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ABSTRACT 
 

Investigation of Flerovium and Element 115 Homologs with Macrocyclic Extractants 
 

By 
 

John D. Despotopulos 
 

Dr. Ralf Sudowe, Examination Committee Chair 
Associate Professor of Health Physics and Radiochemistry 

University of Nevada, Las Vegas 
 

 Study of the chemistry of the heaviest elements, Z ≥ 104, poses a unique challenge due 

to their low production cross-sections and short half-lives. Chemistry also must be studied on 

the one-atom-at-a-time scale, requiring automated, fast, and very efficient chemical schemes. 

Recent studies of the chemical behavior of copernicium (Cn, element 112) and flerovium (Fl, 

element 114) together with the discovery of isotopes of these elements with half-lives suitable 

for chemical studies have spurred a renewed interest in the development of rapid systems 

designed to study the chemical properties of elements with Z ≥ 114. This dissertation explores 

both extraction chromatography and solvent extraction as methods for development of a rapid 

chemical separation scheme for the homologs of flerovium (Pb, Sn, Hg) and element 115 (Bi, Sb), 

with the goal of developing a chemical scheme that, in the future, can be applied to on-line 

chemistry of both Fl and element 115. Macrocyclic extractants, specifically crown ethers and 

their derivatives, were chosen for these studies.  

 Carrier-free radionuclides, used in these studies, of the homologs of Fl and element 115 

were obtained by proton activation of high purity metal foils at the Lawrence Livermore 

National Laboratory (LLNL) Center for Accelerator Mass Spectrometry (CAMS): natIn(p,n)113Sn, 

natSn(p,n)124Sb, and Au(p,n)197m,gHg. The carrier-free activity was separated from the foils by 

novel separation schemes based on ion exchange and extraction chromatography techniques. 
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Carrier-free Pb and Bi isotopes were obtained from development of a novel generator based on 

cation exchange chromatography using the 232U parent to generate 212Pb and 212Bi.  

 Crown ethers show high selectivity for metal ions based on their size compared to the 

negatively charged cavity of the ether. Extraction by crown ethers occur based on electrostatic 

ion-dipole interactions between the negatively charged ring atoms (oxygen, sulfur, etc.) and the 

positively charged metal cations. Extraction chromatography resins produced by Eichrom 

Technologies, specifically the Pb resin based on di-t-byutlcyclohexano-18-crown-6, were chosen 

as a starting point for these studies. Simple chemical systems based solely on HCl matrices were 

explored to determine the extent of extraction for Pb, Sn and Hg on the resin. The kinetics and 

mechanism of extraction were also explored to determine suitability for a Fl chemical 

experiment. Systems based on KI/HCl and KI/HNO3 were explored for Bi and Sb. In both cases 

suitable separations, with high separation factors, were performed with vacuum flow columns 

containing the Pb-resin. Unfortunately the kinetics of uptake for Hg are far too slow on the 

traditional crown-ether to perform a Fl experiment and obtain whether or not Fl has true Hg-like 

character or not. However, the kinetics of Pb and Sn are more than sufficient for a Fl experiment 

to differentiate between Pb- or Sn-like character. To assess this kinetic issue a novel macrocyclic 

extractant based on sulfur donors was synthesized. 

 Hexathia-18-crown-6, the sulfur analog of 18-crown-6, was synthesized based with by a 

template reaction using high dilution techniques. The replacement of oxygen ring atoms with 

sulfur should give the extractant a softer character, which should allow for far greater affinity 

toward soft metals such as Hg and Pb. From HCl matrices hexathia-18-crown-6 showed far 

greater kinetics and affinity for Hg than the Pb-resin; however, no affinity for Pb or Sn was seen. 

This presumably is due to the fact the charge density of sulfur crown ethers does not point to 

the center of the ring, and future synthesis of a substituted sulfur crown ether which forces the 
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charge density to mimic that of the traditional crown ether should enable extraction of Pb and 

Sn to a greater extent than with the Pb-resin. Initial studies show promise for the separation of 

Bi and Sb from HCl matrices using hexathia-18-crown-6.  

 Other macrocyclic extractants, including 2,2,2-cryptand, calix[6]arene and tetrathia-12-

crown-4, were also investigated for comparison to the crown ethers. It was noted that these 

extractants are inferior compared to the crown and thiacrown ethers for extraction of Fl and 

element 115 homologs. A potential chemical system for Fl was established based on the 

Eichrom Pb resin, and insight to an improved system based on thiacrown ethers is presented.  
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CHAPTER 1:  INTRODUCTION 
 
 The experimental investigation of the transactinide elements (Z > 103) are important 

tasks for both physicists and chemists. For physicists the experimental investigation offers 

insights to nuclear structure at the extreme edges of stability with respect to high Z nuclei. 

Chemists, on the other hand, can test the influence of high nuclear charge, specifically 

relativistic effects, on the chemical properties of the transactinides and consequently evaluate 

the validity of Mendeleev’s theory of the periodic table. The periodic table, introduced in 1896 

by Dimitri Mendeleev, arranges the chemical elements into periodic groups based on their 

chemical properties, providing a useful tool in predicting the chemical behavior of a given 

element. Experiments with the transactinides are a challenging endeavor, due to production 

rates as low as a single atom created per hour, day, month, or potentially even longer, and 

lifetimes ranging from fractions of seconds to minutes at most [1]. 

 All elements heavier than U (Z = 92) do not occur in nature (except for trace amounts of 

Np and Pu in U ores formed through neutron interactions with 238U as well as ultratrace 

amounts of 244Pu), due to their half-lives being short compared to the age of the earth [2,3]. In 

1932, with the discovery of the neutron by James Chadwick, new experiments began to be 

performed using neutrons that led to the eventual discovery of transuranic elements [4]  

Enrico Fermi and Emilio Sergé were believed to have been the first to produce 

transuranic elements, in 1934, through neutron capture on uranium followed by β- decay; 

however, they never actually characterized the new elements [5]. In 1940, Edwin McMillan et al. 

discovered 239Np, the first transuranic element, by neutron bombardment of 238U [6]: 

𝑈92
238  +  𝑛 →  𝑈 → 𝑁𝑝93

239 +  𝛽− + �̅�92
239     

 



 
 

2 
 

Glenn T. Seaborg et al. discovered plutonium by deuteron bombardment of 238U, at the 

University of California Berkeley’s 60 inch cyclotron in 1940 [7]: 

𝑈 +  𝐻 →  𝑁𝑝93
238 +  2𝑛 →  𝑃𝑢94

238  +  𝛽− +  �̅�1
2

92
238  

In the 1940s, 242Am and 242Cm were also discovered by Glenn T. Seaborg et al. during the 

Manhattan Project [8]. Seaborg introduced the actinide concept, placing the elements thorium 

through (not yet discovered) lawrencium in a special series within the periodic table, similar to 

the lanthanide series [8]. This indicated that these elements should have similar chemical 

behavior to each other, and led to the discovery of berkelium (Bk) and californium (Cf) through 

the bombardment of actinide targets with deuterons, between 1949 and 1950 [9,10]. The 

elements fermium (Fm) and einsteinium (Es) were discovered in the debris from the “MIKE” 

thermonuclear test, in 1952 [11]. The remaining three members of the actinide series, 

mendelevium (Md), nobelium (Nb), and lawrencium (Lr) were discovered by atom-at-a-time 

production methods between 1955 and 1961 [12-14]. Elements up to Fm can be produced step-

wise by neutron capture followed by β- decay in high neutron flux reactors [15]. Production of 

elements beyond Fm by this method encounter problems of low production rates, short half-

lives, and high probability for spontaneous fission. Thus, the neutron production rate of Fm and 

the elements beyond is too low to create quantities large enough for target preparation, and 

the step-wise approach with neutron and deuteron bombardment followed by β- decay up the 

periodic table ceases.  

 Since 1940, the periodic table has been extended to reflect the discovery of elements 

with atomic numbers as high as 118, Figure 1. The transactinides begin with element 104, 

rutherfordium (Rf), a new transition metal element.
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Figure 1.  The modern periodic table. Elements with no experimentally known chemical properties are separated from the body of the periodic 
table. First attempts to characterize elements Cn, 113 and Fl have been reported. 
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The credit for discovery of the first two transactinides, Rf and dubnium (Db) are shared by 

groups at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia and the group at the 

Berkeley Heavy Ion Linear Accelerator (HILAC) in Berkeley, California [16]. Rutherfordium was 

produced via the following reactions [17,18]:  

242Pu + 22Ne → 260Rf +4n; (Dubna, G. N. Flerov et al.) 

249Cf + 12C → 257Rf + 4n; (Berkeley, A. Ghiorso et al.) 

Dubnium was produced via the following reactions [19,20]: 

243Am + 22Ne  260Db (261Db) +5n(4n); (Dubna, G. N. Flerov et al.) 

249Cf + 15N  260Db + 4n; (Berkeley, A. Ghiorso et al.) 

In addition to Rf and Db, elements 106 to 112, 114 and 116 have been recognized by the 

International Union of Pure and Applied Chemistry (IUPAC) and have been named:  seaborgium 

(Sg), bhorium (Bh), hassium (Hs), meitnerium (Mt), darmstadtium (Ds), roentgenium (Rn), 

copernicium (Cn), flerovium (Fl), and livermorium (Lv) [21-29]. Claims for the discovery of 

element 113 have been brought forward by a Japanese group and a joint American-Russian 

collaboration [30,31]. Claims for the discovery of elements 115, 117, and 118 have been brought 

forward by a join American-Russian collaboration and are awaiting confirmation [30,32-34].  

1.1 Stability of the transactinides 

 When Meyers and Swiatecki attempted to calculate masses of nuclei from a 

combination of a macroscopic liquid-drop model with superimposed microscopic quantal shell 

corrections in 1966, they indicated that superheavy nuclei might exist far beyond the upper end 

of the current chart of the nuclides and owe their existence solely to shell effects [35]. Similarly 

to electron orbitals, the nuclear shell model describes the nucleus by placing protons and 

neutrons into nuclear shells. Magic numbers refer to a closed nuclear shell and occur at proton 

and neutron numbers of 2, 8, 20, 28, 50, and 82 and neutron number 124. At these proton and 
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neutron numbers the nuclei have higher binding energies per nucleon and thus greater stability 

against radioactive decay than nuclei with only partially filled nuclear shells. When a nucleus 

contains both a magic number of protons and neutrons it is referred to as doubly magic. The 

heaviest stable spherical nuclei, which has both a closed proton and neutron shell is 208Pb (Z = 

82, N = 126). Meldner predicted the next closed proton shells after Z = 82 to be at Z = 114, 164 

and 182 and the next closed neutron shell after N = 126 at N = 184, and 196 therefore, the next 

heavier doubly-magic nucleus after 208Pb was predicted to be 298Fl [36,37]. 

 Shell effects do not have a strong influence on α-decay half-lives, whereas fission half-

lives are influenced to a much larger extent [38]. The calculated longest-lived heavy nucleus is 

294Ds with a predicted half-life of about 108y [38]. These predictions encouraged the search for 

superheavy elements (SHE) and for the investigation of their chemical properties. As a result of 

these calculations the idea of an unknown “island of stability” was introduced into the nuclear 

landscape. Experimental attempts to reach the island of stability have so far proven to be 

unsuccessful; however, the believed edge of the island of stability has been reached 

[28,33,34,39]. More recent calculations garner no agreement between theorists on the location 

of the next spherical shell closure [40]. The next shell closures are predicted to be in the region 

of Z = 114-126 and N=172 or 184 [41-45]. 

 Calculations by Patyk et al. on nuclear masses at high deformation showed that nuclei 

were able to minimize their ground-state energy by accessing high order deformations. This led 

to the prediction that nuclei in the region Z = 108 and N = 162 should be relatively stable, and 

that 270Hs would be a strongly bound deformed doubly-magic nuclide with α-particle emission 

half-life of about 0.1 s [46,47]. Recent calculations point to even longer half-lives, on the order 

of seconds. As a result the spherical superheavies on the island of stability were believed to be 

connected to the region near uranium by a “rock of stability” around 270Hs, Figure 2.  



   
  

6 
  

 

 

Figure 2.  Schematic showing the regions of long-lived nuclei, as believed originally (a) and 
currently (b) [46]. 

 

Experimentally this was shown by the relatively long-lived nuclei 265,262,271Sg, and further 

confirmed by the discovery of 267Bh, and 269Hs all having half-lives of seconds [27,48-51].  

1.2 Production of the transactinides 

 Elements beyond Fm (Z > 100) can only be created synthetically by nuclear fusion 

reactions using heavy ions in accelerators [52]. In a heavy ion fusion reaction a heavy element 

target is bombarded with accelerator produced heavy ions. Most often, when a projectile hits a 

target only part of the constituents are exchanged in a so-called transfer reaction. The complete 

fusion of the two nuclei to produce a compound nucleus (CN) occurs with very low probability. 

For elements produced one atom-at-a-time (Z > 100) a ~0.8 mg/cm2 target, typically an actinide, 

on a thin, ~2 µm thick, Ti backing is used to allow for compound nuclei to recoil out of the target 

to detection systems. Targets are typically bombarded with 3 x 1012 ions per second. A target 

and beam combination like this will yield transactinide production rates on the order of a few 

atoms per minute for Rf and Db to an atom a week or lower for the heavier transactinides 

[4,15,37].  

Nuclear reactions have cross sections (σ) measured in barns (b), 1 b = 10-24 cm2. An 

average nucleus has a radius on the order of 6 x 10-13 cm, yielding a geometric cross section (πr2) 

of about 10-24 cm2. The primary synthesis routes for transactinides can be assigned to either hot 
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or cold fusion, discussed below. Cross sections for the hot fusion production of transactinides 

range from about 10 nb to 1 pb, whereas production cross-sections for cold fusion reactions can 

be as low as 27 fb [31]. 

 Nuclear reactions where the excitation energies of the CN at the fusion or Bass barrier is 

less than ~20 MeV  is often referred to as cold fusion, and only one or two neutrons evaporate 

[53, 54]. These excitation energies occur when a spherical target nuclei, such as 209Bi or 208Pb, is 

bombarded by a medium-heavy projectile, such as 58Fe or 62,64Ni. These types of nuclear 

reactions helped lead to the discovery of elements 107-112 at the GSI [22-27,51,55]; however, 

due to the neutron-deficiency of these nuclei, they often have very short half-lives. There is, 

therefore, a serious disadvantage for performing chemical studies on nuclei produced via the 

cold fusion method [37]. 

 A nuclear reaction resulting in 40-50 MeV excitation energies are considered hot fusion 

reactions. These reactions occur when an actinide target is bombarded by a lighter projectile, 

such as 22Ne or 18O. Hot fusion reactions often de-excite through the evaporation of 4 to 5 

neutrons from the CN. Due to the neutron richness of the actinide targets, these reactions yield 

neutron rich and longer-lived transactinides [37].  

 More recently, experiments using a 48Ca projectile on actinide targets have been 

explored. These experiments show evidence for longer-lived nuclides of elements 112-118 and 

their decay daughters [1,28,29,30,32,33,34,39], Figure 3. A surprising note is the relatively high 

reaction cross sections for these reactions, on the order of a few picobarns, which yield 

production rates of around one atom per day. Reasons for this phenomena are thought to be 

rooted in the doubly magic nature of 48Ca:  the 48Ca nucleus has cold fusion-like properties and 

will lower the probability of spontaneous fission yet the target and projectile together have a 

hot fusion-like configuration which increase the probability of fusion [37].
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Figure 3.  Current chat of the nuclides populated by 48Ca +actinide target reaction products. 
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1.2.1 Element 114, Flerovium 

For 38 days from November to December 1998, a total of 5.2 x 1018 48Ca5+ ions were 

accelerated onto a 244PuO2 target (nine target segments in the shape of an arc, with a 244PuO2 

thickness of 0.37 mg/cm2 on 3.5 cm2 1.5 µm Ti foils, were mounted on a disk), by a joint JINR and 

LLNL collaboration at the Dubna U400 heavy ion cyclotron, leading to the discovery of element 

114 [28]. The 48Ca beam was incident on the 244Pu target at 236 MeV giving a calculated 

excitation energy of the CN of about 30 MeV, which corresponded to the calculated maximum 

3n-evaporation channel to form 289114. One decay chain, correlated in both time and position, 

consisting of an evaporation residue (EVR), α1, α2, α3, spontaneous fission (SF) event, Figure 4, 

was observed in the reaction [28]:  

244Pu + 48Ca → 289114 +3n 

The cross section for this reaction corresponded to approximately 1 pb. 

 

 

Figure 4.  Observed decay chain for initial identification of element 114 [28]. 
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The lifetimes of the decay daughters, new isotopes 277112 and 273110, are approximately 106 

times longer than previously discovered isotopes [25,27]. This indicates the first experimental 

proof of a region of enhanced stability of superheavy elements. The same experiment was 

repeated in June to October 1999. The 292114 CN in this experiment was estimated to have 

excitation energy in the 31.5-39 MeV range, corresponding to the 3n to 4n evaporation 

channels. Two identical decay chains, consisting of an EVR, α1, α2, and SF event, correlated in 

time and position were observed, Figure 5 [56]. 

 

 

Figure 5.  Two identical 288114 decay chains observed in second irradiation of 244Pu target [56]. 

 

 The production of element 114 was independently verified by scientists at Lawrence 

Berkeley National Laboratory’s (LBNL) 88-inch cyclotron. The LBNL ECR source produced 48Ca11+ 

ions which were accelerated to 263 MeV onto a 9.5 cm diameter target wheel containing four 
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segments with 440, 340, 320, and 270 µg cm-1 242PuO2 on 2.4 µm thick Ti. Two decay chains 

correlated in time and position were observed. One decay chain was associated with 286114 and 

the other 287114 (3 and 4n channels), Table 1 [57]. 

 

Table 1.  Events observed by LBNL group. 

Interpretation E (MeV) Δt (s) Position 
(mm) 

Bρ (Tm) σ (pb) 

EVR-strip 14 11.55 -- 13.0(2) 2.28 1.4−1.2
+3.2 

286114 α decay 10.23(4) 0.3009 12.9(3) --  
282112 SF 214.5 0.0036 13.1(15) --  

EVR-strip 7 7.73 -- -2.8(4) 2.25 1.4−1.2
+3.2 

287114 α decay 3.86(4)a 0.8149 -3.3(7) --  
283112 α decay 9.65(10)b 1.9208 10.1(64) --  

279110 SF 176 0.1854 -2.9(15) --  
aEscape α particle depositing only partial energy. 
bReconstructed from 382 keV in focal plane and 9271 keV in upstream detector. 

 

The LBNL group synthesized 285114 through the reaction 244Pu(48Ca,5n)285114, with a cross 

section of 0.6−0.5
+0.9  pb. The decay chain observed:  281Cn, 277Ds, 273Hs, and 269Sg, followed by 265Rf 

SF, all consisted of new isotopes [58]. Oganessian et al. measured the excitation functions for 

the reaction 244Pu(48Ca,xn)292-n114 where n = 3-5 to be σ3n = 2 pb σ4n = 5 pb, and σ5n = 1 pb [59]. 

1.2.2 Element 115 

From July 14 to August 10, 2003 the Dubna U400 heavy ion cyclotron bombarded a 

243AmO2 target (same design as the 244PuO2 target used for element 114 discovery mentioned in 

section 1.2.1 above) with 4.3 x 1018 48Ca ions at both 248 MeV and 253 MeV. These energies 

corresponded to a 191115 CN with excitation energies 38.0-42.3 MeV and 42.4-46.5 MeV, 

corresponding to the 3n and 4n evaporation channels, respectively [30]. Three similar decay 

chains with five consecutive α-decays followed by a spontaneous fission event were observed at 

the lower beam energy. At the higher beam energy, one decay with four consecutive α-decays 
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followed by a spontaneous fission event was observed. Figure 6 summarizes the decay chains 

observed [30].
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Figure 6.  Observed element 115 decay chains. A.  EL = 248 MeV. B.  EL = 253 MeV [30]. 
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The nuclear reaction corresponding to the above decay chains is: 

243Am + 48Ca → 291115* → (287-288)115 + (3-4)n 

The calculated cross sections for the 3n and 4n evaporation channels were σ3n  =  2.7−1.6
+4.8 pb 

and σ4n  =  0.9−0.8
+3.2 pb, respectively. The isotopes 289115 and 290115 were identified as decay 

daughters of the recently discovered element 117 [32]. 

1.3 Chemistry of the transactinides 

 The primary interest in transactinide chemistry is to correctly place new elements in the 

periodic table by evaluating their chemical similarity to the expected homologs (elements from 

the same chemical group). Without validating the chemical behavior the transactinides, the 

arrangement of the current periodic table places elements Rf through Cn in the d-block below Hf 

through Hg, and elements 113 to 118 are expected to be p-block elements located beneath Tl 

through Rn. The placements of the transactinides are solely based on their proton numbers not 

their chemical behavior. Quantum mechanical calculations have concluded that this 

arrangement may not be entirely accurate due to relativistic effects on the valence electrons 

potentially causing variations in the group chemical trends [60,61].  

Relativistic effects occur when the inner-most s- and p-orbital electrons approach the 

speed of light, c. The s electrons, which have no angular momentum, approach the nucleus most 

closely, and thus gain the greatest velocity [62]. Einstein’s theory of relativity describes how 

mass increases as velocity approaches the speed of light [63]: 

                                                                  𝑚 =  
𝑚𝑜

√(1−(
𝑣

𝑐
))

                                                                    (Eqn. 1) 

Where mo is the rest mass and v is the speed of the electron. From this equation the effective 

Bohr radius becomes [63]: 

                                                                     𝑎𝑜 =  
(4𝜋𝜖𝑜)

(
ћ2

𝑚𝑒2)
                                                                     (Eqn. 2) 
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Therefore, as the electron speed increases, the Bohr radius for the inner shell electrons 

decreases. Figure 7 shows the relativistic and hypothetical non-relativistic distribution of the 7 s 

valence electrons in Db.  

 

 

Figure 7.  Relativistic (solid line) and non-relativistic (dashed line) distribution of the 7 s valence 
electrons of Db [37]. 

 

 

For p electrons, which do have an angular momentum, this mass-velocity effect is close to that 

of the s electrons but of smaller magnitude. However, there is a spin-orbit effect which divides 

the three p-orbitals into one p1/2 and two p3/2 orbitals [62,63]. For the p1/2 electrons the mass-

velocity and spin-orbit effect yield contractions and energy stabilization on the same order as 

the s electrons; however, for the p3/2 electrons these effects cancel [62-64]. The contraction of 

the spherical s and p1/2 electrons is known as the “direct relativistic effect” [37]. This contraction 

of the s- and p1/2-orbitals provides sufficient screening of the nuclear charge to allow the outer 

d- and f-orbitals to expand, also known as the “indirect relativistic effect” [37,62-64]. The third 

and final relativistic effect occurs when electrons in levels with l > 0 (p, d, f,… electrons) undergo 

spin-orbit splitting into j = l ± ½ states. This effect originates near the nucleus and therefore, for 
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orbitals with the same l values the spin-orbit splitting decreases with increasing number of 

subshells. Each of these effects grows in magnitude proportional to Z2 [37]. 

 Chemical studies of transactinide elements are difficult due to the nature of their 

production, which is one atom-at-a-time. Since transactinide element production is atom-at-a-

time questions as to the statistical validity of experimental results are raised. Both 

thermodynamic and kinetic views of this problem must be explored. In the macroscopic world 

chemical equilibrium is represented through the law of mass action: 

                                                         K =  
𝒂𝒄(𝑪)𝒂𝒅(𝑫)

𝒂𝒂(𝑨)𝒂𝒃(𝑩)
;       For      aA + bB ↔ cC + dD                  (Eqn. 3) 

Where K is the equilibrium constant. Assuming a metal ion is a constituent of both A and C, at 

equilibrium the metal ions A and C exchange at a constant rate.  If only a single atom of a metal 

is present, however, it cannot exist in both A and C simultaneously and therefore, an equilibrium 

constant cannot be defined since either the activity of A or C is zero. Guillaumont et al. 

proposed a law of mass action in which the concentrations are substituted with the probabilities 

of finding an atom in a given phase, thus deriving an equilibrium formulation valid for atom-at-a-

time studies [65-67]. 

 For the reaction, MA + B ↔ MB + A, there is a forward and reverse rate. The rate at 

which this reaction proceeds is based on the activation energy barrier. The higher this energy 

the slower the reaction rate and slower equilibrium will be established. Therefore, for 

transactinide chemistry, the chemical system must have extremely fast kinetics due to the short 

half-lives of the transactinide elements. Activation energy less than 60 kJ will allow for 

equilibrium to be established quickly compared with the half-life of the transactinide element 

[68]. 

 Prior to performing a transactinide chemistry experiment, the chemical system must be 

thoroughly studied with the homologs and pseudo-homologs of the desired transactinide 



   
 

17 
  

element. Due to the short half-lives of the transactinide elements, fast and efficient separations 

are necessary to evaluate their properties, such as ionic radii and chemical speciation, by 

comparison to their lighter homologs. For liquid-phase studies, this is accomplished through 

batch and dynamic column studies to assess the uptake on the chromatographic column system. 

The kinetics of these experiments must also be tested to ensure the system can be performed 

on the required short time scale. Finally, on-line studies of accelerator produced short-lived 

isotopes of the homolog and pseudo-homolog elements need to be performed to assess the 

experimental set-up in similar conditions to a transactinide experiment.  The on-line studies 

provide the only means to truly test the kinetics of the chemical system as well as the chemical 

species present after the nuclear reaction and transport to the chemical apparatus.  

 The chemical system must be extremely selective for the desired element. During the 

production of a transactinide element many reaction products other than the desired atom 

(from partial transfer of nucleons between target and projectile) will reach the chemical system. 

The production rates of these transfer products are orders of magnitude higher than the 

production of the transactinide [15]. The reaction transfer products can interfere with 

identification of the transactinide element of interest.  

 Magnetic pre-separators, such as the TransActinide Separator and Chemistry Apparatus 

(TASCA) at Gesellschaft für Schwerionenforschung (GSI), and the Berkeley Gas-filled Separator 

(BGS) at Lawrence Berkeley National laboratory (LBNL) can be used as an alternative to chemical 

separations and separate the unwanted transfer products by their magnetic rigidities [69,70]: 

                                                                      𝐵𝜌 =
𝑚𝑣

𝑞
                                                                         (Eqn. 4) 

Where Bρ is the magnetic rigidity of a particle of mass, m, velocity, v, and charge, q. If the 

separator (see Figure 8) is filled with a dilute gas medium (like H or He), moving ions will change 

their energy, direction, and charge due to collisions with the gas. After entering the gas as a 
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homogeneous ion beam, the beam will split into components with different charge values, 

eventually reaching an equilibrium mean charge after interaction with a large number of gas 

atoms. The equilibrium of the charges can be approximated by a Gaussian distribution centered 

at �̅�: 

                                                                        �̅� ≈
𝑣

𝑣𝑜
𝑍1/3                                                                   (Eqn. 5) 

Where Z is the ion atomic number and vo= 2.19 x 106 m/s (Bohr velocity). Combining Equations 4 

and 5 yeilds: 

                                                                 𝐵𝜌 = 0.02267
𝐴

𝑍
1
3

(𝑇𝑚)                                                    (Eqn. 6) 

Using these gas-filled physical pre-separators can yield large background suppression, removing 

a substantial amount of the unwanted co-produced reaction products. Figure 8 shows a diagram 

of the Dubna Gas-filled Recoil Separator (DGFRS). 

 

 

Figure 8.  Schematic of the Dubna Gas-filled Recoil Separator (DGFRS) [70]. 

 

 Chemical experiments themselves can be performed in two ways. The first, a static 

method, is to measure the distribution coefficient of a single atom between two phases by 
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repeating the same experiment hundreds of times. The earliest experiments of this form were 

liquid-liquid extraction experiments, where hundreds of chemical extractions were done to 

determine if the atom, identified by alpha spectroscopy, resided in the organic or aqueous 

phase. A continuous experiment with no interruptions, liquid-liquid extraction system SISAK 

(Short-lived Isotopes Studied by the AKUFVE technique), has been used in the study of 

transactinide elements [71]. A dynamic experiment, the second method, involves a process such 

as column chromatography experiments where atoms in solution undergo hundreds of 

exchange steps as they travel through the column, which results in hundreds of successive static 

experiments being performed in a single step. Both methods can be performed in a 

discontinuous or continuous manner; ideally experiments should be as continuous as possible to 

avoid missing a transactinide event. However, with systems such as ARCA (Automated Rapid 

Chemistry Apparatus), an extraction chromatography system, a discontinuity is introduced into 

the experiment due to the need to make modifications or perform maintenance to the chemical 

system [72,73]. 

The first transactinide studied was Rf (Z =104) as a tetrachloride in the gas-phase in 

Dubna by Zvara et al. [74]. Following this study many other gas-phase experiments were 

performed on Rf [75-81]. Experiments on Rf in the liquid-phase with ion exchange resins were 

performed as well [82-91]. The next transactinides, Db (Z = 105) and Sg (Z = 106) were also 

studied in the gas- and liquid-phases [72,78,92-109]. Gas-phase experiments of Bh (Z= 107) and 

Hs (Z = 108) were also performed [110,111]. Most recently gas-phase experiments have been 

performed on Cn (Z = 112) element 113 (Z = 113) and Fl (Z = 114) in the elemental state in the 

gas phase [112-117].   

 In some of the chemical systems mentioned above, Rf and Db showed some deviations 

from the chemical trends expected based on their lighter homologs, a possible result of 
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relativistic effects. These deviations have not been observed for Sg, Bh and Hs. These 

observations as well as the similarities between the transactinides and their lighter homologs 

gave strong support for assigning these elements to groups 4 through 7 of the periodic table. 

Flerovium and element 115 belong to group 14 and 15 of the periodic table, respectively, 

indicating that Fl is homologous to Pb, Sn, and Ge and element 115 is homologous to Bi, Sb, and 

As, with both elements belonging to the p-block. Predictions, however, have indicated vastly 

different chemical properties for these elements, with Fl ranging from a metal to even a 

potential noble gas. The investigation of these unique elements, which should have exceedingly 

strong relativistic effects, forms the basis for this work. 

1.4 Predicted properties of Flerovium 

With the exception of two experiments by Eichler et al. and Yakushev et al., discussed 

below, only theoretical predictions of the chemical behavior of Fl have been performed. These 

predictions fall into two categories:  early efforts based on periodic trends, and relativistic 

quantum mechanical calculations. The electronic ground state of Fl is predicted to be closed 

shell 7s27p1/2
2, due to large spin-orbit splitting of the 7p orbital and relativistic stabilization of 

the 7p1/2 orbital. Therefore, Fl’s chemistry should be based on the 7p1/2
2 orbital, and thus 

relatively inert and volatile, due to the fact the electrons in this 7p1/2 orbital are relativistically 

stabilized and act as another inert-pair. The primary oxidation state for Fl is predicted to be Fl2+ 

(most stable of group 14), due to the large 7s orbital stabilization. The sp3 hybridization energy 

needed for the Fl4+ state makes it very unstable [118]. 

 Keller, O. L. et al. in the 1970s predicted many chemical properties of Fl by periodic table 

extrapolation. For example, Table 2 shows the predicted ionization potentials for group 14 

[119]. 

 



   
 

21 
  

Table 2.  Ionization potentials for group 14 elements. 

Isotope HFS  (rel) 
(eV), I 

Experimental 
(eV), I 

Δ (eV), I HFS  (rel) 
(eV), II 

Experimental 
(eV), II 

Δ (eV), II 

Ge 6.44 7.88 1.44 14.63 15.93 1.30 

Sn 6.14 7.34 1.20 13.54 14.63 1.09 

Pb 6.46 7.42 0.96 14.07 15.03 0.96 

114 7.77 (8.49) (0.72) 15.97 (16.75) (0.78) 

 
 

From Table 1-2 the predicted Fl ionization potential is much higher than the other elements in 

group 14 indicating it should be the least reactive element in the group. Figure 9 shows the 

ionization potentials of the sixth and seventh row elements [120,121]. 

 

 

Figure 9.  Ionization potentials of the sixth row elements (dashed line, experimental) and 
seventh row (solid line, calculated). 

 

Predictions by Eichler et al. in the 1970s, showed a correlation for ΔHf vs. Z with a Fl ΔHf value of 

71.5 ± 15 kJ/mol, the lowest among the group 14 elements [121]. These predictions support the 

notion that Fl should be relatively inert. The predicted standard electrode potential of Eᵒ(Fl2+/Fl) 
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= +0.9 V strengthens the idea that Fl should be relatively inert compared to its lighter homologs 

[118]. A well-known prediction based on atomic calculations by K. S. Pitzer indicated Fl may be 

as inert as a noble gas [122]. These predictions indicate that the relativistic effects on the 7p1/2 

electrons cause a diagonal relationship introduced into the periodic table. Therefore, Fl2+ is 

expected to behave as if it were somewhere between Hg2+, Cd2+, and Pb2+ [121,123]. 

 Examining the bonding in homonuclear dimers is an indication about bonding in the 

solid state. Many calculations based on different methods have been performed [124-129]. The 

calculations agree that Fl2 is a stronger bound than a typical van der Waals system. The 

calculations also show that it is more strongly bound than Cn2, but weaker than Pb2. Theory 

shows that the 7p1/2 and 7p3/2 orbitals take part in bond formation, the HOMO of the σ character 

is composed of 98% 7p1/2 and 2% 7p3/2 [118]. 

 Volatility of Fl can be studied by its adsorption on a metal surface. Calculations indicate 

that the 7p1/2(Fl) orbital forms a double-occupied σ bonding molecular orbital and one single-

occupied σ* anti-bonding molecular orbital with the 6s(Au) orbital [118]. Modern fully relativistic 

calculations indicate Fl interacts with a Au surface through the formation metal-metal bonds 

and is a volatile metal [130-132]. 

Eichler et al. performed experiments at the FNLR Dubna U400 heavy ion cyclotron with 

Fl in the gas phase to determine its adsorption on a thermochromatography column with gold 

covered detectors. Three atoms of Fl were identified, and their deposition pattern on a gold 

surface detector with a varying temperature gradient was examined. Results indicate that Fl is at 

least as volatile as the simultaneously investigated Hg, At, and Cn. Experiments indicate that Fl 

has increased stability compared to Pb. Lead being the least volatile element of group 14 

deposits on a gold surface at 800-1000 oC, 1000oC higher compared to the three identified 

atoms of Fl [116].  
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A second Fl experiment performed at GSI by Yakushev et al. observed two atoms of Fl 

which indicated that Fl is less reactive than Pb. The results also indicated that Fl had a metallic 

character upon adsorption to a Au surface through formation of metal-metal bonds [117]. These 

results were consistent with fully relativistic calculations of Fl on an Au surface [130-132], but 

disagreed with the Eichler et al. result that its absorption was only due to physisorption [116]. 

Yakushev et al. indicated that Fl was a volatile metal, and the least reactive of group 14; 

however, not as inert as a noble gas. 

1.5 Predicted properties of Element 115 

The chemistry of element 115 has had very little investigation theoretically and no 

experimental attention. Predictions indicate that one electron is located in a relativistically 

destabilized 7p3/2 orbital and it is loosely bound. The two electrons located in relativistically 

stabilized 7p1/2
2 orbital act as an inert pair. This leads to the predicted primary oxidation state 

for element 115 of 1151+. This is supported by the prediction that element 115 has the smallest 

ionization potential of the group 15 elements, Table 3 [133]. 

 

Table 3.  Ionization potentials of group 15 elements. 

Isotope HFS  (rel) 
(eV), I 

Experimental 
(eV), I 

Δ (eV), I HFS  (rel) 
(eV), III 

Experimental 
(eV), III 

Δ (eV), III 

As 8.00 9.81 1.8 27.0 28.34 1.4 

Sb 7.05 8.639 1.6 24.1 25.3 1.2 

Bi 6.09 7.287 1.2 24.5 25.56 1.1 

115 4.70 (5.2) (0.5) 26.5 (27.4) (0.9) 
 

 

Element 115 predicted standard electrode potential (Eo(115+/115) = -1.5V), suggests that 

element 115 should be quite reactive. Predictions indicate that the properties of element 115 

should be similar through a diagonal relationship to Tl as well as to Bi. The same predictions 
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indicate that 1153+ should be somewhat stable and should have chemical properties between 

Tl3+ and Bi3+ [133]. There were 4c-BDF (van Wϋllen et al.) and SO ZORA (Liu, W. et al.) calculations 

performed with (115)2 and Bi2 homonuclear dimers [126,134]. The element 115 dimer was 

bound more weakly than the Bi dimer:  De (1152) = 0.83 eV and Re = 3.08 Å, and De (Bi2) = 2.45 eV 

and Re = 2.69 Å, respectively. These results also indicate that bonding should be stronger in 

element 115 than in element 114.  

1.6 Chemical properties of group 12, 13, 14 and 15 

1.6.1 Group 12 chemical properties, the homologs of Cn and pseudo-homolog of Fl 

As early as 1970 from extrapolation of periodic trends, Fl (discussed further in section 

1.4), was believed to potentially behave similar to mercury and cadmium, which are therefore, 

the pseudo-homologs of Fl. Mercury exists primarily as Hg2+ in aqueous solutions. In the 

presence of sulfates (such as from H2SO4) and halides (such as from HCl), mercury readily forms 

sulfate and halide complexes. In the presence of excess NO3
- ions the aqueous complex ion 

[Hg(NO3)4]2- forms [135]. 

 Cadmium, like mercury, exists primarily as Cd2+. Cadmium halide species readily form 

and are highly soluble due to the formation of complex ions ([MX3]-) in solutions with high halide 

concentrations; however, Cd2+ does not form stable fluoro-complexes [136]. Cadmium is readily 

hydrolyzed in solution and can form species such as:  [Cd(OH)(H2O)x]+, and [M2(OH)(H2O)x]3+
. 

Table 4 summarizes the atomic properties of the group 12 elements [135]. 

 

 

 

 

 



   
 

25 
  

Table 4.  Atomic properties of group 12 elements. 

Property Zn Cd Hg 

Atomic number 30 48 80 

Number of naturally 
occurring isotopes 

5 8 7 

Atomic weight 65.38 112.41 200.59(±0.03) 

Electronic 
configuration 

[Ar]3d104s2 [Kr]4d105s2 [Xe]4f145d106s2 

Electronegativity 1.6 1.7 1.9 

Metal radius (pm) 134 151 151 

Effective ionic radius 
(pm) II 

134 151 151 

I 74 95 102 

Ionization energy 
(kJ/mol), 1st 

906.1 876.5 1007 

2nd 1733 1631 1809 

3rd 3831 3644 3300 

Eo(M2+/M) (V) -0.7619 -0.4030 0.8545 

MP (oC) 419.5 320.8 -38.9 

BP (oC) 907 765 357 

ΔHfus (kJ/mol) 7.28 (±0.01) 6.4 (±0.2) 2.30 (±0.02) 

ΔHvap (kJ/mol) 114.2 (±1.7) 100.0 (±2.1) 59.1 (±0.4) 

ΔHmon. gas (kJ/mol) 129.3 (±2.9) 111.9 (±2.1) 61.3 

Density (25 oC) (g cm-

3) 
7.14 8.65 13.534 (1) 

Electric resistivity (20 
oC), (µohm cm) 

5.8 7.5 95.8 

 
 

Due to the filled d block, mercury and cadmium do not to show normal properties of the 

transition metals. There is also an increasing polarizing power and covalency in compounds 

formed by mercury and cadmium in the order, Cd2+<Hg2+, which is a reflection of lessening 

nuclear shielding and increasing power of the distortion of the filled p shell < filled d shell < filled 

f shell [135]. 

1.6.2 Group 13 chemical properties, the homologs of element 113 and pseudo-homologs of 

element 115 

 
 The predicted properties of element 115, discussed in section 1.5, indicate that thallium 

and indium are pseudo-homologs. The stability of the M+ state compared to the M3+ state 
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increases in the order Al < Ga < In < Tl, with the reason having to do with the inert pair effect as 

in the homologs of Fl and 115 and the Fl pseudo-homologs. Thallium has been shown to form 

complex ions and or neutral species, TlCl+, TlCl2, and TlCl3- (similar species for nitrate and sulfate 

ions) [137,138]. 

Indium, like thallium, exists primarily as In3+ with In+ also occurring. In aqueous solution 

the In3+ ion is the only stable oxidation state [139]. The chloride, nitrate, and sulfate salts of 

indium are all soluble. Very little information as to complex ion formation exists in literature; 

however, the existence of InCl6
3- and InCl4

-, is the basis of its anion-exchange behavior [140,141]. 

These ions are only stable in high hydrochloric acid concentrations (greater than 8 M). Positive 

fluoride complexes of In have been reported, InF2+ and InF2
+ [142]. It has also been shown that in 

dilute halide solutions In readily forms InOH2+, InX2+ (X a halide), and In3+ [143]. Table 5 

summarizes the atomic trends of the group 13 elements [135].  
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Table 5.  Atomic trends of group 13 elements. 

Property B Al Ga In Tl 

Atomic 
number 

5 13 31 49 81 

Number of 
naturally 
occurring 
isotopes 

2 1 2 2 2 

Atomic 
weight 

10.81 26.98154 69.72 114.82 204.383 

Electronic 
configuration 

[He]2s22p1 [Ne]3s23p1 [Ar]3d104s24p1 [Kr]4d105s25p1 [Xe]4f145d106s26p1 

Ionization 
energy 

(kJ/mol), I 

800.5 577.4 578.6 558.2 589.1 

II 2426.5 1816.1 1978.8 1820.2 1970.5 

III 3658.7 2744.1 2962.3 2704.0 2877.4 

Metal radius 
(pm) 

(80-90) 143 135 167 170 

Ionic radius 
(pm) MIII 

27 53.5 62.0 80.0 88.5 

MI -- -- 120 140 150 

  

 

1.6.3 Group 14 chemical properties, the direct homologs of Fl 

The group 14 elements (homologs of Fl) Ge, Sn, and Pb show an increasing stability of 

the M2+ compared to the M4+ when moving down the group towards Pb. This can be attributed 

to the inert-pair effect, or tendency of ns electrons to remain unionized [135]. The group is also 

characterized by increasing metallic character with increasing atomic number, Z [144]. Thus far, 

with the exception of generator studies by Guseva et al. (discussed below), no chemical studies 

of the homologs and pseudo-homologs of Fl have been performed with the goal of developing a 

chemical system for Fl itself. 

 Lead has the primary oxidation state of Pb2+ with Pb4+ being possible but less stable in 

aqueous systems [145]. In hydrochloric acid solutions, Pb tends to exist as:  Pb2+, PbCl+, PbCl2, 

PbCl3-, and PbCl42- at 25 ⁰C (with Pb2+ and PbCl2 being most probable). In nitric acid lead has been 
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shown to readily form PbNO3
+ and Pb(NO3)2. There is no evidence for polynuclear Pb species; 

however, once the concentration of Pb exceeds 0.5 M, Pb can form polyatomic and 

homopolyatomic species [135, 145, 146]. The ion-exchange behavior of lead has been 

extensively studied by Guseva et al. for use in obtaining Pb tracers for Fl homolog studies. 

Guseva et al. showed that Pb could be continually eluted from a Ra, Th, or Ac solution sorbed 

onto a Dowex 50x8 cation exchange column in hydrochloric acid matrices, Figure 10 [147,148].   

 

 

Figure 10.  Distribution coefficients for Pb, Ra, Ac, actinides, and Eu on Dowex 50x8 as a function 
of [HCl] [147]. 

 

While noting a generator from a pure HCl matrix was possible  Guseva et al. indicated the 

optimal elution conditions for Pb were found to be with 0.5 M HCl containing 90% CH3OH.  

Guseva has also proposed a Pb generator based on an HBr matrix, Figure 11. 
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Figure 11.  Distribution coefficients for various metals on Dowex 50x8 as a function of [HBr] 
[148]. 

 

A final generator was based on first removing Th and Ac from Ra using a Dowex 1x8 anion-

exchange resin and 1 M HNO3 in 90% CH3OH, then preparing a Pb generator by loading the Ra 

onto a Dowex 50x8 cation-exchange resin by the methods mentioned above [149,150]. 

 Tin, like Pb, exists as both Sn2+ and Sn4+; however, with the Sn4+ being the more stable 

oxidation state [145]. In aqueous solutions Sn has been shown to easily hydrolyze. In 

concentrations above 10-3 M tin has the ability for form polynuclear species. Tin forms halide 

compounds easily in low pH and high halide concentrations (greater than 10-3 M). The most 

prevalent Sn4+ halide species are the hexacoordinated complex anions (e.g. SnF6
2-, SnCl62-, and 

SnBr6
2-) [151,152]. In hydrochloric acid concentrations above 0.7 M, Sn4+, almost exclusively 

forms SnCl62-, an extremely stable anion [151-153].  Table 6 summarizes the atomic properties of 

group 14 elements [135]. 
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Table 6.  Atomic properties of the group 14 elements. 

Property C Si Ge Sn Pb 

Atomic number 6 14 32 50 82 

Electronic 
structure 

[He]2s22
p2 

[Ne]3s23p
2 

[Ar]3d104s24p
2 

[Kr]4d105s25p
2 

[Xe]4f145d106s26p
2 

Number of 
naturally 
occurring 
isotopes 

2+1 3 5 10 4 

Atomic weight 12.011 28.00(±3) 72.59(±3) 118.69(±3) 207.2 

Ionization energy 
(kJ/mol), I 

1086.1 786.3 761.2 708.4 715.4 

II 2351.9 1576.5 1537.0 1411.4 1450.0 

III 4618.8 3228.3 3301.2 2942.2 3080.7 

IV 6220.0 4354.4 4409.4 3939.3 4082.3 

RiV (covalent), 
(pm) 

77.2 117.6 122.3 140.5 146 

RiV (ionic), (pm) (15)(CN 
4) 

40 53 69 78 

RII (ionic), (pm) -- -- 73 118 119 

Pauling 
electronegativity 

2.5 1.8 1.8 1.8 1.9 

 

 

The similarities in the ionization potentials from Table 6 between Si and Ge can be related to the 

filling of the 3d shell and between Sn and Pb can be attributed to the filling of the 4f shell [135]. 

1.6.4 Group 15 chemical properties, the direct homologs of element 115 

 Group 15 elements are characterized primarily by M3+ and M5+ states. The elements of 

the group vary drastically as the group is descended, with the lighter elements being non-

metals, the heavier elements being metallic in character, and elements in the middle exhibiting 

semi-metallic character. As in the group 14 elements, the tendency of the heavier group 

members to show increasing stability of the lower oxidation state can be attributed to the inert-

pair effect [154]. At this time, with the exception of generator studies by Guseva et al. 
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(discussed below), no chemical studies of the homologs and pseudo-homologs of element 115 

have been performed with the goal of developing a chemical system for element 115 itself. 

 Bismuth is the heaviest element with a stable isotope. In aqueous systems, Bi is most 

often found in the Bi3+ state; however, Bi5+ is also a stable oxidation state, and is extremely 

oxidizing. In solution Bi3+ shows no tendency to disproportionate into the Bi5+ state. Due to 

relativistic effects, there is a possibility for a stable Bi+ oxidation state due to the splitting of the 

p-orbitals and the development of a double inert pair effect, Bi+:  6s26p1/2
26p3/2

0. However, due 

to the fact relativistic effects are small for Bi, the Bi+ state is not apparently chemically stable 

[154]. In aqueous solutions Bi is shown to only form mononuclear species. In acidic halide 

solutions the common species are of the form BiXn
3-n, where n = 1,…,6, and X = F, Cl, Br, I [155]. 

In nitric acid solutions metallic Bi tends to form a nitrate complex (Bi(NO3)3) as well as has the 

possibility of complex ion formation for high nitric acid concentration. However, a Bi(NO3)3∙5H2O 

species can crystallize out easily [154]. For tracer levels of Bi3+ (less than 10-7 M) in 1M HNO3, 

Bi(NO3)n
3-n, Bi(OH) (NO3)n

2-n, Bi(OH)2(NO3)n
1-n, and Bi(OH)3(NO3)n

n- form [155]. Unless it is kept in 

very acidic media (below pH 1-2) Bi tends to hydrolyze, often forming the hydroxy cations 

BiOH2+ and Bi(OH)2
+ [155]. Guseva et al. has published papers on the ion-exchange behavior of 

Bi, and preparation of generators to continually elute Bi for tracers in element 115 homolog 

studies. These generators are prepared the exact same way as the lead generators mentioned in 

Section 1.6.3; however, the eluant is changed to elute Bi from the generator. 
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Figure 12.  A.  Elution of Bi and Pb from Dowex 50x8 with 0.3 M HBr (dotted line) and 0.25 M 
HBr (solid line). B.  Elution of Bi and Pb from Dowex 50x8 with 0.3 M HCl (dotted line) and 0.25 

M HCl (solid line) [156]. 

  

Figure 12 shows the elution behavior used demonstrated by Guseva et al. to turn the lead 

generators into Bi generators.  

 Antimony has stable Sb3+ and Sb5+ states, with the Sb3+ state being slightly more stable. 

Antimony is less metallic than Bi [157]. In nitric acid solution under 2 M the primary species in 

solution is Sb(OH)2
+ [158]. Antimony is not attacked by dilute aqueous acids, even in 

concentrated nitric acid, and there is a tendency for antimony to form Sb3/5+ oxides instead of 

the nitrates. In sulfuric acid, Sb forms Sb3+ sulfates [157]. Antimony shows no evidence of 

forming polynuclear species [137]. In solution Sb tends to hydrolyze in more dilute acid 

concentrations, and even at high acid concentrations is reluctant to form halide and nitrate 

complexes [157]. Table 7 shows the atomic trends of group 15 elements [135]. 
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Table 7.  Atomic trends of group 15 elements. 

Property N P As Sb Bi 

Atomic number 7 15 33 51 83 

Atomic weight 14.0067 30.97376 74.9216 121.75 (±3) 208.9804 

Electronic 
configuration 

[He]2s22p
3 

[Ne]3s23p
3 

[Ar]3d104s24p
3 

[Kr]4d105s25p
3 

[Xe]4f145d106s26p
3 

Ionization 
energy (MJ/ 

mol), I 

1.402 1.012 0.947 0.834 0.703 

II 2.856 1.903 1.798 1.595 1.610 

III 4.577 2.910 2.736 2.443 2.466 

Sum (I+II+III), 
(MJ/mol) 

8.835 5.825 5.481 4.872 4.779 

Sum (IV+V), 
(MJ/mol) 

16.920 11.220 10.880 9.636 9.776 

Electronegativit
y (χ) 

3.0 2.1 2.0 1.9 1.9 

Rcov (MIII), (pm) 70 110 120 140 150 

Rionic (MIII), (pm) (16) 44 58 76 103 

Rionic (MV), (pm) (13) 38 46 60 76 

 

 

1.7 Macrocycles 

 Macrocyclic compounds are defined by IUPAC as “a cyclic macromolecule or a 

macomolecular cyclic portion of a molecule,” more commonly thought of by coordination 

chemists as a cyclic molecule which has three or more donor atoms for coordination to metal 

centers [159]. In 1967 the crown ether dibenzo-18-crown-6 (DB18C6) was accidentally 

discovered by C. J. Pederson during synthesis of a bisphenol from catechol and 

dichlorodiethylether [160]. This discovery combined with the discovery of cryptands by C. J. 

Lehn in 1977 and calyx[n]arenes by D. C Gutsche in 1989 kick-started the field of coordination 

chemistry with the use of macrocyclic compounds [161,162]. The 1987 Nobel Prize in Chemistry 

was shared by C. J. Pederson, J. M. Lehn and D. J. Cram for the development of macrocycles 

[163].   
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1.7.1 Crown ethers  

 Crown ethers form very stable metal-crown complexes. Complexation depends on the 

relative size of the cation compared to that of the crown cavity. The complexes are formed by 

ion-dipole interactions between the cations and the negatively charged donor atoms (oxygen, 

sulfur, etc.) on the ring, Figure 13 [164].  

 

 

Figure 13.  Mechanism for typical crown ether extraction of metal cation. 

 

The stability of the crown complexes are governed by the following parameters [165]:  

 Size of the cation and cavity of the crown ether;  

 Number of donor atoms (more gives higher stability); 

 Arrangement of the donor atoms (planar structures are more stable); 

 Symmetry of the oxygen atom arrangement (more symmetrical means more stable); 

 Basicity of the donor atom (i.e. oxygen) (the more basic the donor atom the more stable 
the complex); 

 Steric hindrances in the polyether ring (more hindrances present the less stable the 
complex); 

 Electrical charge of the cation (high importance to stability) 
 

Table 8 shows the relative cavity diameters for various crown ethers.  
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Table 8.  Cavity size of crown ether and sulfur crown ethers [165]. 

Compound (sulfur and oxygen crown) Cavity Diameter (Å) 

12C4 1.2-1.5 

14C4 1.2-1.5 

15C5 1.7-2.2 

18C6 2.6-3.2 

21C7 3.4-4.3 

24C8 > 4.0 

 

 

 Typically crown ethers form 1:1 complexes with the metal in the cavity of the crown 

ether, provided the cation diameter and crown cavity diameter are compatible. When the cation 

is slightly larger than the crown ether cavity, it is possible for 2:1 or 3:2 complexes to form as a 

sandwich in which the cation is located slightly off from the plane of the oxygen donor atoms. In 

cases where the cation is much smaller than the crown ether cavity, 1:2 complexes can form 

where oxygen atoms are located as close to the cation as possible [164]. Other well-known 2:1 

sandwich complexes have been known to form with crown ethers extracting anionic complexes 

by formation of ion-association complexes [166]. Crown ethers, specifically 18-crown-6 (18C6) 

are known to form positively charged complexes by coordination with the hydronium ion, H3O+, 

which can then be used to extract anionic metal complexes [167,168]. The stability of crown 

ether-metal complexes can be best explained by the macrocyclic effect, or an increase in the 

binding stability of metal cations by a cyclic polyether compared to that of the open ring, Figure 

14 [169]. 
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Figure 14.  Illustrated macrocyclic effect for binding of K+ in shown macrocycles. 

 

As illustrated in Figure 14, a vastly increased stability is seen for the K+ ion between the 

macrocyclic and non-macrocyclic compound. A 6000 fold increase in stability is seen between 

18-crown-6 and the non-macrocyclic ligand, whereas the cryptand showed an even larger 

increase in stability by the addition of a pocketed coordination site [164,169].  

1.7.2 Thiacrown ethers 

 Synthetically it is possible to replace the oxygen donor atoms in crown ethers with other 

donor atoms. This was first achieved accidentally by Meadow and Reid in 1934 by replacing the 

oxygen atoms with sulfur atoms in 18C6 [170]. This discovery was more than 30 years before the 

work of Pederson on crown ethers and the first work by Rosen and Busch on macrocyclic 

thioethers [171]. In the case of thiacrown ethers the replacement of oxygen atoms with sulfur 

atoms allows them to act as softer Lewis bases compared to traditional crown ethers [172]. This 

unique property should make them better extractants than traditional crown ethers for soft 

metals such as Hg and Pb. Extensive studies have been performed by Baumann et al. using a 

thiacrown ether to extract Hg, showing its high extractability and quick kinetics [173-177]. One 

large difference between traditional oxygen containing crown ethers and thiacrown ethers is the 

conformational preference. Thiacrowns tend to have their sulfurs oriented in an exodentate 

manner; whereas crown ethers take an endodentate conformation [178]. Therefore, thiacrowns 

do not have the pocket of charge density oriented toward the center of a ring. In order for a 
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thiacrown to bond with a metal cation, it is required that it first distort into an endodentate 

conformation to permit multiple sulfur metal interactions [179,180]. Due to the fact this costs 

an energetic penalty, thiacrowns generally form bridged or sandwich complexes [181-184]. 

Synthesis of thiacrowns with substituents attached to the ring can force the default 

conformation to become endodentate and thus have similar properties to that of the traditional 

crown ether.  

1.8 Dissertation overview 

Chapters 1 through 3 give a detailed literature review of macrocyclic extractants and 

transactinide chemistry. The predicted chemical properties of Fl and element 115 as well as the 

known chemical properties of the homologs and pseudo-homologs are presented. Also 

described in these chapters are the experimental techniques used and the facilities where 

experiments were performed. The synthesis and characterization of a novel macrocyclic 

compound hexathia-18-crown-6 is described in Chapter 4. Short lived radionuclides of the 

homologs and pseudo-homologs of Fl and element 115 were produced at the Lawrence 

Livermore National Laboratory (LLNL) Center for Accelerator Mass Spectrometry (CAMS). These 

radionuclides combined with Pb and Bi isotopes generated from the 232U decay chain were used 

as tracers for chemistry development. These experiments are described in Chapter 5. Chemistry 

development experiments for the homologs and pseudo-homologs of Fl are described in 

Chapter 6 and 7 (Eichrom Pb resin experiments) and Chapter 8 (thiacrown experiments). 

Experiments to develop a chemical system for element 115 are presented in Chapter 9. A 

comparison of results with different macrocycles is discussed in Chapter 10, and concluding 

remarks on the possibility of an on-line system for Fl is presented in Chapter 11. The raw data of 

the results as presented in figures can be found in the Appendix. 
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1.9 Project Goals 

 The development of a system to assess the chemical properties of both Fl and element 

115 is the primary goal of this work. More specifically, a chemical system with full control of the 

chemical forms present during separations is desired for the homologs and pseudo-homologs of 

Fl and element 115. Therefore, an on-line experiment with the transactinides would allow for 

extrapolation of their chemical properties by comparison to the lighter homologs, and help to 

assess the role relativistic effects play on chemical properties of the heaviest elements. These 

separations must be fast, highly efficient, and simple enough to be automated.    
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CHAPTER 2:  BACKGROUND 
 
2.1 Ion Exchange Chromatography 

 A chromatographic separation based on the exchange of ions is known as ion exchange 

chromatography (IXC). This process is a reversible interchange of ions between an insoluble (but 

permeable) inert material which carries exchange sites of opposite charge, and a mobile phase 

containing ions of interest [185]. Materials with this capability are known as ion exchangers, and 

can be classified as either a cation or anion exchanger (depending on the type of ion 

exchanged). For anion exchange, the ionic group is typically a quaternary ammonium group, 

Figure 15. 

 

 

Figure 15.  Typical anion exchanger with associated counter ion. 

 

For cation exchange, the ionic group is typically a sulfonic acid group, Figure 16. 

 

 

Figure 16.  Typical cation exchanger with associated counter ion. 

 

As shown in Figures 15 and 16, these exchanger groups are covalently bound to an inert 

polystyrene support and contain counter ions of the opposite charge. Resin permeability is 

controlled by the degree of cross-linking within the resin. Cross-linking is the bonding across the 
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polymer chains, linking them together; these bonds are controlled during the synthesis of the 

ion exchange resin. The magnitude of cross-linking has an influence on the capacity, equilibrium 

rate, and hydration of the resin. Higher cross-linking results in lower permeability, moisture 

content, and equilibrium rates. However, while the ability to incorporate larger ions at exchange 

sites decreases, the overall capacity increases. The opposite is true for lower cross-linking. 

Another important, tunable, property of ion exchange resins is the particle size. Particle size has 

the ability to affect the equilibrium and flow rates:  increasing the particle size leads to an 

increase in equilibrium rates and an increase in the flow rate due to a decrease in flow 

resistance [185-187]. The particle size is also the most sensitive parameter when determining 

the theoretical plate height or elution band width, this height is decreased by the largest 

magnitude by decreasing the particle size radius [188].  

 Separations are performed based on the relative strengths of attraction between the 

ions in solution and exchange sites on the resin. In general, a separation is performed using a 

column packed with an ion exchange resin to which a sample is added containing a mixture of 

ions. Equilibrium is established between the exchanges of ions in solution with the exchange 

sites on the resin. Once equilibrium is established, a selectivity coefficient, the ratio of ions in 

solution to ions on the resin, can be determined for the ion exchange resin. As ions travel down 

a column, they will exchange with the counter ions and bind to the resin, Figure 17. 
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Figure 17.  Ion exchange concept (X- is the ion of interest). 

 

The magnitude of their binding strength is determined by their selectivity coefficients. Mixtures 

of ions will separate as they move down the column. Ions that are more tightly bound with a 

higher selectivity coefficient will elute later than ions that are less tightly bound with a lower 

selectivity coefficient.  

 Two different methods for separation exist in ion exchange:  one based on the affinity 

differences between ions and another through the use of complexing agents. A system which is 

based only on affinity relies on the differences in the selectivity coefficients of the ions being 

significantly large enough to achieve a separation. This coefficient can be affected by many 

different factors such as ionic strength of the mobile phase and temperature. When two ions 

have similar selectivity coefficients it is often possible to add a complexing agent into the mobile 

phase, which will alter the ions selectivity coefficients based on their complex formation in the 

mobile phase [185,189]. 

 Ion exchange resins are easily regenerated for reuse. Due to the fact the exchange of 

ions is a reversible stoichiometric process, unwanted ions can be removed by the addition of a 
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high concentration of ions with lower selectivity. Thus, the resin can easily be regenerated and 

reused [185].  

2.2 Solvent Extraction 

 Also known as liquid-liquid extraction, solvent extraction (SX), is based on the principle 

that a solute has different distributions in two immiscible solvents, Figure 18.  

 

 
Figure 18.  Diagram of SX where a solute would be distributed between two immiscible solvents. 
In this example an organic phase, such as toluene, is on the top, and an aqueous phase, such as 

hydrochloric acid, is on the bottom (color added for clarity). 

 

In general an organic and aqueous solvent are used for separations, when the solute of interest 

has a different solubility in each phase. A separation is achieved when the solute has distributed 

itself into one phase or the other. The distribution ratio of a SX system is given by: 

                                                                                 D =  
[Org]

[Aq]
                                                             (Eqn. 7) 

Where [Org] and [Aq] are the concentrations of a solute in the organic and aqueous phases 

respectively. The distribution ratio, D from Equation 7, is calculated after sufficient mixing time 

has passed so that the net change of the concentration of the solute amongst the phases 

remains constant. The distribution ratio can be converted to a percent extracted, %E, by: 

                                                                                %E =  
100𝐷

(1+D)
                                                         (Eqn. 8) 
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Where a distribution ratio of 1 indicates even distribution between phases (or 50 % extracted) 

and a distribution ratio of 10 indicates 90.9 % extraction [190].  

 Extractions are highly dependent on the organic solvent chosen. Initially the solute is 

present in the aqueous phase; therefore the organic solvent chosen must have high solubility for 

the solute or extractant molecule used. Polarity is also of concern since a non-polar solvent is 

used to extract a non-polar substance and vice versa. Temperature affects solubility as well, so 

the temperature of the system must be chosen to increase solubility of solutes if possible. 

 The extraction in a SX system takes place at the phase boundary. By mixing the two 

phases vigorously the surface area of the phase boundary increases, and consequently the time 

it takes for the system to reach equilibrium decreases. In order for a sufficient separation to be 

achieved, the distribution ratio for a given solute must be large. In order to increase the 

distribution ratio, an extractant molecule that forms complexes with the solute (such as a crown 

ether) is often added to the organic phase. This enables tuning of a system to selectively select 

one solute over another if the extractant molecule preferentially forms complexes with one 

solute and not another. 

 To separate two different solutes with SX, one solute is selectively extracted over the 

other. This occurs when the distribution ratios between each solute are significantly different 

for the given system. The extraction can occur one of two ways: the solute of interest is 

extracted into the organic phase, or the contaminants are extracted into the organic phase 

leaving the solute of interest in the aqueous phase. The efficiency of a separation performed 

using SX is determined by the separation factor: 

                                                                                   SF =  
DA

DB
                                                             (Eqn. 9) 

Where DA and DB are the distribution ratios for two different solutes A and B [190].   
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2.3 Extraction Chromatography  

Extraction chromatography (EXC) is a form of SX in which the organic phase is the 

stationary phase and the aqueous phase is the mobile phase [191,192]. Extraction 

chromatography resins can be prepared by taking an extractant commonly used for SX 

experiments (such as a crown ether) and coating it onto resin beads. This is accomplished by 

dissolving the extractant in a volatile solvent (such as dichloromethane) and mixing it with the 

resin beads (such as an insoluble aliphatic polymer), allowing the solvent to slowly evaporate 

while mixing. Once the solvent has evaporated, the resin beads remain and are coated with the 

desired extractant [193]. The resins can be packed into columns and used similarly to other 

chromatographic techniques (Figure 19).  

 

 

 

Figure 19.  Cross section view of an EXC column with a coated resin being the stationary phase. 
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The main advantage of EXC is the combination of column chromatography performance and 

solvent extraction selectivity. The organic phase from SX is also eliminated thus removing the 

concern of producing mixed waste [194].  

The height equivalent to a theoretical plate (HETP) is the efficiency of an EXC column, 

and is given by: 

                                                                             HETP =  
(L)(W2)

8(Vmax
2 )

                                                  (Eqn. 10) 

In Equation 10, L is the length of the column bed, W is the width of the peak at 1/e times the 

maximum value and Vmax is the elution volume to peak maximum [195]. A theoretical plate is the 

concept that represents the point at which equilibrium is established between the mobile and 

stationary phase with respect to solute distribution. In the case of solvent extraction, a 

theoretical plate represents a single stage in the extraction process. The HETP can be converted 

to number of theoretical plates by dividing by the length of the column, L. 

 Parameters such as particle size of the inert support, extractant weight loading, 

temperature, cross section of the column, elution rate, and the column bed length can affect the 

HETP value according to studies performed by Horwitz and Bloomquist [195]. Changing HETP 

will result in changes to the elution fraction for a given solute. For example, lower HETPs lead to 

higher retention times and thus larger elution volumes. Extraction by a theoretical plate in the 

stationary phase prevents a solute from eluting. Given a distribution ratio, Equation 7, a solute 

will travel down the column interacting with each plate till it elutes. The volume it requires to 

elute a given solute is known as the elution volume, and this can be affected by the HETP value 

[194,195]. 

 Like with solvent extraction, the separation of two solutes can be accomplished through 

their different distribution ratios in a given system. In the case of EXC the most common way to 
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represent elution volumes is through the number of free column volumes to peak maximum, k’, 

which is calculated by: 

                                                                   k′ =
Vmax−vm

vm
                                                                  (Eqn. 11) 

Where Vmax is the elution volume to peak maximum and vm is the column void volume (or space 

within the column not occupied by the stationary phase) [195]. Due to the fact k’ is independent 

of the column parameters, it is a very useful value. Using k’ the separation factor between two 

solutes can be determined: 

                                                                         SF =
𝑘′𝐴

𝑘′𝐵
                                                                     (Eqn. 12) 

To determine the width of an elution band a separation resolution must be defined: 

                                                       SR =
1

4
(1 −

1

SF
) (N1/2)

k′2

1+k′2
                                                  (Eqn. 13) 

Where SF is the separation factor and N is the number of theoretical plates [196]. 

 Extraction chromatography resins can be characterized for parameters such as k’ 

through batch experiments where free resin is used instead of a column. Radiotracers are often 

used in trace level studies due to the ease of which they can be detected using radioanalytical 

techniques. A weight distribution ratio can be measured for a given solute in batch studies 

using:  

                                                               Dw = (
Ao−As

As
) (

mL

g
)                                                          (Eqn. 14) 

Where Ao-As is the activity sorbed on a known weight of resin, g, and As equals the activity in a 

known volume of solution, mL. To calculate k’, Dw must be first converted to the volume 

distribution ration: 

                                                                    Dv = Dw ×
dextr

wload
                                                          (Eqn. 15) 

Where dextr is the density of the extractant and wload is the extractant loading in grams of 

extractant per gram of resin. It is then possible to convert Dv to k’: 
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                                                                         k′ = Dv ×
vs

vm
                                                            (Eqn. 16) 

Where vs is the volume of the stationary phase and vm is the volume of the mobile phase. It is 

possible to convert from Dw directly to k’: 

                                                                          k′ = Dw × Fc                                                          (Eqn. 17) 

Where Fc is the resin factor, which is a constant for a given resin and provided by the 

manufacturer, that accounts for the various parameters mentioned in the calculation of Dv and 

k’ in Equations 15 and 16 [192,194]. 

2.4 Experimental facilities, CAMS 

 The production of carrier-free radionuclides for extraction studies were performed at 

the model FN tandem Van-de-Graaff accelerator at the LLNL Center for Accelerator Mass 

Spectrometry (CAMS) facility, Figure 20. 

 

 

Figure 20.  Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry. 

 

This 10 MV accelerator can typically produce up to 15 MeV protons at beam currents of 100-400 

nA.  A cesium-sputter ion source was utilized for production of negatively charged hydrogen ions 

which were introduced to the tandem accelerator at ~40 keV energy and accelerated through a 
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stripper gas to produce the 12-15 MeV positively charged protons for irradiation of the target 

materails. This energy range is suitable for proton induced production of carrier-free 

radionuclides. The reactions of interest for this work are:  124Sn(p,n)124Sb, 197Au(p,n)197Hg, and 

113In(p,n)113Sn, each of which have peak cross-sections in the 10-15 MeV range [197-199].  
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CHAPTER 3:  ANALYTICAL TECHNIQUES 
 
 Solvent Extraction (SX), ion exchange chromatography (IXC), extraction chromatography 

(EXC), and high purity germanium (HPGe) gamma spectroscopy were the techniques in the 

investigation of Fl and element 115 homologs. In this chapter the general experimental 

procedures for each technique, and where applicable, the theory behind them are presented. 

An explanation for the data analysis used for each technique is also presented.  

3.1 Ion exchange chromatography 

 Ion exchange chromatography with both anion and cation exchange was the main 

method used for separation of carrier-free radioisotopes. This section will describe the methods 

used for cleaning resin, preparing columns, and general column procedures used for these 

separations. Data analysis methods are also presented.  

3.1.1 Resins and Preparation of Columns 

 For the purpose of this work, the anion-exchange resin AG 1x8 and cation-exchange 

resin AG 50Wx8 (both DOWEX and Bio-Rad, 100-200 mesh) were used in the separation of 

carrier-free activities for homolog studies (see Chapter 5). These commercial resins contain 

impurities both organic and inorganic from the manufacturing process. Therefore, prior to use 

the following conditioning procedure was used on each resin from Ref. [188]: 

1. Approximately 200 g of resin was added to a 500 mL Nalgene bottle. 
2. The resin was rinsed twice with 200 mL of de-ionized (DI) water (18.2 MΩ∙cm). 
3. The resin was then rinsed twice with 200 mL of 1 M NaOH. 
4. The resin was then rinsed twice with 200 mL of DI water. 
5. The resin was then rinsed twice with 200 mL 1 M HCl. 
6. The resin was then rinsed twice with 200 mL DI water. 
7. The resinw as then rinsed with 200 mL ethanol (95 %). 
8. The resin was then rinsed twice with 200 mL DI water. 
9. Finally a dilute 0.1 M HCl solution was placed over the resin to store. 
 

When applicable the capacity of the resin was calculated from the manufacturer supplied 

number of ionic sites per unit volume of the resin (milliequivalents per mL) to determine the 
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amount of resin needed for the given separation [200]. For the majority of separations the only 

analytes retained by the resin were fundamentally massless (carrier-free), and therefore, a bed 

volume of 2 mL was chosen. All elution volumes were chosen based on the relative free column 

volumes for the resin used (Table 9), using several free column volumes for each elution fraction 

[188].  

 

Table 9.  Relative free column volumes for various commercial resins. 

Resin Type Crosslinking Free column volume 
(V/Vb) 

Standard deviation 

Dowex 50 2 0.304 0.010 

 4 0.327 0.017 

 8 0.379 0.010 

 16 0.395 0.016 

Dowex 1 2 0.351 0.022 

 4 0.350 0.012 

 8 0.390 0.015 

 10 0.396 0.024 

 

 

Columns were first filled with water and then the resin was added drop wise (previously 

in 0.1 M HCl slurry, from above) was added to the column and allowed to settle by gravity. This 

was repeated until the desired bed volume was obtained, before either a thin layer of purified 

sand or a PTFE frit was added to the top of the resin, Figure 21.  
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Figure 21.  Column packed with 2-mL bed volume AG 50Wx8, with PTFE frit on top. 

 

3.1.2 Column Experimental Procedure 

Column procedures were loosely based on procedures described in the literature [200, 

188]. Prior to use resins were conditioned by flowing 5-20 free column volumes of a solution 

matching the acid type and concentration of the sample load solution. In general, a sample was 

prepared in 1-4 mL of solution in a 15 mL PTFE centrifuge tube and counted by HPGe gamma 

spectroscopy to determine initial activity. This sample was loaded onto a column by gravity and 

the resulting fraction collected as the load fraction. Two rinses, in the same concentration and 

volume of the load solution, were collected as rinse fractions one and two. Then several free 

column volumes in fractions of the same volume as the load fraction were passed through the 

column to elute a desired analyte. If more than one analyte was present several free column 

volumes of a different acid composition was passed through the column to elute the second 

analyte, still in the same volume as the load fraction. In each case, the fractions were collected 

in a 15 mL centrifuge tube to maintain counting geometry, and analyzed by HPGe gamma 

spectroscopy to determine elution curves for the given separations. 
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3.1.3 Data Analysis 

 Since the counting geometry of the sample and all elution fractions were kept 

consistent, relative activity measurements by HPGe gamma spectroscopy could be directly 

compared due to equivalent counting geometries. The fractional percent eluted was calculated 

for each fraction by comparison to the load solution activity:  

                                                                Elution Fraction =  
AF

ALS
                                                  (Eqn. 18) 

Where AF is the activity (cps) of a given analyte in the elution fraction, and ALS is the activity (cps) 

of the analyte in the initial load solution. Elution curves were constructed by plotting the elution 

fraction as a function of volume eluted. Error was calculated by standard error propagation 

techniques.  

3.2 Extraction Chromatography 

 EXC grants the selectivity of a SX system, through the use of organic extractants, with 

the multi-stage extraction processes associated with chromatography. This technique was used 

to study the homologs of Fl and element 115, with the commercially available Eichrom Pb resin 

which is based on 4′,4″(5″)-di-tert-butyldicyclohexano-18-crown-6 (DtBuCH18C6) extractant 

[201]. EXC was also used for separation of carrier-free Hg from irradiated Au foils (Chapter 5). In 

this section the general EXC procedures and data analysis techniques for both batch and column 

studies are presented.  

3.2.1 Procedure:  Batch Studies 

 The experimental method for batch studies was adapted from a variety of different 

literature procedures [193,194,201-204]. A known amount of resin (10-20 mg) was placed into a 

1.5 mL centrifuge tube and preconditioned with 1 mL of a desired acid concentration by shaking 

with a Grant-bio Multi-Tube Vortex Mixer, Figure 22.  
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Figure 22.  Grant-bio Multi-tube Vortex Mixer. 

 

Radiotracers from 20-100 µL were added to the centrifuge tube and allowed to equilibrate with 

the preconditioned resin by shaking. During this equilibration process each sample was taken 

and counted by HPGe gamma spectroscopy to determine initial activity. The sample was filtered 

into a new centrifuge tube using a 0.45 µm, Whatman polytetrafluoroethylene (PTFE) filter 

attached to a polypropylene syringe, Figure 23.  

 

 

Figure 23.  Removal of loose resin by 0.45 µm Whatman PTFE filter. 
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A 700 µL aliquot of the filtered solution was added to another centrifuge tube along with 

enough DI water to make the solution volume identical to the pre-filtered sample. The aliquot 

was taken due to the fact 50-150 µL of solution was lost during the filtration process. The 

samples were then counted by HPGe gamma spectroscopy to determine post-extraction sample 

activity.   

3.2.2 Data Analysis:  Batch Studies 

 The tracer activities before, Ao, and after, As, equilibration with free resin were used to 

determine the weight distribution ratio, Dw, as shown in Equation 14. With the As being 

calculated by multiplying the ratio of total volume to aliquot volume for the measured post-

extraction sample activity. The number of free column volumes to peak maximum, k’, was 

calculated from Dw according to Equation 17. Errors were calculated by standard deviations of 

replicates or from propagation of counting errors if only one replicate was performed.  

3.2.3 Procedure:  Column Studies 

 All columns for EXC were performed with 2 mL pre-packed (from Eichrom) vacuum flow 

columns with a 24-hole polycarbonate vacuum box (Eichrom Inc.) set to approximately 4 mmHg 

vacuum gauge reading which corresponded to a 1-2 mL/min flow rate, Figure 24.  
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Figure 24.  24-hole polycarbonate vacuum box with vacuum flow column and reservoir. 

 

This procedure was adapted from similar experiments reported in literature [204,205]. A 2 mL 

pre-packed column was placed on the vacuum box with a 10 mL syringe reservoir on top. The 

resin cartridge was conditioned with 10 free column volumes (FCV, ~10 mL) of an appropriate 

HCl load solution for the column study. A sample was prepared in 1 mL of a desired load matrix 

by evaporation and reconstitution (Figure 25) in a 15 mL centrifuge tube and counted by HPGe 

gamma spectroscopy to determine initial activity.  

 

 

Figure 25.  Evaporator for changing sample matrices. 
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The solution was loaded on to the column and sequential 1 mL fractions were collected in 

separate 15 mL centrifuge tubes. Care was taken to stop the column flow just as liquid was 

about to reach the top-frit so the column never dried and each elution fraction was a consistent 

1 mL. Fractions were counted by HPGe gamma spectroscopy.  

3.2.4 Data Analysis:  Column Studies 

 The tracer activities in each elution fraction were compared to that of the load solution, 

and the fractional elution percentage was calculated the same way as for IXC, Equation 18. 

Elution curves were constructed by plotting the elution fraction against total volume. Error was 

calculated by propagation of counting errors in both the load solution and fractions.  

3.3 Solvent Extraction 

 SX enables extraction of a given solute in an aqueous phase by its chemical interaction 

with an organic extracant present in the organic phase. For this work, SX was used to explore 

the extraction properties of various thiacrowns as well as to test the chemical speciation of 

solutes when extracted by DtBuCH18C6 (the extractant on Eichrom’s Pb resin).  

3.3.1 Sample Preparation and Measurement 

 Methods for SX experiments were adopted from similar studies presented in literature 

[206]. To a VWR 1.5-mL high spin centrifuge tube 480 µL of an organic phase (typically 

dichloromethane) with desired organic extractant was brought together with 500 µL of acid, 

Figure 26.  
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Figure 26.  Organic phase (dichloromethane) and aqueous phase in VWR 1.5-mL high spin 
centrifuge tube (pink color of aqueous phase added for visual purposes only). 

 

Samples were mixed for 30 minutes on a Grant-bio Multi-Tube Vortex Mixer (Figure 22, above) 

to allow for pre-equilibration. A 20 µL spike containing radioisotopes of interest was added to 

the centrifuge tubes and phases were mixed for varying amounts of time to allow equilibration. 

After mixing, the phases were separated by centrifuging with a RevSci micro-centrifuge, Figure 

27, for 30 seconds each at 10000 rpm. 

 

 

Figure 27.  RevSci micro-centrifuge. 
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A direct displacement pipette was used to remove 300 µL of each phase and place into separate 

1.5 mL centrifuge tubes, which were counted by HPGe gamma spectroscopy to determine the 

analytes activities in each phase.  

3.3.2 Data analysis 

 Once activities for the desired tracer were determined in both the aqueous and organic 

phases by HPGe gamma spectroscopy, Equation 7 and 8 were used to determine the distribution 

ratio and percent extracted for each analyte. These were generally plotted as a function of acid 

concentration to show extraction properties. 

3.5 High Purity Germanium Gamma Spectroscopy 

 Gamma spectroscopy is a commonly used technique for radionuclide activity and 

identity determination. Germanium gamma-ray detectors (HPGe) have significantly improved 

the ability to detect gamma-rays when compared with the traditional NaI(Tl) detector. Ultrapure 

germanium detectors have a much higher active volume than a low-purity detector would. This 

allows for a much larger region for electron hole-pairs to be created and collected. HPGe 

detectors must be operated at liquid nitrogen temperatures to limit the number of thermal 

electrons promoted to the conduction band from the valence band (limit false signals). Unlike 

the scintillator based NaI(Tl) gamma-ray detector, the HPGe detector detects electron-hole pairs 

(semiconductor) created by recoil electrons produced when a gamma-ray interacts with the 

detector. These electron-hole pairs create the pulses in the gamma-ray spectrum. Resolution 

with the HPGe detector is on average a factor of 30 better than that of a NaI(Tl) detector [207]. 

For the purpose of this work, HPGe gamma spectroscopy was used for activity determination for 

all SX, EXC, and IXC experiments performed. 
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3.5.1 Theory of Operation 

 Detection of gamma-ray photons by HPGe detectors is based on the way in which they 

interact with the semiconductor Ge material. These interactions occur by three main pathways:  

the photoelectric effect, the Compton effect, and pair production.  

 The photoelectric effect is an interaction in which the gamma-ray photon completely 

disappears by transferring all of its energy to a photoelectron from one of the Ge electron shells 

(usually the K-shell). The energy of the electron is given by: 

                                                                          𝐸𝑒 = ℎ𝜈 + 𝐸𝑏                                                          (Eqn. 19) 

The recoil electron produces electron-holes pairs within the detector that create the detector 

pulse through their collection. Pulses created by the photoelectric effect are proportional to the 

full energy of the gamma-ray, and thus show up as the photopeaks in the spectrum [207]. 

 Compton scattering is an interaction where a gamma-ray photon interacts with an 

electron creating a scattered gamma-ray photon of lower energy and a recoil electron. With the 

energy of the scattered electron being given by: 

                                                                      ℎ𝜈′ =  
ℎ𝜈

1+ (
ℎ𝜈

𝑚0𝑐2)(1−𝑐𝑜𝑠𝜃)
                                             (Eqn. 20) 

Where hν is the incident photon energy and θ is the angle of interaction. The maximum 

Compton recoil energy between incident gamma-ray energy occurs at a θ=π interaction gives 

rise to a simplified Equation 20: 

                                                                               ℎ𝜈′ =
𝐸𝛾

1+4𝐸𝛾
                                                        (Eqn. 21) 

A gamma-ray scattered in this manner, gives rise to a backscatter peak (the γ’ is scattered 

directly back) with energy, hν’. A pulse generated at the maximum kinetic energy for the 

Compton electron (recoil electron in which energy is imparted during the 180 degree Compton 

interaction) produces the Compton edge, which is given by [207]: 
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                                                                             𝐸𝑒 = ℎ𝜈 − ℎ𝜈′                                                     (Eqn. 22) 

 Pair production occurs near the protons of the absorbing nuclei and is the creation of an 

electron-positron pair and the disappearance of the incident gamma-ray. Due to the fact 2m0c2 

(rest mass of a positron-electron pair) is required to create an electron-positron pair at least 

1.02 MeV gamma-ray photons must interact to make the process energetically favorable. The 

kinetic energy of the positron and electron are given by: 

                                                                      𝐸𝑒− + 𝐸𝑒+ = ℎ𝜈 − 2𝑚0𝑐2                                       (Eqn. 23) 

The energy deposited in the detector will be the original gamma-ray energy minus 1.02 MeV 

assuming both 0.511 MeV positron annihilation photos escape the crystal (double escape peak). 

If only one annihilation photon escapes a single escape peak will form, and if both are absorbed 

the energy will equal the total absorption peak energy [207].  

3.5.2  HPGe Systems 

 Two different HPGe detectors were used for this work. A Canberra up-looking planar 

BEGe (broad energy germanium) detector and an Ortec side-looking coaxial detector, Figure 28 

and 29 respectively. 

 

            

Figure 28.  (Left) Canberra BEGe detector, (Right) detector sample stage. 
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Figure 29.  (Left) Ortec HPGe detector, (Right) detector sample stage. 

 

The Canberra detector was controlled with Genie 2000 software and the Ortec detector was 

controlled with the MAESTRO software.  

3.5.3 Detector Calibration 

 Due to the fact all measurements in this work were relative measurements taken in the 

same exact geometry before and after separations, efficiency calibrations were not required. 

Periodically throughout experiments the peak resolution and energy was checked for drift, and 

no observed drifts were seen. Energy calibration was performed by with the respective software 

by counting a 152Eu source for five minutes 5 cm from each detector face, then performing an 

energy calibration using 10 gamma lines ranging from 0-1.6 MeV, Table 10.  
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Table 10.  152Eu gamma-rays used for detector calibration [208]. 

Energy (keV) Intensity (%) 

121.78 28.58 

244.70 7.58 

344.28 26.5 

411.12 2.23 

867.38 4.25 

964.08 14.61 

1085.87 10.21 

1089.74 1.727 

1299.14 1.62 

1408.01 21.01 

 

3.5.4 Sample Analysis 

 Samples for HPGe measurement were prepared with 1 mL to 1.1 mL of solution in either 

a 1.2, 1.5 or 15-mL centrifuge tube. In the case of the Canberra detector a sample holder was 

placed directly on the carbon entrance window, Figure 28, and the ORTEC detector had sample 

holders that could be fit into various distances, Figure 29. In each case the sample distance and 

geometry was held constant between pre-separation and post-separation samples.  

Each sample was counted until at least 100 counts were obtained for very low activity samples, 

but in general 1000 counts (or 3 % error) were desired.  

3.5.5 Data Analysis 

 Data analysis was performed by placing regions of interest (ROI) a few channels to the 

left and right of the desired photopeaks from Table 11, and using the Genie 2000 or MAESTRO 

reported peak areas for each peak. 
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Table 11.  Gamma energies used for analysis of desired radionuclides [208]. 

Isotope Gamma Energy (keV) Intensity (%) 
212Pb 238.6 43.3 
212Bi 727.33 6.58 
207Bi 596.70 97.74 

113Sn (113mIn) 391.69 64.2 
124Sb 602.73 98.26 

120mSb 197.3 87.0 
197mHg 133.99 33 
197Hg 191.44 0.63 
196Au 355.68 87 
198Au 411.80 96 

 

 

There was no observed detector energy drift, therefore, the same ROI was used for each 

experiment. Due to the fact each samples geometry was kept consistent for a given experiment 

direct comparisons before and after separations were possible without taking into account 

detector efficiency.   
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CHAPTER 4:  SYNTHESIS OF HEXATHIA-18-CROWN-6 
 
 This chapter describes the detailed synthesis of the hexathia-18-crown-6 extractant, 

Figure 30.  

 

 

Figure 30.  Hexathia-18-crown-6. 

 

The synthesis was based on following the procedure by R. E. Wolf, Jr. et al. [209]. Though this 

synthesis is not novel, it is presented here to show the process used as well as the estimated 

purity of the product used for experiments performed.  

4.1 Materials and Reagents 

 The 2,2’-thiobis(ethanethiol) (≥ 90 %) was purchased from Alfa Aesar and purified by 

vacuum distillation prior to use. Sodium metal (99.95 %) was purchased from Alfa Aesar and cut 

into small pieces under oil prior to use. Small bottles of 2-chloroethanol (≥ 99 %) were 

purchased from Alfa Aesar and used immediately upon opening. Dichloromethane (DCM, ≥ 99.6 

%) was purchased from Acros Organics and used as received. Thionyl chloride (≥ 99 %) was 

purchased from Alfa Aesar and vacuum distilled prior to use. Acetone (≥ 99.5 %) was purchased 

from BDH and used as received. Methanol (≥ 99.8 %) was purchased from Alfa Aesar and used as 

received. Dimethylformamide (DMF, ≥ 99.8 %) was purchased from J.T. Baker and always used 

from a freshly opened bottle without further purification.  



   
 

65 
  

4.2 Experimental 

4.2.1 Step 1:  Synthesis of 2,2’-[Thiobis(2,1-ethanediylthio)]bis(ethanol). 

 The experimental set up is depicted in Figure 31. 

 

 
Figure 31.  Experimental set up showing reaction vessel, rotary evaporator and distillation 

apparatus. 

 

Under a nitrogen atmosphere, to a 1 L three neck round bottom flask equipped with a reflux 

condenser and addition funnel, approximately 11 g of Na metal was added slowly to 500 mL 

ethanol, Figure 32. 
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Figure 32.  Addition of Na metal under nitrogen atmosphere to ethanol. 

 

After complete reaction approximately 39 g of 2,2’-thiobis(ethanethiol) was added via the 

addition funnel, and the solution brought to reflux in an oil bath (round bottom flask wrapped 

with tinfoil to allow for uniform heating), Figure 33. 
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Figure 33.  Reflux of 2,2’-thiobis(ethanethiol) with NaOEt. 

 

The solution was allowed to reflux for 10 hours before being cooled and then dissolved in 500 

mL hot acetone and filtering to remove crystalized NaCl that formed, Figure 34. 

 

 
Figure 34.  2,2’-[Thiobis(2,1-ethanediylthio)]bis(ethanol) product with NaCl prior to dissolving in 

hot acetone and filtering. 

 

Upon evaporating the acetone approximately 45 g of 2,2’-[Thiobis(2,1-

ethanediylthio)]bis(ethanol) was formed, confirmed by NMR spectroscopy in CDCl3. The reaction 

for the above procedure is:  
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HS(CH2)2S(CH2)2SH + 2NaOEt + 2Cl(CH2)2OH →  HOCH2(CH2SCH2)3CH2OH      
                                                                                                                                                           

4.2.2 Part 2:  Synthesis of 1,1’-[Thiobis(2,1-ethanediylthio)]bis[2-chloroethane]. 

 Approximately 8 g of the 2,2’-[Thiobis(2,1-ethanediylthio)]bis(ethanol) product from 

step one was added to a 500 mL round bottom flask with a three neck adapter on top along with 

200 mL distilled DCM. Attached the round bottom flash was a Drierite drying tube, a pressure 

equalizing addition funnel and a valve blocking the third neck, Figure 35.  

 

 

Figure 35.  Drierite drying tube during reaction. 

 

From the addition funnel 8.0 mL distilled SOCl2 dissolved in 25 mL DCM was added drop wise to 

the reaction vessel. Vigorous gas evolution occurred and the solution was allowed to stir for 6 

hours before being quenched with 5 mL methanol. The resulting solution was rotary evaporated 

to dryness (a pasty solid), Figure 36.  
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Figure 36.  1,1’-[Thiobis(2,1-ethanediylthio)]bis[2-chloroethane] product during rotary 

evaporation. 

 

Care was taken to not bump the solution due to the low boiling point of DCM, the final product 

after evaporation is shown in Figure 37.  

 

 

Figure 37.  1,1’-[Thiobis(2,1-ethanediylthio)]bis[2-chloroethane] product after evaporation. 

 

After rotary evaporation the resulting solution was pumped on overnight with 0.5mmHg 

vacuum to remove excess HCl residue. The reaction for the above procedure is: 

HOCH2(CH2SCH2)3CH2OH + 2SOCl2 →  ClCH2(CH2SCH2)3CH2Cl + 2SO2 + 2HCl 
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4.2.3.  Step 3:  Synthesis of Hexathia-18-Crown-6. 

 The 1,1’-[Thiobis(2,1-ethanediylthio)]bis[2-chloroethane] obtained previously was 

dissolved in 150 mL of DMF, from a fresh bottle, along with approximately 5 g of 2,2’-

thiobis(ethanethiol). The resulting solution was placed in a 250 mL Hirschberg constant addition 

funnel, Figure 38. 

 

 

Figure 38.  Hirschberg constant addition funnel with reaction products. 

 

The Hirschberg constant addition funnel was used to add the solution over a 36 hour period to a 

round bottom flask containing approximately 13 g of Cs2CO3 in a suspension with 350 mL DMF at 
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50-55 °C . After complete addition stirring was continued for 1 hour, before removing the 

solvent by vacuum distillation (1 mmHg), Figure 39. 

 

 

Figure 39.  Removal of solvent from formed HT18C6. 

 

The residue was stirred with 300 mL DCM and filtered. The filtrate was washed three times with 

80 mL 1 M NaOH, followed by one time with 100 mL water and then was dried over Na2SO4. The 

dried solution was evaporated by vacuum, like in Figure 39, before being recrystallized from a 

4:1 hexane-acetone solution. The product was analyzed with NMR spectroscopy. The reaction 

for the above procedure was:  

HS(CH2)2S(CH2)2SH +  ClCH2(CH2SCH2)3CH2Cl +  Cs2CO3  →
                                                                                                      HT18C6 + 2CsCl +  H2O + CO2   
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4.3 Results and Discussion 

 The primary focus of this chapter was to describe the synthesis of the HT18C6 used in 

experiments throughout this dissertation. Figure 40 shows a vial containing the final synthesized 

product. 

 

 

Figure 40.  HT18C6 product. 

 

Conformation of the product and its purity was confirmed by NMR spectroscopy from CDCl3, 

Figure 41. 
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Figure 41.  1H NMR spectra of HT18C6 product in CDCl3. 

 

As can be seen in Figure 41, a singlet at 2.828 is prominent in the spectra with the other singlet 

at 2.172 being from ethanol present in the sample. The singlet at 2.828 is consistent with the 

literature expected singlet at 2.82 [209]. From the magnitude of the other peaks in the 

spectrum, the purity of the synthesized HT18C6 is ≥ 90 %. From GC-MS analysis (Performed by 

Dr. Carolyn Koester, LLNL) potential impurities found are summarized in Table 12. 

 

Table 12.  GC-MS analysis of potential impurities (Performed by Dr. Carolyn Koester, LLNL). 

Tentative Identification Retention Time (min) 

dithiolane 9.90 

dithiane 11.77 

sulfur mustard 13.87 

dimethylbenzaldehyde 14.64 

trithiepane 17.47 

di-tert-butylphenol 19.45 

bis(chloroethylthio)ethane 22.22 

unknown aromatic compound 25.41 

tetrathiacyclododecane 28.54 

unknown sulfur-containing compound 
(MW=360?) 

32.95 

unknown sulfur-containing compound 
(MW=300?) 

35.00 
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Most of the impurities in Table 12 are either incomplete cyclization products, trace starting 

materials, or impurities picked up from DCM in the plastic centrifuge tubes samples were kept 

in.  

4.4 Conclusions  

 From the brief results described above, it can be seen that HT18C6 was synthesized in 

rather high purity. For the purpose of experiments performed below, HT18C6 was used without 

further purification, as the goal was to test its suitability for further investigation.  
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CHAPTER 5:  PRODUCTION OF CARRIER-FREE RADIONUCLIDES 
 
 As mentioned in Chapter 1, the chemical investigation of the transactinides is performed 

one atom-at-a-time. Therefore, it is impossible for a transactinide to interact with another atom 

of the same element [15], so homolog studies must approximate this condition as close as 

possible. As a result, homolog studies of transactinides must, therefore, be carried out on-line 

(atom-at-a-time) or with carrier-free (low concentration, massless) ultratrace radionuclides. 

 Carrier-free radionuclides can be readily produced in charged particle reactions since 

the target and the product are different elements and can be subsequently separated from one 

another [210]. Typical tracers produced for this work utilized proton-bombardment reactions on 

stable target materials; however, heavier charged particles such as helium can also be used. The 

Fl homolog, Sn, and pseudo-homolog, Hg, as well as the element 115 homolog, Sb, were 

produced by proton reactions on stable foils. The other homologs of Fl and element 115, Pb and 

Bi respectively, were obtained carrier-free by separation from the natural decay chain of 232U 

(see section 5.6) [211]. Although excitation functions for the 124Sn(p,n)124Sb, 197Au(p,n)197Hg, and 

113In(p,n)113Sn reactions have been reported in literature, separation methods of carrier-free 

activity from the Sn, Au, and In target materials are lacking [197-199].  

 The production methods of carrier-free Sn isotopes in literature are based on the 

isolation of 113,110Sn in the production of 113m,110In generators for radiopharmaceutical 

applications [212,213]. The production of carrier-free Hg has been described from high energy 

reactions designed to produce a packet of different radionuclides through the bombardment of 

Au targets with 7Li and 12C beams and subsequent separation of the carrier-free products from 

the excess Au [214]. The production of 124Sb is often not carrier-free, and it is commonly used as 

a gamma-ray calibration source and in radiopharmaceutical production methods [215].  
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 High purity natural In, Sn, and Au foils were irradiated at the LLNL CAMS facility 

(described in Chapter 2.4) to produce the carrier-free 124Sb, 113Sn, and 197m/gHg radionuclides for 

the homolog studies of Fl and element 115.  In this chapter the production routes as well as 

methods for rapidly separating the carrier-free activities from bulk target materials is described. 

New methods for preparation and use of a 212Pb generator are also described.  

5.1 Experimental Production of 124Sb, 113Sn and 197m/gHg 

Natural Sn (0.05 mm thick, 99.999%) and In foils (0.05 mm thick, 99.999%) were 

obtained from Goodfellow and Au foils (0.025 mm thick, 99.95%) were obtained from Alfa Aesar 

and used as received. Reagents for the separations were prepared from trace-metal grade acids 

and de-ionized (DI) water (18.2 MΩ∙cm). Eichrom TEVA resin (50-100 µm, 40 % w:w), BioRad AG 

1x8 (100-200 mesh) and AG 50Wx8 (100-200 mesh) were cleaned prior to use (procedure 

described in Chapter 3).  

Foils were cut into 8x8 mm squares weighing 20-50 mg and placed in a target chamber 

(Figure 42). Foils of different types were separated by 0.01 mm Ta catcher foils. Separate 

irradiations were performed with various different foil stacks consisting of Au, In, and Sn foils. 

The foil stacks were irradiated for 6-8 h with 12-15 MeV protons at a current of 100-400 nA at 

the tandem Van-de-Graaff accelerator at CAMS (further described in Chapter 2.4). The foils were 

allowed to cool for 8-12 h at the end of the irradiation before being removed from the target 

chamber.  
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Figure 42.  CAMS target chamber for irradiations of stable metal foils: copper cooling block with 
aluminum clamp to hold foil stack in place (left) and the irradiation chamber as installed at the 

CAMS beamline (right). 

 

5.2 Isolation of 113Sn 

5.2.1 Experimental 

The procedure for the isolation of 113Sn from the irradiated natIn foil is based on results 

presented in Ref. [188,213]. The natIn foil was dissolved in 4 mL of concentrated HCl and set to 

evaporate to dryness at 90 °C, with the low temperature chosen to prevent volitalization of Sn 

[151]. The dry residue was reconstituted in 4 mL of 1 M HCl plus 0.5 mL of 30 % H2O2 in order to 

oxidize the Sn to the Sn4+ state. A 2-mL bed volume of AG 1x8 (100-200 mesh) anion-exchange 

column was prepared and conditioned with 10 mL of 1 M HCl. The solution containing the 

dissolved foil was loaded onto the column, running under gravity, and the empty container was 

rinsed twice with 4 mL of 1 M HCl. Under these conditions the natIn target material was expected 

to pass through the column and the carrier-free 113Sn would be retained . An additional four 4-

mL fractions of 1 M HCl were passed through the column to ensure all natIn foil was eluted, and 

each 4-mL fraction was collected and analyzed individually by HPGe gamma spectroscopy for 

113mIn content. The 113Sn was then eluted with five 4-mL fractions of 3 M HNO3, which were 

analyzed for 113mIn content initially and after one day had passed to allow for the 113mIn to reach 

secular equilibrium with its parent, 113Sn. The natIn fractions were also counted one day later to 
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ensure that all of the 113mIn had decayed out and the samples were at background, indicating the 

absence of 113Sn. Separations were performed approximatelly one day after irradiation to 

ensure 113mIn was in equilibrium with 113Sn. 

5.2.2 Results and Discussion 

The speciation of In in the 1 M HCl column load solution should be dominated by the 

neutral InCl3 complex which is not retained on the anion-exchange resin [188]. However, Sn4+ in 

1 M HCl forms a stable anion complex, SnCl6
2-, which is strongly retained on the column 

[151,188]. Since 113Sn (t1/2=115.1 days) has no characteristic gamma-rays, its activity is measured 

by the daughter, 113mIn (Eγ=391.69 keV, t1/2=1.658 h), once in secular equilibrium. The natIn is also 

traced through the 113mIn activity by counting early before its ingrowth from 113Sn, and counting 

later to see if the 113mIn has decayed out (indicating no 113Sn contamination).  Figure 43 shows 

the gamma spectrum of the activated natIn foil.  

 

 

Figure 43.  Gamma spectrum of activated natIn containing 113Sn. 
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Figure 44.  Elution curves for natIn/113Sn separation, natIn fraction from initial day counts of 113mIn, 
with 113Sn fraction from day two counts after equilibration of 113mIn. Errors presented are 

calculated from counting statistics. 

 

The “Day 1 Sn" in Figure 44 shows the counts immediately following the elution of natIn and 

113Sn. As mentioned above, since 113Sn has no gamma-rays associated with its decay, the 113Sn 

elution is shown by the "Day 2 Sn" curve when 113mIn has reached secular equilibrium with 113Sn. 

The corrected day one curve, "Corr Sn," takes into consideration both the growth of 113mIn in the 

presence of 113Sn on the column and decay of 113mIn in the natIn fraction based on the count 

times and elution times. From this curve it is apparent that all of the natIn as traced by the 113mIn 

activity is in the natIn fraction, and the 113Sn fraction is clean of any natIn. After the evaporation of 

the 113Sn fraction, it was noted that no visible residue was present while the natIn fraction 

contained the solid natIn when it was evaporated to dryness. The total recoveries of In and Sn 

were: 100 ± 20 % and 78.7 ± 1.4 % respectively. The losses of Sn are attributed to the amount 

remaining on the column, presumably due to slow elution kinetics. It was not possible to 

quantify the In in the 113Sn fraction due to the ingrowth of 113mIn during the slow elution process, 
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which also made accurate decay correction of the 113mIn in the In fraction difficult leading to the 

large error on In recovery. 

5.3 Isolation of 197m/gHg 

5.3.1 Experimental 

The separation of 197Hg from Au target material was based on the Aliquot 336 liquid-

liquid extraction described in Ref. [214]. Eichrom’s TEVA resin, which contains 40% w:w Aliquot 

336 as an extractant, was chosen for this separation with Aliquot 336 acting as a selective anion 

exchanger. Initial batch experiments were performed to establish the uptake of Hg and Au on 

Eichrom’s TEVA resin. To a 1.5-mL centrifuge vial, 5-10 mg TEVA resin were weighed and added 

along with appropriate amounts of HNO3 with varying concentrations from 0.001 M to 

concentrated was added. The resin and acid were placed on a rotary mixer for 1 hour to 

precondition the resin. A 20 µL spike containing either carrier-free 195Au or 197Hg tracer in 2.0 M 

HNO3 was added to the wet resin. The solutions were each equilibrated for 3 hours on the 

mixer, counted with a HPGe detector for 120 to 900 seconds (≥1000 counts for the desired 

photo-peak), and then filtered through a 0.45 µm polytetrafluoroethylene (PTFE) filter to 

completely separate the resin from the solution. A 700 µL aliquot of each filtered solution was 

added to 320 µL de-ionized water in a 1.5 mL centrifuge vial (to maintain initial counting 

geometry) and counted for 300 to 84600 seconds (depending on activity) with an HPGe 

detector. The experimental parameters for the column study were then established based on 

the results from this batch study. The Au foil was dissolved in 800 µL of aqua regia and 

evaporated to approximately 300 µL in total volume. This solution was diluted to 2 mL by adding 

1.7 mL of 1 M HNO3. Two pre-packed, 2-mL vacuum flow Eichrom TEVA columns were stacked 

on top of each other, to accommodate the excess Au mass. A 24-hole polycarbonate vacuum 

box (Eichrom, Darien, IL, USA) with a pressure regulator was used to accelerate the elution 
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process by maintaining a flow rate of ~1 mL/min. The columns were conditioned with 10 mL of 1 

M HNO3 prior to use. The Au foil solution was added to the column, and two 2-mL rinses with 1 

M HNO3 were performed. The 197Hg was stripped off the column with 12 mL of 12 M HNO3. This 

fraction was analyzed by HPGe gamma spectroscopy to ensure the 197Hg had been eluted and no 

198Au (produced via neutron capture by the scattered neutrons produced during the irradiation) 

was present in this fraction. Under these conditions the Au foil was expected to remain on the 

column. 

5.3.2 Results and Discussion 

The extractant Aliquot 336, on the Eichrom TEVA resin, is an anion-exchanger [216]. In a 

1 M HNO3 column load solution, it is expected that the majority of the Hg will be in the form 

Hg(NO2)2; however, a small amount (accounting for the 10-15% loss, discussed below) forms a 

kinetically slow to reverse [Hg(NO2)4]2- complex which is retained by the column. Under the 

same conditions, Au forms species strongly absorbed by the resin, as observed in other anion-

exchange resins [214,217]. The Hg behavior was assessed by gamma spectroscopy of the 197mHg 

(Eγ=133.99 keV, t1/2=23.8 h) isotope [208]. Due to the scattered neutrons (produced in the (p,n) 

reaction) at the target chamber, 198Au (Eγ=411.80 keV, t1/2=2.70 d) was also produced via the 

197Au(n,γ)198Au reaction which yielded a convenient tracer for quantifying the Au content in the 

elution fractions [208]. Figure 45 shows the gamma spectra of the irradiated Au foil and the 

197Hg elution fraction.  
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Figure 45.  Gamma spectra of the irradiated Au foil (bottom line) and the 197Hg elution fraction 
(top line). 

 

 

Figure 46.  The batch uptake (k’) of 195Au and 197Hg as a function of nitric acid media on TEVA 
resin (50-100 μm) with a 3 hour equilibration time. Errors represent counting statistics. 

 

As can be seen in Figure 46, both Au and Hg have strong uptake at the load condition of 1 M 

HNO3, but Hg extraction is negligible above 10 M HNO3 while Au is still strongly sorbed up to ~13 

M HNO3. Due to the fact the Au foil was left on the TEVA columns, no elution curve was 
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obtained; however, the Au band, which was visible on the columns, moved to about 1/3rd (4 cm 

of the total 6 cm column height) of the way down the second TEVA column. Table 13 

summarizes the results from three individual Au foil separations. 

 

Table 13.  Summary of Au/Hg separation on Eichrom’s TEVA resin 

Au Foil Au in Hg Fraction (%) Hg Recovery (%) 

Au1 ˂˂˂ 3.2 85.8 ± 0.6 

Au2 ˂˂˂ 4.7 87.1 ± 0.6 

Au3 ˂˂˂ 3.9 87.8 ± 0.6 

 

 

In each 197Hg fraction no detectable 198Au was observed indicating a complete separation of Hg 

from Au. The “Au in Hg fraction” column from Table 13 is a calculated limit based on the 

minimum detectable activity [207]. Upon evaporation of the Hg fraction no visible residue was 

observed. 

5.4 Isolation of 124Sb 

5.4.1 Experimental 

The isolation of 124Sb from natSn was based on distribution ratios presented in Ref. 

[218,219]. The natSn foil was dissolved in 1 mL of concentrated HCl and 20 µL of 30 % H2O2 was 

added to ensure the oxidation to Sb5+ and Sn4+. A 2 mL bed volume AG 50Wx8 cation-exchange 

column was prepared and conditioned with 10 mL of concentrated HCl. The solution containing 

the dissolved natSn foil was added to the column and ten 1 mL fractions of concentrated HCl 

were collected. Under these conditions the Sn was expected to pass through the column, while 

the Sb would be retained.  The Sb was stripped off the column by collecting ten, 1 mL fractions 

consisting of concentrated HCl and 0.05 M HI.The Sb activity was monitored by HPGe gamma 

spectroscopy of 124Sb, where as the Sn was monitored by 117mSn from the decay of produced 
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117Sb (t1/2=2.80 h). The separations were performed approximately one day after irradiation 

allowing the 117mSn daughter to reach equilibrium with the 117Sb parent nucleus. A second 

experiment was performed in order to produce elution curves, with an activated Sn foil which 

had been allowed to decay until only the 124Sb activity remained before undergoing the same 

separation mentioned above with an aliquot of 113Sn (from the above purification) added to 

trace the Sn foil.  

5.4.2 Results and Discussion 

Speciation of Sb5+ in concentrated HCl is presumably SbCl6-, which, contrary to common 

thought, has high retention on the cation exchange-resin AG 50Wx8 as described in the 

literature [219]. Tetravalent tin, however, forms the stable SnCl62- in HCl concentrations above 

0.7 M as mentioned above, and passes through the column under the concentrated HCl load 

solution [151]. Figure 47 shows an HPGe gamma spectrum of an activated Sn foil soon after 

irradiation and after Sb separation, with Sn activity monitored by 117mSn (Eγ=156.0 keV, 

t1/2=13.60 d) and Sb activity from 120mSb (Eγ=1171.3 keV, t1/2=5.76 d) and 124Sb (Eγ=602.8 keV, 

t1/2=60.20 d) [208]. 
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Figure 47.  Gamma spectra of the irradiated natSn foil (bottom line) and the Sb combined elution 
fraction (top line). 

 

The elution cures presented in Figure 48 are from a separation of an activated Sn foil performed 

long after decay of all short lived Sb products and 117mSn with only 124Sb remaining, using a small 

aliquot of 113Sn to trace the Sn foil.  

 

 

Figure 48.  Elution curves for Sn and Sb. Errors represent counting statistics. 
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As shown in Figure 47 and 48, an efficient separation of 124Sb from the irradiated natSn foil is 

obtained. Due to the slow Sb elution kinetics and the desire to obtain as small of an elution 

volume as possible since evaporating extremely volatile 124Sb fractions was needed to change 

the solution matrix, no more than 10 mL of the concentrated HCl and 0.05 M HI solution was 

used [220]. As a result, only 71.2 ± 7.7 % 124Sb was recovered while the rest presumably 

remained on the column.  

5.5 Additional Sb and Sn Separations 

 The above separations presented in sections 5.2 and 5.4 for the isolation of 113Sn and 

124Sb were the same procedures used to obtain carrier-free activity for all experiments involving 

Sn and Sb. However, prior to settling on these separation procedures, other procedures were 

used to isolate 113Sn and 124Sb that were deemed less efficient. These procedures are briefly 

presented in this section. 

5.5.1 Additional 113Sn Separation Experimental and Results and Discussion 

The isolation of 113Sn from natIn was based on distribution ratios presented in Ref. 

[221,222] The natSn foil was dissolved in 6 mL of concentrated HCl, and a 1 mL aliquot was 

diluted with DI water to 2 mL making the solution 6 M in HCl. An additional 150 µL of 30 % H2O2 

was added to ensure oxidation to Sn4+. A 7-mL bed volume AG 1x8 (100-200 mesh) anion-

exchange column was prepared and conditioned with 12 mL of 6 M HCl. This column is large 

enough to retain the In target mateiral. The solution containing the dissolved natIn foil was added 

to the column and rinsed with two, 4-mL 6M HCl fractions (both Sn and In should be retained by 

the column under these conditions). Six, 4-mL fractions of 0.6 M HF were collected to elute the 

natIn target material while the 113Sn is retained on the column, and each fraction was analyzed 

individually by HPGe gamma spectroscopy for 113mIn content. An additional three, 4-mL 6 M HCl 
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fractions were collected to remove excess flourides from the system. Finally, 113Sn was eluted 

with eight, 3 M HNO3 fractions, which were analyzed for 113mIn content initially and after one day 

had passed to allow for the 113mIn to reach secular equilibrium with its parent, 113Sn. The natIn 

fractions were also counted one day later to ensure that all of the 113mIn had decayed out and 

the samples were at background, indicating the absence of 113Sn. 

The speciation of In in the 6 M HCl column load solution should be dominated by the 

neutral InCl3 complex, which is not retained on the anion-exchange resin [188]. As mentioned in 

section 5.3.2, Sn4+ in 6 M HCl forms a stable anion complex, SnCl6
2-, which is strongly retained on 

the column [151,188].  

 

 

Figure 49.  Elution curves from the initial attempt to separate 113Sn from natIn, errors from 
counting statistics. 

 

The day 1 counts in Figure 49 represent the counting data collected immediately after elution 

and the In fraction is not decay corrected due to lack of time information (time between 

beginning to collect each fraction and counting each fraction was not recorded) on this 
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particular separation. The reason that the day 2 counts show nearly the same 113Sn activity is 

because several half-lives had passed before the Sn fraction was counted on day one, allowing 

for most of the 113mIn activity to have grown in. However, as expected, the In fraction returns to 

background levels after a day has passed, indicating all 113mIn has decayed due to the absence of 

113Sn. After the evaporation of the 113Sn fraction, it was noted that no visible residue was 

present while the natIn fraction contained the solid natIn when it was evaporated to dryness (the 

HF fractions also had no visible residue). Due to differences in counting geometry, accurate 

recoveries were impossible to determine. This separation was not used for future studies due to 

the large elution volumes and the fact that the simpler 2 step separation described above 

without the use of HF was found to give similar or better results (section 5.2). 

5.5.2 Additional 124Sb Separation Experimental and Results and Discussion 

The isolation of 124Sb from natSn was based on distribution ratios presented in Ref. [87]. 

The natSn foil was dissolved in 10 mL of concentrated HCl and a 3 mL aliquot was taken and 

diluted to 6 mL with DI water resulting in a final concentration of 6 M HCl. To this, 0.7 mL of 30 

% H2O2 was added to ensure the oxidation to Sb5+ and Sn4+. A 7-mL bed volume AG 1x8 (100-200 

mesh) anion-exchange column was prepared and conditioned with 10 mL of 6 M HCl. The 

solution containing the dissolved natSn foil was added to the column and rinsed with two, 4-mL 

fractions of 6 M HCl. Under these conditions the Sn and Sb were expected to remain on the 

column.  The Sb was stripped off the column by collecting five 4-mL fractions of 0.8 M HCl 

effluent on the first day, capping the column to avoid evaporation, and eluting four more 4-mL 

0.8 M fractions the second day. The column was capped again and two more 4-mL 0.8 M HCl 

fractions were eluted on the third day.The Sb activity was monitored by HPGe gamma 

spectroscopy of 124Sb, where as the Sn was monitored by 117mSn from the decay of produced 
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117Sb (t1/2=2.80 h). The separations were performed approximately one day after irradiation 

allowing the 117mSn to reach equilibrium with the 117Sb.  

Due to the fact the Sn was left on the column, no elution curves were produced from 

this separation method. However, there was no detectable 117mSn in the Sb fractions and >80 % 

of the Sb was recovered during the separation.  

 

 

Figure 50.  Elution curves for separation of 124Sb from natSn, initial attempt, error from counting 
statistics. 

 

As seen in Figure 50, all the Sn remained sorbed to the column as a dark band on the upper 1/3rd 

of the column and most of the Sb was eluted. The reason for the three days worth of elutions 

was due to the observation that only about 50% of the Sb elutes initially due to very slow 

elution kinetics. After the third day,  >90% of Sb recovery was obtained. Upon evaporation of 

the combined Sb fractions, no visible Sn foil residue was observed. The 117mSn gamma line (see 

Figure 47) was not observed in the Sb fractions, indicating a clean separation. This method was 
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not used for final separation of future Sb from Sn foils infavor of the method described above in 

section 5.4, due to the length of separation and excessivly large elution volumes in comparison. 

5.6 Radionuclide generators for Pb and Bi isotopes 

 As mentioned above a convenient way to obtain carrier-free Pb and Bi isotopes is 

through the preparation of an isotope generator based on the natural decay chains, Figure 51. 

For the purpose of this work, a generator for elution of 212Pb (Eγ=238.63 keV, t1/2=10.64 h) (and if 

desired 212Bi (Eγ=727.33 keV, t1/2=60.55 m)) was prepared from 232U (legacy material, LLNL) [208]. 



   
 

 
  

9
1

 

 

 

Figure 51.  232U decay chain
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5.6.1 Experimental 

 An AG 50Wx8 (100-200 mesh) cation exchange column, approximately 2 mL bed 

volume, slurry packed, was cleaned and prepared as mentioned in Chapter 3.1. The column was 

conditioned with 10 mL of 1 M HCl. To this, a 1 mL stock solution of 232U containing all daughters 

in secular equilibrium was added, after being counted by HPGe gamma spectroscopy to 

determine its initial activity. Under these conditions all radionuclides from 212Pb to 232U on the 

decay chain are strongly retained by the column. The column was then converted to an 

appropriate condition for longer-term storage by adding of 2 mL 0.4 M HCl, before being 

capped, Figure 52. 

 

 

Figure 52.  232U generator, capped for storage. 

 

After allowing approximately 7 half-lives of 212Pb to pass (74.5 hr, time it takes for > 99% of 

activity to grow to equilibrium), the generator was eluted with 10, 1-mL fractions of 2 M HCl, 

each collected in a 15 mL centrifuge tube (same geometry as the stock solution). These solutions 

were monitored by HPGe gamma spectroscopy to determine the elution behavior of Pb from 

the generator. The solutions were stored for one month, allowing any 228Th to reach secular 

equilibrium with its daughters, before counting each sample again to look for Th breakthrough. 
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For the purpose of performing the experiments presented in this dissertation, legacy 207Bi 

material from LLNL was used as a source of Bi, however, it is possible to change the elution 

concentration on the generator to 0.5 M HCl and elute 212Bi while leaving 212Pb on the column.  

 The general usage procedure for obtaining 212Pb for experiments presented in this 

dissertation is as follows. The column was stored in a small amount of 0.4 M HCl. Upon opening, 

1 mL of 2.0 M HCl was allowed to pass through the column and then discarded. An additional 2 

mL of 2 M HCl was used to elute 212Pb and was collected as the Pb elution fraction (stock 

solution). To place the column in its storage state, 2 mL of 0.4 M HCl was passed through the 

column and it was capped and sealed with a small amount of solution remaining above the frit.  

5.6.2 Results and Discussion 

 Under the operating conditions of the generator, the 232U will eventually bleed off the 

column; however, 228Th and the daughters with higher Z 212Pb remain strongly sorbed, Table 14. 

 

Table 14.  Distribution ratios for elements in the 212U decay chain for various concentrations of 
HCl on AG 50Wx8 [223]. 

Element 0.2 M HCl 0.5 M HCl 1.0 M HCl 2.0 M HCl 

U 860 102 19.20 7.3 

Th >105 ~105 2049 239 

Pb 1420 183 35.66 9.8 

Bi Ppt. <1 1 1 

 

 

Due to the 69.8 year half-life of 232U and the long 1.912 year half-life of 228Th the bleeding of the 

232U, even if all in one 2 mL 212Pb elution, will be unable to grow enough 212Pb into solution to be 

detected over the approximately 3 hour experimental time frames. However, if 228Th were to 

breakthrough, the generator would slowly degrade and detectable amounts of 212Pb would grow 

into the experimental solutions during the 3 hour time frames.  
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Figure 53.  212Pb elution curve with 228Th breakthrough. 

 

From Figure 53, it can be seen that initial counts of a 212Pb elution show an as expected elution 

curve. By counting these same solutions one month later and looking for the 212Pb gamma-lines, 

any detectable 212Pb would be due to 228Th bleeding through the column. As seen in Figure 53 no 

212Pb was detected one month later, indicating no detectable breakthrough of 228Th. Periodically 

over the 1.5 year usage time of the generator the eluted 212Pb stock solutions were counted a 

month later and in each case no detectable 212Pb was seen, indicating a very stable generator 

that can be used for greater than 1.5 years without issue. The 3.63 day half-life of the 224Ra 

parent of 212Pb is the most important element to retain on the column during 212Pb elutions. If 

this isotope was to elute with 212Pb, a large amount of 212Pb would grow into the stock solution 

during the experimental time frames. The presence of224Ra is easy to detect via its 241.0 KeV 

gamma-line, and each 212Pb elution was checked for 224Ra, Figure 54 [208]. 
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Figure 54.  Gamma spectrum showing the 212Pb and 224Ra gamma lines for the 232U stock solution 
and an eluted 212Pb fraction. 

 

As seen in Figure 54 there is no detection of the 224Ra gamma-line in the 212Pb elution, indicating 

224Ra is retained by the column during 212Pb elution. Each 212Pb stock solution prepared from the 

generator for all experiments described later in this dissertation were checked for the 

breakthrough of 224Ra before use, and this gamma-line was not detected over the 1.5 year usage 

of the generator.  

5.7 Conclusions and Future Work 

 Carrier-free radionuclides of the Fl and element 115 homologs and pseudo-homologs 

Sn, Hg and Sb, were produced at the LLNL CAMS facility through the bombardment of stable 

foils with 12-15 MeV protons for 6-10 hours at beam currents of 100-400 nA . The following 

reactions were used for production:  natSn(p,n)124Sb, 197Au(p,n)197Hg, and natIn(p,n)113Sn.  

 Separation procedures for the rapid isolation of the carrier-free activities were 

established. An anion-exchange based separation from hydrochloric and nitric acid matricies 

was used to separate the 113Sn radiotracer from natIn. A cation-exchange based separation from 
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hydrochloric and mixed hydrochloic/hydroiodic acid matrices was used to isolate the 124Sb 

radionuclide from natSn. A separation based on Eichrom TEVA resin, which uses Aliquot 336 as 

the extractant, was used to separate the 197Hg radiotracer from Au. Batch studies were 

performed to establish the uptake of Au and Hg on the TEVA resin and these results were used 

to develop the separation procedure. In all cases, carrier-free radionuclides were obtained and 

confirmed by HPGe gamma spectroscopy. 

 A novel 212Pb and 212Bi generator was developed by loading 232U onto a cation-exchange 

column. Elution of carrier-free Pb and Bi was achieved by simply changing concentrations of HCl. 

The generator was characterized and shown to provide usable radionuclides without 

breakthrough of the parents for an on-going duration of 1.5 years. 

 The 10 MV tandem Van-de-Graaff accelerator at the LLNL CAMS facility was shown to be 

adequate in producing carrier-free radionuclides for transactinide homolog studies. The target 

chamber used in this experiment can be filled with a vast array of metal foils for production of 

various carrier-free radionuclides. This can be useful for the study of other transactinides or for 

the production of tracers to be used for yielding chemical procedures in other radiochemistry 

experiments.   
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CHAPTER 6:  EICHROMS PB RESIN WITH Fl HOMOLOGS AND PSEUDO-HOMOLOGS IN 
HYDROCHLORIC ACID 

 
 This chapter deals with the development of chemistry for Fl homologs (Pb and Sn) and 

pseudo-homologs (Hg) using a commercially available extraction chromatography resin. The 

resin, Eichrom’s Pb resin (50-100 µM particle diameter), is coated with DtBuC18C6 (Figure 55), 

which as mentioned above separates analytes based on their size as well as their charge and 

complexation [164,201]. This resin was developed for the specific application of separating Pb 

from other analytes; however, no research into the behavior of Sn or Hg has been performed.  

 

 

Figure 55.  Pb resin extractant 4′,4″(5″)-di-tert-butyldicyclohexano-18-crown-6. 

 

 Batch experiments were conducted to determine the extraction efficiency of the Pb 

resin for both Pb(II), Sn(IV) and Hg(II) from HCl. In acidic solution, Pb tends to stay in the +2 

oxidation state, Sn in the +4 oxidation state and Hg in the +2 oxidation state [151,211,224-226]. 

The extraction kinetics were investigated, and column separation schemes were developed for 

the separation of the homologs Pb(II) and Sn(IV) alone as well as for the homologs and pseudo-

homolog, Hg(II), combined. To assess the speciation of Pb(II) and Sn(IV), liquid-liquid extraction 

experiments were performed with varying DtBuC18C6 concentrations. The primary focus of this 

chapter is to establish a separation scheme for Fl that gives insight into the chemical form of the 

extracted homologs and pseudo-homologs, with appropriate kinetics for a future application to 

a Fl chemistry experiment. Proposed potential Fl experiments are discussed at the end.  
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6.1 Experimental  

6.1.1 Reagents and Materials 

The Pb resin (50-100 µm, 40 % w:w, Eichrom Industries, Inc.) was used for both batch 

and column studies. The extractant 4′,4″(5″)-di-tert-butyldicyclohexano-18-crown-6 (90 %) was 

purchased from Sigma Aldrich and used as received. Dichloromethane (99.9 %, un-stabilized, 

Fisher) was used without further purification. Acids were prepared by volumetric dilution from 

trace-metal grade acids and de-ionized water (18 MΩ∙cm). A total of 12 different hydrochloric 

acid concentrations were used for experiments, Table 15. 

 

Table 15.  Acid solutions for various studies. 

Acid Concentration (M) 

HCl 0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1.0, 2.0, 4.0, 
8.0, 10.0, Conc. 

 

 

The tracer solutions of 212Pb and 113Sn and 197mHg were prepared with activity concentrations 

ranging from 2 to 10 cps. Tracers were obtained from an isotope generator (212Pb) or from 

197Au(p,n)197Hg and 113In(p,n)113Sn production reactions at CAMS as described in further detail in 

Chapter 5.   

6.1.1 Batch study 

 General procedures for batch studies are described in Chapter 3. The uptake parameters 

for Pb2+, Sn4+ and Hg2+ on Pb resin in HCl solutions were determined by batch extraction 

experiments. To a 1.5 mL centrifuge vial, 10-20 mg of Pb resin were added along with 1 mL of 

HCl ranging from 0.001 M to concentrated as listed above. The resin was placed on a rotary 

mixer for 1 hour for the preconditioning of the resin. A 20 µL spike containing either 212Pb 

(eluted from the generator with 2.0 M HCl), 113Sn (oxidized to Sn4+ with a drop of H2O2) or 197mHg 
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in 2.0 M HCl was added to the wet resin. The solutions were equilibrated for 3 hours (for Pb and 

Sn) or 5 hours (Hg) hours on a vortex mixer. Each sample was counted with a HPGe detector for 

120 to 900 seconds (≥1000 counts in the desired photo-peak), and then filtered through a 0.45 

µm PTFE filter to completely separate the resin from the solution. A 700 µL aliquot of each 

filtered solution was added to 320 µL de-ionized water in a 1.5 mL centrifuge vial for consistent 

geometry and counted for 300 to 900 seconds, depending on activity, with a HPGe detector. All 

experiments were performed in triplicate and the reported errors are based on the standard 

deviation of the replicates. The Pb resin capacity factor (k’) was calculated as described in 

Chapter 3. Reported values for each HCl concentration tested were calculated from the 

combination of the 1 mL of initial acid and 20 µL of tracer solution in 2 M HCl. 

6.1.2 Speciation study 

Solutions containing DtBuC18C6 in un-stabilized dichloromethane were prepared in 

volumetric flasks with volumes and masses as described for Pb and Sn speciation in Tables 16 

and 17, respectively. 

 

Table 16.  Sample masses and volumes for Pb speciation studies. 

[DtBuC18C6] Mass DtBuC18C6 (g) Volume 

0.00036 4.4 25 

0.0025 12.0 10 

0.0090 43.6 10 

0.065 313.7 10 

0.12 563.9 10 
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Table 17.  Sample masses and volumes for Sn speciation studies. 

[DtBuC18C6] Mass DtBuC18C6 (g) Volume 

0.00064 7.8 25 

0.0057 27.4 10 

0.017 82.9 10 

0.067 322.4 10 

0.13   651.7 10 

 

 

Stock solutions of 212Pb2+ were prepared by evaporating the generator eluted 212Pb2+ solution 

and reconstituting the activity in 0.4 M HCl (the peak of the 212Pb2+ extraction from batch 

results). A 113Sn4+ stock solution was prepared in 4 M HCl (the peak of the 113Sn4+ extraction from 

batch results). To a 1.5 mL centrifuge tube, 480 µL of 0.4 of 4 M HCl was added along with 500 

µL of crown ether solution (each DtBuC18C6 concentration was performed in triplicate for both 

Sn4+ and Pb2+). These were allowed to mix for one hour, on a rotary mixer, to ensure pre-

conditioning of the organic phase. To each tube a 20 µL spike of the desired 212Pb2+ or 113Sn4+ 

activity was added, and they were allowed to mix for one hour on a rotary mixer. A 300 µL 

aliquot from each phase was taken and counted with a HPGe detector to determine the 

distribution ratios for Sn4+ and Pb2+ at each concentration of DtBuC18C6. Due to the extremely 

strong uptake of Hg by DtBuC18C6 no discernable speciation trend could be established by this 

method due to poor aqueous phase counting statistics even at low concentrations of crown 

ether.      

6.1.3 Kinetics study  

The HCl concentration where the maximum uptake occurs in the batch experiments (4 

M HCl for 113Sn4+, 1 M HCl for 212Pb2+ and 0.4 M HCl for 197mHg2+) occurs in the batch experiments 

was the concentration of choice for each kinetics study. In the case of Hg a concentration with 

strong uptake was chosen, but not the strongest uptake due to the fact the extremely high k’ 
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values of >5000 would have yielded poor counting statistics. The standards were made by 

placing 1 mL of HCl at the desired concentration (depending on if 212Pb, 113Sn or 197mHg) in a 1.5 

mL centrifuge tube and adding 100 µL of a stock radionuclide solution. The standards were 

made in triplicate and counted with a HPGe detector for 120 seconds in the case of 212Pb, 3600 

seconds in the case of 113Sn and 300 seconds in the case of 197mHg. The preconditioned samples 

were made by adding 1 mL of the desired concentration of HCl to a 1.5 mL centrifuge vial 

containing 10-20 mg Pb resin and placing on a vortex mixer for 1 hour. A 100 µl spike of either 

212Pb2+, 113Sn4+ or 197mHg2+ in the above mentioned HCl concentration was added to the samples 

and each sample was mixed for a desired time interval before quickly filtering to isolate the 

solution from the resin. A 700 µL spike of each filtered solution was added to 400 µL of de-

ionized water (to maintain original counting geometry) and the samples were counted with a 

HPGe detector for 240-300 seconds (212Pb), 6300 seconds (113Sn) or 300 seconds (197mHg).  

6.1.4 Column study 

 General column study procedures are described in Chapter 3. Initial column studies 

were designed to separate only the group 14 homologs Pb and Sn rapidly. Aliquots of each 

tracer were combined and evaporated to dryness in a warm water bath with a forced air stream, 

then reconstituted in 1 mL of the appropriate HCl solution. The initial sample activity was 

determined by HPGe counting. For the sequential extraction experiments a ~2 mL/min (~4 mm 

Hg gauge reading) flow rate was maintained for vacuum flow. The resin cartridge was 

conditioned with 10 bed volumes (20 mL) of the appropriate HCl solution. Sequential extractions 

were performed with HCl concentrations based on the results from the batch experiments. The 

radionuclides were loaded on the column in 3 M HCl, where both are retained, and 0.4 M HCl 

was used to elute 113Sn4+ and 8 M HCl to elute 212Pb2+. Separate experiments were performed to 

reverse the elution order. Three rinse fractions at 3 M HCl were collected followed by 1 mL 
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elution fractions (x10) of the desired HCl concentration. Table 18 summarizes the Pb/Sn 

columns.  

 

Table 18.  Summary of vacuum flow column for Pb and Sn separation. 

Fraction Concentration of HCl 
(M) 

Volume (mL) / 
Number of Fractions 

Element Eluted 

Load 3 1 (load solution) All Retained 

Rinse 3 1 / 3 All Retained 

Pb Elute* 8 1 / 10 Pb 

Sn Elute* 0.4 1 / 10 Sn 
*Note: the second column had the Sn eluted before the Pb, to have reverse behavior. 

 

Care was taken to stop the column flow just as liquid was about to reach the top-frit so the 

column never ran dry and each elution fraction was a consistent 1 mL. Fractions were counted 

by HPGe gamma spectroscopy.  

 Similar columns were run with the addition of Hg to the load solution to attempt a rapid 

separation of the homologs and pseudo-homologs of Fl with one chemical system. Initially a 

column was run with the same flow parameters as with the Pb/Sn separations and was loaded 

with all three radionuclides in 1 mL of 3 M HCl. After loading the column three rinse fractions of 

3 M HCl were collected followed by 1 mL elution fractions (x8-16) of the desired HCl 

concentration. Table 19 summarizes the initial Pb, Sn and Hg column. 

 

Table 19.  Summary of vacuum flow column elution parameters for Pb, Sn and Hg separation. 

Fraction Concentration of HCl 
(M) 

Volume (mL) / 
Number of Fractions 

Element Eluted 

Load 3 1 (load solution) All Retained 

Rinse 3 1 / 3 All Retained 

Sn Elute 0.4 1 / 8 Sn 

Pb Elute 8 1 / 9 Pb 

Hg Elute Conc. 1/ 16 Hg 
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Due to slow elution and adsorption kinetics of Hg, Hg was seen to bleed through the column and 

elute with a poor peak resolution (discussed below). Therefore, a second column was run in 

which the load solution was changed to 0.4 M HCl (closer to the peak extraction of Hg) and Sn 

was allowed to pass through the column without interaction. The column was then capped for 1 

hour after the elution of Sn to allow for Hg to be fully retained, and was capped again for 1 hour 

after changing to concentrated HCl to assist with eluting the Hg in a tight elution peak. Table 20 

summarizes the elution profile for this column. 

 

Table 20.  Summary of vacuum flow column elution parameters for second Pb, Sn and Hg 
separation. 

Fraction Concentration of HCl 
(M) 

Volume (mL) / 
Number of Fractions 

Element Eluted 

Load 0.4 1 (load solution) All but Sn retained 

Sn 0.4 1 / 7 Sn 

Pb Elute 8 1 / 9 Pb 

Hg Elute Conc. 1 / 12 Hg 

 
 
 
6.2 Results and discussion 

6.2.1 Batch study 

The effects of HCl concentration on the uptake of Pb2+, Sn4+ and Hg2+ by the Pb resin are 

shown in Figure 56.  
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Figure 56.  The batch uptake (k’) of 212Pb2+, 113Sn4+ and 197mHg2+ as a function of hydrochloric acid 
concentration on Pb resin (50-100 μm) with a 3 hour (5 hour for Hg) equilibration time. 

 

Lead shows strong affinity to the resin from 0.04 – 2 M HCl and then decreases significantly with 

increasing HCl concentration above 2 M, in good agreement with literature [201]. Tin shows 

slight uptake from 0.04 – 1 M HCl and then increases significantly to a peak extraction at around 

4 M HCl. Currently there is no data available on the extraction of Sn4+ with DtBuC18C6 from 

hydrochloric acid media. It is expected that Sn4+ in [HCl] > 0.7 M exists as the SnCl6
2- anion 

[151,153,227]. Crown ethers are known to form positively charged hydronium ion complexes by 

coordinating with H3O+ where the hydronium ion fits perfectly into the ring [167,168]. 

Therefore, the increasing k’ for Sn4+ above 1 M HCl suggests that two hydronium activated 

crown ethers form an association complex with the  SnCl6
2- anion. The unexpected dip in Sn4+ 

extraction above 4 M HCl is most likely due to the bleeding of extractant material off the resin 

backbone. This was observed from evaporation of the high HCl concentration samples and 

noting organic residues. Despite forming similar complexes in HCl as Pb, Hg exhibits much 

stronger extraction over the same concentration ranges. As described in Ref. [226] and 
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discussed below (Section 6.2.2), Hg most likely extracts as HgCl2·2DtBuC18C6. Therefore, the 

decrease in mercury extraction at higher HCl concentrations may be attributed to the formation 

of ionic HgCl3- and HgCl42- [226]. 

6.2.2 Speciation study 

Plotting the logarithm of the distribution ratios for 212Pb2+ and 113Sn4+ as a function of the 

logarithm of the concentration of DtBuC18C6 yields a line where the slope of a linear fit to the 

line is equivalent to the number of DtBuC18C6 molecules required to extract each metal atom. A 

general equilibrium equation for the extraction of a metal in a SX system is given by: 

                                                  M(aq)
n+ + xLorg) ⇄  MLx (org)                                          (Eqn. 24)  

The equilibrium constant for this extraction, K is given by: 

                                                                             K =  
[MLx]

[Mn+][L]𝑥                                                        (Eqn. 25) 

Substituting in the distribution ration, Equation 7, and taking the logarithm of both sides gives: 

                                                                         logD = xlog[L] + logK                                           (Eqn. 26) 

From Equation 26, it can be seen that a plot of logD versus log[L] will give a linear relationship 

with the slope being equal to x, the number of ligands participating in the extraction. 
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Figure 57.  Distribution ratios for the extracted 212Pb2+ and 113Sn4+ as a function of DtBuC18C6 
concentration in dichloromethane. The solid lines indicate the results of a linear regression fit to 

the Pb and Sn data, with slopes indicated. 

 

From the linear regressions in Figure 57, the number of crown ligands coordinated to the Pb2+ 

metal ion is found to be 0.94 ± 0.02. This indicates that one DtBuC18C6 molecule is required to 

extract each Pb2+ ion into the organic phase, supporting the notion that Pb2+ extracts into the 

cavity of the crown ether. This yields an extraction mechanism of: 

PbCl2𝑎𝑞 + DtBuC18C6org  ⇄   PbCl2 · DtBuC18C6org 

Similarly, the number of crown ligands coordinated to the Sn4+ metal ion is found to be 1.61 ± 

0.05. This suggests that two DtBuC18C6 crown ether ligands are needed to extract each Sn4+ ion. 

This supports the idea that the highly stable SnCl6
2- complex is being extracted by two positively 

charged DtBuC18C6∙H3O+ complexes, described by the following mechanism: 

SnCl6 aq
2− + 2DtBuC18C6org + 2H3O ⇄   SnCl6

2− · [2(H3O · DtBuC18C6)]org
2+                   

As a result the Sn4+ extraction does not depend on the cavity characteristics of the DtBuC18C6, 

but rather the rate of formation of the DtBuC18C6∙H3O+ complex. 
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Data acquired by the same means with 197mHg yielded inconclusive results due to the short 

half-life of the radionuclide yielding low counting statistics, which were made worse by the very 

high distribution ratios for the extraction of Hg. Experiments found in literature conducted with 

the simpler dicyclohexano-18-crown-6 (DC18C6) as well as dibenzo-18-crown-6 (DB18C6) and the 

un-substituted 18-crown-6 (18C6) indicated that the following extraction mechanism is dominant 

for mercury [226]: 

HgCl2𝑎𝑞 + 2CEorg  ⇄   HgCl2 · 2CEorg 

Where CE=18C6, DC18C6 and DB18C6. This indicated that the planar HgCl2 molecule is extracted 

between two crown ether molecules. While this study was conducted with Hg concentrations of 

10-5 M instead of the carrier-free mercury of this study, it does indicate a more complex 

extraction than the traditional cavity based extraction exhibited by Pb. Decreases in the 

extractability between reported distribution ratios for 18C6 > DC18C6 > DB18C6 were attributed 

to the cavity sizes, which are 2.6 to 3.2 Å for 18C6 and DC18C6 [228] but increase to 4 Å for 

DB18C6 [229], as well as the decreasing basicity over that same sequence. The Hg2+ ion has an 

ionic radius of 1.1 Å which is much closer to the cavity diameter of 18C6 and DC18C6, and 

therefore can receive more stabilization from those cavities than the larger DB18C6 cavity [226]. 

The observed slight decrease in extraction with DC18C6 compared to 18C6 was attributed to 

increased steric hindrance lessening the effect of cavity stabilization [226]. 

6.2.3 Kinetics study 

The data obtained from the batch studies indicates that Pb2+, Sn4+ and Hg2+ can be 

separated using a pure HCl matrix with the Pb resin at an equilibration time of three to five 

hours. Due to the short-lived isotopes of Fl and the goal of an on-line chemical separation which 

will require flow rates on order of 1 mL min-1, the kinetics of the extraction must be suitable on 

the second time-scale verses hour. The kinetics of Pb, Sn and Hg on the Pb resin at 1, 4, and 0.4 
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M HCl (maximum k’ from batch studies for Pb and Sn, slightly lower extraction chosen for Hg 

due to large k’), respectively, was investigated, Figure 58. 
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Figure 58.  (Top) Kinetics of 212Pb2+ in 1 M HCl media, (Middle) 113Sn4+ in 4 M HCl media and 
(Bottom) 197mHg2+ in 0.4 M HCl media on Pb resin (50-100 µm), varying equilibration times. 



   
 

110 
  

The sorption of Pb2+ on the Pb resin is extremely fast with near immediate uptake and full 

equilibrium reached within five minutes. The sorption of Sn4+ on the Pb resin was considerably 

slower than that of Pb2+, presumably from the need to extract a hydronium ion into the crown 

cavity before the extraction of the negatively charged SnCl6
2- complex, as well as the need for 

two properly oriented crownether molecules on the rigid resin backbone. However, full 

equilibrium was reached after approximately an hour. Sorption of Hg2+ was the slowest with full 

equilibrium not reached until beyond 8 hours and very little sorption observed until at least 1 

hour had passed. Potential reasons for the slow equilibration of Hg2+ can be attributed to the 

extraction mechanism discussed in Section 5.2.2 above. Due to the more complex multiple 

ligand extraction and the fact that the crown ether cavity is still believed to stabilize the 

extracted mercury species [226], the overall rate of this extraction is very slow on the resin 

based system. This is potentially made even slower due to the requirement of two crown ethers 

in the correct orientation, which might be less favorable due to the rigid resin backbone.  

It is possible that in a liquid-liquid extraction system, without the rigidity of the resin 

system, the Sn4+ and Hg2+ extractions may increase in speed.  Similar Hg2+ extractions (though 

not carrier-free) by DC18C6 are reported to reach equilibrium in about 30 minutes [226]. 

However, it would be expected that the Sn4+ would still be faster than Hg due to the lack of 

involvement of the crown cavity in the extraction and would only be limited mainly by the 

kinetics of the H3O+ extraction. 

6.2.4 Column study 

The column experiments were used to determine if a sequential extraction of Pb2+ and 

Sn4+ could be achieved by varying only the HCl concentration. Based on the batch study results, 

a load solution of 3 M HCl was chosen due to the fact that both Pb2+ and Sn4+ are retained on the 

Pb resin at this concentration. Two separate columns were run, one with the goal of removing 
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Pb2+ before Sn4+ and the other with the reverse order. To remove Pb2+, 8 M HCl was used while 

0.4 M HCl was used to remove Sn4+ (Figure 59).  

 
 

 
Figure 59.  Column elution of 2 mL pre-packed Eichrom Pb resin cartridges at ~2 mL/min flow 

rate for the separation of Pb2+ from Sn4+ with (Top) Pb eluted first and (Bottom) Sn eluted first. 
 

 

Both analytes behaved as expected with absolutely no breakthrough during column loading. 

Complete elution of Pb2+ was achieved with no Sn4+ breakthrough and vice versa, usually within 
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the first couple of free column volumes. These separation schemes are fast and yield an 

excellent separation between Pb2+ and Sn4+ regardless of their elution order.   

 Additional columns were done with Hg2+ added to the load solutions and attempts were 

made to rapidly separate Pb2+, Sn4+ and Hg2+ by only varying the HCl concentrations. Based on 

the batch study results, a load solution of 3 M was chosen in hope that all three elements would 

be retained by the column, followed by elution of Sn4+ with 0.4 M HCl, then Pb2+ with 8 M HCl 

and finally Hg2+ with concentrated HCl, Figure 60. 

 

 

Figure 60.  First column elution of 2 mL pre-packed Eichrom Pb resin cartridges at ~2 mL/min 
flow rate for the separation of Sn4+ from Pb2+ and Hg2+. 

 

The initial column elution presented in Figure 60 shows a small bleeding of Hg throughout the 

Sn and Pb fractions before it is eluted in the concentrated HCl fractions. The reason for the 

double elution peaks during the concentrated HCl fractions is due to the fact the column was 

capped for one hour between each peak, due to the fact after the initial peak it was realized the 

desorption kinetics of Hg were very slow. Results of this column indicated that 3 M HCl was too 
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high a concentration for the load solution due to the slow sorption kinetics of Hg, which led to 

the eventual bleeding of Hg off the column (see Section 6.2.3 for a discussion of the Hg kinetics 

tests). Once it was discovered that Hg had very slow equilibrium kinetics, a second column was 

run with a load solution concentration of 0.4 M HCl. Under these conditions Sn4+ is not retained 

by the column; however, the extraction of Hg2+ is closer to its maximum at this concentration 

and the hope was it would be retained at the ~2 mL/min flow rate, Figure 61. 

 

 

Figure 61.  Second, improved, column elution of 2 mL pre-packed Eichrom Pb resin cartridges at 
~2 mL/min flow rate for the separation of Sn4+ from Pb2+ and Hg2+. 

 

An additional change between the first and second column was that after loading the 1 mL 0.4 

M HCl load solution and elution of Sn4+ with the 2 mL/min flow rate, the column was capped for 

one hour to ensure Hg2+ was retained. Then, with the 2 mL/min flow rate, Pb2+ was eluted with 8 

M HCl. After addition of the first concentrated HCl fraction to the column, the column was again 

capped for one hour to assist with desorption of Hg2+. After the hour had passed, elution of Hg2+ 

was finished with additional concentrated HCl fractions. As seen in Figure 61, the change of load 
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solution to 0.4 M HCl and the hour gaps between loading and eluting of Hg enable a clean 

separation of Pb2+ from Sn4+ and Hg2+. The Hg2+ elution peak was still slightly broad but did elute 

as expected. In both cases, Figures 60 and 61, the Pb2+ and Sn4+ behaved as they did in the initial 

Sn and Pb separations depicted in Figure 59.  While it was seen that Pb and Sn can be separated 

on the second time scale as required for a Fl experiment, the addition of the pseudo-homolog 

Hg made the separation not possible to perform on the second time scale. It would be possible, 

however, to determine whether Fl was more Pb or Sn like or neither; however, a definitive Hg-

like conclusion as to its behavior would be nearly impossible with the current system due to the 

slow Hg kinetics of sorption and desorption. The use of thiacrown ethers (discussed in Chapter 

7) shows promise for increasing the kinetics of the system for Hg. 

6.3 Conclusions and Future Work 

In this chapter, the extaction behavior of Pb2+, Sn4+ and Hg2+ from HCl media was studied 

using Eichrom Pb resin, which contains the DtBuC18C6 extractant. In agreement with previously 

reported data, the batch results show Pb2+ extracts at low HCl concentrations, from 0.04 – 2 M. 

It was also observed that Sn4+ extracts above 1 M HCl. While Hg2+ shows large extraction at low 

HCl concentrations and negligible extraction at high HCl concentrations. The extracted Pb 

species is most likely the Pb2+ ion in the crown ether cavity with charge balanced by Cl-. Due to 

the formation of SnCl62-, Sn most likely extracts as an ion-associate complex between the 

negatively charged Sn chloro-complex and two hydronium crown ether complexes. Mercury 

most likely is extracted as HgCl2 between two crown cavities.  

The results also showed that the reaction kinetics were relatively slow on the scale of 

minutes to hours to achieve full equilibrium. However, the k’ for both Pb2+ and Sn4+ was >50 

within a few seconds, indicating that the separation can be performed on the second timescale, 

even though complete equilibrium is not reached. However, the Hg2+ kinetics were much slower 
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than that of Pb2+ and Sn4+, and the three elements could not be separated on the second time 

scale.  

Speciation studies examined Sn4+ that was extracted by DtBuC18C6. The slope from 

linear regressions of the Kd of Pb2+ and Sn4+ as a function of the concentration of  DtBuC18C6 

was found to be 0.94 ± 0.02 and 1.61 ± 0.05, respectively. This corresponds to the well-known 

notion that Pb2+ extracts directly into the crown ether cavity, and gives strength to the notion 

that two positively charged crown ether-hydronium ion complexes extract one SnCl6
2- species. 

While data was inconclusive due to poor counting statistics, the Hg2+ extraction is believed to 

be:  HgCl2·2DtBuC18C6. 

The column studies established separation schemes to isolate pure Pb2+ or Sn4+ fractions 

from the Pb resin through the modification of the HCl concentration. The increased number of 

theoretical plates in the column system compared to that of the batch system allows for much 

faster flow rates, such as the 2 mL/min used in this work, while retaining full extraction of both 

analytes. Thus, the column experiments confirmed the results from batch studies and provide 

evidence that the Pb resin is suitable for the selective extraction of both Pb2+ and Sn4+. If an 

appropriate apparatus was developed and the extraction behavior of Fl was studied using this 

same crown ether, comparing to the behavior of Pb2+ and Sn4+, the results would indicate 

whether Fl is more Pb2+ or Sn4+ like.  

Additional column studies aimed at separating the homologs Pb2+ and Sn4+ as well as the 

pseudo-homolog Hg2+ on the second time scale from a pure HCl matrix were also performed. 

Results indicated that with large equilibration times between column loading and elution of Hg2+ 

clean elution fractions could be obtained. However, when the column was run with ~2 mL/min 

flow rates, Hg2+ bled through the column when the flow was not halted to allow for it to fully 
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adsorb and desorb. As a result, while it would be possible to discern if Fl was Pb or Sn like, the 

use of Eichrom’s Pb resin would yield inconclusive data as to whether Fl is Hg like.  

Before an on-line Fl experiment can be performed, further experiments are necessary to 

determine the maximum rate at which the extraction can be carried out while maintaining the 

same level of separation. Future work is also needed to develop a continuous automated 

chemistry apparatus capable of running columns and preparing samples on the time scales 

required for a Fl experiment. Assuming an automated system was capable of performing the 

chemical separations and sample preparation on the desired time scales, the chemical system 

presented in this work would be capable of determining whether Fl in the aqueous phase is 

more Pb2+ or Sn4+ like; however, due to the extremely slow kinetics Hg2+ like behavior would be 

difficult to discern with any level of confidence. An on-line experiment would first need to be 

performed and optimized with the short-lived Pb and Sn homologs produced in the same 

manner Fl would be, so direct comparisons between Fl and the homologs could be made. If Fl 

was seen in an on-line experiment optimized for Sn elution (high HCl concentrations) one would 

expect Fl to be forming more negatively charged complexes and be extracting based on ion 

exchange. Similarly, a system optimized for Pb elution (low HCl concentration) would indicate, if 

seen, that Fl extracts into the crown ether cavity most likely as a cation.   

It is possible with more work that at very low HCl concentrations Hg2+ may be retained 

by the column at large flow rates. If this is the case an experiment with a load solution of 0.001 

M HCl would retain both Pb2+ and Hg2+ while Sn4+ passes through. Under these conditions an 

observed Fl atom could be confirmed to be Sn4+ like. Due to the extremely high Hg2+ extraction 

at this low of a concentration, changing to 8 M HCl to elute Pb2+, during which a Fl atom could 

be considered Pb2+ like might be possible while retaining Hg2+ like atoms on the column. 

Experiments were performed loading the column at 0.4 M HCl and waiting one hour before 
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changing to 8 M HCl to elute Pb2+. Without this one hour wait it was seen that approximately 20-

30% of the Hg2+ bled off the column. Now while the extraction is stronger at 0.001 M as seen in 

the Figure 6-2 batch study, it would still be expected that due to the slow kinetics at least some 

Hg2+ would bleed off the column in the Pb2+ fraction. Therefore, while these conditions would 

enable Sn4+ like character to be elucidated from Pb2+ and Hg2+ it would still be difficult to discern 

if there is any true Hg2+ like character in Fl. 
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CHAPTER 7:  EICHROM’S PB RESIN WITH FL HOMOLOGS IN NITRIC ACID 

Initial experiments were performed to test experimental procedures for Pb uptake on 

the Pb resin from HNO3 and compare them against literature results. Following confirmation of 

procedures characterization of the Pb resin for extraction of Pb, Sn and Hg began from HCl, 

Chapter 6. In this chapter a look into the extraction behavior of the direct homologs of Fl, Pb and 

Sn, on Eichrom’s Pb resin is explored from a HNO3 matrix.  

 Batch experiments were conducted to determine the validity of initial experimental 

procedures by comparing the Pb extraction from HNO3 to literature values. Subsequent batch 

experiments with Sn4+ in HNO3 matrices were performed to assess the HNO3 system as a 

potential for Fl chemistry and compare it to that of the HCl system discussed in Chapter 6. 

Kinetic studies for the sorption of Pb2+ on the Pb resin from HNO3 are performed and a column 

separation of Pb2+ and Sn4+ is described. Comparisons to the HCl system from Chapter 6 are 

given, and a potential Fl experiment that begins from an HNO3 system is outlined.  

7.1 Experimental 

7.1.1 Reagents and Materials 

 Similar to Chapter 6, the same Pb resin was used. All acids were prepared by volumetric 

dilution from trace-metal grade acids and de-ionized water.  A total of 11 different HNO3 

concentrations were used for experiments, Table 21. 

 

Table 21.  Acid solutions for various HNO3 Pb resin studies. 

Acid Concentration (M) 

HNO3 0.001, 0.1, 0.2#, 0.4, 0.8#, 1.0, 1.4*, 2.0, 4.0, 
6.0, 8.0, 10.0, Conc.* 

*Used only in Pb batch study. 
#Used only in Sn batch study. 
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Tracer solutions of 212Pb and 113Sn were made by taking tracers prepared the same was as 

described in Chapter 6 and evaporating and reconstituting them in 2.0 M HNO3 (evaporated two 

times with concentrated HNO3 before adding 2.0 M to ensure conversion).  

7.1.2 Batch Studies 

 General batch study procedures are outlined in Chapter 3. The Pb2+ batch study was 

performed in the same manner as the batch study in Chapter 6, with a few minor differences. To 

a 1.5 mL (15 mL for Pb experiment) centrifuge vial, 10-20 mg Pb resin was added along with 1 

mL of HNO3 from one of the concentrations in Table 21. The resin was allowed to mix for one 

hour on a vortex mixer to allow for preconditioning. A 100 µL spike containing either 212Pb or 

113Sn was added to the solutions and placed on a vortex mixer for 3 hours to allow equilibration. 

During equilibration each sample was counted for 300 seconds by HPGe gamma spectroscopy. 

After equilibration the samples were filtered through a 0.45 µm PTFE filter into a separate 1.5 

mL (15 mL for Pb experiment) centrifuge tube. In the Pb experiment this centrifuge tube was 

counted by HPGe gamma spectroscopy. In the Sn experiment a 700 µL spike was taken and 

added to a new 1.5 mL centrifuge tube along with 400 µL of de-ionized water to maintain 

counting geometry before being counted by HPGe gamma spectroscopy. In the Pb experiment 

the backend counts may have up to 10% solution loss due to the filter which adds a slightly 

larger error to the final results; however, due to the fact the extractions of Pb onto the Pb resin 

was very large the effect from solution loss was barely noticeable. This procedure was not 

modified until later when the analytes exhibited nearly zero uptake on the Pb resin and the 

solution loss resulted in much greater errors. The Pb resin capacity factor (k’) was calculated as 

described in Chapter 3. Reported errors for the Pb experiment are from counting statistics as 

this was only performed once; for the Sn experiment, the errors are from the standard deviation 

of three replicates.    
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7.1.3 Kinetic Study 

 The kinetic study was performed similarly to the analogous procedure in Chapter 6. A 2 

M HCl 212Pb stock solution was evaporated to dryness with a few drops of concentrated HNO3 

and cycled to dryness twice with 1 M HNO3 before being brought up in 3 mL 1 M HNO3 to serve 

as the stock solution for the kinetic study. Three standards were made by adding 1 mL 1 M HNO3 

along with a 100 µL spike of the 212Pb stock solution, and counted by HPGe gamma spectroscopy 

for 120 seconds, the average of these counts served as the front end value for each sample. 

Samples were prepared, in triplicate, by adding 1 mL 1 M HNO3 and 10-20 mg Pb resin to a 1.5 

mL centrifuge tube and mixing on a vortex mixer for 1 hour to allow for preconditioning of the 

resin. Following preconditioning a 100 µL spike of the 212Pb stock solution was added to the 

samples and each was mixed for the desired time interval (30 seconds to 3 hours), before 

quickly filtering to isolate the solution from the resin. A 700 µL spike of each filtered solution 

was added to 400 µL of de-ionized water (to maintain counting geometry) and the samples were 

counted by HPGe gamma spectroscopy for 120 to 300 seconds.  

7.1.4 Column Studies 

 General column study procedures are described in Chapter 3. An aliquot of 212Pb and 

113Sn were brought to dryness in a 15 mL centrifuge tube 2 times with HNO3 before being 

reconstituted in 1 mL 1 M HNO3 (column load solution). This was counted by HPGe gamma 

spectroscopy for 300 seconds to determine initial activity. A 2 mL pre-packed vacuum flow Pb 

resin column was conditioned with 10 mL 1 M HNO3 with a flow rate of ~2 ml/min. The 2 

mL/min flow rate was maintained for all elution fractions. The stock solution was added on to 

the column and then collected as the load fraction. To elute 212Pb and 113Sn 1 mL elution 

fractions (x7-8) of the desired HNO3 or HCl concentration were collected in separate 15 mL 

centrifuge tubes. Table 22 summarizes the HNO3 Pb/Sn column. 
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Table 22.  Summary of vacuum flow column for Pb and Sn separation in HNO3. 

Fraction Concentration of HCl* 

or HNO3
# (M) 

Volume (mL) / 
Number of Fractions 

Element Eluted 

Load 1# 1 (load solution) Pb retained 

Sn Elute 1# 1 / 7 Sn finished eluting 

Pb Elute* 8* 1 / 8 Pb elute 

 
 

Care was taken to stop the column flow just as liquid was about to reach the top-frit so the 

column never ran dry and each elution fraction was a consistent 1 mL. Fractions were counted 

by HPGe gamma spectroscopy. Data analysis was performed as described in Chapter 3.  

7.2 Results and Discussion 

7.2.1 Batch Study  

 The effects of HNO3 concentration on the uptake of Pb2+ and Sn4+ by the Pb resin are 

shown in Figure 62. 

 

 
Figure 62.  The batch uptake (k’) of 212Pb2+ and 113Sn4+ as a function of nitric acid media on Pb 

resin (50-100 μm) with a 3 hour equilibration time. 
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Consistent with literature, Pb shows a very strong affinity for the resin for close to the entire 

range of concentrations tested and still has a k’ of 39±10 at concentrated HNO3 [201]. The 

uptake from HNO3 is about an order of magnitude higher than with HCl, owing to increased 

stability of the extracted complex: 

Pb(HNO3)2𝑎𝑞 + DtBuC18C6 ⇄   Pb(HNO3)2 · DtBuC18C6 

In HNO3 Sn4+ most likely forms the oxide SnO2, which due to the size of Sn4+ cation has no ability 

to fit into the crown cavity and does not extract [135]. Due to the fact this is a neutral species 

the analogous ion-exchange complex with the crown ether that occurs in the HCl system cannot 

occur in the HNO3 system.  

7.2.2 Kinetic Study  

 Batch study data presented in Figure 62 indicates that Pb and Sn may be separated from 

an HNO3 matrix. Due to the fact Sn does not extract kinetic studies were not performed on Sn4+; 

however, kinetic studies were performed to see if Pb2+ has suitable kinetics for a future Fl 

experiment. The kinetics of Pb on the resin at 1 M HNO3 (near peak extraction) was investigated, 

Figure 63. 
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Figure 63.  Kinetics of 212Pb2+ in 1 M HNO3 media on Pb resin (50-100 µm), varying equilibration 

times. 

 

The sorption of Pb2+ was extremely fast with k’ values of > 400 achieved in 30 seconds or less. 

This result is far faster and stronger uptake than that observed for Pb2+ in HCl media (Figure 6-4). 

This indicates that the Pb(NO3)2 complex forms faster and extracts more rapidly than the 

analagous chloride species most likely due to higher stability with DtBuC18C6. Similar to the HCl 

system, full equilibrium is reached within five minutes. Large errors in the longer equilibration 

times are due to poor backend counting statistics due to the large k’ values. Results indicate that 

it is possible to extract Pb with the Pb resin from HNO3 on the second time scale, a property 

required for a Fl experiment.  

7.2.3 Column Study  

 Column experiments were performed to determine if a sequential extraction of Pb2+ and 

Sn4+ was possible starting from an HNO3 matrix. Due to the fact Sn does not extract on the Pb 

resin from any HNO3 concentration, a load solution of 1 M HNO3 was chosen to have strong 
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retention of Pb. The Sn was eluted by continuing to take 1 M HNO3 fractions before switching to 

8 M HCl to elute Pb (Figure 64). 

 

 
Figure 64.  Column elution of 2 mL pre-packed Eichrom Pb resin cartridges at ~2 mL/min flow 

rate for the separation of Pb2+ from Sn4+ with an HNO3 starting matrix. 

 

As expected, Sn4+ passed through the column without extraction in the 1 M HNO3 load and 

elution fractions. Changing to 8 M HCl, the same concentration used to elute Pb2+ in Chapter 6, 

yielded complete elution of the Pb2+ on the column. Due to the fact that even at concentrated 

HNO3 Pb has a significant k’, elution of Pb from an HNO3 matrix was not possible.  

7.3 Conclusions and Future Work 

 This chapter explores the extraction behavior of the Fl direct homologs Pb and Sn from 

an HNO3 matrix with the EIchrom Pb resin. Similar to literature, Pb2+ shows much stronger 

uptake over the entire range of HNO3 concentrations than in the HCl system presented in 

Chapter 6. The extraction mechanism is similar with Pb(NO3)2 being extracted into the cavity, 

and the increased extractability is most likely due to stronger complex stability with the crown 
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ether. In HNO3 Sn4+ more than likely exists as SnO2, a neutral species, which due to the small 

ionic radius of Sn cannot be extracted by the crown ether. Given the fact the Sn extraction in HCl 

was most likely due to an ion-exchange type extraction with a cationic crown ether species, in 

HNO3 the lack of anionic Sn species can be attributed to the lack of extraction. While it was not 

tested due to the lack of Hg radioisotopes, Hg should form similar complexes to that of Pb in 

HNO3, and it can be expected that Hg would also extract on the Pb resin. Therefore, it might be 

possible to separate Pb, Sn and Hg with the Pb resin. 

 Kinetic study results indicate that the update kinetics for Pb2+ from an HNO3 matrix on 

the Pb resin are much faster than from the HCl system of Chapter 6. While Hg was not tested, 

due to analogous complex formation it might be the case that Hg kinetics would also increase 

from the HNO3 system. In the second time scale of a Fl experiment, the kinetic study indicates 

Pb would not be at full equilibrium; however, sufficient extraction (much higher than in HCl) 

would be achieved to reach an equilibrium-like state where behavior of Pb can be examined on 

the second time scale. It is possible to separate Pb and Sn on the second time scale from an 

HNO3 matrix. 

 Column studies ran at ~2 mL/min flow rates on a vacuum box with 2 mL pre-packed Pb 

resin cartridges shows clean separations of Pb2+ and Sn4+. Even with the fast flow rates, 

complete recovery of both Pb and Sn was attainable with no detectable cross-contamination 

between elution of each. Therefore, it would be possible from an HNO3 matrix using the Pb resin 

to separate the direct homologs of Fl on time scales necessary for a Fl experiment. 

 Due to the possibility of Fl having Hg behavior, prior to any on-line experiment, future 

work must be performed to determine the uptake parameters and kinetics of Hg on the Pb resin 

from an HNO3 matrix. From the results presented in this chapter, an experiment could be 

designed to determine whether Fl is similar to Pb2+. A column experiment which was run on-line 
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with 1 M HNO3 for a set duration then switched to 8 M HCl for a set duration would be able to 

determine if FL was Pb2+/Hg2+ like or Sn4+ like. If a Fl atom was observed in the 1 M HNO3 

fractions it would be more similar to Sn4+ than Pb2+. If a Fl atom was observed in the 8 M HCl 

fractions it would be more similar to either Pb2+ or Hg2+, due to the fact that Hg2+ under the flow 

rates required for an on-line Fl experiment would elute off the Pb resin from 8 M HCl (Chapter 

6). Another possibility is to use a liquid-liquid extraction system with DtBuC18C6 as the organic 

extractant with an initial 1 M HNO3 stream and then back extraction of the organic phase with 8 

M HCl, counting each aqueous phase. In this case Sn4+ like behavior would be observed in the 1 

M HNO3 aqueous phase and Pb2+ or Hg2+ behavior in the 8 M HCl aqueous phase. Both of these 

proposed experiments assume that an automated chemistry system can perform these 

separations and prepare dried α-spectroscopy samples for Fl detection at the time scales 

required.  
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CHAPTER 8:  THIACROWNS WITH FL HOMOLOGS AND PSEUDO-HOMOLOGS 
 
 As discussed in Chapter 4, the non-commercially available thiacrown ether hexathia-18-

crown-6 (HT18C6) was synthesized and characterized for use in extractions. Due to their 

increased affinity for softer metals it was believed that thiacrown ethers or some derivative of 

them may show stronger extractions and better kinetics for the Fl homologs and pseudo-

homologs. 

 In this chapter, initial studies of the extraction behavior of the synthesized HT18C6 and 

the smaller commercially available tetrathia-12-crown-4 (TT12C4), Figure 65, are investigated.  

 

                                 

Figure 65.  (Left) Tetrathia-12-crown-4, (Right) Hexathia-18-crown-6. 

 

Liquid-liquid extraction studies with the thiacrowns in dichloromethane (DCM) are performed 

and compared. Insight into potential extraction systems and synthesis of thiacrowns which may 

show better extraction are discussed.  

8.1 Discussion on solubility 

 The solubility of HT18C6 in DCM, nitrobenzene, dimethyl sulfide (DMS) and toluene was 

briefly tested. Table 23 summarizes the observations.  
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Table 23.  Observed HT18C6 solubility. 

Organic Approximate Concentration 
(M) 

Observation 

Dichloromethane 0.0001-0.003 Dissolved at all 
concentrations after one 

hour began to precipitate out 
of solution in 0.003 M 
(possible suspension) 

Nitrobenzene 0.0001-0.003 Dissolved only slightly at 
0.0001 M undissolved higher 

Dimethyl sulfide 0.0001-0.03 Dissolved and stayed 
dissolved at all 

concentrations tested 

Toluene 0.0001 Did not dissolve 

 
 

After observation of particulates in 0.003 M HT18C6 in DCM, concentrations of approximately 

0.0001 M were chosen for all experiments. DMS was not used for experiments due to the 

potential for it to extract Hg on its own.  

8.2 Reagents and Materials 

 The HT18C6 used was synthesized as described in Chapter 4, with no further 

purification. TT12C4 (≥ 90%, Sigma Aldrich) was purchased from Sigma Aldrich and used as 

received. DCM (99.9 %, un-stabilized, Fisher) was used without further purification. Acids were 

prepared by volumetric dilution from trace-metal grade acids and de-ionized water (18 MΩ∙cm), 

in the concentrations presented in Table 15 above.  Tracer solutions were identical to the 

tracers discussed in Chapter 6.1.1.  

8.3  HT18C6 

8.3.1 Solvent Extraction studies Experimental 

 General solvent extraction (SX) procedures are presented in Chapter 3.3. Two SX 

experiments were performed, the first being a preliminary experiment to measure the uptake of 

Hg by HT18C6, and the second was to explore the extraction behavior of Pb, Sn and Hg. For the 
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Hg extraction experiment a solution was prepared by dissolving 22 mg of HT18C6 in 25 mL of 

DCM in a volumetric flask, and sonicating the solution to ensure the HT18C6 dissolved.  This 

yielded a solution that was ~0.003 M HT18C6. Using the acid concentrations from Table 15, 0.48 

mL of acid was added to 0.5 mL of the HT18C6 stock solution in DCM. These solutions were 

mixed with a vortex mixer for 30 min to precondition the phases. A 20 µL spike of a stock 

solution containing 197mHg in 2.0 M HCl was added and the samples were allowed to mix on a 

vortex mixer for 1 hour. Following equilibration, 300 µL of each phase were added to clean 1.5 

mL centrifuge tubes using a direct displacement pipet, and counted by HPGe gamma 

spectroscopy (300-1800 seconds to obtain suitable counting statistics) to determine distribution 

ratios as described in Chapter 3.3.2. This experiment was done in triplicate using the same 

HT18C6 stock solution.  

 To determine the extraction behavior of Pb, Sn and Hg a new HT18C6 stock solution was 

prepared by dissolving approximately 22 mg of HT18C6 in 25 mL of DCM in a volumetric flask by 

the same method mentioned above. This yielded a solution that was ~0.0001 M HT18C6. The 

phases were equilibrated by the same manner mentioned above and the experiment was 

performed in the same manner, with the exception that the 20 µL spike was from a stock 

solution containing 212Pb, 113Sn and 197mHg in 2.0 M HCl. This experiment was only performed 

one time and the errors were determined from the propagation of counting statistics rather 

than originating from standard deviation of replicates. 

8.3.2 Solvent extraction studies results and discussion 

 Initial SX studies aimed to determine the Hg uptake by HT18C6 in DCM from an HCl 

matrix. Figure 66 shows the effect of HCl concentration on the uptake of Hg by HT18C6 in DCM. 
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Figure 66.   Uptake of 197mHg as a function of HCl concentration by ~0.003 M HT18C6 in DCM. 

Errors from standard deviation of three replicates. 

 
 

Mercury shows very strong affinity with near 100 % extraction for concentrations up to and 

including 1 M HCl. As the concentration increases beyond 1 M HCl Hg extraction decreases untill 

it reaches zero by 8 M HCl. Due to the exodentate nature of the sulfurs in HT18C6 (see Chapter 

1), it is possible for Hg to either be extracted off the side of the crown ring, or for the crown to 

conform around the Hg, or potentially a hybrid bridged structure between Hg and multiple 

HT18C6 rings. Due to the fact that energy must be expended to distort an exodentate thiacrown 

to bind a metal similarly to the traditional crown ether, the most likely complex is a bridged or 

sandwich complex [178,181-184]. Due to the fact that the solubility of HT18C6 was very low, it 

was impossible to do a speciation study by varying the crown concentration to attempt to 

elucidate the number of HT18C6 molecules involved in the extraction. 

 The above experiment was repeated with the addition of 212Pb and 113Sn to the 

radionuclide stock solution containing 197mHg, Figure 67. 
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Figure 67.  Uptake of 212Pb, 113Sn and 197mHg as a function of HCl concentration by ~0.0001 M 
HT18C6 in DCM. Errors from counting statistics. 

 

 
As can be seen the same behavior was observed for Hg as in Figure 66; however, unexpectedly 

Pb showed no extraction over the entire concentration range tested. Limits were set by 

calculating distribution ratios based on background counts in the aqueous phase or organic 

phase (whichever was fundamentally zero) over the counting duration. Other thiacrown systems 

have been shown to extract Pb2+, but in most cases a substituent on the thiacrown forced the 

sulfurs to be oriented endodentate to the ring like a traditional crown ether [230]. Therefore, 

the HT18C6 macrocycle may not be able to form a bridged or sandwich complex with Pb2+ and 

the energy required for conformation to an endodentate configuration is most likely too large to 

favor bonding of Pb2+ in the cavity. Unlike DtBuC18C6 discussed above, extraction of a cationic 

species to activate the crown ether is probably not possible with HT18C6 and thus the SnCl6
2- 

complex is not extracted.  
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8.4 TT12C4 

8.4.1 Solvent Extraction studies experimental 

 The extraction behavior of Pb, Sn, and Hg on TT12C4 was determined in the same 

manner as for HT18C6 described in Section 8.3.1. The same radionuclide stock solution was 

used. The stock solution of TT12C4 was prepared by dissolving 24.8 mg of TT12C4 in 25 mL of 

DCM, giving a final TT12C45 concentration of ~0.0001 M, in a volumetric flask in the same 

manner as for HT18C6. The same experiment except using the TT12C4 stock in place of the 

HT18C6 one from Section 8.3.1 was performed. One replicate was performed and error was 

propagated from counting statistics.  

8.4.2 Solvent Extraction Studies Results and Discussion 

 Figure 68 shows the extraction of 212Pb, 113Sn and 197mHg by TT12C4 in DCM as a function 

of HCl concentration. 

 

 
Figure 68.  Uptake of 212Pb, 113Sn and 197mHg as a function of HCl concentration by ~0.0001 M 

TT12C4 in DCM. Errors from counting statistics. 
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As can be seen, similar behavior is exhibited by TT12C4 and HT18C6. The extraction behavior is 

overall less than that observed with HT18C6 for Hg, which, due to the fact the extraction is most 

likely not cavity based, could have to do with the fact that there are less sulfurs present in 

TT12C4. The fact that both TT12C4 (1.2-1.5 Å cavity) and HT18C6 (2.6-3.2 Å cavity) extract Hg 

but not Pb indicate that the extraction is not occurring within the cavity of the crown ether, but 

rather some bridged or sandwich complex. This can be assumed due to the large ionic radius of 

Hg2+ (1.1 Å) being too small to fit in the TT12C4 cavity even if it was to conform to an 

endodentate configuration [226]. 

8.5 Conclusions and Future Work 

 Due to the endodentate nature of the sulfurs in thiacrowns compared to the oxygens of 

normal crowns, the extraction mechanisms have the potential to be different, see Chapter 1. It 

is well established that soft nature of sulfur makes thiacrowns especially good at complexing 

heavy-metal ions such as Hg2+ and Pb2+ [230]. Due to the fact both HT18C6 and TT12C4 

extracted Hg2+ with the TT12C4 extraction being less than the HT18C6, but still significant, it can 

be inferred that the extraction is not based on the cavity but rather some bridged or sandwich 

complexation of Hg (due to the significantly different cavity diameters between the thiacrowns) 

[178]. Since Pb2+ would be expected to extract by thiacrowns but did not in these cases, it also 

strengthens the idea that this extraction is not cavity based and that the thiacrowns tested 

could not form a configuration suitable for extraction of Pb2+. 

 Due to solubility limitations, changing the thiacrown concentrations to test extraction of 

Hg2+ as a function of the thiacrown concentration was not performed. This experiment could 

help elucidate the extracted complex. It is most likely a sandwich complex or bridged complex 

which would require multiple thiacrown molecules per metal extracted. 
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 Potential synthesis of HT18C6 derivatives with substituents that force the thiacrown 

into an endodentate configuration should show increased extraction of both Hg2+ and Pb2+. This 

would enable similar complexation as with the analogous 18C6 complex except with the softer 

sulfurs which should increase the kinetics and extraction magnitude significantly.   

 Initial extraction tests indicated that the Hg was extracted within minutes. This is 

significantly faster than what was observed with DtBuC18C6. Future work could explore these 

kinetics more to determine the exact increase in extraction rate. However, due to the fact 

HT18C6 was unable to extract Pb, it was determined that the un-substituted thiacrown would 

not suite a Fl chemical experiment due to its inability to distinguish between Pb, Sn and Hg. 

Therefore, before further experiments are performed a HT18C6 molecule with substituents that 

force an endodentate configuration should be synthesized and characterized. This macrocycle 

should show extraction of at least Pb and Hg. As an aside, however, the HT18C6 macrocycle 

appears to be very specific for Hg compared to the other homologs and pseudo-homologs of Fl. 

Therefore, it may be possible to design an experiment where only Hg or non-Hg like character is 

determined by use of the specific HT18C6 extractant, due to the fact no affinity for Pb or Sn was 

observed. 
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CHAPTER 9:  ELEMENT 115 HOMOLOGS 
 
 This chapter described the initial studies on the extraction behavior of element 115 

homologs on the Eichrom Pb resin and HT18C6. As mentioned in Chapter 1, element 115 

currently sits at the bottom of group 15 on the periodic table. The direct homologs of element 

115 are, therefore, Bi and Sb. 

 In this chapter, batch experiments are performed with 207Bi and 220mSb with the Eichrom 

Pb resin from both HCl and HNO3 matrices. Insights into a potential extraction system using 

mixed HCl or HNO3 with KI is also explored. The uptake from SX studies with HT18C6 in DCM 

from HCl is explored for both Bi and Sb. Potential future experiments are discussed as well as 

implications for an element 115 on-line experiment. 

9.1  Reagents and Materials 

 As described in Chapter 6, the Pb resin (50-100 µm, 40 % w:w, Eichrom Industries, Inc.) 

was used for batch studies. Dichloromethane (99.9 %, un-stabilized, Fisher) was used without 

further purification. Acids were prepared by volumetric dilution from trace-metal grade acids 

and de-ionized water (18 MΩ∙cm). A total of 11 different HCl and HNO3 concentrations were 

used for experiments, Table 24. 

 

Table 24.  Acid solutions for various studies element 115 homolog studies. 

Acid Concentration (M) 

HCl 0.001, 0.01#, 0.1, 0.2, 0.4, 0.8, 1.0, 2.0, 4.0, 
6.0*, 8.0, 10.0, Conc.# 

HNO3 0.001, 0.1, 0.2, 0.4, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0, 
10.0 

#Only used on HT18C6 study. 
*Only used on Pb resin study.  
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Potassium iodide used for experiments was a Baker Analyzed Reagent (≥99.8 %) and used 

without purification.  

9.2  Experimental  

9.2.1 Batch studies 

 General batch study procedures are described in Chapter 3. Uptake parameters for Bi3+ 

and Sb5+ on Pb resin were explored from both HNO3 and HCl (only HNO3 for Sb). The procedure 

was identical to that described in Chapter 6.1.1. To a 1.5 mL centrifuge tube, 10-20 mg Pb resin 

was added along with 1 mL of HCl or HNO3 with the concentrations from Table 24. The samples 

were placed on a vortex mixer for 1 hour to allow preconditioning of the resin. Radionuclide 

stock solutions of 207Bi and 220mSb were prepared in 2.0 M HCl or HNO3 and 100 µL spikes were 

added to the wet resin in the appropriate acid matrix (Bi and Sb experiments were done 

separately). The solutions were equilibrated for 3 hours during which time each sample was 

counted by an HPGe gamma spectrometer for 300-900 seconds in order to attain sufficient 

counting statistics. Following equilibration the resin was filtered through a 0.45 µm PTFE filter to 

separate the resin from the solution. A 700 µL aliquot of each filtered solution was added to 400 

µL de-ionized water in a new 1.5 mL centrifuge tube to maintain initial counting geometry. Each 

experiment was performed in triplicate and reported errors are based on the standard deviation 

of the three replicates. The Pb resin capacity factor (k’) was calculated as described in Chapter 3. 

Reported values for HNO3 and HCl concentrations were calculated from the combination of the 

1 mL of initial acid and the 100 µL of the 2 M spike solution. 

 Based on literature data, which indicated that Sb3+ can be separated from Bi3+ with 18-

crown-6 in DCM from iodide media [231], batch experiments were preformed to test the validity 

of this extraction with the Pb resin and modified matrices. A KI solution was prepared by 

dissolving 24.92 g KI in 50 mL of de-ionized water in a volumetric flask resulting in a solution of 
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3.0 M KI. To a 1.5 mL centrifuge tube 1 mL of HNO3 of HCl (0.001, 0.4, 1.0, 2.0, 6.0, 8.0 or 10.0 

M) was added to 10-20 mg Pb resin along with 30 µL of the KI solution to yield 0.08 M KI. The 

samples were allowed to pre-condition by mixing with a vortex mixer for 1 hour. A 100 µL spike 

of the 207Bi stock solution described above was added to the wet resin in 2.0 M HNO3 or HCl 

(depending on sample matrix). The samples were allowed to equilibrate by mixing on a vortex 

mixer for 3 hours, while being counted for 300 seconds via HPGe gamma spectroscopy. The 

resin was removed by filtering with a 0.45 µm PTFE filter, and a 700 µL spike was added to 430 

µL of de-ionized water in a new 1.5 mL centrifuge tube to maintain counting geometry and 

counted for 1 hour each via HPGe gamma spectroscopy. The Pb resin capacity factor (k’) was 

calculated as described in Chapter 3, with limits on high k’ values set based on background 

counts observed in the channel from 1 hour counts. Errors were determined by propagation of 

counting statistics as each experiment was only performed once.  

9.2.2 HT18C6 SX studies 

 General SX procedures are described in Chapter 3. HT18C6 stock solution was prepared 

by dissolving 20.4 mg HT18C6 in a 25 mL volumetric flask with DCM, giving a final solution 

concentration of approximately 0.0023 M. To a 1.5 mL centrifuge tube, 480 µL HT18C6 stock 

solution along with 500 µL HCl in the concentrations from Table 24 were added. These solutions 

were allowed to mix for 30 min on a vortex mixer to allow for preconditioning of the phases. A 

20 µL spike of 2.0 M HCl containing 207Bi and 124Sb (prior to addition the stock solution was 

evaporated to dryness with 10 µL H2O2 to ensure the Sb was in the Sb5+ state, before being 

brought up in 2.0 M HCl) was added and the samples allowed to mix for 3 hours on a vortex 

mixer to allow equilibration. After equilibration 300 µL of both the organic and aqueous phase 

were added to new 1.5 mL centrifuge tubes with a direct displacement pipette and each phase 

was counted by HPGe gamma spectrometry for 300-3600 seconds to obtain suitable statistics. 
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Distribution ratios were calculated as described in Chapter 3, with errors determined from 

counting statistics since only one replicate was performed.  

9.3 Results and Discussion 

9.3.1  Eichrom Pb Resin 

 Initial batch results performed in triplicate with Bi3+ from both HNO3 and HCl are shown 

in Figure 69.  
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Figure 69.  The batch uptake (k’) of 207Bi as a function of hydrochloric acid (Top) and nitric acid 

(Bottom) on Pb resin (50-100µm) with a 3 hour equilibration time. 

 

As seen in Figure 69, Bi shows no uptake on the Pb resin in either acid system. Despite the fact 

that in HCl it can form BiCl52-, which one might expect to analogously extract as an ion-

associated complex with a H3O+ cationic crown complex, no extraction is shown [232]. This can 

be attributed to unfavorable charge distribution compared to that of SnCl6
2- possibly due to the 

size increase. In HNO3 Bi tends to form a large number of both cationic and anionic complexes or 

neutral complexes, which do not interact with the crown ether [154,155]. In nitric acid Bi most 
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likely exists as Bi(NO3)3, which, since the analogous Pb(NO3)2 complex does extract, may be 

hindered due to steric factors from interaction with the crown core [154].  

 Batch studies were not performed on Sb from HCl due to the fact it was desired to 

ensure its oxidation state was Sb5+. Figure 70 shows batch results performed in triplicate with 

Sb5+ from HNO3. 

 

 
Figure 70.  The batch uptake (k’) of 120mSb as a function of nitric acid on Pb resin (50-100µm) 

with a 3 hour equilibration time. 

 

As can be seen in Figure 70, Sb shows no uptake on the Pb resin. As mentioned in Chapter 1, 

antimony tends to form oxides in HNO3, even cationic oxides [157], which may be responsible 

for its lack of extraction on the Pb resin considering this differs greatly from extracted Pb and Sn 

species. While it is known that Sb can form SbX6
- (where X= F, Cl, Br) these are unfavorable and 

easily hydrolyzed [157,220]. Therefore, an analogous extraction from HCl to Sn4+ is unlikely.  

 It is well known that the most favorable anionic halide formation by both Bi3+ and Sb3+ 

are the BiI4
- and SbI4

- complexes [231]. Literature experiments indicated it is possible to extract 

Bi3+ and Sb3+ from H2SO4 matrices into DCM containing 18C6 [231]. The mechanism for this 
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extraction is first the extraction of K+ into the crown cavity and then extraction of the BiI4
- and 

SbI4
- complex by ion association. Initial experiments to assess the validity of this type of 

extraction with the Pb resin from a HNO3 or HCl matrix mixed with KI were assessed. Batch 

results for Bi3+ extraction from an HNO3 and HCl/KI matrix are shown in Figure 71. 

 

 
Figure 71.  The batch uptake (k’) of 207Bi as a function of hydrochloric and nitric acid media with 

0.08 M KI on Pb resin (50-100 µm) with a 3 hour equilibration time. 

 

As can be seen from Figure 71, extremely strong uptake of Bi3+ is seen in both HNO3 and HCl in 

the presence of 0.08 M KI until an acid concentration of 2 M at which time in both acid matrices 

the extraction drops. The k’ limit was set based on the number of background counts 

(essentially zero) in the one hour long backend counts. The believed extraction mechanism is: 

BiI4aq
− + DtBuC18C6org ⇄   BiI4

− · [X · DtBuC18C6]org
+  

Where X= H3O+ or K+. This drop in extraction could be attributed to potential for competing 

complex formation with the iodide due to the large concentration increases and potentially due 

to the removal of K+ from the crown cavity; however, at higher acid concentrations the crown 

ether cavity will be populated by H3O+ which should enable the ion-exchange extraction to still 
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happen. The formation of non-anionic species in HNO3 should be higher with the prevalence of 

oxide species compared to that of the halide based HCl solution, hence the faster decrease in k’ 

with increase in HNO3. This experiment was not performed with Sb, but based on literature and 

the Bi experiment Sb should extract from this system [231]. While this extraction system allows 

the direct homolog of element 115, Bi, to extract, it is not practical for an on-line element 115 

experiment. Due to the fact a weighable quantity of KI is present in the system, a significant 

amount of mass would be present without additional purification when preparing α-

spectrometry samples, which would affect direct measurement of the element 115 α-decay 

chains. A pure HI system may enable extraction, with the mechanism: 

XI4aq
− + DtBuC18C6org ⇄   XiI4

− · [H3O · DtBuC18C6]org
+  

Where X= Bi or Sb. However, the resin is subject to degradation by the pure HI system, so long 

term experiments with this system would prove difficult.  

9.3.2  HT18C6 

 Sulfide complexes of Bi and Sb are known to exist [220, 232]. Therefore, testing the 

extraction of Bi and Sb by the synthesized HT18C6 extractant out of DCM was performed, Figure 

72. 
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Figure 72.  Extraction behavior of 207Bi and 124Sb by ~0.003 M HT18C6 in DCM, with 3 hour 

equilibration time. Errors from counting statistics. 

 

As can be seen from Figure 72, a slight extraction of Bi is seen around 0.2 M HCl and a 40-80% 

extraction of Sb is seen for all concentrations ≥0.1 M HCl. Due to the fact Bi most likely exists as 

a chloro-species a sandwich or bridged sulfur Bi complex is most likely partially formed, yielding 

the slight extraction around 0.1 M HCl. Antimony is known to make sulfide and complex sulfide 

complexes. In acidic halide solution Sb has a higher affinity for making hydrolyzed or oxide 

complexes instead of halide complexes (though halide complexes have been observed) [157]. 

Therefore, the extraction system is most likely a bridged or sandwich complex with an antimony 

complex ion interacting with the HT18C6 ring sulfurs. Due to the lack of 124Sb this experiment 

was only performed once, and very little insight to the extracted complex can be garnered from 

the results. However, it is noted that Bi and Sb do have some interaction with the thiacrown 

ether, yielding a possibility of a much stronger extraction, after the mechanism is determined, 

by tuning a thiacrown to match the desired properties.  
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9.4 Conclusions and Future Work 

 This chapter explored potential systems for an element 115 chemistry experiment 

through the analysis of extraction behavior of Bi3+, Sb3+ and Sb5+ with the Pb resin and HT18C6. 

From simple acid systems, such as pure HNO3 or HCl systems, essentially no extraction is shown 

for Bi3+ and Sb5+ on the Eichrom Pb resin. This is most likely due to the fact that the charge 

densities of the potential BiCl52- complex different greatly from the analogous SnCl6
2- complex 

which is extracted and the tri-nitrate complex in nitric acid being more stericly hindered from 

interaction with the crown cavity than the di-nitrate Pb complex. In the case of Sb5+ its existence 

as hydrolyzed species or oxides of varying charge in nitric acid could explain its lack of 

interaction with the crown ether.  

 A more promising extraction is based off the fact Bi3+ and Sb3+ readily form iodide 

complexes of the form BiI4
- and SbI4

-. It was shown that from both HNO3 and HCl mixed with 

0.08 M KI it was possible to extract Bi3+ over a wide range of acid concentrations. Presumably as 

an anionic iodide complex associating with a K+ activated crown ether or H3O+ activated crown 

ether core. Similar extractions in literature used H2SO4 as the acid and only very dilute to favor 

the iodide complex formation, competing complex formation as HNO3 and HCl concentrations 

increased can be attributed to the drop in extraction. A possible fix for this would be to perform 

the extraction from pure HI so only the iodide complex would be formed and use 

H3O+·DtBuC18C6 as the extraction media based on ion exchange with anionic Bi or Sb. While, 

due to the lack of Sb isotopes, this was not performed with Sb, this iodide extraction should be 

possible with Sb3+. The KI based system is not suitable for an element 115 experiment due to the 

need to remove KI prior to α-spec sample evaporation, since this would add a mass that would 

make identification of characteristic α-particles of element 115 and its daughters difficult. The 

time it would take to remove the Ki would be too long due to the short half-life of element 115. 
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However, the HI system, if extraction proved to be sufficient, would be a potential modification 

that would yield little excess mass upon evaporation for preparation of α-spectroscopy samples.   

 Unexpectedly, Bi3+ and Sb5+ showed an affinity for extraction by HT18C6 out of HCl 

media. This extraction mechanism is unknown, and at best reached 80 % for Sb5+ at higher HCl 

concentrations, with a maximum for Bi3+ of 20 % at 0.2 M HCl. Most likely the extracted complex 

is some form of bridged or sandwich sulfide complex with Bi and Sb, due to the exodentate 

nature of the un-substituted HT18C6. While in this state, it is not a suitable system for an 

element 115 experiment, due to the observed extraction of both Bi and Sb future work could 

elucidate the extracted species and seek to synthesize a thiacrown ether with properties better 

suited to this extraction. This could yield an element 115 chemical system based on thiacrown 

ethers.  

 At this time the work presented in this chapter is preliminary. Results indicate that with 

more work a potential Pb resin based system for element 115 may be possible from HI media. 

They also indicate the potential for novel thiacrown ethers to be synthesized that could show 

great affinity for the element 115 homologs, Bi and Sb, and yield a potential system.   
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CHAPTER 10:  OTHER MACROCYCLES 
 
 Prior to determining to use only crown ethers and thiacrown ethers brief studies were 

performed using other macrocyclic extractants. Two of these extractants are 2,2,2-cyrptand and 

p-tert-butylcalix[6]arene, Figure 73 and 74. 

 

 

Figure 73.  Molecular structure of 2,2,2-cryptand. 

 

 

Figure 74.  Molecular structure of p-tert-butylcalix[6]arene. 

 

Like with crown ethers cryptands and calixarenes extract metals by complexation in their 

cavities [164]. Cryptands show far stronger binding constants and specificity compared to that of 
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traditional crown ethers due to the pocketed nature of the molecule. Whereas calixarenes have 

even less ability to change their cavity to suit a changing host [164].  

 In this chapter initial studies are presented using the 2,2,2-cryptand and p-tert-

butylcalix[6]arene to determine their extraction capabilities for the Fl homolog Pb. SX studies 

are presented for the extraction of 212Pb by 2,2,2-cryptand and p-tert-butylcalix[6]arene in DCM 

from an HCl matrix.  

10.1 Experimental 

10.1.1 Reagents and Materials. 

 Both 2,2,2-cryptand (Aldrich, ≥ 98 %) and p-tert-butylcalix[6]arene (Aldrich, ≥ 90 %) 

were used without further purification as received from Sigma Aldrich. Dichloromethane              

(99.9 %, un-stabilized, Fisher) was used without further purification. Acids were prepared by 

volumetric dilution as in Chapter 6, with the same concentrations from Table 15 (except 0.01 M 

was not used for the calixarene study).   Solutions of 2,2,-cryptand and p-tert-butylcalix[6]arene 

for SX studies were prepared in 25 mL and 50 mL volumetric flasks respectively as shown in 

Table 25.  

 

Table 25.  Organic phase solutions of 2,2,2-cryptand and p-tert-butylcalix[6]arene. 

Extractant Mass used (g) Concentration (M) 

2,2,2-cryptand 0.2354 0.013 

p-tert-butylcalix[6]arene 0.0496 0.0010 

 
 

10.1.2 SX Studies 

 General SX procedures are presented in Chapter 3. For the 2,2,2-cryptand study, 480 µL 

of the appropriate acid concentration was added to 500 µL of the 2,2,2 cryptand stock solution 

in a 1.5 mL centrifuge tube. The phases were allowed to precondition for 1 hour by mixing on a 
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vortex mixer. A 20µL spike of 212Pb in 2.0 M HCl was added to each sample and the samples 

were allowed to equilibrate by mixing on a vortex mixer for one hour. Following equilibration, 

each sample was centrifuged for 30 seconds at 6000 rpm before 300 µL of each phase were 

removed with a direct displacement pipet and placed in new 1.5 mL centrifuge tubes. Each 

separated phase was counted for 90 to 450 seconds by HPGe gamma spectroscopy. Distribution 

ratios were calculated as described in Chapter 3. Final reported acid concentrations were 

calculated by the corrected acid concentration after addition of the 20 µL spike. 

 For the p-tert-butylcalix[6]arene study the same procedure as used for the 2,2,2-

cryptand study was performed with the following changes:  400 µL of aqueous phase was 

allowed to precondition with 500 µL of the p-tert-butylcalix[6]arene stock solution; a 100 µL 

spike of 212Pb in 0.5 M HCl was added to each solution; 200 µL of each phase was taken with a 

direct displacement pipet; and each sample was counted by HPGe gamma spectroscopy for 120 

to 300 seconds. Distribution ratios were calculated as described in Chapter 3. Final reported acid 

concentrations were calculated by the corrected acid concentration after addition of the 100 µL 

spike. 

10.2 Results and Discussion 

10.2.1 SX studies  

 Figure 75 shows the extraction of 212Pb by 2,2,2-cryptand in DCM as a function of HCl 

concentration. 
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Figure 75.  Extraction behavior of 212Pb as a function of HCl concentration with 0.013 M 2,2,2-

cryptand in DCM. 

 

As can be seen in Figure 75, no extraction of Pb is seen on 2,2,2-cryptand from a pure HCl 

matrix. This can be attributed to the fact that the specificity of the cryptand and the fact that 

counterbalancing the Pb2+ ion is restricted due to the pocketed nature of the cryptand when 

compared with the traditional crown ether. Literature extractions of Pb2+ by cryptands use 

substituted cryptands and an ion exchange method, whereby first extracting a cation into the 

cavity of the cryptand and then extracting an anionic Pb species [233]. From the pure HCl system 

performed in this study, an ion-exchange based extraction is not possible, due to the lack of a 

cationic species to be extracted by the cryptand first.  

 The extraction of 212Pb by p-tert-butylcalix[6]arene in DCM as a function of HCl 

concentration is shown in Figure 76.  
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Figure 76.  Extraction behavior of 212Pb as a function of HCl concentration with 0.001 M p-tert-

butylcalix[6]arene. 

 

As seen in Figure 76, no extraction of Pb is observed over the range of HCl concentrations 

studied. The only extractions of Pb2+ shown in literature with a calixarene was with a highly 

substituted with a novel proton-ionizable group calix[4]arene that showed high selectivity for 

Pb2+ from HNO3 [234]. Due to the similarities in compound formation between HCl and HNO3 for 

Pb, the cavity size of calix[6]arene may be too large to be selective for the Pb2+ ion considering 

the smaller calix[4]arene was used for successful extractions from a pure acid system. The lack 

of proper substituents which increased selectivity of the calix[4]arene may also be attributed to 

the lack of extraction. A substituted calix[4]arene showed high selectivity for Hg2+, which has a 

similar ionic radius to Pb2+, as well, indicating the calix[6]arene cavity may simply be too large 

[235].  

10.3 Conclusions and Future Work 

 Solvent extraction studies presented in chapter served as a comparison for the different 

6 membered macrocylce rings. Results showed that un-substituted 2,2,2-cryptand and the 

slightly substituted p-tert-butylcalix[6]arene do not extract Pb2+ from an HCl matrix. This result 
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led to the direction of work being focused towards the DtBuC18C6 extractant on Eichrom’s Pb 

resin and the HT18C6 extractant. Due to the difficulty calixarenes have with changing their 

cavity size compared to crownethers, the calix[6]arene used may simply have been too large to 

extract Pb2+ given the fact literature extractions of Pb2+ with calixarenes involved the use of a 

highly substituted calix[4]arene [234]. Due to the increased selectivity of the cryptands 

compared to traditional crownethers and the restriction the pocketed cavity places on cation 

binding, simple acid systems may not be capable of extracting Pb2+ using cryptands. This is 

supported by literature uses of cryptands to extract lead based on ion-exchange type systems 

[233].  

 Fututre work with calixarenes and cryptands, while may prove promising, would require 

difficult novel synthesis of substituted molecules which are not commercially available. Due to 

the types of extractions found in literature, more work should focus on synthesis of thiacrowns 

which should show extreme affinity for the soft metals.   
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CHAPTER 11:  CONCLUSIONS 
 
 The primary focus of this dissertation was to examine the possibility of using macrocyclic 

extractants to develop a chemical system that could give insight into the chemical behavior of Fl 

and element 115. Specifically, the question:  is their location on the periodic table consistent 

with only their proton number or truly consistent with their chemistry? Predictions for Fl have 

indicated that it may behave like the other members of Group 14, or it could be far less reactive 

and even as unreactive as a noble gas. Therefore, calling into question its placement in Group 14 

of the periodic table because of potentially vastly deviating chemical properties, due to strong 

relativistic effects, from the group homologs Pb and Sn. Element 115 has far fewer predictions, 

but those that do exist point to vastly different properties from the other elements in Group 15. 

The predicted most stable oxidation state of element 115 is 115+, due to relativistic effects, an 

oxidation state not exhibited by the other members of the chemical group except under special 

circumstances.   

 Macrocycles have shown promise in other areas of chemistry for complexation with 

metal cations, specifically crown ethers. Therefore, research was devoted to exploring the 

possibility of using crown ethers to separate the homologs and pseudo-homologs of Fl and 

element 115 in such a way that the system could be applied to an on-line study of the two 

transactinides. Other macrocycles were explored and insight toward the use of thiacrown ethers 

(sulfur analogs of crown ethers) as potentially more selective and faster extractants for the 

softer metals, such as Pb, Hg and Bi, which are the homologs of Fl and element 115. 

 This chapter will summarize the conclusions presented in the above chapters. A 

discussion of the future work needed to be able to perform an on-line chemistry experiment 

with Fl or element 115 is presented.   
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11.1 Conclusions Production of Carrier-Free Radionuclides 

 The LNNL CAMS facility was used to produce carrier-free radionuclides via proton 

irradiations of high purity stable metal foils. For the purpose of this work, the following nuclear 

reactions were used:  124Sn(p,n)124Sb, 197Au(p,n)197Hg, and 113In(p,n)113Sn, with proton energies in 

the 10-15 MeV range. Rapid separation schemes were developed for isolating the produced 

radionuclides from bulk target material without the use of carrier, to yield high purity carrier-

free radionuclides for transactinide homolog chemistry experiments. The target chamber used 

for irradiations can be used to irradiate any stack of foils to produce other carrier-free 

radionuclides for different purposes. A radioisotope generator to elute carrier-free 212Pb and 

212Bi was developed from a cation-exchange column loaded with LLNL legacy 232U. The generator 

was shown to be capable of eluting usable carrier free Bi and Pb for a period (still on-going) of 2 

years.  

11.2 Conclusions Fl Homolog Chemistry 

 The Eichrom Pb extraction chromatography resin, based on the DtBuC18C6 extractant, 

was chosen as the initial starting point for developing a Fl chemical system. The resin was 

developed with the idea of being used to remove Pb from environmental systems, since the 

DtBuC18C6 extracted was known to have affinity for Pb2+. Prior to this work the 18C6 crown 

ether had not been used to extract Sn and had not been used previously to extract ultra-trace 

carrier-free Pb and Hg radionuclides.  

 Batch study results showed the possibility of separating Pb, Sn and Hg from each other 

using the Pb resin by only changing the concentration of HCl. However, kinetic results presented 

showed that while Pb reached equilibrium in approximately 5 minutes, Sn and Hg did not reach 

equilibrium until approximately 1 hour and > 8 hours respectively. Sn, unlike Hg, attained 
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significant k’ values in a matter of seconds, 89.8 ± 1.3, similar to Pb, 134.5 ± 2.0. Hg showed no 

appreciable extraction increase until at least 30 minutes equilibration time had passed.  

 Initial column studies were performed with vacuum flow pre-packed Pb resin cartridges 

that demonstrated the ability to separate Pb and Sn after first retaining them on the resin bed 

using flow rates of 2 mL/min. Analogous studies with the addition of Hg to the load solution 

proved ineffective with Hg bleeding through the initial few column fractions at 3 M HCl due to 

low uptake and slow adsorption kinetics. However, loading the column in 0.4 M HCl, a condition 

where Sn shows no affinity to the resin, proved it was possible to retain Pb and Hg while eluting 

Sn. However, in order to ensure Hg would be retained throughout the 8 M HCl elution of Pb, 

where its k’ values dip to 12.1 ± 2.0 (from batch results), the column was capped for 1 hour. The 

column was also capped for 1 hour after successful elution of Pb due to the first column 

showing that, once retained, Hg desorption kinetics were also slow.  

 These HCl studies with the Eichrom Pb resin demonstrated the possibility of rapidly 

separating the direct homologs of Fl, Pb and Sn, on the time scales required for an on-line Fl 

experiment (t1/2 289Fl ~2.6 seconds). However, the addition of the potential pseudo-homolog Hg 

complicated the system, and made a clean separation require hours instead of seconds due to 

both sorption and desorption kinetics of the Hg. In Chapter 6 an on-line Fl experiment is 

proposed, in which a column is ran at 0.001 M HCl where Sn4+ passes through the column and 

due to the extremely high k’ values for Hg > 6000 and the fast kinetics and high retention of Pb 

at these concentrations, both Pb and Hg would be retained. From this, an experiment could be 

performed with changing the concentrations to create a Pb, Sn and Hg fraction. Where under 

the 0.001 M HCl load solution, the observed 20-30 % Hg bleed in the Pb elution noticed without 

a wait period with a 0.04 M HCl load solution might be avoidable, and thus three quick fractions 

could be obtained. Due to the short 289Fl half-life of 2.6 seconds, collecting three fractions and 
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drying samples down to prepare α-spectrometry sources for identification of Fl and its decay 

daughters, would be impossible on those time scales with current automation technologies. 

Therefore, running an experiment in which a single concentration is ran and sample collected 

and prepared for α-spectroscopy for a set duration of time, then switching to a different 

condition is the best hope for attaining these speeds. With this in mind, using the Eichrom Pb 

resin and an HCl matrix would be capable of differentiating between both Sn4+ (since loading in 

0.001-0.04 M HCl shows no bleed of Pb or Hg) and Pb2+ or Hg2+ character. However, 

differentiating between Pb or Hg character would be impossible due to insufficient separation, 

at the time scales required, between those two elements.  

 Nitric acid studies performed without Hg demonstrated a quick separation was possible 

between Pb and Sn. With Pb having significantly quicker kinetics in the HNO3 system when 

compared with the HCl system. Due to similar Hg complex formation to Pb in HNO3, it may be 

extractable and potentially with faster kinetics than in the HCl system. However, this system was 

abandoned due to the fact the Pb kinetics were not a large enough gain, and therefore, it was 

assumed the Hg kinetics would still be insufficient to unambiguously determine differences 

between Pb and Hg like character on the second time scale.  

 Due to the fact that the extraction chromatography resin contains the DtBuC18C6 

extractant physisorbed to a backbone, the long term use of the resin may become difficult. At 

high acid concentrations the extractant was observed to bleed off the resin backbone. 

Decreases in k’ values were also observed in kinetics studies which equilibrated the resin for 

longer than 18 hours. Therefore, for long term use on an on-line Fl experiment if a DtBuC18C6 

extractant is desired a chemically bonded resin or polymerized crown ether system should be 

prepared. This system should have analogous extraction capability to the extraction 

chromatography resin.   
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 Thiacrown ethers are well known to be capable of extracting, with high kinetics and 

specificity, softer metals. Work has been done that showed their affinity toward Hg2+, however, 

little work into Pb extraction and Sn extraction with thiacrowns had been done. The extractant 

HT18C6 was synthesized and its affinity for Pb, Hg, and Sn was explored and compared to that of 

both the DtBuC18C6 extractant and a purchased TT12C4 extractant. While the extractant 

showed extremely high affinity for Hg2+
 from an HCl system it showed no affinity for both Pb2+ 

and Sn4+. Due to the exodentate nature of the sulfurs in thiacrown ethers they usually form 

sandwich or bridged complexes with metal cations. This is readily possible with Hg, and that is 

why it extracts easily from both the HT18C6 and the much smaller TT12C4. In order for Pb to 

extract either different complexes must be formed that can interact with these thiacrowns (i.e. a 

different matrix) or the thiacrown must be forced into an endodentate conformation which 

mimics that of a traditional crown ether and by analogy should readily extract the softer metal 

Pb much stronger than the traditional crown ether. Due to the fact an endodentate 

conformation requires an input of energy which is not present from a room temperature 

system, new thiacrowns must be synthesized with substituents which force the ring sulfurs to 

take an endodentate charge conformation. This can be achieved by synthesizing a complex such 

as dibenzo-hexathia-18-crown-6, Figure 77: 
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Figure 77.  Structure of dibenzo-hexathia-18-crown-6. 

 

Due to the possibility an endodentate thiacrown should show high affinity toward Pb2+ and 

continued affinity toward Hg2+, and the fact the Hg kinetics observed from HT186 were much 

faster than with DtBuC18C6, a system based on an endodentate thiacrown may have the 

required kinetics for an Fl chemical system.   

11.3 Conclusions Element 115 chemistry 

 Compared to the Fl homolog studies, element 115 homolog studies were more 

exploratory and preparatory. Initial studies using both HCl and HNO3 matrices and the Eichrom 

Pb resin showed that both Bi and Sb were not extracted with the DtBuC18C6 extractant. 

Modifying a literature procedure which used iodide media in H2SO4 to extract Bi and Sb with 

18C6, it was demonstrated that Bi could be extracted by the Pb resin from a mixed HCl/HNO3/Ki 

matrix. Due to the unavailability of Sb isotopes, the experiment was only performed with Bi. 

However, it can be assumed, that a similar extraction based off the anionic BiI4
- and SbI4

- 

complex formation extracted by a potassium activated cationic crown ether complex could 

happen. Due to the usage of KI to form the iodide species, an unnecessary amount of mass is 

added to the system that would make preparation of α-spectroscopy samples for the 

unambiguous detection of element 115 in an on-line experiment difficult. This system might 
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work using a pure HI system with an H3O+ activated crown ether cavity forming the basis for the 

ion-exchange extraction. However, the HI system seriously degrades the extraction 

chromatography resin. Therefore, a polymerized crown system, or a crown ether resin with 

chemically bonded crown ether instead of the physisorbed crown ethers in the extraction 

chromatography system may be required.  

 Unexpectedly, HT18C6 showed slight affinity for both Bi and Sb from an HCl matrix. The 

extraction mechanism is believed to be a bridged or sandwich thiacrown complex with a Bi 

chloride complex and a Sb oxide or hydrolysis product interacting with the ring sulfurs, since 

sulfide complexes of both Bi and Sb are known. However, due to the lack of radioisotopes, this 

experiment was only performed once and very little insight as to the extraction mechanism 

could be garnered. It can be stated that the extraction was at best a 20-80% extraction so 

modification of the thiacrown to better suit the extraction mechanism, once it is determined, 

could yield an even better extraction of Bi and Sb.  

11.4 Outlook to the Future 

 Experiments presented within this dissertation outline characterizations of the Fl and 

element 115 homologs and pseudo-homologs. Results showed the possibility of designing a 

chemical system based on macrocyclic extractants for probing the chemical properties of Fl, and 

a path forward to determining a system for element 115 was outlined. The biggest issue with 

the use of traditional crown ethers for an on-line Fl experiment was determined to be kinetics. 

The Hg kinetics were very slow when compared with that of Pb and Sn, and while it was shown 

that an experiment could be designed that would demonstrate whether or not Fl was Sn4+ like or  

either Pb2+ or Hg2+ like, differentiating between Pb2+ or Hg2+ like character would be nearly 

impossible due to the slow Hg kinetics.  
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 Thiacrown ethers showed promise for separating Pb, Sn, and Hg; however, it was 

determine that a new thiacrown which had charge densities mimicking that of a traditional 

crown ether would be needed in order to show extraction of Pb, and thus be able to separate 

the three homologs of Fl.  

 The biggest hurdle to performing an on-line study of Fl or element 115 is the speed at 

which these systems must be ran. From production of the transactinide to the preparation of α-

spectroscopy sources must be completed faster than the half-lives of Fl and element 115 (much 

shorter than that of Fl). Under current technology for chemical automation, the evaporation 

step to prepare an α-spectroscopy source would be longer than the half-life of the transactinide. 

Even though automated SX systems such as SISAK which use LSC detection can perform the 

chemical separations on the speed required for a Fl experiment, the LSC detection medium is 

insufficient for unambiguous determination of Fl production which requires multiple α-decay 

correlations and a SF event. Future work must develop an automated system capable of not only 

running the chemistry at the rates necessary for an online Fl or element 115 system but also 

capable of preparing α-spectroscopy samples within that same time frame. One possibility is to 

examine the use of microfluidics which would use very small liquid volumes and thus have far 

quicker and easier preparation for detection of the transactinide.  

 The work presented shows the promise of macrocyclic extractants for an on-line Fl or 

element 115 experiment. The future development of thiacrowns which are perfectly tuned for 

the extraction of the homologs and pseudo-homologs of these transactinides should show the 

required kinetics and selectivity needed for a Fl and element 115 on-line experiment. The results 

presented show potential Fl and element 115 chemical systems from the liquid phase, future 

work which focuses on the issue of automation speed and builds on these results with further 
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tuned macrocycles (to fix potential kinetic issues) will yield systems that can be applied to an on-

line experiment in the future. 
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APPENDIX 
 

Table 26.  Raw data for Figure 44. 

Volume (mL) Day 1 Sn Day 1 Corrected Sn Day 2 Sn 

0 0 0 0 

4 0.348 ± 0.006 0.381 ± 0.007 0 

8 0.369 ± 0.007 0.442 ± 0.008 0 

12 0.061 ± 0.002 0.0075 ± 0.0008 0 

16 0.045 ± 0.002 0 0 

20 0.040 ± 0.002 0 0 

24 0.051 ± 0.002 0.011 ± 0.001 0 

28 0.051 ± 0.002 0.017 ± 0.001 0 

32 0.221 ± 0.005 0 0.749 ± 0.012 

36 0.0065 ± 0.0008 0 0.037 ± 0.002 

40 0 0 0.0011 ± 0.0003 

 

Table 27.  Raw data for Figure 46. 

Concentration (M) k’ Au k’ Hg 

0.04 13961.6 ± 1546.4 2998.1 ± 601.7 

0.14 19319.7 ± 1990.8 1398.0 ± 94.6 

0.43 12728.5 ± 1348.5 397.2 ± 21.3 

102 18527.8 ± 1887.4 242.8 ± 11.0 

3.96 1983.2 ± 138.6 28.9 ± 2.9 

9.84 76.1 ± 10.2 0.5 

11.80 29.4 ± 6.7 0.5 

15.63 6.6 ± 5.7 0.5 
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Table 28.  Raw data for Figure 48. 

Volume (mL) Sb Elution Fraction Sn Elution fraction 

0 0 0 

1 0 0.13 ± 0.01 

2 0 0.84 ± 0.06 

3 0 0.09 ± 0.01 

4 0 0.04 ± 0.002 

5 0 0 

6 0 0 

7 0 0 

8 0 0 

9 0 0 

10 0 0 

11 0 0 

12 0 0 

13 0 0 

14 0 0 

15 0.33 ± 0.03 0 

16 0.29 ± 0.03 0 

17 0.06 ± 0.01 0 

18 0.04 ± 0.01 0 

19 0 0 

20 0 0 

21 0 0 

22 0 0 

23 0 0 
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Table 29.  Raw data for figure 49. 

Volume (mL) Day 1 Sn Day 2 Sn 

4 0 0 

8 0 0 

12 0 0 

16 0 0 

20 0.211 ± 0.009 0 

24 0.385 ± 0.012 0 

28 0.160 ± 0.008 0 

32 0.024 ± 0.003 0 

36 0 0 

40 0.010 ± 0.002 0 

44 0 0 

48 0 0 

52 0 0 

56 0 0 

60 0.042 ± 0.004 0.032 ± 0.003 

64 0.604 ± 0.017 0.580 ± 0.017 

68 0.515 ± 0.015 0.457 ± 0.014 

72 0.165 ± 0.008 0.180 ± 0.008 

76 0.118 ± 0.006 0.109 ± 0.006 

80 0.011 ± 0.002 0.011 ± 0.002 

84 0 0.0046 ± 0.001 

88 0 0.0015 ± 0.0007 

92 0 0 
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Table 30.  Raw data for Figure 50. 

Volume (mL) Day 1 Sb Elution 
Fraction 

Day 2 Sb Elution 
Fraction 

Day 3 Sb Elution 
Fraction 

6 0 0 0 

10 0 0 0 

14 0 0 0 

18 0 0 0 

22 0.087 ± 0.004 0 0 

26 0.389 ± 0.008 0 0 

30 0.089 ± 0.004 0 0 

34 0.0217 ± 0.002 0 0 

38 0 0.149 ± 0.005 0 

42 0 0.029 ± 0.002 0 

46 0 0.008 ± 0.001 0 

50 0 0.003 ± 0.001 0 

54 0 0 0.061 ± 0.003 

58 0 0 0.015 ± 0.002 

60 0 0 0 

 

Table 31.  Raw Data Figure 53. 

Volume (mL) 212Pb Percent Elution 228Th Percent Elution 

1 0.014 ± 0.001 0.006 ± 0.001 

2 2.78 ± 0.01 0.017 ± 0.001 

3 23.27 ± 0.05 0.055 ± 0.002 

4 23.77 ± 0.05 0.103 ± 0.003 

5 10.51 ± 0.03 0.169 ± 0.004 

6 2.43 ± 0.02 0.222 ± 0.004 

7 0.50 ± 0.006 0.243 ± 0.005 

8 0.25 ± 0.005 0.296 ± 0.005 

9 0.17 ± 0.004 0.291 ± 0.005 

10 0.18 ± 0.004 0.332 ± 0006 
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Table 32.  Raw data for Figure 56. 

Concentration of HCl 
(M) 

k’ Sn k’ Pb k’ Hg 

0.04 4.95 ± 1.32 213.12 ± 28.95 5366.86 ± 223.87 

0.05 6.28 ± 1.20 235.00 ±2.08 5776.49 ± 448.04 

0.14 1.59 ± 1.09 344.54 ± 21.86 2596.91 ± 327.94 

0.24 1.01 ± 0.67 371.22 ± 29.23 1344.63 ± 222.8 

0.44 0.77 ± 0.78 361.50 ± 12.08 447.10 ± 112.71 

0.83 2.02 ± 0.84 339.72 ± 17.39 83.43 ± 9.92 

1.03 4.71 ± 1.38 319.13 ± 8.63 52.76 ± 11.11 

2.03 21.80 ± 1.58 163.76 ± 3.26 21.68 ± 0.96 

4.01 220.79 ± 10.60 46.66 ± 3.75 25.08 ± 4.50 

7.97 106. 65 ± 4.91 1 12.13 ± 1.97 

9.96 42.72 ± 2.11 1 5.64 ± 2.27 

12 14.22 ± 1.31 1 1 

 

Table. 33.  Raw data for Figure 57. 

Element Log[DtbuC18C6] Log D 

Sn -3.19 -0.92 ± 0.04 

 -2.25 0.51 ± 0.05 

 -1.77 1.27 ± 0.03 

 -1.17 2.36 ± 0.03 

 -0.87 2.99 ± 0.29 

Pb -3.44 -0.77 ± 0.03 

 -2.61 0.13 ± 0.04 

 -2.05 0.57 ± 0.04 

 -1.19 1.39 ± 0.05 

 -0.94 1.63 ± 0.03 

 

Table 34.  Raw data for 58 (Top). 

Time k’ Pb 

30 134.47 ± 2.06 

120 197.01 ± 3.44 

300 257.70 ± 4.99 

1200 258.78 ± 4.61 

3600 265.44 ±  5.37 
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Table 35.  Raw data for 58 (Middle). 

Time k’ Sn 

30 89.72 ± 1.28 

120 110.65 ± 1.83 

300 163.90 ± 2.70 

1200 195.91 ± 3.77 

2400 195.52 ±  4.22 

3600 202.36 ± 2.34 

10800 202.60 ± 4.08 

86400 191.62 ± 3.68 

 

Table 36.  Raw data for 58 (Bottom). 

Time k’ Hg 

39 11.74 ± 0.28 

67 13.13 ± 0.65 

300 19.6 ± 0.8 

1890 55.50 ± 1.23 

3803 114.87 ±  3.00 

10900 331.61 ± 12.09 

21480 394.98 ± 32.28 

86400 517.29 ± 29.96 
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Table 37.  Raw Data for 59 (Top). 

Volume (mL) Elution Fraction Pb Elution Fraction Sn 

1 0 0 

2 0 0 

3 0 0 

4 0 0 

5 0.113 ± 0.005 0 

6 0.518 ± 0.011 0 

7 0.238 ± 0.005 0 

8 0.041 ± 0.003 0 

9 0.007 ±  0.001 0 

10 0 0 

11 0 0 

12 0 0 

13 0 0 

14 0 0 

15 0 0.064 ± 0.004 

16 0 0.694 ± 0.014 

17 0 0.073 ± 0.004 

18 0 0.010 ± 0.001 

19 0 0.004 ± 0.0002 

20 0 0 

21 0 0 
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Table 38.  Raw Data for 59 (Bottom). 

Volume (mL) Elution Fraction Sn Elution Fraction Pb 

1 0 0 

2 0 0 

3 0 0 

4 0 0 

5 0.217 ± 0.007 0 

6 0.555 ± 0.013 0 

7 0.077 ± 0.004 0 

8 0.010 ± 0.0004 0 

9 0 0 

10 0 0 

11 0 0 

12 0 0 

13 0 0 

14 0 0 

15 0 0.127 ± 0.006 

16 0 0.569 ± 0.014 

17 0 0.202 ± 0.008 

18 0 0.018 ±  0.002 

19 0 0 

20 0 0 

21 0 0 
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Table 39.  Raw Data for Figure 60. 

Volume (mL) Elution Fraction Pb Elution Fraction Sn Elution Fraction Hg 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0.357 ± 0.013 0 

5 0 0.398 ± 0.014 0.008 ± 0.002 

6 0 0.048 ± 0.004 0.010 ± 0.002 

7 0 0.011 ± 0.002 0.015 ± 0.002 

8 0 0.005 ± 0.001 0.023 ± 0.003 

9 0 0 0.015 ± 0.002 

10 0 0.003 ± 0.001 0.030 ± 0.003 

11 0 0 0.016 ± 0.002 

12 0 0.001 ±  0.001 0.017 ± 0.002 

13 0 0 0.019 ± 0.002 

14 0.008 ± 0.001 0 0.014 ± 0.002 

15 0.093 ± 0.003 0 0.009 ± 0.002 

16 0.264 ± 0.006 0 0.014 ± 0.002 

17 0.254 ± 0.006 0 0.015 ± 0.002 

18 0.164 ± 0.004 0 0.016 ± 0.002 

19 0.062 ± 0.003 0 0.016 ± 0.002 

20 0.017 ± 0.001 0 0.023 ± 0.002 

21 0.004 ± 0.001 0 0.009 ± 0.002 

22 0.001 ± 0.0003 0 0.006 ± 0.001 

23 0.002 ± 0.0005 0 0.058 ± 0.003 

24 0 0 0.083 ± 0.005 

25 0 0 0.069 ± 0.004 

26 0 0 0.047 ± 0.004 

27 0 0 0.027 ± 0.003 

28 0 0 0.025 ± 0.003 

29 0 0 0.032 ± 0.003 

30 0 0 0.021 ± 0.002 

31 0 0 0.041 ± 0.003 

32 0 0 0.064 ± 0.004 

33 0 0 0.088 ± 0.005 

34 0 0 0.023 ± 0.003 

35 0 0 0.023 ± 0.002 
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Table 40.  Raw Data for Figure 61. 

Volume (mL) Elution Fraction Pb Elution Fraction Sn Elution Fraction Hg 

1 0 0 0 

2 0 0.049 ± 0.008 0 

3 0 0.535 ± 0.025 0 

4 0 0.378 ± 0.021 0 

5 0 0.031 ± 0.006 0 

6 0 0 0 

7 0 0 0.010 ± 0.002 

8 0 0 0.006 ± 0.002 

9 0 0 0.008 ± 0.002 

10 0 0 0.006 ± 0.002 

11 0.006 ± 0.0005 0 0 

12 0.125 ± 0.002 0 0 

13 0.320 ± 0.004 0 0 

14 0.347 ± 0.004 0 0 

15 0.118 ± 0.002 0 0 

16 0.027 ± 0.001 0 0 

17 0.0042 ± 0.0004 0 0.007 ± 0.002 

18 0.0026 ± 0.0003 0 0.008 ± 0.002 

19 0.0016 + 0/0003 0 0.006 ± 0.002 

20 0.0030 ± 0.004 0 0.058 ± 0.005 

21 0.0006 ± 0.0002 0 0.083 ± 0.006 

22 0.0042 ± 0.0005 0 0.158 ±  0.009 

23 0 0 0.202 ± 0.010 

24 0 0 0.216 ± 0.011 

25 0 0 0.152 ± 0.009 

26 0 0 0.027 ± 0.004 

27 0 0 0.010 ± 0.002 

28 0 0 0.005 ± 0.002 

29 0 0 0 
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Table 41.  Raw data for figure 62. 

Concentration of HNO3 (M) k’ 212Pb k’ 113Sn 

0.18 835.91 ± 23.2 3.62 ± 1.64 

0.27 1119.6 ± 40.6 6.14 ± 1.65 

0.36 -- 6.64 ± 1.61 

0.55 1702.0 ± 63.4 6.15 ± 2.13 

0.91 -- Limit 

1.1 1398.7 ± 58.0 1.14 ± 1.71 

1.5 1451.9 ± 52.5 -- 

2.0 1216.4 ± 44.2 1.83 ± 1.73 

3.8 786.7 ± 23.7 2.98 ± 2.16 

5.6 421.2 ± 13.9 Limit 

7.5 302.7 ± 7.85 Limit 

9.3 237.8 ± 6.3 Limit 

14.6 39.4 ± 0.6 Limit 

 

Table 42.  Raw Data for figure 63. 

Time (s) k’ Pb 

39 427 ± 36 

72 592 ± 49 

300 1142 ± 161 

1800 1102 ± 119 

3660 1058 ± 117 

9000 1215 ± 178 

 

Table 43.  Raw Data for figure 64. 

Volume (mL) Elution Fraction Pb Elution Fraction Sn 

1 0 0.0009 ± 0.0007 

2 0 0.472 ± 0.016 

3 0 0.486 ± 0.016 

4 0 0.006 ± 0.002 

5 0 0.003 ± 0.001 

6 0 0.0014 ± 0.0008 

7 0 0 

8 0 0 

9 0.001 ± 0.001 0 

10 0.003 ± 0.001 0 

11 0.120 ± 0.008 0 

12 0.401 ± 0.015 0 

13 0.320 ± 0.014 0 

14 0.106 ± 0.008 0 

15 0.046 ± 0.005 0 

16 0.008 ± 0.002 0 

 



172 

Table 44.  Raw data for Figure 66. 

Concentration of HCl (M) Percent Extraction (%) 

0.005 97.33 ± 2.28 

0.01 98.95 ± 0.47 

0.1 97.22 ± 3.51 

0.2 94.49 ± 5.76 

0.4 98.00 ±  2.32 

0.8 96.30 ± 3.86 

1 97.37 ± 1.88 

1.9 90.91 ± 1.47 

3.8 25.44 ± 2.32 

7.7 1.35 ± 0.69 

9.6 1.42 ± 0.31 

11.5 1.02 ± 0.57 

Table 45.  Raw Data for figure 67. 

Concentration of 
HCl (M) 

D Pb D Hg D Sn 

0.08 0.009 ± 0.004 > 63.59 0.022 ± 0.007 

0.09 Limit > 52.66 0.020 ± 0.007 

0.2 Limit > 46.13 Limit 

0.3 Limit > 55.76 Limit 

0.5 Limit > 24.92 Limit 

0.9 Limit > 26.18 Limit 

1.0 Limit > 22.99 Limit 

2.0 Limit 10.52 ± 1.10 Limit 

3.9 Limit 0.284 ± 0.033 Limit 

7.8 Limit 0.013 ± 0.005 Limit 

9.7 Limit 0.012 ± 0.006 Limit 

11.8 Limit Limit Limit 
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Table 46.  Raw data for figure 68. 

Concentration of 
HCl (M) 

D Pb D Hg D Sn 

0.08 Limit >29.36 Limit 

0.09 Limit >21.45 Limit 

0.2 Limit 5.76 ± 0.79 Limit 

0.3 Limit 27.82 ± 7.32 Limit 

0.5 Limit 14.74 ± 2.83 Limit 

0.9 Limit 1.42 ± 0.15 Limit 

1.0 Limit 0.58 ± 0.06 Limit 

2.0 Limit 0.09 ± 0.01 Limit 

3.9 Limit 0.028 ± 0.009 Limit 

7.8 Limit 0.008 ± 0.004 0.03 ± 0.01 

9.7 Limit Limit 0.03 ± 0.01 

11.8 Limit Limit Limit 

Table 47.  Raw data for figure 69 (Top). 

Concentration HCl (M) k’ Bi 

0.18 2.87 ± 0.86 

0.27 2.64 ± 2.57 

0.36 2.23 ± 1.26 

0.54 3.26 ± 3.46 

0.91 Limit 

1.1 1.39 ± 1.93 

2.0 Limit 

3.8 2.01 ± 1.20 

5.6 Limit 

7.5 1.14 ± 1.07 

9.3 1.91 ± 3.01 

Table 48.  Raw data for figure 69 (Bottom). 

Concentration HCl (M) k’ Bi 

0.18 Limit 

0.27 1.64 ± 1.31 

0.36 2.22 ± 2.34 

0.54 0.98 ± 3.07 

0.91 2.40 ± 0.93 

1.1 Limit 

2.0 3.73 ± 2.50 

3.8 Limit 

5.6 Limit 

7.5 Limit 

9.3 1.26 ± 0.69 
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Table 49.  Raw data for figure 70. 

Concentration HNO3 (M) k’ Bi 

0.18 Limit 

0.27 1.64 ± 1.31 

0.36 2.22 ± 2.34 

0.54 0.98 ± 3.07 

0.91 2.40 ± 0.93 

1.1 Limit 

2.0 3.73 ± 2.50 

3.8 Limit 

5.6 Limit 

7.5 Limit 

9.3 1.26 ± 0.69 

 

Table 50.  Raw data for figure 71. 

HCl (M) k’ Bi 

0.18 Limit 

0.53 Limit 

1.06 Limit 

1.95 Limit 

5.49 758.22 ± 109.43 

7.26 195.15 ± 16.44 

9.02 89.38 ± 6.03 

 

HNO3 (M) k’ Bi 

0.18 Limit 

0.53 Limit 

1.06 Limit 

1.95 Limit 

5.49 3.21 ± 1.69 

7.26 3.99 ± 1.70 

9.02 1.81 ± 1.56 
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Table 51.  Raw data for figure 72. 

Concentration of HCl (M) Percent Extracted Bi (%) Percent Extracted Sb (%) 

0.001 1.95 ± 0.32 0 

0.01 1.95 ± 0.23 0 

0.1 15.25 ± 0.84 39.11 ± 5.19 

0.2 28.36 ± 1.22 37.76 ± 5.15 

0.4 4.91 ± 0.47 45.59 ± 6.99 

0.8 0.63 ± 0.16 36.78 ± 5.38 

1.0 0 40.96 ± 5.99 

1.9 0 46.25 ± 6.50 

3.8 0 51.56 ± 6.37 

7.7 0 31.06 ± 5.03 

9.6 0 59.44 ± 7.26 

11.5 0 73.56 ± 7.83 

 

Table 52.  Raw data for figure 75. 

Concentration of HCl (M) D Pb 

0.08 0.020 ± 0.002 

0.09 0.007 ± 0.001 

0.18 0.001 ± 0.0005 

0.27 0 

0.46 0 

0.85 0 

1.0 0 

2.0 0 

3.9 0 

7.8 0 

9.7 0 

11.8 0 

 

Table 53.  Raw data for figure 76. 

Concentration of HCl (M) D Pb 

0.10 0 

0.18 0 

0.26 0 

0.42 0 

0.74 0 

0.9 0 

1.7 0 

3.3 0 

6.5 0 

8.1 0 
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