =

@2v

@x2
(⇡, t) = 0, t > 0, (4.30)

v(x, T ) = 0,
@v

@t
(x, T ) = 0, x 2 ⌦. (4.31)

Thus w = w̄ + v satisfies system (4.1)-(4.3) and the final state condition

w(x, T ) = 0,
@w

@t
(x, T ) = 0.

We only need to show the existence of u(t) in system (4.25)-(4.28).

Apply the HUM method to system (4.25)-(4.27), we start from the next homogenous

initial and boundary value problem

@2�

@t2
(x, t) +

@4�

@x4
(x, t) = 0, x 2 ⌦, t > 0, (4.32)

�(0, t) = �(⇡, t) = 0,
@2�

@x2
(0, t) =

@2�

@x2
(⇡, t) = 0, t > 0, (4.33)

�(x, 0) = �0,
@�

@t
(x, 0) = �1, x 2 ⌦, (4.34)
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Given �0, �1, the above system admits a unique solution. Then we solve

@2 

@t2
+
@4 

@x4
=

✓

@�

@x
(b, t)� @�

@x
(a, t)

◆

d

dx
(�b(x)� �a(x)) , x 2 ⌦, t > 0, (4.35)

 (0, t) =  (⇡, t) = 0,
@2 

@x2
(0, t) =

@2 

@x2
(⇡, t) = 0, t > 0, (4.36)

 (x, T ) = 0,
@ 

@t
(x, T ) = 0, x 2 ⌦. (4.37)

Define a mapping ⇤ : Y�1 ⇥ Y�3 ! Y1 ⇥ Y3 by

⇤{�0,�1} =

⇢

@ 

@t
(x, 0),� (x, 0)

�

.

It is easy to verify

Z T

0



@�

@x
(b, t)� @�

@x
(a, t)

�2

dt = h⇤{�0,�1}, {�0,�1}i.

Let �0(x) =
1
X

n=1

an sin(nx) 2 Y�1, �
1(x) =

1
X

n=1

n2bn sin(nx) 2 Y�3. Therefore

k�0k2Y�1
=

1
X

n=1

n�2a2n < 1, k�1k2Y�3
=

1
X

n=1

n�2b2n < 1.

Thus, the solution of system (4.32)-(4.34) is

�(x, t) =
1
X

n=1

[an cos(n
2t) sin(nx) + bn sin(n

2t) sin(nx)].

Furthermore

@�

@x
(b, t)� @�

@x
(a, t) =

1
X

n=1

2 sin



n(b+ a)

2

�

sin



n(b� a)

2

�

[nan cos(n
2t) + nbn sin(n

2t)].

By Theorem 2.10, there exists a constant C > 0 such that

Z T

0



@�

@x
(b, t)� @�

@x
(a, t)

�2

dt�C
1
X

n=1

sin2



n(b+ a)

2

�

sin2



n(b� a)

2

�

·[n2a2n + n2b2n] (4.38)
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Since
a+ b

2⇡
and

b� a

2⇡
belong to set A. By Lemma 4.2, there exists a constant C⇤ > 0

such that

�

�

�

�

sin



n(b± a)

2

�

�

�

�

�

=

�

�

�

�

sin

⇢

⇡



n(b± a)

2⇡
� p

��

�

�

�

�

�
�

�

�

�

sin

✓

⇡C⇤

n

◆

�

�

�

�

� C⇤

n
, 8n � 1,

where p is a proper integer. Then for a constant C1 > 0

Z T

0



@�

@x
(b, t)� @�

@x
(a, t)

�2

dt � C1

1
X

n=1

(n�2a2n + n�2b2n) (4.39)

That is
Z T

0



@�

@x
(b, t)� @�

@x
(a, t)

�2

dt � C1

�

k�0k2Y�1
+ k�1k2Y�3

�

.

⇤ is an isomorphism. Thus ⇤�1 exists, and is also bounded. Let

⇢

@ 

@t
(x, 0),� (x, 0)

�

=

⇢

@w̄

@t
(x, 0),�w̄(x, 0)

�

2 Y3 ⇥ Y1.

Solve system (4.32)-(4.34) with initial value data

{�0,�1} = ⇤�1{w̄1(x, 0),�w̄0(x, 0)},

and choose

u(t) =
@�

@x
(b, t)� @�

@x
(a, t). (4.40)

Thus w̄(x, t) =  (x, t), and u(t) defined in (4.40) is the desired control.

If given v(x, 0) = v00(x) 2 Y3 and
@v

@t
(x, 0) = v10(x) 2 Y1, the system (4.25)-(4.27)

admits a unique solution w̄0(x, t) = w̄(v0, v1) 2 C([0, T ];Y1)
T

C1([0, T ];Y�1) and the

corresponding unique control u0(t) = u(v0, v1) satisfy (4.28). With this w̄0 in system

(4.29)-(4.31), we may at least admit a weak solution, denoted as v1(x, t). By the result

in the previous section, this solution is unique and v1 2 C([0, T ];Y1)
\

C1([0, T ];Y�1).
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If v01(x) = v1(x, 0) 2 Y3 and v11(x) =
@v1
@t

(x, 0) 2 Y1, we may repeat this to get w̄1(x, t)

and u1(t), and then v02(x) and v12(x). By repeating this process, we have defined a

mapping

F : Y3 ⇥ Y1 ! Y3 ⇥ Y1

by

F ({v0n(x), v1n(x)}) = {v0n+1(x), v
1
n+1(x)}, 8n � 0.

If F is a contraction mapping, by the Banach Contraction Mapping Principle

there is a unique fixed point of F , denoted as {v0(x), v1(x)}. Let v(x, 0) = v0(x)

and
@v

@t
(x, 0) = v1(x) in system (4.25)-(4.28), by Proposition 4.2 we will get a control

function u(x, t) that drives the solution w of system (4.1)-(4.3) to rest at t = T .

Therefore Theorem 4.2 has been proved.

First, let’s verify that given v0n(x) 2 Y3 and v1n(x) 2 Y1 will imply v0n+1(x) 2

Y3 and v1n+1(x) 2 Y1 for all n � 0. Notice that we have regularity that w̄n 2

C([0, T ];Y1)
T

C1([0, T ];Y�1) for all n � 0 and vn 2 C([0, T ];Y1)
T

C1([0, T ];Y�1)

for all n � 1.

It is straightforward to obtain from (4.29)-(4.31)

vn+1(x, t)=

Z T

t

Z ⇡

0

1
X

m=1

p
2Kp
⇡m2

(vn+1 + w̄n)
+(y, s) sin (my)

· sin (mx) sin (m2(t� s))dyds,

@vn+1

@t
(x, t)=

Z T

t

Z ⇡

0

1
X

m=1

p
2Kp
⇡

(vn+1 + w̄n)
+(y, s) sin (my)

· sin (mx) cos (m2(t� s))dyds.
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Therefore

vn+1(x, 0) = �
Z T

0

Z ⇡

0

1
X

m=1

p
2Kp
⇡m2

(vn+1 + w̄n)
+(y, s) sin (my) sin (mx) sin (m2s)dyds,

@vn+1

@t
(x, 0) =

Z T

0

Z ⇡

0

1
X

m=1

p
2Kp
⇡

(vn+1 + w̄n)
+(y, s) sin (my) sin (mx) cos (m2s)dyds.

Thus

kvn+1(x, 0)k2Y3

=
1
X

m=1

K2m2

 

Z T

0

Z ⇡

0

r

2

⇡
(vn+1 + w̄n)

+(y, s) sin (my) sin (m2s)dyds

!2

K2
1
X

m=1

m2

Z T

0

 

Z ⇡

0

r

2

⇡
(vn+1 + w̄n)

+(y, s) sin (my)dy

!2

ds

Z T

0

sin2 (m2s)ds

K2T

Z T

0

1
X

m=1

m2

 

r

2

⇡

Z ⇡

0

(vn+1 + w̄n)
+(y, s) sin (my)dy

!2

ds

=K2T

Z T

0

k(vn+1 + w̄n)
+k2Y1

ds  K2T

Z T

0

k(vn+1 + w̄n)k2Y1
ds

=K2Tk(vn+1 + w̄n)k2L2(0,T ;Y1), (4.41)

and

�

�

�

�

@vn+1

@t
(x, 0)

�

�

�

�

2

Y1

=
1
X

m=1

K2m2

 

Z T

0

Z ⇡

0

r

2

⇡
(vn+1 + w̄n)

+(y, s) sin (my) cos (m2s)dyds

!2

K2
1
X

m=1

m2

Z T

0

 

Z ⇡

0

r

2

⇡
(vn+1 + w̄n)

+(y, s) sin (my)dy

!2

ds

Z T

0

cos2 (m2s)ds

K2T

Z T

0

k(vn+1 + w̄n)
+k2Y1

ds  K2Tk(vn+1 + w̄n)k2L2(0,T ;Y1). (4.42)

Thus v0n+1(x) 2 Y3, v1n+1(x) 2 Y1.

Then by mathematical induction method v0n(x) 2 Y3 and v1n(x) 2 Y1 for all n � 0.
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Therefore F is a mapping from Y3 ⇥ Y1 to itself. Moreover, we have for all n � 1

�

�F ({v0n, v1n})� F ({v0n�1, v
1
n�1})

�

�

2

Y3⇥Y1
= kv0n+1 � v0nk2Y3

+ kv1n+1 � v1nk2Y1
.

From (4.41) and (4.42) we obtain, for n � 1,

kv0n+1 � v0nk2Y3
 K2T

Z T

0

k(vn+1 � w̄n)
+ � (vn � w̄n�1)

+k2Y1
ds

 K2T

Z T

0

k(vn+1 � w̄n)� (vn � w̄n�1)k2Y1
ds

 2K2T

Z T

0

�

kvn+1 � vnk2Y1
+ kw̄n � w̄n�1k2Y1

�

ds

 2K2T 2
�

kvn+1 � vnk2L1(0,T ;Y1) + kw̄n � w̄n�1k2L1(0,T ;Y1)

�

, (4.43)

kv1n+1 � v1nk2Y1
 K2T

Z T

0

k(vn+1 � w̄n)
+ � (vn � w̄n�1)

+k2Y1
ds

 2K2T 2
�

kvn+1 � vnk2L1(0,T ;Y1) + kw̄n � w̄n�1k2L1(0,T ;Y1)

�

. (4.44)

Moreover,

kvn+1 � vnk2L1(0,T ;Y1)

= max
t2[0,T ]

�

�

�

�

1
X

m=1

2K2

⇡m2

✓

Z T

t

Z ⇡

0

[(vn+1 + w̄n)
+ � (vn + w̄n�1)

+] sin (my)

· sin (m2(t� s))dyds

◆2�
�

�

�

 max
t2[0,T ]

�

�

�

�

1
X

m=1

2K2

⇡m2

Z T

t

✓

Z ⇡

0

[(vn+1 + w̄n)
+ � (vn + w̄n�1)

+] sin (my)dy

◆2

ds

·
Z T

t

sin2 (m2(t� s))ds

�

�

�

�

 max
t2[0,T ]

�

�

�

�

Z T

t

K2T
1
X

m=1

 

r

2

⇡

Z ⇡

0

[(vn+1 + w̄n)
+ � (vn + w̄n�1)

+] sin (my)dyds

!2

ds

�

�

�

�

 max
t2[0,T ]

�

�

�

�

Z T

t

K2Tk(vn+1 + w̄n)
+ � (vn + w̄n�1)

+k2Y0
ds

�

�

�

�

 max
t2[0,T ]

�

�

�

�

Z T

t

K2Tk(vn+1 + w̄n)� (vn + w̄n�1)k2Y0
ds

�

�

�

�

 max
t2[0,T ]

�

�

�

�

Z T

t

K2Tk((vn+1 + w̄n)� (vn + w̄n�1)k2Y1
ds

�

�

�

�
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K2T 2k((vn+1 + w̄n)� (vn + w̄n�1)k2L1(0,T ;Y1)

 2K2T 2
�

kvn+1 � vnk2L1(0,T ;Y1) + kw̄n � w̄n�1k2L1(0,T ;Y1)

�

.

Thus it follows that

kvn+1 � vnk2L1(0,T ;Y1)  2K2T 2

1� 2K2T 2
kw̄n � w̄n�1k2L1(0,T ;Y1). (4.45)

By (4.45), (4.43) and (4.44) become

kv0n+1 � v0nk2Y3
 2K2T 2

1� 2K2T 2
kw̄n � w̄n�1k2L1(0,T ;Y1), (4.46)

kv1n+1 � v1nk2Y1
 2K2T 2

1� 2K2T 2
kw̄n � w̄n�1k2L1(0,T ;Y1). (4.47)

Now for system (4.25)-(4.27), if we let w̄n(x, t) =
1
X

m=1

an,m(t) sin (mx), then we obtain

w̄n(x, t)=
1
X

m=1

r

2

⇡

Z ⇡

0

(w0 � v0n)(y) sin(my) sin(mx) cos(m2t)dy

+
1
X

m=1

r

2

⇡

Z ⇡

0

1

m2
(w1 � v1n)(y) sin(my) sin(mx) sin(m2t)dy

+
1
X

m=1

p
2(cos(ma)� cos(mb))

m
p
⇡

Z t

0

un(s) sin(mx) sin(m2(t� s))ds.

Therefor we may have the following estimation

kw̄n � w̄n�1k2L1(0,T ;Y1)

 3 max
t2[0,T ]

�

�

�

�

1
X

m=1

m2

 

r

2

⇡

Z ⇡

0

(v0n � v0n�1)(y) sin(my)dy

!2

cos2(m2t)

�

�

�

�

+3 max
t2[0,T ]

�

�

�

�

1
X

m=1

m2

 

r

2

⇡

Z ⇡

0

1

m2
(v1n � v1n�1)(y) sin(my)dy

!2

sin2(m2t)

�

�

�

�

+3

�

�

�

�

�

1
X

m=1

p
2(cos(ma)� cos(mb))

m
p
⇡

Z t

0

(un(s)� un�1(s))

· sin(m2(t� s))ds sin(mx)

�

�

�

�

�

2

L1(0,T ;Y1)
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 3
1
X

m=1

m2

 

r

2

⇡

Z ⇡

0

(v0n � v0n�1)(y) sin(my)dy

!2

+3
1
X

m=1

1

m2

 

r

2

⇡

Z ⇡

0

(v1n � v1n�1)(y) sin(my)dy

!2

+3

�

�

�

�

�

1
X

m=1

p
2(cos(ma)� cos(mb))

m
p
⇡

Z t

0

(un(s)� un(s))

· sin(m2(t� s))ds sin(mx)

�

�

�

�

�

2

L1(0,T ;Y1)

 3k(v0n � v0n�1)k2Y1
+ 3k(v1n � v1n�1)k2Y�1

+3

�

�

�

�

�

1
X

m=1

p
2(cos(ma)� cos(mb))

n
p
⇡

Z t

0

(un(s)� un�1(s))

· sin(m2(t� s))ds sin(mx)

�

�

�

�

�

2

L1(0,T ;Y1)

.

Then, by Lemma 4.4, we have

kw̄n � w̄n�1k2L1(0,T ;Y1)

 3kv0n � v0n�1k2Y3
+ 3kv1n � v1n�1k2Y1

+ 3C0kun � un�1k2L2(0,T ). (4.48)

Now assume {�n, n} and {�n�1, n�1} are two pairs of solutions of systems (4.32)-

(4.34) and (4.35)-(4.37), correspond to {v0n, v1n} and {v0n�1, v
1
n�1} respectively.

Thus

un(t) =
@�n

@x
(b, t)� @�n

@x
(a, t), un�1(t) =

@�n�1

@x
(b, t)� @�n�1

@x
(a, t),

Since

h⇤{�0,�1}, {�0,�1}i=
⌧⇢

@ 

@t
(x, 0),� (x, 0)

�

, {�0,�1}
�

=

Z ⇡

0

✓

@ 

@t
(x, 0)�0 �  (x, 0)�1

◆

dx.
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We have the following important estimate

kun(t)� un�1(t)k2L2(0,T )

=

⌧⇢

@ n

@t
(x, 0)� @ n�1

@t
(x, 0),� n(x, 0) +  n�1(x, 0)

�

, {�0
n � �0

n�1,�
1
n � �1

n�1}
�

=

⌧⇢

@ n

@t
(x, 0)� @ n�1

@t
(x, 0),� n(x, 0) +  n�1(x, 0)

�

,

⇤�1

⇢

@ n

@t
(x, 0)� @ n�1

@t
(x, 0),� n(x, 0) +  n�1(x, 0)

��

k⇤�1k
⌧⇢

@ n

@t
(x, 0)� @ n�1

@t
(x, 0),� n(x, 0) +  n�1(x, 0)

�

,
⇢

@ n

@t
(x, 0)� @ n�1

@t
(x, 0),� n(x, 0) +  n�1(x, 0)

��

= k⇤�1k
Z ⇡

0

"

✓

@ n

@t
(x, 0)� @ n�1

@t
(x, 0)

◆2

+ (� n(x, 0) +  n�1(x, 0))
2

#

dx

= k⇤�1k
"

Z ⇡

0

✓

@w̄n

@t
(x, 0)� @w̄n�1

@t
(x, 0)

◆2

dx+

Z ⇡

0

(w̄n(x, 0)� w̄n�1(x, 0))
2 dx

#

= k⇤�1k


Z ⇡

0

�

v1n(x)� v1n�1(x)
�2

dx+

Z ⇡

0

�

v0n(x)� v1n�1(x)
�2

dx

�

k⇤�1k
⇥

kv1n � v1n�1k2Y0
+ kv0n � v0n�1k2Y0

⇤

k⇤�1k
⇥

kv1n � v1n�1k2Y1
+ kv0n � v0n�1k2Y3

⇤

. (4.49)

Therefore

kw̄n � w̄n�1k2L1(0,T ;Y1)  3(1 + C0k⇤�1k)
⇥

kv0n � v0n�1k2Y3
+ kv1n � v1n�1k2Y1

⇤

. (4.50)

Thus by (4.46), (4.47) and (4.50), we obtain

⇥

kv0n+1 � v0nk2Y3
+ kv1n+1 � v1nk2Y1

⇤

 6K2T 2

1� 2K2T 2
(1 + C0k⇤�1k)

⇥

kv0n � v0n�1k2Y3
+ kv1n � v1n�1k2Y1

⇤

.

This is for all n � 1

�

�F ({v0n, v1n})� F ({v0n�1, v
1
n�1})

�

�

2

Y3⇥Y1
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 6K2T 2

1� 2K2T 2
(1 + C0k⇤�1k)k{v0n, v1n}� {v0n�1, v

1
n�1}k2Y3⇥Y1

.

From this we have the conclusion: when T is small enough, say

T 2 <
1

K2(6k⇤�1kC0 + 8)
,

we have

(1 + C0k⇤�1k) 6K2T 2

1� 2K2T 2
< 1,

which implies that F is a contraction mapping. By the Banach Contraction Mapping

Principle, there is a unique solution {v0, v1} 2 Y3 ⇥ Y1 such that

{v0, v1} = F ({v0, v1}).

Let v(x, 0) = v0(x) and
@v

@t
(x, 0) = v1(x) in system (4.29)-(4.31), we will get a control

function u(t) such that the nonlinear system (4.1)-(4.3) is exactly L2�controllable.

Thus we have proved the Theorem 4.2.
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CHAPTER 5

FUTURE WORK

In this dissertation, we have studied the control problems of the 1-D Lazer-

McKenna suspension bridge equation. A natural question is: can the results obtained

in this dissertation be extended to the high dimensional cases?

• Let ⌦ ⇢ R2 be a bounded domain with boundary � , @⌦, ! ⇢ ⌦ and w0(x),

w1(x) are in proper Hilbert spaces. u(x, y, t) to be the control. Consider

8

<

:

wtt +�2w + w+ = u(x, y, t)�!, x 2 ⌦, t 2 (0, T ),
w(x, t) = 0, �w(x, t) = 0, x 2 �, t 2 (0, T ),
w(x, 0) = w0(x), wt(x, 0) = w1(x), x 2 ⌦.

To study the exact controllability of this system, the key step is to establish a

Carleman estimate for the high dimensional cases. Similar ideas in Chapter 3

may apply.

The initial suspension bridge model introduced by Lazer and McKenna [Lazer

and McKenna (1990)] consists two coupled beam and wave equations. The general

suspension bridge model proposed by Ahmed [Ahmed and Harbi (1998)] is a sys-

tem of four coupled equations. Can we still apply the same ideas developed in this

dissertation to show the exact controllability of these coupled systems?

• Let ⌦ = (0, L) ⇢ R, ! = (a, b) ⇢ ⌦, and u0(x), u1(x), w0(x), w1(x) be in proper
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Hilbert spaces. Let u(x, t) denote the control function. Consider

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

mcutt �Quxx �K(w � u)+ = 0, x 2 ⌦, 0 < t < T,
mbwtt + EIwxxxx +K(w � u)+ = u(x, t)�!, x 2 ⌦, 0 < t < T,
u(0, t) = u(L, t) = 0, 0 < t < T,
w(0, t) = w(L, t) = 0, 0 < t < T,
wxx(0, t) = wxx(L, t) = 0, x 2 ⌦,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x 2 ⌦,
w(x, 0) = w0(x), wt(x, 0) = w1(x), x 2 ⌦.

The exact controllability of this system is a very challenging problem to study.

A more challenging problem is to study the exact controllability of the general

suspension bridge system developed by Ahmed [Ahmed and Harbi (1998)] with

propriate controls.

In 2002, P. J. McKenna and K. S. Moore showed numerically in [McKenna and

Moore (2002)] that, with w+ being replaced by a nonlinear smooth function f(w) =

�1

a
(eaw�1) in the Lazer-McKenna suspension bridge equation, the solutions replicate

more accurately the nonlinear phenomena in the collapse of the First Tacoma Narrows

Suspension Bridge.

• Let ⌦ = (0, L), a, b 2 ⌦ and u to be the control function. Consider

8

>

<

>

:

wtt + wxxxx + f(w) = u(t)
d

dx
[�b(x)� �a(x)], x 2 ⌦, t > 0,

w(0, t) = w(L, t) = 0, wxx(0, t) = wxx(L, t) = 0, t > 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), x 2 ⌦.

Can we show the system is exact controllable? Moreover, it is also important

to develop numerical simulations of nonlinear control systems.
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APPENDIX

AN EXAMPLE OF

THE HILBERT UNIQUENESS METHOD

Here is a quick example for this -so called the Hilbert Uniqueness Method (HUM)

from [Lions (1988)]: Let ⌦ ⇢ Rn with smooth boundary � = @⌦, and x0 2 Rn be

given. Let m(x) = {xk � x0
k} and

�(x0) = {x|x 2 �, m(x)⌫(x) � 0}

where ⌫(x) is the unit outward normal vector to �. Let �⇤(x0) = � \�(x0). Consider

the following wave equation system with boundary control

@2y

@t2
�4y = 0, (x, t) 2 ⌦⇥ (0, T ), (0.1)

y =

⇢

u, on�(x0)⇥ (0, T ),
0, on�⇤(x0)⇥ (0, T ),

(0.2)

y(0) = y0,
@y

@t
(0) = y1, x 2 ⌦, (0.3)

where u is the control function.

We wish to find a u (in a suitable Hilbert space) such that

y(x, T ) =
@y

@t
(x, T ) = 0. (0.4)

We start with the wave equation

@2�

@t2
�4� = 0, in⌦⇥ (0, T ),

� = 0, on�⇥ (0, T ),

�(0) = �0,
@�

@t
(0) = �1, in⌦.

(0.5)

92



Given �0, �1 in appropriate Hilbert spaces, (0.5) admits a unique solution. We then

solve
@2 

@t2
�4 = 0, in⌦⇥ (0, T ),

 =

⇢

@�/@⌫, on�(x0)⇥ (0, T ),
0, on�⇤(x0)⇥ (0, T ),

 (T ) =
@ 

@t
(T ) = 0, in⌦.

(0.6)

This is a non-homogeneous boundary value problem. The space where the solution

lies will depend on the properties of �0, �1.

Since (0.6) always admits at least a weak solution. Therefore, given �0 and �1,

we have defined, in a unique fashion,

⇤{�0,�1} =

⇢

@ 

@t
(0),� (0)

�

.

Let us assume for a moment that�in appropriate Hilbert spaces�⇤ (which depends

on T ) becomes invertible (for T large enough).

Then the problem is solved. Indeed, for given y0, y1, we solve

⇤{�0,�1} = {y1,�y0}.

We then solve (0.5) and we choose

u =
@�

@⌫
on�(x0)⇥ (0, T ).

Thus

y(u) =  ;

Hence (0.4) holds and we have constructed a control u driving the state variable of

system (0.1)-(0.3) to rest at time T .

To prove ⇤ is invertible, define the scalar product

h⇤{�0,�1}, {�0,�1}i =
Z

⌦

✓

@ 

@t
(0)�0 �  (0)�1

◆

dx.
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By multiplying (0.6) by � and using integration by parts, we obtain

h⇤{�0,�1}, {�0,�1}i =
Z

�(x0)⇥(0,T )

✓

@�

@⌫

◆2

d�dt.

The key step is to prove, for proper T ,

 

Z

�(x0)⇥(0,T )

✓

@�

@⌫

◆2

d�dt

!

1
2

(0.7)

defines a norm on the set of initial data {�0,�1}. The norm (0.7) is then equivalent

to the usual norm of H1
0 (⌦)⇥ L2(⌦).

Thus ⇤ defines an isomorphism from H1
0 (⌦) ⇥ L2(⌦) onto H�1(⌦) ⇥ L2(⌦), where

H�1(⌦) denotes the dual of H1
0 (⌦). Therefore one can conclude that

Let T be large enough, say T > T0. For any y0, y1 given in L2(⌦) ⇥

H�1(⌦), there exists u 2 L2(�(x0)⇥ (0, T )) such that the control u drives

the system from {y0, y1} at t = 0 to rest at t = T .

The proof of (0.7) is equivalent to the proof of the following observability inequality:

Z

�(x0)⇥(0,T )

✓

@�

@⌫

◆2

d�dt � C(T � T0)
h

k�0k2H1
0 (⌦) + k�1k2L2(⌦)

i

.
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Haraux, A. (1989). Séries lacunaires et contrôle semi-interne des vibrations d’une

plaque rectangulaire. J. Math. Pure. Appl., 68(4):457–465.

Humphreys, L. D. (1997). Numerical mountain pass solutions of a suspension bridge

equation. Nonlinear Analysis, 28(11):1811–1826.

Humphreys, L. D. and McKenna, P. J. (1999). Multiple periodic solutions for a

nonlinear suspension bridge equation. IMA J. Appl. Math., 63:37–49.

96



Ingham, A. E. (1936). Some trigonometrical inequalities with applications to the

theory of series. Math. Z., 41(1):367–379.

Lang, S. (1966). Introduction to Diophantine Approximations. Addison-Wesley, New

York.

Lasiecka, I. and Triggiani, R. (1988). A lifting theorem for the time regularity of solu-

tions to abstract equations with unbounded operators and applications to hyperbolic

equations. Proc. Amer. Math. Soc., 10:745–755.

Lazer, A. C. and McKenna, P. J. (1987). Large scale oscillation behavior in loaded

asymmetric systems. Ann. Inst. H. Poincare Anal. Non Lineaire, 4:243–274.

Lazer, A. C. and McKenna, P. J. (1990). Large-amplitude periodic oscillations in

suspension bridges: Some new connections with nonlinear analysis. SIAM Review,

32(4):537–578.

Leiva, H. (2005). Exact controllability of the suspension bridge model proposed by

lazer and mckenna. J. Math. Anal. Appl., 309(2):404–419.
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