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Abstract 

 

Experience-Specific and Domain-General Effects on Simple and Complex Meter 

Processing  

by 

Sangeeta Gupta 

Dr. Erin E. Hannon, Committee Chair 

Associate Professor of Psychology 

University of Nevada, Las Vegas 

 

Our ability to process rhythmic patterns is constrained by the complexity of its interval 

structure. The goal of the present study was to explore the cognitive demands and neural 

mechanisms for processing simple and complex meters, and the extent to which they are 

modulated by culture-specific experience. The first experiment explored the argument 

that perception of rhythm is guided by a domain-general ability to process quantity, and 

that processing simple and complex meter rhythms requires different cognitive strategies.  

Rhythm perception was assessed by testing listeners’ ability to detect disruptions in 

simple and complex meter melodies.  Proficiency with numerosity judgments was 

measured by using visual and auditory enumeration tasks. Results showed that individual 

performance on simple meter trials correlated with: performance on the more automatic 

enumeration of small quantities (the “subitizing range”) and with performance on the 

more effortful enumeration of larger quantities (the “counting range”). In contrast, 

performance on complex meter trials only correlated with performance in the counting 

range, and with working memory capacity.  

The second experiment used electroencephalography (EEG) to measure brain 

responses as listeners were asked to mentally place a beat on one of two positions 
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(subjective accents), with rhythms varying in metrical complexity. To assess the role of 

prior experience on rhythm perception, Non-Western listeners (from India and Bulgaria) 

and Western listeners (from North America) were tested separately. Western music 

consists of metrical subdivisions predominantly associated by simple ratios, but music 

from cultures like India and Bulgaria frequently contains complex ratio meters.  N1 

response amplitude pointed to differences in simple and complex meter processing, even 

in those for whom they are equally familiar, with larger amplitudes at the start of the trial 

and smaller amplitudes subsequently within a trial. The results from the two experiments 

reveal greater cognitive demands on complex meter processing, and an effect of culture 

on attenuating (instead of causing) these constraints.  
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CHAPTER 1                                                                                                                   

Introduction 

Music from around the world is comprised of sequences of durations. The 

organization of these durations forms the rhythm of the musical piece. For instance, a 

rhythm can be composed of a series of alternating short and long intervals of 250 ms and 

500 ms respectively. Similar to these durational contrasts, other surface features, such as 

grouping and intensity changes (Povel & Essens, 1985) act as accents that can shape 

perception of the musical events. While these exogenous factors shape rhythmic 

structure, the interaction between these exogenous variables and the endogenous 

interpretations of the rhythm by the listener, forms the meter (Hannon, Snyder, Eerola & 

Krumhansl, 2004).  Thus, meter can be defined as the abstract temporal structure inferred 

from periodic regularities in the music (Palmer & Krumhansl, 1990).  Within a meter, 

note onsets or events (such as clapping, or the sounding of a drum) tend to occur on the 

strong positions, known as downbeats, instead of on the weak positions, known as 

upbeats.   

In inferring the meter, listeners attend to the metrical hierarchy, which at its most 

fundamental level is comprised of equally spaced isochronous beats, and additional 

higher levels which subdivide or multiply this fundamental beat level.  Within this 

higher-level of hierarchy, the nested levels of periodic structure in Western music are 

typically composed of durations that are related by simple integer ratios, such as 1:2 and 

1:3 (Lerdahl & Jackendoff, 1983; Trehub & Hannon, 2006), named duple and triple 

meters respectively. In perceiving these meters, the listener typically perceives certain 

beats as being more accented than others are. For instance, a listener perceives a duple 
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meter with a ONE-two-ONE-two pattern, as in a march, and a triple meter with a ONE-

two-three-ONE-two-three pattern, as in a waltz.  

Unlike these simple meters, complex meters consist of unequal subdivisions, with 

adjacent intervals related in more complex ratios, such as 2:3. One of the theories in 

music perception is that simple meters and rhythms, having multiple coinciding pulse 

levels, are easier to perceive and produce (Fraisse, 1982; Snyder, Hannon, Large, & 

Christiansen, 2006) than complex meters. In an early study, Fraisse (1982) focused on the 

importance of simple integer ratios in perceiving rhythms and meters, and described the 

tendency for more complex ratios to migrate towards these simpler ratios. Similar results 

are found in a categorical rhythm perception task, where listeners are required to notate 

the metrical component of metrical and non-metrical stimuli. Even in the absence of a 

metrical context, participants are most likely to interpret the stimuli as having a duple 

meter, pointing to the bias towards simple meter processing (Desain & Honing, 2003).  

Likewise, when presented with a rhythm with either a small (5:13 = 0.38) or large 

(6:7 = 0.86) ratio between the intervals, listeners have trouble detecting timing 

perturbations that bring the ratio closer to a 1:2 simple ratio (Repp, London, & Keller, 

2008). That is, for the large ratios, temporal changes that reduce the ratio are not as easily 

detected as changes that increase the ratio (bring it further away from the preferred 1:2 

ratio). On the other hand, for small ratios, changes that increase the ratio (thus bringing it 

closer to 1:2) are not as easily detected. These findings suggest that listeners prefer to 

perceive the pattern as if composed of a simple ratio despite perceivable temporal 

changes in the stimulus (Clarke, 1987).  Clarke (1987) theorizes that listeners first extract 
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the rhythmic structure in terms of simple integer ratios, with any deviation from this 

simple ratio perceived as expression or stress.  

 Similar to the findings from perception, production tasks also highlight the 

constraints for simple integer ratios. Complex meters are produced and reproduced less 

accurately (mean distance of tap from beat) and less precisely (more variability across 

successive taps) than simple meters. For instance, when participants are asked to produce 

any rhythmic pattern without specific instructions or rhythmic templates, they tend to be 

produced in a long-short pattern with a 1:2 ratio (Povel, 1981).  Even when participants 

are presented with a specific two-interval pattern to synchronize with and continue 

tapping the pattern, if the pattern conforms to a complex interval ratio such as 2:3, 

participants tend to produce a ratio ranging between the given complex ratio, and a 

simple 1:2 ratio (Repp, London, & Keller, 2008). That is, two-interval rhythms are most 

accurately produced and reproduced when the interval ratios are closest to 1:2 (Povel, 

1981; but see Repp, London & Keller, 2011, 2012). The ratio towards which produced 

intervals are distorted  is referred to in the literature as an attractor ratio (Fraisse, 1946, 

1956; Summers, 1986, 1989). For ratios larger than this attractor, the rhythm is 

reproduced by increasing the durational contrast between successive intervals, and for 

smaller ratios, the rhythm is reproduced by decreasing the contrast, thus drawing the ratio 

closer to the attractor in both cases.   

This process of assimilation towards the simple ratio is more pronounced during 

the continuation phase, that is, in the absence of any auditory background tones, than 

during the synchronization phase, that is, along with an auditory template. This tendency 

to distort reproduced intervals in the direction of a simple 1:2 ratio is observed while 
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reproducing interval ratios ranging in complexity from 1:3 and 1:4 to more complex 

ratios such as 3:4 and 4:5 (Povel, 1981).  When adjacent intervals have a larger contrast 

(such as 1:4 or 0.25), the durational contrast is decreased during reproduction, 

assimilating the ratio closer to 1:2. On the other hand, when adjacent intervals have a 

smaller contrast (such as 4:5 or 0.80), the duration contrast is increased during 

reproduction (Repp, London, & Keller, 2010).  These results are observed regardless of 

music training (Repp, London, & Keller, 2005; Summers, Bell, & Burns, 1989; 

Summers, Hawkins, & Mayers, 1986), and despite receiving visual feedback about 

performance accuracy (Collier & Wright, 1995) 

Assimilation towards simple meter ratios is observed even when participants 

synchronize with complex ratio meters in the presence of a musical melody (Snyder, 

Hannon, Large, & Christiansen, 2006).  In this study, participants were presented with a 

rhythm comprised of three intervals, two short and one long, with the short and long 

intervals related in a 2:3 ratio, and accompanied by a drum pattern in a complex 7/8 

meter.  Participants were instructed to synchronize with the drum pattern 

(synchronization phase), and then continue tapping the same pattern in the absence of the 

drum pattern (continuation phase). Although the participants did not completely 

assimilate to the simple ratio, they produced intervals ratios ranging between the given 

2:3 ratio and a simple 1:2 ratio. 

Evidence also points to the increased cognitive load in processing complex 

meters, as measured by differential brain responses while processing rhythms of varying 

metrical complexity (Lewis, Wing, Pope, Praamstra, & Miall, 2004; Sakai, et al., 1999). 

In one such instance, participants were instructed to produce patterns containing either 
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simple (1:2:3 or 1:2:4) or complex (1:2.5:3.5) duration ratios (Sakai, et al, 1999). 

Functioning magnetic resonance imaging (fMRI) scans pointed to separate brain areas 

being activated for simple versus complex ratio patterns, with simple ratios activating the 

left premotor and parietal areas, and the complex ratio rhythms activating the right 

prefrontal, premotor, and parietal areas. The increased prefrontal activation is likely to 

result from the increased role of memory required to process the complex ratio patterns.  

Interestingly, participants who drifted towards the simple ratio while asked to produce 

complex patterns, exhibited brain responses resembling those observed during the simple 

ratio trials.   

These results make it tempting to conclude that constraints for processing meters 

with simple integer ratios are universal and innate.  However, two lines of evidence 

challenge this viewpoint.  Firstly, musical styles from cultures such as Africa, Asia, and 

the Balkan Peninsula frequently use rhythms and meters that violate these simple ratio 

constraints (London, 1995).  Despite the complexity in these ratios, adults and children 

familiar with music from these cultures continue to dance and sing along with these 

rhythmic structures, unlike adults unfamiliar with complex meters (Rice, 1995; Singer, 

1973).   

For instance, when Western listeners are presented with simple and complex 

meter melodies, they are easily able to detect disruptions in the metrical structure in 

Balkan melodies with simple meters, but they show considerable difficulty in noticing 

metrical disruptions in Balkan melodies with complex meters.  On the other hand, 

individuals of Balkan origin detect metrical disruptions equally well in both the simple 

and complex meter melodies (Hannon & Trehub, 2005a).  Interestingly, this advantage 
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for complex meter processing is not driven merely by familiarity with the specific music 

and meters from one’s own culture.  Instead, familiarity with complex meters in one 

culture facilitates processing of complex meters even in unfamiliar musical contexts, and 

with unfamiliar musical meters.  For instance, when adults familiar with complex meters 

in Indian music are presented with unfamiliar Turkish melodies, they are equally 

proficient at detecting disruptions in both simple and complex meters, despite the specific 

meters being unfamiliar to them (Kalendar, Trehub, & Schellenberg, 2013).   

Individuals familiar with complex ratio meters also show comparable 

performance while synchronizing with simple and complex meters, unlike adults 

unfamiliar with complex patterns. Indian adults, for instance, are equally accurate and 

fast to synchronize with both simple and complex meters, whereas American adults, 

whose experience was limited to simple meters, are significantly more accurate and faster 

to synchronize with simple meters. Further, the metrical framework for simple and 

complex meters appears to be equally strong for Indian adults, as evidenced by 

comparable disruption in performance following an abrupt switch away from either a 

simple, or a complex meter (Ullal-Gupta, Hannon, & Snyder, 2014).   

Studies on young infants offer a second line of evidence in support of the 

argument that biases for simple meter processing might be experience-driven. Since 

infants are naïve to culture-specific experience, any differences observed in their 

performance on simple versus complex meter processing should stem from innate biases. 

As discussed earlier, Western adults show considerable difficulty in perceiving complex 

meter structures prevalent in music from other cultures. On the other hand, Western 

infants who have had minimal exposure to music from any one culture, show no such 
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bias (Hannon & Trehub, 2005a; 2005b).  Specifically, 6-month-old infants just as readily 

respond to structure-disrupting alterations in complex meter patterns as they do to simple 

meter patterns (Hannon & Trehub, 2005a).  By 12 months of age, however, Western 

infants start showing adult-like responses, in that they are significantly better at detecting 

disruptions in simple meter patterns than they are at complex meter patterns (Hannon & 

Trehub, 2005b), presumably due to passive exposure to culture-specific rhythms and 

meters. Unlike adults, however, the infants’ biases are less resistant to change, as 

demonstrated by the 12-month-olds showing improvement in performance on the 

complex meter trials following brief at-home exposure to complex meter music. 

While these studies suggest that preferences for simple meters might be entirely 

learned, other evidence suggests that the bias might be caused by interaction between 

innate constraints and culture-specific learning (Hannon, Soley, & Levine, 2011).  For 

instance, although 5 and 7 month-old infants show culture-general performance in 

perceiving disruptions in complex meters, they are unable to detect disruptions in highly 

complex ones (e.g., 4:7 ratios).  Thus, while preference for simple versus complex meters 

might be experience driven, at least some of the bias for simple meters might be innate.  

Even among the cultures that do use complex meters (e.g., 2:3 ratios), there is a limit on 

the degree of complexity of ratios.  Listeners from these cultures show similar constraints 

on highly complex meters.  For instance, when presented with simple, complex, and 

highly complex meters, Western adults perform significantly better on the simple meter 

trials, but show no difference between their performance on the complex and highly 

complex meters.  Turkish adults, on the other hand, perform comparably on the simple 
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and complex meter task, but significantly worse with the highly complex meters 

(Hannon, Soley, & Ullal, 2012).   

Taken together, this corpus of evidence strongly suggests that the innate bias for 

the simpler meters which is present in early infancy is overcome by extensive experience 

with the more complex patterns. Further, it is plausible that preference for simple ratios is 

the cause for, and not a consequence of, the use of simple meter ratios in every studied 

culture around the world, including those cultures that have a large presence of complex 

meters in their music.  While several cultures exclusively use simple meter ratios in their 

music, no known musical culture uses exclusively complex meter ratios.  Thus, it is 

entirely plausible that simple meters and complex meters are processed differently and 

recruit different brain mechanisms, even among those that are familiar with them.  

If complex meter rhythms are difficult and unfamiliar, it is possible that listeners 

employ counting strategies to locate the beat level and find periodicities at other levels 

(London, 1995).  Further, the processing of complex rhythmic patterns requires the 

ability to estimate unequal durations, an individual might use strategies such as counting. 

Thus, the ability to accurately perceive disruptions in complex meter rhythms plausibly 

correlates with a domain general ability to process quantity. Towards this aim, the first 

experiment in this dissertation examines individual differences in simple and complex 

meter perception, and the association with processing numerosity in both, the visual and 

auditory modalities. Additionally, this dissertation examines relationships between an 

individual’s rhythm processing abilities and their working memory capacity. Given the 

increased cognitive load in processing complex meters (Lewis, et al, 2004; Sakai, et al, 

1999), it is imperative to ensure that any relationship observed between complex meter 
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processing abilities and enumeration abilities are not driven by differences in working 

memory alone. 

The second study tests the nature of neural activity in response to simple (familiar 

to both groups) and complex (familiar to one group) meters.  In listening to music, 

extrinsic factors, such as physical accents and spacing between beats, interact with the 

intrinsic interpretation to create a metrical percept.  The strength of the intrinsic 

representations depends on the ease of processing of the patterns, which in turn is shaped 

by experience with the meters in question. While the extrinsic factors are equally 

available to all listeners, differences in the intrinsic representation create different mental 

percepts of the same pattern, as evidenced by neural activity.  This experiment examines 

the role of extrinsic factors in processing rhythms, and how this ability is affected by 

implicit experience with culture-specific rhythms. This study uses an EEG paradigm to 

measure brain activity in response to various rhythms that conform to simple and 

complex meters, and the role of culture-specific experience in shaping the brain activity 

patterns. 
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CHAPTER 2                                                                                                                          

Processing of Quantity in Time and Number  

Introduction 

The association between music and mathematics has been studied since the days 

of the ancient Chinese, Indians, Greek, and Egyptians, who searched for the mathematical 

principles of sound. They expressed musical scales and rhythms as being composed of 

mathematical ratios, with the theory that the two domains were associated at a 

fundamental level of their composite elements.  In the more recent past, however, popular 

media has linked music and mathematics in a different vein.  Namely, because the 

processing of rhythmic structures involves an understanding of mathematical ratios, there 

is an assumption that music training confers an advantage in mathematical processing.  A 

third association between the two domains is in the predominant use of counting in 

learning musical rhythms.  For instance, children learning a new song might often be 

taught to think of it as “CLAP-two-three-four-CLAP-two-three-four…”.  The interesting 

question is whether this association between music and mathematics translates into 

measurable behavioral outcomes.  Specifically, is there a relationship between an 

individual’s performance on a music task and their performance on a mathematical task?   

One of the important theories in studies of animal and human timing is the Scalar 

Expectancy Theory (SET) (Gibbon, Church, & Meck, 1984). According to this model, at 

the start of an interval of interest, a “switch” opens, allowing an internal pacemaker to 

generate and send pulses to an accumulator. At the end of the interval, the switch closes, 

upon which the accumulator counts the number of pulses. This number is compared to 

previous memory traces, held in long-term memory, after which a decision is made 
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regarding the length of the interval. Given the central role that numerosity takes in this 

model, a relevant question is the extent to which number processing abilities are related 

to the processing of temporal patterns. 

Although a common theory linking various dimensions of magnitude (of time and 

number, for instance) was not formally defined until quite recently (Walsh, 2003), 

evidence pointing towards this has been present for much longer. Some of the earliest 

evidence in favor of a generalized magnitude system comes from studies in non-human 

animals. In their classic study, Church & Gibbon (1982) used a temporal generalization 

procedure to present rats with an auditory or light signal between 2 and 8 seconds in 

durations. The rats were trained to press the lever only upon the 4-second signal. The 

results showed an increase in the probability of a lever press as the signal was closest to 

the 4-second target, pointing to the ability of rats to estimate time intervals.  

Further studies suggest that in addition to their sensitivity to duration, rats appear 

to pay attention to the number of events as well (Church & Meck, 1984). Rats were 

trained on one of two sequences, in a paradigm similar to the temporal discrimination 

design described above. However, in addition to varying the duration, in this task, the 

number of events was controlled for. The rats were trained to discriminate between a 

melody consisting of two tones that lasted two seconds, and another consisting of eight 

tones and lasting eight seconds. Although the rats rapidly learned to discriminate between 

the two melodies, given that the two dimentions were confounded, it was unclear as to 

which dimension the rats were paying attention to. Thus, to tackle this questions, the rats 

were presented with certain trials where one of the two dimensions was fixed while the 

other varied. The results showed that rats were equally proficient at generalizing across 
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either of the dimensions, and the subjective midpoint was identical across both. Further, 

discrimination in one dimension was transferred to the other, without additional training, 

suggesting that rats can abstract modality-general information from these stimuli (Meck 

& Church, 1983).  

Some of the most direct behavioral evidence in humans in favor of this model 

comes from interference effects of dual tasks or Stroop tests. Dual tasks measure the 

effects of interference, referring to a disruption in one task, while participants perform a 

demanding secondary task. In studies testing the effects of dual tasks on duration, results 

typically point to a lengthening of perceived time. This usually leads to shorter verbal 

estimates and reproductions, or longer productions (Block, Hancock, & Zakay, 2010). 

Listeners may be presented with a Stroop task to assess the degree of interference 

between numerical and temporal tasks, with one of the tasks acting as the distractor task. 

If common mechanisms underlie both processes, performance on the numerical task 

should be influenced by the irrelevant numerical distractor task, and vice versa.  

When listeners are presented with a task requiring them to judge whether the 

duration of a test stimulus is longer or shorter than a previously presented reference, 

results show that merely looking at number symbols biases their duration judgment 

(Olivieri, et al., 2008). Specifically, looking at small digits (such as 1) leads to 

underestimation of duration, and looking at large digits (such as 8) leads to 

overestimation of the perceived duration. Not surprisingly, there is no such biasing effect 

of looking at letters of the alphabet instead of numbers. Likewise, when participants are 

asked to make duration judgments on stimuli that vary in size, luminance, and 

numerosity, increasing the magnitude on any one of these non-temporal domains leads 
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participants to make longer temporal judgments (Xuan, Zhang, He, & Chen, 2007). 

Similar results have been observed in children in both implicit (Rousselle & Noel, 2008) 

and explicit (Levin, 1979) temporal judgment tasks.  

While these studies assess the interfering effects of non-temporal dimensions on 

temporal judgment, the converse has also been explored; namely whether temporal tasks 

interfere with non-temporal (particularly, numerical) tasks. In one such study, 

participants were presented with two series of flashing dots with a rectangle separating 

the two series, and were assigned to one of two tasks (Dormal, Seron, & Pesenti, 2006). 

In the numerosity comparison, they were asked to decide which series has more dots, and 

in the duration comparison, they were asked to decide which series lasts longer. Thus, 

one of the two dimensions (number or duration) acts as the dimension of focus, while the 

other acts as the irrelevant distractor. The duration and numerosity were manipulated to 

create congruent (series with more dots last longer) and incongruent (series with fewer 

dots last longer) conditions. The results show that numerical cues interfere with the 

duration, such that incongruent trials were slower and more error-prone than congruent 

trials. However, surprisingly, temporal cues appear not to interfere with the numerosity 

judgments, with no difference between congruent and incongruent conditions. The 

authors interpreted these results to suggest that while numerosity is processed 

automatically, duration processing is not. These findings replicate results from an earlier 

study (Droit-Volet, Clement, & Fayol, 2003) testing children aged 5 and 8, and adults on 

a similar Stroop task.  

The unidirectional nature of these interference effects have been explained using a 

theory of “attentional load”. Whereas duration is a continuous variable, numerosity is 
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discrete. Due to the continuous nature of duration, there is greater amount of noise 

introduced in the variable (Gallistel & Gelman, 2000), which the authors argue, requires 

more attention than that of number. Hurewitz, Gelman, & Schnitzer (2006) suggest that 

this hierarchy of magnitudes from continuous to discrete suggests that while time tasks 

are easily disrupted by a numerical task, they themselves do not act as good disrupters 

(but see Brown, 1997). These studies suggest automaticity of number processing, but do 

not provide any conclusive evidence in support of a common mechanism for temporal 

and numerical processing.  

Evidence in favor of a common neural substrate for temporal and numerical 

processing also comes from findings in neuropsychology. The right inferior parietal 

cortex has been shown to be central to time perception tasks, as evident from imaging 

(Rao, Mayer, & Harrington, 2001) and electrophysiological (Mohl & Pfurtscheller, 1991) 

findings. Animal studies corroborate these findings, with monkeys’ time judgment 

correlating with the response of the neurons in the inferior parietal cortex (Leon & 

Shadlen, 2003). Likewise, patients with damage to the right inferior parietal cortex (but 

not left) show substantial deficits in their time perception abilities (Battelli, Cavanaugh, 

Martini, & Barton, 2003; Harrington, Haaland, & Knight, 1998). Evidence from 

transcranial magnetic stimulation (TMS) also elucidates these findings (Alexander, 

Cowey, & Walsh, 2005). Specifically, when the right posterior parietal cortex is disrupted 

via TMS, participants show slower reaction time in making time discrimination, but show 

no corresponding deficit in pitch discrimination tasks. However, stimulation of the left 

posterior parietal cortex shows no such deficit in either of the tasks. Lewis & Miall 

(2003) highlight the role of the parietal cortex and its role in automatic temporal 
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processing, in contrast to the implication of the dorsolateral prefrontal cortex involved in 

cognitive timing and working memory.  

Besides having neurons specified for time processing, the parietal cortex is also 

known to have neurons that respond to numerosity (Walsh, 2003). However, unlike in 

temporal processing which shows activation only in the right parietal region, numerical 

processing has been shown to activate the bilateral parietal cortex. Imaging studies have 

shown the involvement of the bilateral intraparietal sulcus during various numerical 

tasks, all the way from the mere detection of number symbols (Eger, Sterzer, Russ, 

Giraud, & KLeinschmidt, 2003) and number estimation (Cohen & Dehaene, 1996), to 

complex arithmetic (Ansari & Dhital, 2006; Chochon, Cohen, van de Moortele, & 

Dehaene, 1999; Prado, et al., 2011). Interestingly, the activity of the intraparietal sulcus 

appears to be directly proportional to the difficulty of the numerical task (Pinel, Dehaene, 

Riviere, & LeBihan, 2001).  

Although the activation is bilateral, activation in the right hemisphere has been 

found to be associated with the understanding of the approximate number system 

(Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999; Holloway, Price, & Ansari, 2010; 

Piazza, Mechelli, Price, & Butterworth, 2006; Prado, et al., 2011). One of the 

explanations for this finding is that the right parietal sulcus is perhaps involved in the 

more abstract, pre-lingual number sense, and might act as the basis for other, more 

precise numerical processing that depends on language. In support of this theory, it has 

been found that infants and children show a greater right parietal activation in response to 

a numerosity adaptation task (Cantlon, Brannon, Carter, & Pelphrey, 2006; Izard, 

Dehaene-Lambertz, & Dehaene, 2008). Since infants and young children have likely not 
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yet developed an understanding of the exact number system, these results provide further 

evidence that the right parietal cortex is involved in basic numerical abilities upon which 

future math skills can be built.  

Given the role of the right inferior parietal sulcus in the processing of both time 

and numerical magnitude, an important question is the extent to which the two processes 

share common mechanisms. One of the major developments in the area is a review of a 

large corpus of data on numerical and temporal processing, which supports the idea of a 

generalized magnitude system for the processing of time, size, quantity and space, 

located in the parietal cortex (Walsh, 2003). Several lines of evidence support this notion. 

For instance, applying TMS to the parietal cortex has been shown to interfere with 

various forms of magnitude judements, including the judgment of time, size and number 

(Göbel, Walsh, & Rushworth, 2001; Hodinott-Hill, Thilo, Cowey, & Walsh, 2002). 

Likewise, single-cell studies in primates have pointed to the implication of the parietal 

neurons in numerical (Sawamura, Shima, & Tanji, 2002) and duration estimation tasks 

(Leon & Shadlen, 2003). 

If duration and number tasks rely on similar mechanisms, then this might imply 

that musical abilities should be related to numerical abilities. Theoretically, there should 

be several areas of overlap between musical and mathematical processing. Music, for 

instance, uses several mathematical constructs in its chords and time sequences. Musical 

tones are composed of a fundamental frequency and harmonics which are equivalent to 

integer multiples of the fundamental frequency. Likewise, mathematical ratios between 

frequencies and durations form the bases for consonant intervals and simple meters, 

respectively. Behavioral findings, however, show inconclusive evidence in favor of 
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associations between musicality (the ability to perceive and recall music) and 

musicianship (the ability to perform and create music), and mathematical abilities. 

Further, when testing musicality (music perception and music memory) and musicianship 

(music performance and music creation), mathematicians are no more proficient than are 

literature and language scholars (Haimson, Swain & Winner, 2011).  However, this study 

used a web-based approach and a self-report design, making it difficult to assess the 

validity of the results.  Further, this study examined musical abilities in mathematicians, 

instead of the converse. 

Another study reports that mathematical performance does correlate with 

musicality, but only in certain areas, specifically in pattern recognition and symbol usage 

(Bahr & Christensen, 2000). For instance, a longitudinal training study which assigned 

children to music lessons reports better performance on mathematical and visuospatial 

abilities (Rauscher & Hinton, 2011). Other studies, however, have not been able to find 

this correlation between musical abilities and pattern recognition (Helmbold, Rammsayer 

& Altenmüller, 2005). In testing the causal relationship between music training and math 

achievement, one study tests children’s abilities to use fractions and proportional math 

while being trained on a spatial-temporal math video game with randomly assigned to 

either concurrent piano lessons, or no music training. The findings suggest that second-

grade children who are given piano instruction in addition to the video game training 

perform significantly better than those trained on the video game alone (Graziano, 

Peterson, & Shaw, 1999). However, a meta-analysis consolidating findings from 

mathematical achievement in musicians and nonmusicians reports only a modest positive 

association between the two domains (Vaughn, 2000).  



18 

 

At the outset, these results suggest no real link between music and math 

performance. However, while these studies look for expertise in math and music, a 

fundamental question that remains unanswered was whether the two domains share 

common mechanisms at a more fundamental level of processing.  Specifically, the goal 

of the present study is to examine the extent to which an individual’s performance on a 

musical task predicts his/her performance on a fundamental numerosity task.  

These findings lead to the question regarding the role of explicit counting in 

performing temporal tasks.  To assess the extent to which we use counting mechanisms 

while processing musical rhythms, individual abilities in the domains of music and 

mathematical processing was measured. One of the central theories in music perception is 

that the ratio between time intervals of successive notes is an important factor in 

determining ease of processing of these patterns. Musical patterns whose intervals are 

related in simple ratios, such as 1:2, are easier to perceive and produce (Fraisse, 1978; 

Fraisse, 1982; Snyder, Hannon, Large & Christiansen, 2006) than more complex ratios 

such as 3:2. Further, differential brain response patterns are observed while processing 

simple versus complex ratio patterns, pointing to the increased role of cognitive resources 

in processing complex patterns (Sakai, et al, 1999).  Thus, in exploring links between 

numerical and rhythmic processing, this study assessed participants’ ability to process 

simple and complex meter rhythms, and examined relationships to numerical processing.  

 

Methods  

Ethics Statement. All procedures were approved by UNLV’s Institutional Review Board 

for Human Subjects Research (Social/Behavioral), and complied with the ethical 
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guidelines of the Office of Research Integrity. Written informed consent was obtained 

from all participants. 

 

Participants. Participants were college students from Las Vegas, Nevada, USA, (N=48, 

M = 22.2 years, 22 male, 26 female) recruited from the Subject Pool, and were offered 1 

credit for their participation.  Their music training ranged from 0 years to 13 years 

(M=1.92, SD=3.56), with 28 participants reporting 0 years of music training. All 

participants were asked about their performance on the math subsection of the SAT 

exam, however, only 7 participants reported it (M=648, SD=50).  

 

Task and Stimulus. In describing the relationship between the numerical and musical 

tasks in this study, the first step is to tease apart the effects of other factors that could 

affect performance on these tasks. Towards the aim, each individual’s score on a scale of 

math anxiety and their performance on a working memory task, were measured and are 

described below.  

 

Mathematics Anxiety. An often-described relationship exists between 

mathematics anxiety and numerical processing (e.g., Maloney, Risko, Ansari, & 

Fugelsang, 2010). Mathematics anxiety is described as a condition where the individuals 

experience unusual negative emotions while performing numerical and mathematical 

tasks.  Since the present study explored the relationship between numerical and rhythm 

processing, an important consideration was to examine the association between math 

anxiety and the various tasks of numerical processing, and how this translated into 
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performance on the rhythm tasks.  Importantly, mathematics anxiety is said to affect 

mathematical processing by occupying working memory, which would otherwise be used 

to perform the mathematical tasks (Ashcraft, 2002; Ashcraft & Faust, 1994).  This is 

particularly relevant to the present study, given the importance of working memory in 

processing durations (Miyake, Onishi, & Pöppel, 2004) and rhythms (Sakai, et al, 1999) 

in music.  To obtain a measure of mathematics anxiety, the Abbreviated Math Anxiety 

Scale (AMAS; Hopko, Mahadevan, Bare, & Hunt, 2003) was used.  The test consisted of 

9 questions that asked the participant about their level of anxiety (on a scale of 1-5) on a 

range of mathematical scenarios.   

 

 Working Memory. The role of working memory is critical in tasks of rhythm and 

numerical processing.  It is important, therefore, to ensure that any relationship observed 

between an individual’s performance on a rhythm and enumeration task is not solely 

driven by their working memory capacity.  To measure working memory, the three 

subtests of digit span from the Wechsler Adult Intelligence Scale IV (WAIS-IV; 

Wechsler, 2008) were used in the study: digit span forward, digit span backward, and 

digit span sequencing.  The digit span task measures auditory short-term memory and 

sequential processing, and assesses a range of cognitive variables including working 

memory, memory span, rote memory, immediate auditory recall, numerical ability, and 

attention (Sattler & Ryan, 2009). 

In all three subtests, which were presented in separate blocks, participants heard a 

series of digits presented once, at approximately one item per second.  In digit span 

forward, participants were asked to repeat the digits back in the same order that they were 
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presented in.  In digit span backward, participants were asked to repeat the digits 

backwards.  In digit span sequencing, participants were asked to repeat the digits in 

sequence, starting with the lowest number.  In all three subtests, there were two practice 

trials, with feedback.  In the test trials, there were two trials for each digit length with the 

digit length increasing incrementally (i.e., two trials of two digits, followed by two trials 

of three digits, etc.). Each subtest was administered until the participant got both trials of 

a certain length (i.e., both trials five digits in length) incorrect.  Each subtest was scored 

based on the longest number of items recalled correctly, yielding three separate scores: 

Longest Digit Span Forward (Digit Forward), Longest Digit Span Backward (Digit 

Backward), and Longest Digit Span Sequencing (Digit Sequencing). 

 

Rhythm and Meter Perception. The primary test of rhythm and meter in this 

study used a perceptual judgment task to assess listeners’ ability to detect a variety of 

disruptions in isochronous and nonisochronous meters.  The aim of this task was to assess 

individual differences in simple and complex meter performance, and to observe how this 

correlates with the individual’s performance on the numerical tasks.  This task presented 

listeners with a standard stimulus, followed by a comparison stimulus that was either 

unaltered (“unaltered” condition, altered but meter preserved (“meter preserved” 

condition), or altered with a disruption in meter (“meter disrupted” condition).  

Participants were asked to make similarity judgments comparing the two melodies. The 

melodies in the “meter preserved” condition maintained the original metrical structure, 

while changing the rhythm.  The melodies in the “meter disrupted” condition caused a 

change in the meter of the melody.  The “unaltered” melody included novel instrument 
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timbre compared to the standard, while maintaining the pitch, rhythm, and meter of the 

original.   

Stimuli. All the stimuli were drawn from, and used with permission from Hannon 

& Trehub (2005) and Hannon, Vanden Bosch der Nederlanden, & Tichko (2012).  As in 

the original study, the standard stimuli were comprised of four traditional Balkan songs, 

two in an isochronous 4/4 meter (simple), and two in a non-isochronous 7/8 meter 

(complex). The melodies were accompanied by one of two drum patterns: they alternated 

either between 1000 and 500 msec (2:1 ratio; simple condition) or between 750 and 500 

msec (3:2 ratio; complex condition).  Each of the four standard stimuli was edited to 

create the stimuli that either preserve or disrupt the original meter.  For the “meter 

preserving” conditions, one stimulus was “unaltered”, maintaining the rhythm and pitch, 

while changing the timbre, and the other was “structure preserving”, with 250 ms eighth 

notes inserted into each measure and adjacent note durations reduced.  For the “meter 

disrupting” conditions, one was “structure disrupting” with 250 msec eighth notes 

inserted into each measure but no corresponding adjacent note reduction, and the other 

was “severely disrupting”, with pseudorandom insertions of 250-500 msec notes one to 

three times per measure.   

Procedure. This experiment began with a brief practice session, with the song 

“Mary had a little lamb” used as the standard stimulus, and four altered stimuli created as 

described in the prior section.   Participants first listened to the standard stimulus, during 

which the label “Here is a new song” was presented on the screen.  Then, they listened to 

the four test stimuli, with the label “Here is a version of the same song”.  Following each 

test song, the participant was instructed to rate the songs on how similar it was to the 
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original standard melody, on a scale of 1 (very similar) to 5 (very different).  Participants 

only received feedback during the practice block. 

All similarity ratings were analyzed per condition, separately for the simple meter 

and complex meter trials, collapsed across the “meter preserving: conditions (mean of 

structure-preserving and unaltered) and the “meter disrupting” conditions (mean of 

structure-disrupting and severely disrupting).  From these similarity ratings, a difference 

score was computed as a measure of sensitivity to change (accuracy), by subtracting the 

similarity rating of the meter preserving condition from those of the meter disrupting 

condition. A larger difference score corresponds to a higher sensitivity score. 

 

Key perception. The principal goal of this task was to examine the relationship 

between melodic processing and processing of numerosity. In particular, this task 

allowed us to observe if any relationship between music and mathematical processing 

was confined to the rhythmic aspects of music alone, or if the link was present even for 

the more global processing of music.  The test was based on the rules of pitch structure 

governing key membership and implied harmony in Western music, and assessed 

listeners’ ability to detect various melodic changes.  

Western tonal music is typically written in a particular key, with all the notes 

within the melody belonging to the scale associated with that key. Out of key changes are 

more easily detected by listeners that within-key changes (Trainor and Trehub, 1994).  

Further, for within-key changes, out-of-harmony changes are more easily detected than 

within-harmony changes.   
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In this task, participants were tested on their ability to detect these changes in 

melody. Three of these included a change in one of the pitches relative to the other notes: 

within-harmony and within-key, out-of-harmony but within-key, or out-of-key.  In 

addition, a subsection of the melodies were transposed such that the tonic will be varied 

across conditions.  Research has shown that listeners attend more to relative pitch 

information than they do to absolute pitch.  By transposing the melodies, it ensures that 

listeners are using their memory for relative pitch information, rather than attending to 

absolute pitch changes for the notes.  Thus, the fourth condition included a transposition 

of the entire melody, with the relative pitches maintained. 

 Stimuli. The standard melody, adapted from Trainor and Trehub (1994), consisted 

of 10 notes in the key of E major, consisting of the following sequence of notes: E4, Ab4, 

B4, A4, Gb4, C3, F4, Ab4, Gb4, and E4 (“standard” condition).  The standard melody 

was transposed to two other keys, G major and B major (“no change” condition).  The 

tones were 75 dB sine waves 400 msec in duration with 10 msec rise and fall times. In 

addition to the “no change” condition, the 6
th

 note in the transposed melodies was either 

raised one semitone (“out of key” condition), raised two semitones (“out of harmony” 

condition), or raised four semitones (“within harmony” condition).   

 Procedure. This experiment commenced with a practice phase comprised of four 

trials. The participant listened to one rendition of the standard melody, followed by one 

of the other melodies (“no change”, “out of key”, “out of harmony”, or “within 

harmony”), and was asked to press a key indicating if they noticed a change in the 

melody. During this phase, participants received feedback for their response. The second 

melody was always be in a different key in relation to the first, regardless of whether 
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there was a change in the relative pitches or not. Following the practice session, the test 

phase began, where participants were not provided with feedback.  In the test phase, there 

were 12 trials, with the “no change” condition presented 6 times, and each of the change 

conditions (“out of key”, “out of harmony”, and “within harmony”) presented twice each.  

Thus, there were the same number of change and no change trials. The standard melody 

was first played with the label “Here is the first melody”, followed by one of the other 

melodies and the label “Here is the second melody”.  Participants were instructed to press 

a key to indicate a change in the melody as soon as they noticed it (counted as a 

“response”).   

 

Test of music aptitude. The Advanced Measures of Music Audiation (AMMA) 

is a music aptitude test that tests for music abilities (rhythm and tonality) independent of 

music training and experience (Gordon, 1989). In the current study, this test was used to 

examine the extent to which music aptitude correlates with performance on simple and 

complex meter perceptual tasks.  AMMA has been used extensively to predict music 

performance achievement of university students, and has reliability scores of 0.84 for the 

tonal section, 0.85 for the rhythm section, and 0.88 for the composite score (Gordon, 

1990; 1991).   

Stimuli and Procedure. This test consisted of thirty questions (“trials”), and three 

additional practice questions with feedback.  Each trial began with a short piano melody 

(“musical statement”) approximately five seconds in length, followed by a brief two-

second pause, and a comparison piano melody (“musical answer”) approximately five 

seconds in length.  The participant was asked to decide if the musical statement was the 
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same as, or different from the musical answer.  If different, the participant was asked if 

the two melodies differed on tonality or rhythm.  If different, the melodies only differed 

on one of the two dimensions.   At the completion of the test, the scores were 

automatically tallied for rhythm, tonal, and composite scores to give raw and percentile 

rank scores.   

 

Numerosity tasks. When asked to enumerate rapidly the number of objects 

presented, response time data show a clear “dog leg” function. That is, sets consisting of 

less than 4 objects are enumerated faster, almost automatically, with the reaction time 

increasing very slowly, typically at around 50-80 milliseconds per item. On the other 

hand, larger sets show a steeper increase in reaction time with increasing number of 

objects, typically increasing at a rate of about 200 milliseconds per additional item 

(Mandler & Shebo; Trick & Pylyshyn, 1993). This difference in slope of counting for 

small numbers and larger numbers has led to discussion of two separate processing in 

enumerating small and large numbers. Enumerating small numbers appears to be 

effortless, innate (Butterworth, 1999) and precise (Feigenson, Dehaene, & Spelke, 2004), 

and is referred to as subitizing, from the Latin word subitus, or sudden. The special aspect 

of subitizing is the seemingly automatic manner in which it occurs, almost akin to 

apprehending color or shape. In contrast, enumerating large items can either be counted – 

a time consuming and accurate process, or estimated - a rapid and error-prone process 

(Kaufman, Lord, Reese, & Volkmann, 1949).  Numerosity discrimination studies show a 

constant Weber fraction of 25% (Ross, 2003). That is, when the relative difference 

between subsequent numerosities drops below 25%, participants should have a more 
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difficult time enumerating rapidly or accurately. Consequently, when participants had to 

rate how similar two sets of items were, they rated two small number sets as being less 

similar to each other than two large number sets (Logan & Zbrodoff, 2003). For set sizes 

larger than 4, the relative difference between subsequent numerosities drops below 25%, 

which could explain the transition from subitizing to counting. A relevant question is the 

extent to which each of these enumeration processes is involved in temporal processing.  

The present study tested participants’ performance in the subitizing and counting 

ranges, and explored relationships between these processes and their performance on the 

music tasks.  Most studies in the realm of numerical processing use exclusively visual 

stimuli, thus testing visual enumeration.  However, the present study tests individuals’ 

temporal processing abilities. Thus, it is important to measure their enumeration abilities 

in the auditory modality in addition to the visual one, by presenting individuals with 

tones, in addition to dots. This would also answer two additional questions; firstly about 

the extent to which an individual’s performance on a visual enumeration task is 

correlated with their performance on an auditory task, and secondly, whether the overall 

pattern of results are comparable across the two modalities.  Further, enumeration tasks in 

the visual modality typically consist of dots presented simultaneously, while the 

individual was asked to estimate or count them.  However, objects typically unfold 

sequentially while processing rhythms.  Thus, in this experiment, the auditory tasks of 

enumeration consist of tones presented sequentially.  To ensure that similar tasks are 

being used in both modalities to the greatest extent possible, in addition to dots being 

presented simultaneously, they will also be presented in rapid succession, to mimic the 

auditory tasks of enumeration. 
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The enumeration of items (presented simultaneously) and events (presented 

sequentially) have been shown to have different ranges of accuracy (Taubman, 1950b) 

and to require different cognitive resources. For instance, in an articulatory suppression 

task, where participants were asked to repeat the words “the the the” during enumerating 

either items or events, the suppression task had an effect on the sequential event 

enumeration much earlier than it did for the simultaneous item enumeration task (Logie 

& Baddeley, 1987). Specifically, whereas simultaneous enumeration was intact until the 

set size reached seven items, articulatory suppression disrupted sequential enumeration 

even at 1 event. However, no study so far has presented identical stimuli both spatially 

(simultaneous), and temporally (sequential), and tested enumeration in the visual and 

auditory modalities.  

 

Visual Simultaneous Enumeration. 

  Stimuli and Procedure: The stimuli and procedure were similar to the ones used 

in prior studies (see Mandler & Shebo, 1982 for review).  Participants were presented 

with an array of dots on the screen, and asked to say aloud the number of dots.  The 

stimuli consisted of between 1 and 9 dots per display.  In creating the stimuli, the display 

was partitioned by the use of an imaginary 6X8 grid, with the dot appearing in the middle 

of the cell.  Dots less than 4 have easily recognizable canonical patterns (point, line, and 

triangle for 1, 2, and 3 dots respectively).  For dots above 4, any arrangements that will 

lead to a recognizable pattern (e.g., rectangle, pentagon) were discarded from use.  From 

this collection of all stimuli, 27 were used in this study (3 per number), with an additional 

set of 9 from which the practice trials were drawn. 
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 The experiment began with a practice block consisting of 3 trials, during which 

participants received feedback for their answers. The test phase consisted of 27 trials with 

arrays ranging from 1-9 dots, in a randomly presented order. Each trial began with a 

black fixation point presented for 500 ms, on a white screen.  The display containing the 

dots was presented until a voice response was detected. The voice response triggered the 

next screen during which time the experimenter recorded the participant’s answer. Trials 

where the first voice response was not detected, where the participant changed the answer 

once the response was detected, or where the voice response was detected prior to the 

participant saying the answer, were coded as “0” by the experimenter, and excluded from 

further analyses.  

 

Sequential enumeration. This paradigm is an extension of the simultaneous enumeration 

task described above.  Dots (for the visual modality) or tones (for the auditory modality) 

ranging from 1 to 9 were presented sequentially and were modified from Piazza, et al 

(2006). For the visual modality, red and green dots were presented on a white background 

one at a time.  The location of the dot varied and was pseudorandomized, based on the 

grid described in the prior section.  In the auditory modality, high-pitched and low-

pitched tones (1200 Hz and 400 Hz) were used, with a blank white screen.  The 

brightness of the dots and the intensity of the tones were assigned by testing five 

volunteers to assess the subjective equi-luminance and equi-loudness values, 

respectively.  Each stimulus (dot or tone) lasted for 90 ms, with inter-stimulus interval 

randomly varying between 90 ms and 180 ms, to avoid the stimuli being presented 

isochronously.  Each trial began with a black fixation point presented for 500 ms, on a 
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white screen, followed by the sequence of stimuli, and finally a black screen to denote the 

end of the trial.  Similar to the simultaneous enumeration task, there were 27 trials (per 

modality).  The participants were instructed to say the number of dots or tones aloud in 

the microphone.  The experiment commenced with a practice block with 3 trials (per 

modality) during which the participant received feedback for their response. Given the 

lack of a priori hypothesis about data trends, in addition to reaction time and accuracy, 

deviance measures (expected response – given response) were calculated and are reported 

below.   

 

Results 

Results on Individual Measures. 

Math Anxiety 

Math anxiety scores in the task used in this study range from 9 to 45, with a higher score 

being indicative of a higher level of mathematics anxiety.  In this particular participant 

group, the scores ranged from 9 to 34 (M=22.45, SD=5.90). 

 

Working memory 

Results showed that participants’ individual performance on each of the subtests 

correlated with each other, but surprisingly did not correlate with the scores on the math 

anxiety scale (See Table 1 below). Since the three subtests of the digit span task were 

correlated with each other, a composite working memory measure (WMC) was obtained, 

comprising the average of the three subtests.  
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Table 1: Correlation Coefficients between the subsections of the Digit Span Task and Math 

Anxiety Scores 

 

    Digit  

Forward 

   Digit 

Backward 

       Digit     

   Sequencing 

        Math 

      Anxiety 

Correlation Digit Forward  1.00               

Digit Backward .38
**

          1.00   

Digit Sequencing     .29
*
            .57

***
 1.00  

Math Anxiety    .01           -.15 -.07 1.00 

 

Note. N = 48 
*
 p < .05. 

**
 p < .01. 

***
 p < .001. 

 

 

Rhythm and Meter Perception 

As seen in Figure 1, participants were more sensitive to change (higher difference score) 

in the simple meter trials than in the complex meter trials. A one-way repeated measures 

analysis of variance (ANOVA) revealed a main effect of Meter, F(1,47)=12.17, p<.01, 

p
2
=.21 with a higher difference score in the simple meter trials (M=1.49, SD=0.20) than 

in the complex meter condition (M=0.79, SD=0.17). These results replicate the findings 

from the Hannon, et al (2012) study, which found higher levels of sensitivity in the 

simple, versus in the complex meter conditions.  
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Figure 1: Difference scores in the simple and complex meter condition (larger difference 

score denotes higher sensitivity to change) 

 

 

Test of Key Perception 

Results were analyzed for each change condition separately by calculating the proportion 

of response on the change trials (hits) and no-change trials (false alarms).  These 

proportions were transformed by adding 0.5 to the total number of responses made, and 

dividing by the total number of trials + 1, to yield a transformed d’ from a table of signal 

detection theory.  This transformation ensured that there are no proportions of 0 or 1. 

Chance performance is represented by a d’ of 0.   

A repeated measures ANOVA revealed a main effect of Change Type, 

F(2,47)=2.87, p=.10, p
2
=.071. Bonferroni corrected paired sample t-tests revealed no 

significant difference in performance between out-of-key and out-of-harmony changes: 

t(47)=.33, p=.74, a marginally higher performance on the within-harmony changes than 
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on the out-of-key changes, t(47)=2.00, p=.051, and significantly higher performance on 

the within-harmony changes  than the out-of-harmony changes: t(47)=2.17, p<.05 (see 

Figure 2). These results contradict those found by Trainor & Trehub (1994), who 

reported that within-harmony change trials showed the lowest level of performance, with 

no significant difference between out-of-key and out-of-harmony changes. 

 

 
Figure 2: Performance on task of melody for different change types 

 

 

In both, the original (Trainor & Trehub, 1994) and the present study, the within-

harmony changes had the largest change (four semitones), out-of-harmony (two 

semitones) and out-of-key (one semitone). However, the major difference between the 

two studies is in the larger number of trials per condition and the presentation of the trials 

in a block-design fashion in the original study. Thus, in the present study, given the few 

number of trials, it is possible that listeners were merely attending to the degree of change 
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in semitones, instead of attending to the overall melody. The original study avoided this 

problem by using a block-design (all within-harmony changes presented in one block, for 

instance), but the low number of trials in the present study did not allow for this design 

consideration. 

In addition, unlike in the original study, music training did not correlate with any 

of the measures [within-harmony: r(47)=.020, p=.90; out-of-harmony: r(47)=-.078, 

p=.60; out-of-key: r(47)=-.089, p=.55], likely once again, due to the small number of 

trials. 

 

Test of Music Aptitude (AMMA) 

As expected, the scores for the tonal and rhythm subsections of AMMA positively 

correlated with each other, r(47)=.72, p<.0001, and each correlated positively with the 

composite score [tonal: r(47)=.93, p<.0001; rhythm: r(47)=.93, p<.0001]. Furthermore, 

each measure correlated positively with number of years of music training [tonal: 

r(47)=.48, p<.01; rhythm: r(47)=.48, p<.0001; composite: r(47)=.52, p<.0001].  

 

Tests of Enumeration 

Visual simultaneous enumeration 

The data are presented below for accuracy, reaction time (after omitting the incorrect 

responses), and slope of reaction time for the subitizing and the counting ranges. Figure 3 

presents the accuracy score, calculated for each trial based on whether the response was 

correct or incorrect.  
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Figure 3: Accuracy (% correct) of responses for simultaneous presentation of visual 

stimuli 

 

As can be seen, accuracy decreased as the number of dots increased. The slopes 

corresponding to the accuracy scores for consecutive numbers of dots (e.g., between 1 

and 2, between 2 and 3, etc.) were computed, and paired-sample t-tests were used to 

explore differences in accuracy for adjacent numerosities. The results showed a 

significant difference between the numerosities corresponding to the slope between 4 and 

5 dots, and between 5 and 6 dots, t(47)=3.29, p<.01. This is also evident in Figure 4 

which depicts a steady rate of accuracy between 1 and 5 dots, followed by a dramatic 

decline in accuracy beyond 5 dots.  

Next, in order to observe the effects of increasing numerosity on response times, 

the response time values for the correct responses were calculated. These values were 

first submitted to a data trimming procedure, to test for outliers which fell outside of 2.5 
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standard deviations of the mean in each cell (Maloney, Risko, Ansari, & Fugelsang, 

2010). There were no outliers in the present dataset. As observed in Figure 4, there was 

an increase in response time from 1 through 9 dots.  

 

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Number of dots
 

Figure 4: Response time of correct responses for simultaneous presentation of visual 

stimuli 

 

The slopes corresponding to the response times for consecutive numbers of dots 

(e.g., between 1 and 2, between 2 and 3, etc.) were computed, and paired-sample t-tests 

were used to explore differences in rates of change in response time for adjacent 

numerosities. The results showed a significant difference between the numerosities 

corresponding to the slope between 1 and 2 dots, and between 2 and 3 dots, t(47)=4.43, 

p<.001. There were no other significant differences between any of the other adjacent 

pairs. This suggests that based on the response time measures from the present dataset, 
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the subitizing range extends only up to 2 dots, with the counting range extending from 3-

9 dots.  

Based on these data, the accuracy measures suggested a distinct process beyond 5 

dots, and the response time measures suggested a distinct process beyond 2 dots, making 

it difficult to use these trends to decide a suitable subitizing and counting range. This 

disparity in findings is likely due to the small number of trials used in this study 

compared to other studies in the literature on enumeration. Therefore, to ensure an 

unbiased method of separating the subitizing range from the counting range, (Atkinson, 

Campbell, & Francis, 1976) data from prior studies in the literature (e.g., Atkinson, 

Campbell, & Francis, 1976, Mandler & Shebo, 1982, Trick, 1992) were used to 

determine that the subitizing range extends from 1-4 dots, and counting range extends 

beyond 4 dots. Further, as is typically done in the literature, the reaction time associated 

with 9 dots was omitted from analyses, since any number beyond 8 can be apprehended 

as being 9, without having to count the additional dot.    

Next, the accuracy and response time measures were averaged over the subitizing 

(1-4 dots) and counting ranges (5-8 dots), and submitted to a one-way repeated measures 

ANOVA with Range [Subitizing, Counting] as the within subjects variable. Both, the 

accuracy and response time measures revealed a main effect of Range [accuracy: 

F(1,47)=21.29, p<.001, p
2
=.31; response time: F(1,47)=323.92, p<.001, p

2
=.87] with 

the accuracy decreasing, and response time increasing between the subitizing and the 

counting ranges. 



38 

 

 

Visual Sequential Enumeration. Figure 5 presents the accuracy score associated 

with each numerosity. As can be seen, accuracy decreased as the number of dots 

increased.  
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Figure 5: Accuracy (% correct) of responses for sequential presentation of visual stimuli 

 

The slopes corresponding to the accuracy scores for consecutive numbers of dots  

(e.g., between 1 and 2, between 2 and 3, etc.) were computed, and paired-sample t-tests 

were used to explore differences in accuracy for adjacent numerosities. There was a 

significant difference between the numerosities corresponding to the slope between 1 and 

2 dots, and between 2 and 3 dots, t(47)=4.60, p<.001. In addition, there was a difference 

between the slope between 6 and 7 dots, and between 7 and 8 dots, t(47)=2.33, p<.05, 

and between the slope between 7 and 8 dots, and between 8 and 9 dots, t(47)=2.53, 
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p<.05. Thus, based on these effects and the trends seen in Figure 6, there was a decline in 

accuracy beyond 2 dots, but an unexpected increase (and subsequent decline) in accuracy 

after 7 dots. The increase in accuracy between 1 and 2 dots, occurred presumably 

because with the single flashing dot, participants inaccurately counted the number of 

events (dot appearing, dot disappearing) as two, instead of one. The spike in accuracy 

associated with 8 dots might have occurred because with the increasing number of 

flashes, participants might have merely regressed to the strategy of responding with “8”, 

as an average of 7 and 9 flashing dots.   

Since this sequential presentation of items was largely exploratory in nature, a 

deviance measure was calculated, to observe the difference between the expected 

response and the given response. As seen in Figure 6, beyond 2 dots, participants 

underestimated the number of items, and there was a general increase in deviance beyond 

5 dots.  
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Figure 6: Deviance measure for sequential presentation of visual stimuli 

 

Next, the response times associated with the different numerosities were 

computed. 2.32% of response times were discarded as outliers. As observed in Figure 7, 

there was no steady increase in response time. Instead, there was a peak in response time 

for 3 and 7 dots, with response time decreasing on both sides of these number sets, and a 

drop in response time associated with 5 dots.  
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Figure 7: Response time for sequential presentation of visual stimuli 

 

The slopes corresponding to the response times for consecutive numbers of dots 

were computed, and Bonferroni-corrected paired-sample t-tests were used to explore 

differences in rates of change in response time for adjacent numerosities. The results 

showed a significant difference between the numerosities corresponding to the slope 

between 4 and 5 dots, and between 5 and 6 dots, t(47)=3.92, p<.001.  

The data from the accuracy and the response time measures depict different 

trends, with unclear patterns of where the subitizing and counting ranges exist. On the 

one hand, the results from the response time measures suggest that the distinction might 

occur around 5 events. However, the data from the accuracy measures suggest that this 

happens much earlier, perhaps after 2 events. Although much of the literature on 

enumeration focuses on spatial enumeration, those that do discuss temporal enumeration 

use error rates as their primary dependent variable, because events unfold over time 
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making it difficult to determine when timing should start (Trick, 2005). Therefore, for the 

purposes of this study, based on the accuracy measures and prior literature (Taubman, 

1950b; Trick, 1992), the subitizing range in temporal visual enumeration was determined 

to extend up to 2 events, with counting extending from 3-8 events. 

Next, the accuracy and response time measures were averaged over the subitizing 

(1-2 dots) and counting ranges (3-8 dots), and submitted to a one-way repeated measures 

ANOVA with Range [Subitizing, Counting] as the within subjects variable. Both, the 

accuracy and response time measures revealed a main effect of Range [accuracy: 

F(1,47)=71.54, p<.001, p
2
=.60; response time: F(1,47)=13.36, p<.001, p

2
=.22] with 

accuracy decreasing, and response time increasing between the subitizing and the 

counting ranges.  

  

Auditory Enumeration. Figure 8 depicts the accuracy scores in the auditory 

enumeration task. As can be seen, the accuracy measure showed a steady decline with 

increasing numbers of tones.  
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Figure 8: Accuracy (% correct) of responses for auditory stimuli 

 

Similar to the analyses from the visual enumeration tasks, the slopes 

corresponding to adjacent accuracies were computed, and compared using paired-sample 

t-tests. The findings replicated those found in the simultaneous visual enumeration task, 

namely, there was a significant difference in the rate of change between 1 and 2 tones, 

and between 2 and 3 tones, t(47)=2.91, p<.01. Unlike in the simultaneous visual 

enumeration task, there were no other significant differences between adjacent pairs. 

These data make it evident that there exists a break in the accuracy measure beyond 2 

auditory events, suggesting a subitizing range for 1 and 2 tones, with a counting range for 

3 tones and beyond.  Similar to the analyses from the visual sequential enumeration task, 

a deviance measure was calculated, to observe the difference between the given response 

and the expected response. As seen in Figure 9, participants underestimated the number 
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of items, with an increase in this underestimation as the number of events increased, 

replicating findings from earlier studies (Repp, 2007). 
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Figure 9: Deviance measure for sequential presentation of auditory stimuli 

 

The response time measures were also computed, with 1.67% of response time 

values discarded as outliers. The trends were remarkably similar to those seen with the 

accuracy measures, with a significant difference in the slopes between 4 and 5 tones, and 

between 5 and 6 tones, as seen in Figure 10, and confirmed by Bonferroni corrected 

paired-sample t-tests, t(47)=2.74, p<.01. 
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Figure 10: Response time for sequential presentation of auditory stimuli 

 

Since the trends in accuracy and response time measures paralleled those from the 

sequential visual enumeration task, the same numerosity ranges were used to calculate 

the subitizing (1-2 tones) and counting (3-8 tones) averages. These values were submitted 

to a one-way repeated measures ANOVA with Range [Subitizing, Counting] as the 

within subjects variable. Both the accuracy and response time measures revealed a main 

effect of Range [accuracy: F(1,47)=317.13, p<.001, p
2
=.87; response time: 

F(1,47)=54.02, p<.001, p
2
=.54] with the accuracy decreasing, and response time 

increasing between the subitizing and the counting ranges. 

 

Association between enumeration and Working Memory and Math Anxiety 
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Visual simultaneous enumeration 

There was no correlation between math anxiety scores and the two dependent 

measures in either the subitizing [accuracy: r(47)=-.16, p=.28; response time: r(47)=.26, 

p=.16] or the counting [accuracy: r(47)=-.14, p=.34, response time: r(47)=.22, p=.18] 

ranges. These results contradict those found in prior studies (Maloney, Risko, Ansari, & 

Fugelsang, 2010), which found that math anxiety negatively affected performance in the 

counting range. However, while the prior study deliberately recruited participants who 

had the highest and the lowest math anxiety scores, the present study did not. Thus, it is 

likely that the limited range of math anxiety scores in the present study prevented any 

correlation between math anxiety and accuracy measures to be revealed. There was also 

no correlation between working memory and accuracy in the subitizing [Digit Forward, 

r(47)=.20, p=.16; Digit Backward, r(47)=.079, p=.59; Digit Sequencing, r(47)=-.13, 

p=.39] or counting [Digit Forward, r(47)=-.094, p=.52; Digit Backward, r(47)=.24, 

p=.11; Digit Sequencing, r(47)=.23, p=.10] ranges, or between working memory and 

response time in the subitizing [Digit Forward, r(47)=-.11, p=.45; Digit Backward, 

r(47)=.006, p=.97; Digit Sequencing, r(47)=.58, p=.70] or counting  [Digit Forward, 

r(47)=-.27, p=.067; Digit Backward, r(47)=-.10, p=.49; Digit Sequencing, r(47)=.044, 

p=.76] ranges.   

 

Visual Sequential Enumeration 

Similar to the findings from the simultaneous enumeration, there was no 

correlation between math anxiety scores and the two dependent measures in either the 

subitizing [accuracy: r(47)=-.032, p=.83; response time: r(47)=-.024, p=.87] or the 
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counting [accuracy: r(47)=-.11, p=.47, response time: r(47)=.047, p=.75] ranges. There 

was also no correlation between working memory and accuracy in the subitizing [Digit 

Forward, r(47)=-.067, p=.65; Digit Backward, r(47)=-.21, p=.16; Digit Sequencing, 

r(47)=.17, p=.25] or counting [Digit Forward, r(47)=.023, p=.88; Digit Backward, 

r(47)=.043, p=.77; Digit Sequencing, r(47)=-.11, p=.44] ranges, or between working 

memory and response time in the subitizing [Digit Forward, r(47)=.16, p=.27; Digit 

Backward, r(47)=.097, p=.51; Digit Sequencing, r(47)=-.077, p=.60] or counting  [Digit 

Forward, r(47)=.098, p=.51; Digit Backward, r(47)=.078, p=.60; Digit Sequencing, 

r(47)=-.21, p=.14] ranges.   

 

Auditory Enumeration. 

There was no correlation between math anxiety scores and response time in the 

subitizing, r(47)=.023, p=.87, or the counting, r(47)=.091, p=.54 ranges, or between 

math anxiety scores and accuracy in the counting range, r(47)=-.19, p=.21. There was, 

however, a significant negative correlation between math anxiety and the accuracy in the 

subitizing range, r(47)=-.35, p<.01, such that as math anxiety increased, there was a 

decline in accuracy. 

  There was no correlation between working memory and response time in the 

subitizing [Digit Forward, r(47)=.13, p=.37; Digit Backward, r(47)=.18, p=.22; Digit 

Sequencing, r(47)=-.12, p=.43] or counting [Digit Forward, r(47)=.21, p=.15; Digit 

Backward, r(47)=.17, p=.25; Digit Sequencing, r(47)=.035, p=.81] ranges. Likewise, 

there was no correlation between working memory and accuracy in the subitizing range  

[Digit Forward, r(47)=.11, p=.45; Digit Backward, r(47)=.01, p=.96; Digit Sequencing, 
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r(47)=-.08, p=.59]. In the counting range, however, there was a significant positive 

correlation between Digit Backward and accuracy, r(47)=.34, p<.05, and between Digit 

Sequencing and accuracy, r(47)=.35, p<.05, but none between Digit Forward and 

accuracy, r(47)=.043, p=.77. That is, as digit span increased, so did accuracy, but only in 

the counting range, paralleling the findings from math anxiety, which showed a decline in 

accuracy with increased anxiety.  

Math anxiety has been shown to occupy working memory (Ashcraft & Faust, 

1994; Ashcraft, 2002), and to affect performance in counting, but not in subitization 

tasks, mediated by load on working memory (Maloney, Risko, Ansari, & Fugelsang, 

2010). However, the present finding is novel in that it extends these effects to auditory 

enumeration, and to sequential enumeration of events, instead of on simultaneous visual 

enumeration.   

 

Association between rhythmic and numerical processing 

 The central question in this study is the extent to which individual performance on 

the rhythm task (measured by the difference scores on the simple and complex meter 

rhythm task) correlates with performance on the tasks of enumeration. Tests of 

multicollinearity indicated that a low level of multicollinearity was present across all 

variables (VIF<5). Next, to select the specific variables to enter into the regression 

analysis, a correlation analysis was performed between the outcome variables and each of 

the independent variables (Table 2). 
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Table 2: Correlation between simple and complex meter performance and each independent variable 
 

 
MT WMC MA VSim

% 

Sub 

Vsim

% 

Count 

Vsim

R 

Sub 

Vsim

R 

Count 

Vseq

% 

Sub 

Vseq

% 

Count 

Vseq

R 

Sub 

VSeq

R 

Count 

Aseq

% 

Sub 

Aseq

% 

Count 

Aseq

R 

Sub 

Aseq

R 

Count 

WH OK OH Tonal Rtm 

 

Simple 

 

0.58** 

 

0.28 

 

-.040 

 

-.16 

 

-.22 

 

-.33* 

 

-.33* 

 

-.08 

 

-.05 

 

.12 

 

-.14 

 

.07 

 

.14 

 

-.30* 

 

.09 

 

.00 

 

.00 

 

0.08 

 

0.40** 

 

0.56** 

Complex .43** .40** .016 -.21 .016 -.077 -.098 -.11 -.10 .15 .057 .033 .36* -.075 -.030 .21 .11 .20 .27 .40** 

 

Note: N=48, * p < .05. ** p < .01. *** p < .001. 

 

Acronym Variable Name 

 

MT Number of years of music training 

WMC Composite working memory score  

MA Math Anxiety score 

VSim%Sub Accuracy on Visual Simultaneous Enumeration – Subitizing Range 

VSim%Count Accuracy on Visual Simultaneous Enumeration – Counting Range 

VSimRSub Response Time on Visual Simultaneous Enumeration – Subitizing Range 

VSimRCount Response Time on Visual Simultaneous Enumeration – Counting Range 

VSeq%Sub Accuracy on Visual Sequential Enumeration – Subitizing Range 

VSeq%Count Accuracy on Visual Sequential Enumeration – Counting Range 

VSeqRSub Response Time on Visual Sequential Enumeration – Subitizing Range 

VSeqRCount Response Time on Visual Sequential Enumeration – Counting Range 

ASeq%Sub Accuracy on Auditory Sequential Enumeration – Subitizing Range 

ASeq%Count Accuracy on Auditory Sequential Enumeration – Counting Range 

ASeqRSub Response Time on Auditory Sequential Enumeration – Subitizing Range 

ASeqRCount Response Time on Auditory Sequential Enumeration – Counting Range 

WH Score on Within Harmony trials 

OK Score on Out of Key trials 

OH Score on Out of Harmony trials 

Tonal Score on Tonal Subtest of AMMA 

Rtm Score on Rhythm Subtest of AMMA 
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The number of years of music training and music aptitude (both rhythm, and tonality) 

correlated positively (p<.05) with performance on the simple meter trials. That is, as 

number of years of music training or music aptitude increased, so did the scores on the 

simple meter tasks. Interestingly, however, in addition to the effects of music aptitude 

and music training, the following predictor variables correlated negatively with 

performance on the simple meter trials: response time on the visual simultaneous 

enumeration task (subitizing range: r(47) = -.33, p < .05; counting range: r(47) = -.33, p 

< .05), and response time on the auditory enumeration task in the subitizing range, r(47) 

= -.30, p < .05. That is, as response times on these enumeration tasks increased, accuracy 

on the simple meter task decreased.  

Based on these significant correlations, a series of hierarchical multiple regression 

analyses was performed to assess whether the performance on the enumeration tasks 

predicted performance on the simple meter tasks independently of the influence of music 

training and music aptitude.  To do so, in the first step, all the predictor variables that 

correlated significantly with performance on the simple meter trials were entered into the 

model, including the music training and music aptitude variables. This full model was 

significant; R(47)=.71, adjusted R
2
 = 4.39, F(6.41)=7.12, p<.001. In the next step, the 

effects of music aptitude were removed from the hierarchical regression analysis. 

Removal of these variables (performance on both, the rhythm and tonal subtests) 

significantly diminished the effectiveness of the model, R
2
 change=-.083, F=3.47, p<.05, 

suggesting that music aptitude was an important factor in predicting performance on the 

simple meter trials. In the final step, the effects of music training were removed from the 

resulting regression model, leaving only the response time on the enumeration tasks in 
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the equation. Removal of music training also diminished the model’s predictability 

significantly, R
2
 change=-.26, F=19.23, p<.001. Further, given that music training was 

removed last from the analysis, the model highlights the role of music training beyond 

any role of music aptitude.  

The effects of music training and music aptitude on simple meter perception are 

not surprising. The essential question is how well individual performance on an 

enumeration task can predict simple meter perception after removing the effects of music 

training and aptitude. The individual models at each step of the hierarchical regression 

analysis suggest that even when the effects of music training and aptitude are removed 

from the model, response time on the enumeration tasks can still effectively predict 

performance on the simple meter trials, F(3,44)=3.03, p<.05.  

In looking at the complex meter trials, besides the significant associations with 

music training and performance on the rhythm subtest, individual performance correlated 

positively with their performance on the working memory task, and with accuracy in the 

counting range of the auditory enumeration task. Similarly to the analyses with the simple 

meter trials, hierarchical multiple regression analyses were performed, with the full 

model including all of the variables that correlated significantly with performance on the 

complex meter trials. This full model significantly predicted performance on the complex 

meter trials, R(47)=.57, adjusted R
2
=.26, F(4,43)=5.08, p<.01. In the next two steps, 

working memory, and performance on the rhythm subtest of AMMA were hierarchically 

removed in that order. Neither of these steps diminished the effectiveness of the full 

model, R
2
 change<2.02, F<5.96, p>.16, n.s. Removal of music training in the final step, 

however, significantly reduced R
2
, R

2
 change=-.14, F(1,46)=8.25, F<.01. Interestingly, 
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the reduced model with accuracy in the auditory counting task acting as the only 

predictor, still resulted in a significant model, R(47)=.36, adjusted R
2
=.11, F(1,46)=6.62, 

p<.05.  

Taken together, the findings from the simple and complex meter tasks suggest 

that an individual’s enumeration abilities predict their performance on a rhythm 

perception task even after effects of music training, music aptitude, and working memory 

are controlled for. The specific enumeration tasks and the strength of their effects differ 

depending on whether the rhythms involve simple, isochronous meters, or complex, non-

isochronous meters. 

 

Discussion 

The primary goal of this study was to examine the elusive link between music and 

mathematics. Before exploring the link between the two domains, it was important to 

assess the association between auditory and visual processing, since the domain of 

mathematics is predominantly based on the visual system, whereas music is based on the 

auditory system.  

Prior studies that have compared enumeration abilities in the visual and auditory 

modalities report similar trends across both in terms of response time and accuracy 

(Camos & Tilmann, 2008). Specifically, results from both, vision and audition, support a 

discontinuity between enumerating small versus large sets, with response times 

increasing and accuracy decreasing linearly for larger sets, but staying constant within the 

smaller sets. Likewise, in both vision and audition, brain imaging studies have argued for 

the role of the left hemisphere in subitization (Piazza, Mechelli, Price, & Butterworth, 
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2006) and the right hemisphere in counting (Pasini & Tessari, 2001). However, no study 

to date compared individual performance across the two modalities. The results from the 

present study revealed a high level of correlation between an individual’s performance on 

the auditory and visual enumeration tasks, as seen in Table 2, with an additional 

interesting and unexpected finding – an individual’s performance on the visual and 

auditory numerosity tasks are correlated, but only within the subitizing range. This novel 

finding suggests that at the subitizing level, the mechanism for enumeration might be 

similar across modalities, but might diverge for larger set sizes. This lends support to the 

argument in the literature that subitizing is a more basic skill, and acts as a precursor to 

counting (Klahr & Wallace, 1976; Schaeffer, Eggleston, & Scott, 1974). Prior research 

suggests that unlike counting, subitizing abilities emerge in very early infancy and 

existing across both, vision and audition (Klein & Starkey, 1988).   

The central question of study measured the extent to which the domains of music 

and mathematics are correlated within individuals. The test used the basic enumeration 

task across vision and audition to measure mathematical abilities, and an ecologically 

valid measure of rhythm perception to assess musical ability. Specifically, the rhythm 

consisted of repeating patterns of events, with durations related in either simple or 

complex integer ratios. The results from this study revealed a novel and important 

finding. Namely, whereas simple meter processing correlated with performance on 

enumeration in the subitizing and counting ranges, complex meter processing correlated 

with performance only within the counting range, but not within the subitizing range, as 

seen in Table 2. Further, whereas performance on the complex meter task correlated 
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significantly with working memory capacity, performance on the simple meter task did 

not. 

These findings add strength to the theory that there may be fundamental 

differences in terms of processing of simple versus complex meter rhythms, and that this 

difference might be associated with the processing of quantity in general. Further, 

whereas processing of simple meter rhythms might be akin to processing small quantities 

– automatic and innate, processing of complex meter rhythms might be dependent on 

greater cognitive resources. In processing simple versus complex meter rhythms, one of 

the theories in the literature is that while simple meter processing is automatic and 

implicit, the processing of complex meters requires explicit strategies (Sakai, et al., 

1999). Specifically, whereas simple integer (or “metrical”) rhythms easily map on to an 

internal clock, the more complex ones do not (Povel & Essens, 1985).  Thus, rhythms 

comprised of simple integer ratios have been shown to be easier to perceive than simple 

meters (Desain & Honing, 2003; Repp, London, & Keller, 2010). 

Evidence also points to the increased cognitive load in processing complex 

meters, as measured by differential brain responses while processing rhythms of varying 

metrical complexity (Lewis, et al, 2004; Sakai, et al, 1999). In turning towards the 

literature on enumeration, a small number of items are enumerated almost instantly and 

automatically, both in the visual (Mandler & Shebo, 1982) and in the auditory modalities 

(Repp, 2007), whereas enumeration of larger quantities is effortful, deliberate, and 

requires learning (Starkey & Cooper, 1980). The results from this study reveal that 

automatic perception of intervals in simple meter rhythms borrows on some of the same 

mechanisms as does apprehending visual or auditory quantities. In contrast, complex 
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meter rhythms, being more effortful, might require active strategies, including counting. 

In particular, the counting involved in processing complex integer ratios presumably 

involves enumerating events that unfold over time (sequential, instead of simultaneous 

enumeration) in the auditory modality.  

Taken together, the present study adds to the theory that the domains of 

mathematics and music are both governed by the ability to process quantity – that of 

number in mathematics, and that of time in music. Theories for a common mechanism for 

processing quantity in the dimensions of time and number have been proposed (Walsh, 

2003) and supported by behavioral (Olivieri, et al., 2008) and neurophysiological (Rao, 

Mayer, & Harrington, 2001) data. The present study highlights not just an association 

between numerical and musical processing, but a distinction between the processing of 

simple versus complex meters in music.  

Beyond the links between music and mathematics, the results from the present 

study add to the existing literature on limits of enumeration. One of the current debates in 

the field of mathematical cognition is why small and large numbers are treated 

differently. That is, why is there a distinct subitizing range that is both qualitatively and 

quantitatively different from the counting range? A density-based argument points out 

that larger numbers of items are more densely packed in the same space than are smaller 

numbers of items. Atkinson, Campbell, & Francis (1976) theorize that special neural 

units are sensitive to low numbers of items. In contrast, they speculate that there are no 

corresponding units specialized for larger spatial frequencies. The second argument is a 

pattern-based one that suggests that whereas 1 dot forms a point, 2 dots form a line, and 3 

dots form a triangle, larger numbers of dots do not produce recognizable canonical 
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patterns. Thus, pattern stops being a useful cue with increasing numbers of items. The 

third major theory is a working-memory based one argues that when the number of items 

to enumerate exceeds the memory capacity, it requires the participant to make successive 

“trips” to the display (Klahr, 1973).  

While these theories are all plausible with simultaneously presented displays of 

items, the use of sequentially presented events, as in the present study, offers a strong 

argument against both, the density-based and the pattern-based theories. Items presented 

sequentially cannot be apprehended by means of a predictable pattern. In terms of the 

density-based theory, although the sequential presentation offers an additional cue in 

terms of total duration (since more items take longer to be presented), they do not offer 

information in terms of density. Furthermore, in the present study, the interval between 

events was manipulated so that total duration could not be used as a direct cue.  

Instead, the working-memory based model stands as a plausible theory to explain 

the decline in accuracy and increase in response time for both, sequentially and 

simultaneously presented items. Larger sets have to be held in memory for longer, while 

participants store the number of items that have already been presented, and add newly 

presented items to this total. In their hallmark study, Trick & Pylyshyn (1994) argue that 

when participants are asked to enumerate a set of items larger than can be processed in 

the visual preattentive state, they use counting strategies, which involves keeping track of 

where their attention was last focussed, planning where to move their focus to, and 

inhibiting previously viewed information. Prior studies have found a clear effect of an 

individual’s working memory and their performance in the counting range, but not in the 

subitizing range (Maloney, Risko, Ansari, & Fugelsang, 2010; Tuholski, Engle, & Baylis, 
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2001). Other studies found a difference in performance in the counting range, but only as 

a factor of spatial visual memory capacity (Shimomura & Kumada, 2011). The present 

study did not find significant correlations between any of the enumeration measures and 

working memory scores, except with accuracy in the auditory counting task, where 

accuracy increased with an increase in working memory (see Appendix A). One possible 

reason is that all the reviewed studies that found differences due to working memory, 

recruited participants on the highest and lowest extremes of the working memory scale. 

From this experiment on simple and complex meter processing, an unanswered 

question is the extent to which the processing of these simple and complex meters are 

driven by different neural mechanisms. The next study examines neural responses as 

participants listen to rhythms composed of either simple or complex meters. Further, 

given the large corpus of data that suggest that ease of metrical processing is driven by 

culture-specific familiarity with these meters, the study tests two groups of listeners: 

American participants who should be familiar with simple meters exclusively, and Non-

American (Indian/Bulgarian) participants who  should be equally familiar with both types 

of meters. 

 

 



58 

 

 

CHAPTER 3 

Neural correlates of Simple and Complex Meter Rhythm Processing 

Introduction 

In perceiving a metrical structure, listeners develop an anticipatory mechanism 

that allows them to predict the onset of regularly occurring events. Electrophysiological 

studies have measured this anticipatory response, known as a slow anticipatory potential, 

which occurs prior to an expected event (Brunia, 1999).  When presented with an 

isochronous sequence of tones, an occasionally omitted tone elicits similar brain 

responses as a physically present one.  

Prior studies have explored the relationship between brain activity and mental 

percepts of the rhythmic patterns. For instance, Snyder and Large (2005) present listeners 

with metric rhythms that were comprised of alternating loud and soft tones. In one subset 

of the trials, there was an occasionally omitted tone, with the loud tone being omitted in 

half of these trials, and the soft tone being omitted in the other half of these trials. While 

induced and evoked gamma band (20-60 Hz) activity was observed near tone onsets 

(particularly for loud tones), induced activity shows additional peaks even while the tone 

was occasionally omitted, with the highest amplitude observed in the 20-30 Hz range. In 

evoked activity, the individual bursts of energy are phase-locked to the stimulus onset 

and the latency overlap over trials, with activity following stimulus events. In induced 

activity, on the other hand, the amplitude (but not the phase) is time-locked to the 

stimulus onset (Tallon-Baudry & Bertrand, 1999), and activity can occur at various 

latencies. These results are taken to suggest that non-phase locked gamma band activity 
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may represent rhythmic expectancy and the cognitive aspects of auditory perception 

(Tallon-Baudry & Bertrand, 1999).  

Interestingly, the sensitivity of brain activity to accents is observed even when the 

accents are merely subjective (Brochard, Abecasis, Ragot, Potter, & Drake, 2003). In this 

study, participants were presented with a metronomic sequence of tones, where every 

odd-numbered tone was typically perceived as sounding accented.  There were occasional 

deviant tones (reduced amplitude from the standard tones), occurring on either the odd-

numbered or even-numbered tones. Event-related potential (ERP) responses showed 

significantly larger amplitudes when the deviant tone was at an odd-numbered position, 

than at an even-numbered position. Specifically, the differences were observed in the late 

P3b component, which was interpreted as being associated with top-down modulation of 

attentive and cognitive processes on metrical processing.  

Similar results were observed when the metrical structure was “objective” instead 

of “subjective” (Abecasis, Brochard, Granot, & Drake, 2005). When there was a deviant 

tone, larger ERP amplitudes were observed in positions corresponding to strong beats, as 

induced by phenomenal accents, in both a binary (long-short) and ternary (long-short-

short) condition. Further, similar to the findings from the Brochard, et al. (2003) study, 

the findings confirmed the findings that listeners predominantly employ a binary metrical 

structure, and show better processing of the first (accented) event within each perceptual 

group.  

In addition to perception of accents being shaped by the position of, and 

phenomenal accents on the tones themselves, metrical interpretation can also be 

manipulated by means of a physical cue at the start of each sequence (Iversen, Repp & 
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Patel, 2009). In this study, listeners were presented with a repeating pattern of two tones 

followed by a rest. Each sequence started with an induction phase with a physical accent 

on one of the two beats. Listeners were instructed to continue to imagine the accent on 

that beat once the induction phase ends. This yielded two possible metrical 

interpretations; a short-long-short-long or a long-short-long-short percept, with the 

subjective accent being perceived on the short or the long interval respectively. The brain 

responses showed an increase in evoked amplitude in the 20-30 Hz range corresponding 

to the accented tone, and a comparable increase when the tone was merely imagined to be 

the beat.  Based on these findings, a subsequent study found increased N1/P2 amplitudes 

in physically accented versus subjectively accented events, a larger amplitude in 

subjectively accented versus unaccented events, and an early positive deflection in the 

first unaccented event compared to the last unaccented event (Schaefer, Vlek, & Desain, 

2011).  

Taken together, these preceding studies explore the nature of metrical 

representations and the corresponding patterns of brain activation for physically accented, 

subjectively accented, and different kinds of unaccented events. The present study 

attempts to examine the moderating effects of culture-specific experience on metrical 

interpretations of ambiguous rhythms. By varying the durational ratio between adjacent 

tones, the underlying rhythms conformed to either a simple or a complex meter pattern. 

 

Methods 

 Ethics Statement. All procedures were approved by UNLV’s Institutional Review 

Board for Human Subjects Research (Social/Behavioral), and complied with the ethical 
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guidelines of the Office of Research Integrity. Written informed consent was obtained 

from all participants. 

 

 Participants. Participants for the “Western Group” were college students from Las 

Vegas, Nevada, USA, who were born in and spent a majority of their lives in North 

America (Group: N=20, M = 24.4 years, 10 male, 10 female) recruited using word-of-

mouth.  Their music training ranged from 0 years to 25 years (M=7.38, SD=10.97), with 

5 participants reporting 0 years of music training. A majority of them spoke English as 

their first language (N=14), with the others speaking Italian (N=1), Spanish (N=4), and 

English/Spanish bilingually (N=1). A large majority was right handed (N=19). 

Participants in the “Non Western Group” were college students from Las Vegas, Nevada, 

who were from India (N=18) or Bulgarian (N=2), recruited using word-of-mouth (Group: 

N=20, M = 27 years, 12 male, 8 female). Their music training ranged from 0 years to 8 

years (M=0.9, SD=2.47), with 17 participants reporting 0 years of music training. First 

language learned included Telugu (N=11), Bulgarian (N=2), Hindi (N=2), Tamil (N=2), 

English (N=1), Kannada (N=1), and Urdu (N=1). A large majority was right handed 

(N=19) with the remainder (N=1) being ambidextrous. 

 

 Task and Stimulus. The basic task consisted of a repeating sequence of three 

tones (T) followed by a rest (0) and was adapted from Iversen, et al (2009).  The tones 

were 1 KHz pips 45 ms in duration with 5 ms rise and fall times. The tones were 

organized in a TTT0 format, with several possible rhythmic percepts.  Specifically, there 

were three possible rhythmic combinations, depending on where the initial beat was 
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perceived (highlighted beat): TTT0, TTT0/TT0T and TTT0/T0TT.  Of these three 

rhythms, two rhythms were used in the present study: TTT0 and T0TT.  Listeners were 

asked to adopt one of the two rhythmic interpretations for each trial, leading to the 

percept of SHORT-short-long (SSL) and LONG-short-short (LSS) respectively.   

In order to facilitate this process, each trial began with five cycles of the 

sequence, with a physical accent (2X amplitude) on the tone that was intended to be 

heard as the initial beat (referred to as “accented period”).  The specific amplitude accent 

was selected to replicate the design of the Iversen, et al, 2009 study. It was important to 

point out, however, that several cues, including temporal accents, dynamic accents and 

pitch changes (Hannon, Snyder, Eerola, & Krumhansl, 2004) could have been used to 

change the rhythmic percept during the induction phase. 

Following this induction period, the trial continued with 15 cycles of the 

sequence, with no physical accents (referred to as “unaccented period”).  During this 

unaccented period, listeners were instructed to continue to mentally place the beat at the 

same location, thus continuing the rhythmic percept from the accented period.  Thus, 

despite having two different rhythmic percepts, the unaccented periods were physically 

identical across all trials.  Figure 11 presents a schematic of the basic stimulus. 
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One cycle: TTT0 = ♪ ♪ ♪  

          ♪ ♪ ♪  ♪ ♪ ♪  ♪ ♪ ♪  ♪ ♪ ♪  ♪ ♪  ♪  ♪ ♪ ♪  ♪ ♪ ♪ … 

 

               ♪  ♪ ♪ ♪  ♪ ♪ ♪  ♪ ♪ ♪  ♪ ♪ ♪  ♪ ♪  ♪  ♪ ♪ ♪  ♪ ♪ ♪ … 

Figure 11: Schematic of basic stimulus 

The stimulus consists of a repeating sequence of three tones followed by a rest.  

Depending on the position of the physical accent (on the first tone or the last tone), the 

stimulus was heard either as SHORT-short-long (first tone accented) or LONG-short-

short (last tone accented).  After five cycles of the induction phase (accented period: 

highlighted), the stimulus was identical across the two rhythmic conditions. The red note 

denotes a physically accented tone, and the black note denotes an unaccented tone. The 

shaded box denotes the induction phase.  

  

In addition to the different rhythms, two different meters were used in this study. 

The inter-onset intervals and the duration of the rest were manipulated to give rise to two 

types of meters: simple and complex.  In the simple meter trials, the rest was twice (2X) 

as long as the inter-onset interval between two successive tones, to create a simple 1:2 

ratio between the long and the short durations.  In the complex meter trials, the rest was 

one and a half times (1.5X) longer than the inter-onset interval between two successive 

tones, to create a more complex 2:3 ratio between the long and the short durations.   

Further, two different tempi were used for each of the meters. First, one-half of 

the simple meter trials and one-half of the complex meter trials had the same duration for 

each cycle of the sequence.  By doing so, the overall duration was maintained but the 

durations of the short and long intervals were different across the two meters.  The 

second manipulation addressed this concern, by maintaining the same durations of the 

short intervals, but with a different overall duration for the sequence.  Figure 12 

highlights these different tempi for the simple and complex meters. 

SHORT-short-long 

 

LONG-short-short 
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Figure 12: Tempi across simple and complex meter conditions. The shaded boxes denote 

the long intervals, which are twice the length of the short intervals (unshaded boxes) in 

the simple meter conditions (S), and 1.5 times the length of the short intervals in the 

complex meter conditions (C).  

  

After accounting for the two rhythms (LONG-short-short and SHORT-short- 

 

long), the two meters (simple and complex), and the two tempi per meter (slow and fast),  

 

there were 8 different conditions. During the experiment, participants were presented  

 

with 8 blocks of trials, with 4 consecutive simple meter blocks, and 4 consecutive  

 

complex meter blocks. The order of presentation of the simple and complex meter blocks  

 

were predetermined and counterbalanced among participants.  Each block consisted of  

 

the same 20 trials presented in a pseudorandom order (with different trials for the simple  

 

and complex meter blocks).  Each trial consisted of the accented period followed by the  

 

unaccented period.  After the unaccented period ended, the participants were asked if  

 

they mostly heard the unaccented period as “1- long-short-short” or as “2 - short-short- 

 

long”, and make their response by pressing one of two buttons (labeled “1- long-short- 

 

short” and “2 - short-short-long”).  

480 ms 

360 ms 

560 ms 

480 ms 

240 ms       240 

ms 
240 ms       240 

ms 

280 ms       280 

ms 
320 ms       320 

ms 

Total length: 960 ms 

Total length: 840 ms 

Total length: 1120 ms 

Total length: 1120 ms 
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When participants were asked to make their decision, they were presented with 

one cycle of an accented LONG-short-short sequence (with the label “1- long-short-

short”) and one cycle of an accented SHORT-short-long sequence (with the label “2-

short-short-long”).  A schematic of one trial is presented in Figure 13 below. 

 

Accented period   Unaccented period                     “Did it mostly sound like this…?” 

 

Sample of SHORT-short-long                       “..Or like this?”            Sample of LONG- 

short-short                                                                  

 

Figure 13: Schematic of an entire trial. Highlighted sections denote an auditory stimulus 

being played. 

 

 

 The experiment began with an induction phase, where participants listened to one 

accented period (5 cycles) of LONG-short-short and SHORT-short-long with the 

appropriate labels, followed by four practice trials.  Participants were also asked to press 

and hold down a button when they felt like they lost the intended rhythmic organization.  

These trials were excluded from further analysis, similar to the procedure used by 

Iversen, Repp & Patel (2009).  Participants were not explicitly told about the two types of 

meters (simple and complex) or the different tempi. 

  

Recording and analyses of brain responses. Participants were seated in a 

comfortable chair in a sound-attenuated booth.  They listened to the stimuli using 

E.A.RTone 3A insert earphones (E.A.R Auditory System, AudioMed, Inc, Jackson, MS).  

Listeners were asked to avoid closing their eyes, or making any movements during 
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presentation of the stimuli, except to press a button to indicate if they lost the rhythmic 

organization.  Electroencephalography (EEG) was recorded during the entire experiment, 

using a sampling rate of 512 Hz and a bandwidth of 104 Hz.  A total of 72 Ag-AgCl 

electrodes are used, including two ground electrodes, 64 electrodes placed on a Biosemi 

electrode cap, and 8 electrodes placed below the hair line (two each of mastoids, pre-

auricular points, outer canthus of each eye, and inferior orbit of each eye).  Prior to EEG 

recording, voltage offsets are measured to ensure that it was below 40 mV, and all 

electrodes were periodically checked to ensure that they were all in normal working 

condition.  During the EEG recording phase, any electrodes that were noted to be noisy 

were interpolated prior to further analyses. 

EEG was recorded and saved on a PC computer using an Actiview System, and 

all off-line analyses were conducted using Brain Electrical Source Analysis software 

(BESA; MEGIS Software GmbH, Grafelfing, Germany) and Matlab (The Mathworks, 

Inc., Natick, MA).  The raw EEG data was corrected for ocular artifacts using a 

horizontal ocular amplitude threshold (for saccades and smooth movements) of 150 µV 

and a vertical ocular amplitude threshold (for blinks) of 250 µV.  An amplitude criterion 

of 150 µV was used for artifact rejection, and any epochs that have less than 50% of 

accented trials were omitted from further analyses.   

The averaging epoch was determined by visually inspecting the data for the start 

position.  The end position varies by condition, and depends on the length of one 

stimulus: 960 ms and 1120 ms for the fast and slow tempi in the simple meter condition, 

840 ms and 1120 ms for the fast and slow tempi in the complex meter condition.  In 
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addition, baseline definition was determined by averaging the period between -100 and 0 

ms in relation to the start of the trigger.   

All epochs were aligned to the start of the “Long” in the LONG-Short-

Short/SHORT-Short-Long sequence.  Epochs were averaged separately for each 

condition (simple and complex meter, LONG-Short-Short and SHORT-Short-Long 

rhythm, and fast and slow tempo).  In addition, each unaccented period (containing 15 

unaccented cycles) was separated into three measures containing five cycles each, in 

order to observe any changes in the activity over the course of a trial. Therefore, each 

trial was divided into four measures (one accented and 3 unaccented).  Mean amplitude 

and time frequency analyses were performed separately for each trial type. 

Mean amplitudes for ERP data were calculated over each interval (long and 

short), within each trial type. Based on the location of the interval, some of the intervals 

were accented (either physically or subjectively). The mean amplitude analyses were 

used to observe differences in brain responses to physically versus subjectively accented 

intervals, and subjectively accented versus unaccented intervals. Further, these analyses 

were used to study the effects of metrical complexity on brain activity to subjective 

accents, and the moderating effects of culture-specific experience. Within each interval, 

the ERP mean amplitudes were calculated in time ranges showing maximal differences in 

the grand averaged waveforms between conditions of interest.  The time ranges used in 

the different conditions are highlighted in Table 3. 
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Table 3: Time ranges used for different conditions 

 

Simple Meter 

 Total length: 960 ms Total length: 1120 ms 

Long interval N1: 95 ms to 137 ms 

P2: 162 ms to 229 ms 

(Baseline  110 to 210 ms) 

N1: 95 ms to 137 ms 

P2: 162 ms to 229 ms 

(Baseline  110 to 210 ms) 

First short interval N1: 580 ms to 625 ms 

P2: 632 ms to 685 ms 

(Baseline  590 to 690 ms) 

N1: 660 ms to 700 ms 

P2: 705 ms to 760 ms 

(Baseline  670 to 770 ms) 

 

Complex Meter 

 Total length: 840 ms Total length: 1120 ms 

Long interval N1: 91 ms to 136 ms 

P2: 156 ms to 200 ms 

(Baseline  110 to 210 ms) 

N1: 94 ms to 143 ms 

P2: 157 ms to 213 ms 

(Baseline  110 to 210 ms) 

Short interval N1: 461 ms to 500 ms 

P2: 517 ms to 665 ms 

(Baseline  470 to 570 ms) 

N1: 570 ms to 617 ms 

P2: 633 ms to 695 ms 

(Baseline  590 to 690 ms) 

 

Prior to performing analyses on the EEG data, behavioral analyses were 

performed. These data consist of participant responses for what the unaccented section 

mostly sounded like (LONG-short-short or SHORT-short-long). Based on participant 

responses, a behavioral measure of “accuracy” was obtained, such that a trial where the 

physical accent pattern matches the participant’s percept in the unaccented section was 

marked as being “accurate”. For instance, if a trial cues a LONG-short-short pattern 

during the induction phase, and the participant responds that they mostly perceived the 

unaccented phase as being SHORT-short-long, then this trial will be marked as being 

“inaccurate”. Only the accurate trials were used in the EEG analyses, to explore 

associations between brain responses and endogenous rhythmic percepts.  
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Results and Discussion 

Behavioral Results. Participants’ responses were analyzed to calculate the extent 

to which they reported perceiving the rhythm in the same manner as the rhythm presented 

in the induction phase. This measure of “accuracy” was calculated separately over the 

simple and the complex meter trials and provided an estimate of how well participants 

were able to hold on to the rhythm they heard during the induction phase. Figure 14 

presents accuracy over the simple and complex meter trials for the Western and Non-

Western participants. 
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Figure 14: Accuracy for simple and complex meter trials for the Western and Non-

Western participants 
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There was a general trend for the Western group to have higher overall accuracy 

(M=.76, SD=.17) than the Non-Western group (M=.66, SD=.11). However, when the 

accuracy scores were submitted to a 2 x 2 (Meter [simple, complex] within-subjects, x 

Nationality [Western, Non-Western] between subjects) mixed-design ANOVA, with 

Music Training (in years) entered as a covariate
1
, there was no main effects of 

Nationality, F(1,37)=1.24, p=.27, 2=.032. In addition, there were no significant main 

effects of Music Training, F(1,37)=2.87, p=.10, p
2
=.071 or Meter, F(1,37)=.002, p=.97, 

p
2
<.001, and no significant interaction between Meter and Nationality, F(1,37)=.088, 

p=.77, p
2
=.002, but a significant interaction between Music Training and Nationality, 

F(1,37)=87.13, p<.05, p
2
=.25. 

 In addition to the measures of accuracy, the behavioral data were used to point to 

any biases to perceive the rhythms as either SHORT-short-long or LONG-short-short. To 

do so, the proportions of the given responses for SHORT-short-long vs. LONG-short-

short were compared against the induced rhythms (Figure 15).  

 

                                                 
1
 Because the Western group had significantly more music training than the Non-Western group, this 

covariate was used to account for any potential effects of music training on the dependent measures. 
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Figure 15: Proportions of each perceived rhythm for different induced rhythms 

 

Overall, participants were more likely to report perceiving the rhythm as SHORT-

short-long (roughly 63% of the time). Paired-sample t-tests performed separately for the 

proportion of SHORT-short-long responses over each group indicated that this bias to 

perceive the rhythms in the SHORT-short-long pattern existed for both groups: Western 

group, t(19)=2.25, p<.05, Non-Western group, t(19)=7.14, p<.001. These results replicate 
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the general findings from prior studies on rhythmic grouping confirming that when 

listeners are presented with tones that alternate in duration, the longer sounds tend to 

mark the end of the group (Woodrow, 1909). Further analyses comparing the proportion 

of SHORT-short-long responses for the two groups suggested that the bias was stronger 

for the Non-Western group (M=.70, SD=.12) than the Western group (M=.55, SD=.17; 

t(38)=2.99, p<.01).  

 

Effect of Rhythmic Percept on Brain Responses. 

Mean Amplitude. Mean amplitudes were averaged across a small number of 

electrodes where ERP differences were most pronounced for each participant. Based on 

visual inspection, the central electrodes (Cz, C1, FC1, FCz, FC2, C2, CP1, CPz, and 

CP2) were averaged. From this, the mean amplitudes were extracted within the time 

ranges specified in Table 3, to yield an N1 and P2 response over these central electrodes. 

Brain responses to the TTT0 stimulus were measured separately based on the rhythm in 

the induction sequence (SHORT-short-long vs. LONG-short-short), further separated by 

meter (simple vs. complex) and tempo (fast vs. slow). All the mean amplitude 

comparison figures are presented in Appendix B. 

One of the questions was whether participants would continue to perceive the 

subjective accents even in the absence of physical accents, and whether their ability to 

perceive these subjective accents was easier immediately following the conclusion of the 

induction phase. In other words, is there a change in amplitude among the three 

subsequent measures of the unaccented period?  
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The mean N1 and P2 amplitudes corresponding to the long interval and the first 

short interval for each of the three unaccented sections were submitted to separate 2 x 2 x 

2 x 3 x 2 x 2 (Meter [simple, complex], within-subjects, x Tempo [fast, slow], within-

subjects, x Rhythm [LONG-short-short, SHORT-short-long], within-subjects, x Measure 

[unaccented 1, unaccented 2, unaccented 3], within-subjects, x Temporal Position [long, 

short], within-subjects, x Nationality [Western, Non-Western], between subjects) mixed 

design ANOVAs, with music training as a covariate. There was no main effect of 

Measure on the N1, F(2,74)=2.103, p=.129, p
2
=.054, or the P2, F(2,74)=2.208, p=.117, 

p
2
=.054 amplitudes (see Figure 16). That is, unlike in prior studies in the literature 

(Schaefer, Vlek, & Desain, 2011), there was no change in amplitude with trial 

progression. Hence, the mean amplitudes were collapsed across the three sections of the 

unaccented period for subsequent analyses and compared to the accented period. 

 

 

Figure 16: N2 mean amplitudes associated with each measure 
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Figure 17: P2 mean amplitudes associated with each measure 

 

The next question was whether there was a difference in amplitude in response to 

the physical (labelled “accented”) versus subjective accents (labelled “unaccented” ). The 

N1 and P2 mean amplitudes associated with the physically or subjective accented events 

(long interval in the LONG-short-short rhythms, and short interval in the SHORT-short-

long rhythm) were analyzed separately for each induced rhythm, by means of a 2 x 2 x 2 

x 2 x 2 (Meter [simple, complex], within-subjects, x Tempo [fast, slow], within-subjects, 

x Accent [accented, unaccented], within-subjects, x Nationality [Non-Western, Western], 

between subjects) mixed design ANOVA, with music training as a covariate. 

There was a significant main effect of Accent on the N1 and P2 for both the 

LONG-short-short, [N1: F(1,37)=31.30, p<.001, p2=.46, P2: F(1,37)=9.04, p<.01, 
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p
2
=.20] and the SHORT-short-long rhythms, [N1: F(1,37)=28.97, p<.001, p2=.44. P2: 

F(1,37)=6.95, p<.05, p
2
=.13].  That is, across both rhythms, physically accented events 

were associated with larger amplitudes than subjectively accented events (see Figure 18 

and Figure 19), replicating findings from prior studies (Schaefer, Vlek, & Desain, 2011).  
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Figure 18: N1 mean amplitudes comparing the physically accented versus subjectively 

accented events for each rhythm  
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Figure 19: P2 mean amplitudes comparing the physically accented versus subjectively 

accented events for each rhythm  

 

To examine the pattern of amplitudes associated with the physically accented 

events, the mean amplitudes for the long and short intervals for the induction sequence 

were analyzed separately for each rhythm by means of a 2 x 2 x 2 x 2 (Meter [simple, 

complex], within-subjects, x Tempo [fast, slow], within-subjects, x Temporal Position 

[long, short], within-subjects, x Nationality [Non-Western, Western], between subjects) 

mixed design ANOVA, with music training as a covariate. Due to the effect of the 

physical accents, the start of the long interval should be associated with larger amplitudes 

than the short interval, in the LONG-short-short rhythm. Likewise, the short interval 

should be associated with larger amplitudes than the long interval in the SHORT-short-

long rhythms.  
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For the LONG-short-short rhythms, there was a significant main effect of 

Temporal Position, for both the N1, F(1,37)= 24.31, p<.001, p
2
=.40, and P2, F(1,37)= 

20.78, p<.001, p
2
=.36, amplitudes, with significantly larger amplitudes associated with 

the start of the long (physically accented) interval. Likewise, for the SHORT-short-long 

rhythms, there was a significant main effect of Temporal Position, for both the N1, 

F(1,37)= 3.76, p<.05, p
2
=.10, and P2, F(1,37)= 32.83, p<.001, p

2
=.36, amplitudes, with 

significantly larger amplitudes associated with the start of the short interval. That is, 

across both rhythms, when a tone was physically accented, it was associated with larger 

amplitudes than when it was unaccented, as seen in Figure 20 and 21. 
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Figure 20: N1 amplitudes for the accented versus unaccented events in the physically 

accented section. The long interval in the LONG-short-short rhythm and the short 

interval in the SHORT-short-long rhythm are accented. 
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Figure 21: P2 amplitudes for the accented versus unaccented events in the physically 

accented section. The long interval in the LONG-short-short rhythm and the short 

interval in the SHORT-short-long rhythm are accented. 

 

Based on prior studies (Iversen, Repp, & Patel, 2009; Schaefer, Vlek, & Desain, 

2011), when a tone is merely imagined to be the beat, it should still lead to comparable 

increases in N1 and P2 amplitudes. Thus, the next question assessed the role of subjective 

accents on the N1 and P2 mean amplitudes for the unaccented period. Since the 

unaccented periods themselves are identical across both rhythms, any difference in 

amplitude should be driven by the perception of subjective accents. Thus, the long 

interval in the LONG-short-short rhythm, and the short interval in the SHORT-short-long 

rhythm, should have the perceived accent, and therefore, a corresponding increase in 

amplitude, similar to that observed with the physical accents. 
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 The mean amplitudes for the unaccented period were analyzed separately for 

each rhythm by means of a 2 x 2 x 2 x 2 (Meter [simple, complex], within-subjects, x 

Tempo [fast, slow], within-subjects, x Temporal Position [long, short], within-subjects, x 

Nationality [Non-Western, Western], between subjects) mixed design ANOVA, with 

music training as a covariate. For the SHORT-short-long rhythms, there was a main 

effect of Temporal Position on the N1, F(1,37)= 7.07, p<.05, p
2
=.16, and the P2, 

F(1,37)= 20.47, p<.001, p
2
=.36 amplitudes, with the short (subjectively accented) 

interval associated with larger amplitudes than the long interval, as expected.  For the 

LONG-short-short rhythm, there was a main effect of Temporal Position, for both the N1, 

F(1,37)= 5.80, p<.05, p
2
=.14, and P2, F(1,37)= 20.47, p<.001, p

2
=.36, amplitudes. 

However, contrary to expectation, while the subjective accents should have been 

perceived at the start of the long interval, larger amplitudes were associated with the short 

(subjectively unaccented) interval than the long interval (see Figure 22 and 23). This is 

also evident in the mean amplitude figures in Appendix B, with larger N1 and P2 

responses following the start of the short intervals.  
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Figure 22: N1 amplitudes for the subjectively accented versus unaccented events. The 

long interval in the LONG-short-short rhythm and the short interval in the SHORT-short-

long rhythm are subjectively accented. 
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Figure 23: P2 amplitudes for the subjectively accented versus unaccented events. The 

long interval in the LONG-short-short rhythm and the short interval in the SHORT-short-

long rhythm are subjectively accented. 

 

The most obvious explanation for this is the decrease in response to successive 

identical tones due to adaptation (Budd, Barry, Gordon, Rennie, & Michie, 1998; Grill-

Spector, Henson, & Martin, 2006). Specifically, in any TTT0 rhythm, the first tone 

following the long interval should have maximal response, followed by a decline in 

response to successive (identical tones). In the analysis of brain responses, only the 

“correct” trials from the behavioral responses (i.e., listeners’ report of perceived rhythm 

matched induced rhythm) were used. Thus, the larger amplitude at the start of the short 

interval occurred even when listeners actually reported perceiving the beat at the start of 

the long interval. This explanation likely accounts for some of this response. Further, this 

might account for the trend in the behavioral data which suggested that once the physical 
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accents are removed, participants were more likely to perceive the rhythms as being 

SHORT-short-long, regardless of what the induced rhythm was. 

The next question assessed whether this effect differed based on metrical 

complexity. That is, are accented events associated with larger amplitudes regardless of 

metrical complexity? To answer this question, the N1 and P2 amplitudes in response to 

the accented events were compared across both meters, separately for physically accented 

and subjectively accented events by submitted the amplitude data to a 2 x 2 x 2 x 2 

(Meter [simple, complex], within-subjects, x Tempo [fast, slow], within-subjects, x 

Rhythm [LONG-short-short, SHORT-short-long], within-subjects, x Nationality [Non-

Western, Western], between subjects) mixed design ANOVA, with music training as a 

covariate. Specifically, the N1 and P2 amplitudes in response to the long interval in the 

LONG-short-short and to the short interval in the SHORT-short-long were used.  

In response to the physical accents, there were larger N1 amplitudes in the simple 

meter condition, as evidenced by a significant main effect of Meter, F(1,37)=5.22, p<.05, 

p
2
=.12. However, there was no Meter X Group interaction, F(1,37)=.39, p=.54, 

p
2
=.010, suggesting that the effect was not moderated by culture-specific experience 

with simple meters. There was no effect of meter on the P2 amplitudes, in response to 

physical accents, F(1,37)=.049, p=.83, p
2
=.001. 

In response to the subjective accents, however, the trends were quite different. 

Namely, there was still a significant main effect of Meter on the N1, F(1,37)=6.16, p<.05, 

p
2
=.14, amplitudes and no significant effect on the P2 amplitudes, F(1,37)=2.17, 

p=.081, p
2
=.08, or significant Meter X Group interactions on the ERP amplitudes [N1: 

F(1,37)=.041, p=.84, p
2
=.001; P2: F(1,37)=3.18, p=.082, p

2
=.79].  However, unlike 
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with the physical accents, the subjective accents in the simple meter trials were associated 

with smaller N1 amplitudes than the subjective accents in the complex meter trials. The 

effects of physical and subjective accents on mean amplitudes are summarized in Figures 

24 and 25. 

 

 

Figure 24: Mean N1 amplitudes for the physically accented and subjectively accented 

events for each rhythm, compared across simple and complex meters 
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Figure 25: Mean P2 amplitudes for the physically accented and subjectively accented 

events for each rhythm, compared across simple and complex meters 

 

Overall, there were some important trends within the N1 and P2 mean amplitude 

data. Firstly, the N1 and P2 amplitudes showed an effect of physical accents, with the 

physically accented section producing larger amplitudes, replicating findings from earlier 

studies (Schaefer, Vlek, & Desain, 2011). Further, they showed rhythm-specific patterns 

of activation, such that for the LONG-short-short rhythms, the start of the long 

(physically accented) interval was associated with larger amplitudes, and for the SHORT-

short-long rhythms, the start of the short interval was associated with larger amplitudes. 

Surprisingly, there was no change in amplitude through the course of a trial, with 

the first unaccented events showing no difference from the last unaccented events. This 

suggests that participants were proficient at imagining the accents through the entire 

course of the trial (irrespective of whether the position of the accent was what was 
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implied based on the physical accents in the induction sequence). This stands in contrast 

to other studies (Iversen, Repp, & Patel, 2009; Schaefer, Vlek, & Desain, 2011) which 

reported that the first unaccented event was more like an accented event than the last 

unaccented event.  

In terms of continuing to perceive the accents in the absence of physical accents, 

the N1 and P2 responses were larger at the start of the short interval, regardless of the 

actual induced rhythm. This replicates the behavioral findings, which showed that 

listeners were biased to report that they perceived the rhythms as being SHORT-short-

long. 

Another important question was the extent to which perception of these rhythms, 

and in particular, the ability to continue to perceive the subjective accents, was 

determined by metrical complexity. The results from this study revealed some novel 

findings. Firstly, when the beat was physically accented, the associated N1 responses 

were larger in the simple meter condition, than in the complex meter condition. In 

contrast, when the beat was only imagined to be the beat, the associated N1 responses 

were larger in the complex meter condition.  

Prior studies have shown that attending to a stimulus at a certain point in time 

yields enhancement of the N1 response (Hillyard, Hink, Schwent, & Picton, 1973; Lange, 

Kramer, & Roder, 2006; Lange, Rosler, & Roder, 2003). It has been argued that this 

evidence supports the sensory gating mechanism for attention, with selective inhibition of 

unattended stimuli (Hillyard, 1981; Hillyard, Hink, Schwent, & Picton, 1973).  

On the other hand, prediction has been shown to suppress the N1 response  

(Lange, 2013). For instance, when participants knew when an auditory stimulus was 
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going to occur, ther resulting N1 response had significantly smaller amplitude than when 

participants did not know the timing of the stimulus (Lange, 2009; Schafer, Amochaev, & 

Russell, 1981).  In perceiving a rhythmic stimulus, bottom-up sensory information is 

compared to top-down predictive information. With improving prediction, the sensory 

information will match the top-down predictive information, which has been shown to 

yield a smaller “error signal”, and a suppressed N1 response (Baldeweg, 2007).  

This distinction between attention and prediction (see Lange, 2013 for review) 

and their contrasting effects on the N1 amplitudes, can perhaps be used to explain the 

findings from the present study. Namely, there was presumably greater attention being 

drawn to the accented tones in the simple meter condition, yielding larger N1 responses. 

This argument is also supported by the dynamic attending theory which postulates that 

selective enhancement of neuronal activity allow the listener to form expectations about 

the occurrence of the beat (Jones & Boltz, 1989). Besides being physically accented, the 

induction sequence was also at the start of each trial. Thus, while there was greater 

attention, it is possible that the short induction sequence was not sufficient to allow the 

listener to reliably predict the location of the beat. As the trial progresses, the listener is 

better able to make predictions about the occurrence of the beat, yielding smaller error 

signals, and suppressed N1 responses. Thus, while attention and prediction are described 

as opposing processes, it is likely that they merely occur at different points in processing: 

with greater attention yielding better prediction, in a rhythmic, predictable stimulus. 

Unexpectedly, however, these findings did not differ based on listeners’ 

experience with complex meters. One of the possibilities is that simple and complex 

meters are processed differently, even by those to whom they are familiar. Certainly a 
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large corpus of evidence supports this theory. For instance, even in a culture where 

complex meters are common, individuals have difficulty processing highly complex 

metrical ratios (Hannon, Soley & Ullal, 2012). Likewise, whereas infants can detect 

disruptions in some complex meters just as well as they can with simple meters, they too 

show difficulty in processing highly complex (egg: 4:7 ratio) meters.  

Oscillatory Responses. Time frequency data were analyzed to study stimulus-

driven oscillatory synchronization, for the gamma (35-50 Hz) frequency range, over the 

central electrodes.  This specific frequency range was selected based both on prior 

literature (Iversen, Repp, & Patel, 2009), and from the visual inspection of brain 

responses which showed a peak of activity centered around this frequency range, which 

corresponded to the onset of the three tones: long, short1 and short2. The time frequency 

representations were analyzed for both evoked and induced activity. Averaged evoked 

and induced activity figures are depicted in Appendix C and Appendix D respectively. 

Similar to the analyses on the mean amplitude data, the unaccented period was 

analyzed in three separate sections (“Measures”), in order to observe any possible 

differences in activity within each trial. The evoked and induced time frequency data 

were separately submitted to 3 x 2 x 2 x 2 x 2 x 2 x 2 (Meter [simple, complex] within-

subjects, x Tempo [slow, fast] within-subjects, x Rhythm [SHORT-short-long, LONG-

short-short] within-subjects, x Measure [1, 2, 3], within-subjects, x Temporal Position 

[long, short] within-subjects, x Nationality [Western, Non-Western] between subjects) 

mixed-design ANOVAs, with Music Training (in years) entered as a covariate. As 

depicted in Figure 26 and 27, neither the evoked, nor the induced gamma band activity 

showed significant main effects of Measure [Evoked: F(2,74)=.388, p=.680, p
2
=.010; 
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Induced: F(2,74)=1.92, p=.154, p
2
=.049]. Thus, the three sections of the unaccented 

portion were combined. 

 

 

Figure 26: Evoked activity for each measure 
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Figure 27: Induced activity for each measure 

 

Next, to assess the effect of physical accents versus subjectively, the evoked and 

induced activity in response to the physical accents were compared to that of the average 

unaccented period separately for each rhythm by means of 2 x 2 x 2 x 2 x 2 (Meter 

[simple, complex], within-subjects, x Tempo [fast, slow], within-subjects, x Accent 

[accented, unaccented], within-subjects, x Nationality [Non-Western, Western], between 

subjects) mixed design ANOVA, with music training as a covariate. There was no effects 

of physical accented for either of the rhythms in the evoked [LONG-short-short: 

F(1,39)=.28, p=.60, p
2
=.007; SHORT-short-long: F(1,39)=.38, p=.54, p

2
=.01] or 

induced [LONG-short-short: F(1,39)=.21, p=.65, p
2
=.006; SHORT-short-long: 

F(1,39)=.008, p=.93, p
2
<.001] gamma band activity (see Figure 28 and Figure 29). That 
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is, the induced and evoked activity did not differ as a consequence of physical accents, 

contrary to predictions based on prior research (Iversen, Repp, & Patel, 2009). 

 

 

Figure 28: Evoked activity for the physically accented and unaccented (subjectively 

accented) events for each rhythm 
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Figure 29: Induced activity for the physically accented and unaccented (subjectively 

accented) events for each rhythm 

 

Next, to examine the pattern of induced and evoked activity in response to 

subjective accents, the long and short intervals for the induction sequence were analyzed 

separately for each rhythm by means of a 2 x 2 x 2 x 2 (Meter [simple, complex], within-

subjects, x Tempo [fast, slow], within-subjects, x Temporal Position [long, short], within-

subjects, x Nationality [Non-Western, Western], between subjects) mixed design 

ANOVA, with music training as a covariate.  

There was no effect of temporal position on either the evoked or the induced data. 

That is, despite the physical accent being present at the start of the long interval in the 

LONG-short-short rhythms, and at the start of the short interval in the SHORT-short-long 

rhythms, there was no significant difference in activity between the start of the long 

versus the short interval in either of the rhythms [LONG-short-short – evoked: 
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F(1,39)=2.92, p=.095, p
2
=.068; SHORT-short-long – evoked: F(1,39)=2.43, p=.13, 

p
2
=.057; LONG-short-short – induced: F(1,39)=3.99, p=.053, p

2
=.093; SHORT-short-

long – induced: F(1,39)=3.21, p=.081, p
2
=.076], as seen in Figures 30 and 31. 

 

   

Figure 30: Evoked activity for the physically accented versus unaccented events. The 

long interval in the LONG-short-short rhythm and the short interval in the SHORT-short-

long rhythm are accented. 
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Figure 31: Induced activity for the physically accented versus unaccented events. The 

long interval in the LONG-short-short rhythm and the short interval in the SHORT-short-

long rhythm are accented. 

 

Similar to the effects of physical accents, there was no significant difference 

between the subjectively accented and subjectively unaccented tones on the evoked, 

F(1,39)=2.02, p=.16, p
2
=.048, or induced, F(1,39)=3.82, p=.058, p

2
=.087 gamma 

responses. That is, the start of the subjective accented interval showed no significant 

difference from the subjectively unaccented interval (See Figure 32 and Figure 33). 
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Figure 32: Evoked activity for the subjectively accented versus unaccented events. The 

long interval in the LONG-short-short rhythm and the short interval in the SHORT-short-

long rhythm are accented. 
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Figure 33: Induced activity for the subjectively accented versus unaccented events. The 

long interval in the LONG-short-short rhythm and the short interval in the SHORT-short-

long rhythm are accented. 

 

Finally, to answer the central question, namely, the effect of metrical complexity 

on oscillatory responses, the induced and evoked gamma band data were submitted to a 2 

x 2 x 2 x 2 (Meter [simple, complex], within-subjects, x Tempo [fast, slow], within-

subjects, x Rhythm [LONG-short-short, SHORT-short-long], within-subjects, x 

Nationality [Non-Western, Western], between subjects) mixed design ANOVA, with 

music training as a covariate, separately for the physical accents and subjective accents. 

In response to the physical affects, there was no significant main effect of Meter on 

evoked, F(1,37)=.068, p=.79, p
2
=.002, or induced, F(1,37)=.020, p=.89, p

2
=.001, 

activity. There was also no Meter X Group interaction on either the evoked, 
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F(1,37)=.016, p=.90, p
2
<.001, or induced, F(1,37)=.67, p=.42, p

2
=.018, gamma band 

activity.  

Findings were similar in response to subjective accents. That is, there was no 

significant main effect of Meter on either the evoked, F(1,37)=2.91, p=.096, p
2
=.073, or 

induced, F(1,37)=3.38, p=.074, p
2
=.084, gamma band activity. Likewise, there was no 

significant Meter X Group interaction on either the evoked, F(1,37)=.028, p=.87, 

p
2
=.001, or induced, F(1,37)=.51, p=.48, p

2
=.014, gamma band activity (see Figure 34 

and Figure 35). 

 

  

Figure 34: Evoked activity for the physically accented and subjectively accented events 

for each rhythm, compared across simple and complex meters 
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Figure 35: Induced activity for the physically accented and subjectively accented events 

for each rhythm, compared across simple and complex meters 

 

Discussion 

The present study used an ambiguous rhythm which could be interpreted 

differently by imagining a subjective accent on one of two locations. The goal of the 

study was to examine how the top-down interpretation of the different rhythms coupled 

with prior experience with meters of varying complexity drives neural response, by 

means of event related potentials, and evoked and induced oscillatory responses.  

The early ERP responses showed an increase in N1 and P2 amplitudes when a 

tone was physically accented. Subjective accents were expected to cause a similar 

increase in amplitude, with larger amplitudes associated with the tones imagined to be the 

beats. Instead, results revealed a bias to perceive the beat at the start of the short interval 

(thus perceiving the rhythm as SHORT-short-long), regardless of the actual induced 
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rhythm. There are two possible theories for this result. Firstly, it has been noted that when 

listeners are presented with a sequence of durations, the long durations tend to mark the 

end of sequences (Woodrow, 1909). Secondly, with successive identical tones, there is a 

decline in neural activity. Given the repeating sequence of tones, organized as TTT0, the 

second and third tones should presumably cause a decline in activity, being identical to 

the first tone.  

The next set of analyses measured oscillatory activity in response to rhythm 

perception. Evoked gamma band responses typically have been shown to follow tone 

onsets, whereas induced gamma band responses precede them, suggesting anticipatory 

activity. In the present study, the beats in the rhythm modulated oscillations in the gamma 

frequency range, with a clear increase in evoked gamma amplitude in response to tone 

onsets. However, there was no difference in evoked gamma responses between physical 

and imagined accents. Further, there was no difference in the gamma band responses as a 

factor of rhythmic percept. One possible explanation for this is that there are two 

different mechanisms for subjective accents in place. Firstly, there are the accents 

induced by the initial induction phase, which should be expected to cause stronger 

gamma on the accented tone (long in the LONG-short-short and short in the SHORT-

short-long). Secondly, there are the effects of grouping, which should be expected to 

cause stronger gamma at the start of the first short interval, regardless of the induced 

rhythm. Thus, it is plausible that the size of the gamma enhancement caused by the 

induction phase is cancelled out by the gamma enhancement caused by the grouping 

effect. 
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Beyond the phase-locked evoked gamma band activity, prior studies have found 

that non phase-locked induced gamma activity precedes tone onset, and occurs even with 

tone omission (Snyder & Large, 2005), and has been theorized to be related to 

anticipation and attention (Sokolov, Pavlova, Lutzenberger, & Birbaumer, 2004; Zanto, 

Large, Fuchs, & Kelso, 2005). In addition, it has been theorized that when tones occur at 

a time of maximal induced activity, there is a larger evoked response following the tone, 

presumably due to a larger group of responsive neurons (Iversen, Repp, & Patel, 2009). 

In the present study, however, there was no evidence of induced gamma responses in any 

of the conditions. One possible explanation for this is that induced gamma band activity 

has been shown to be modulated by music training, and by specific auditory experience 

(Shahin, Roberts, Chau, Trainor, & Miller, 2008). Additionally, listeners might have 

adopted different listening strategies during the task, increasing variability among 

participants. 

Another unexpected lack of finding is the absence of oscillatory activity in the 

high beta 20-30 Hz range, as observed in earlier studies (Iversen, Repp, & Patel, 2009). 

Beta band activity has been linked to movement, such as while tapping with a beat 

(Boonstra, Daffertshofer, Peper, & Beek, 2006; Thaut, 2003), even in the absence of 

overt movement (Schnitzler, Salenius, Salmelin, et al, 1997). However, unlike in the 

current study, the Iversen, Repp, & Patel, 2009 study tested participants that all had 

experience in musical performance. Thus, it is very likely that they were activating motor 

imagery in a way that the non-musician participants in the present study were not. 

The next question assessed the role of metrical complexity in beat perception, and 

the extent to which prior experience with these meters modulated the response. The N1 
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amplitude showed contrasting effects of meter through the course of a trial. In the 

presence of physical accents, the N1 amplitude was larger for the simple meter trials than 

the complex meter trials. In contrast, with the subjective accents, the simple meter trials 

showed a smaller N1 response to the beat that the complex meter trials. The most likely 

explanation for this is that listeners are diverting greater attention to the beat location in 

the simple meter trials, yielding greater predictability (lower error) as the trial progresses. 

In contrast, there is diminished attention and anticipation at the beat location in the more 

difficult, complex meter trials. There were no between group differences observed. 

Taken together, the study highlighted the role of physical accents and subjective 

accents, as listeners imagine the beat at different locations, perceiving an ambiguous 

rhythm in different ways. Early evoked potentials pointed to the effect of an initial 

induction phase, and of the effects of grouping, in perceiving rhythms. Oscillatory 

gamma responses, on the other hand, appeared to occur equally on all tones, and were not 

modulated by physical or subjective accents. Overall, this study points to the different 

factors that shape perception: ranging from exogenous factors such as grouping, 

durational contrasts, and intensity accents, to endogeous factors such as imagined accents 

and metrical interpretation. 



101 

 

CHAPTER 4 

General Discussion 

Every known culture around the world makes and listens to music. But our ability to 

parse the sequences of durations in music has been known to be affected by various 

factors. Western “simple” musical meters are dominated by an even, or isochronous, beat 

that can be subdivided or multiplied by simple integers such as 2:1. In contrast, non-

isochronous, “complex”, meters are composed of a non-isochronous pattern of alternating 

long and short durations, such as 3:2. One of the theories in music research is that these 

complex meters are more difficult to perceive (Clarke, 1987; Desain & Honing, 2003; 

Fraisse, 1982; Repp, London, & Keller, 2008) and produce (Collier & Wright, 1995; 

Povel, 1981; Repp, London, & Keller, 2005; Repp, London, & Keller, 2008; Repp, 

London, & Keller, 2010; Snyder, Hannon, Large, & Christiansen, 2006; Summers, Bell, 

& Burns, 1989; Summers, Hawkins, & Mayers, 1986). However, these complex meters 

are common in music throughout South Asia, Africa, the Middle East, and Eastern 

Europe (London, 1995; Rice, 1995; Singer, 1973), and listeners from the cultures are 

equally adept at processing both simple and complex meters (Hannon & Trehub, 2005a; 

2005b; Kalendar, Trehub, & Schellenberg, 2013; Ullal-Gupta, Hannon, & Snyder, 2014). 

While this evidence suggests that the bias for simple meter processing is entirely 

experience driven, some evidence suggests that complex meters require greater cognitive 

resources (Lewis, Wing, Pope, Praamstra, & Miall, 2004; Sakai, et al., 1999) and even 

those who are familiar with complex meters display difficulty in processing meters that 

are highly complex (Hannon, Soley, & Ullal, 2012). Thus the important question 

remains: does experience with complex meters minimize the innate difficulty of 
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processing these meters, or does lack of experience with these meters cause them to be 

difficult to process? In other words, to what extent are simple and complex meters 

processed differently, even by those to whom they are familiar? 

 To answer this question, this study tested the cognitive mechanisms (Experiment 

1) and neural underpinnings (Experiment 2) of simple and complex meter processing. 

The first experiment explored the theory that the processing of rhythm might be driven by 

a domain general ability to process quantity. The results showed that an individual's 

ability to enumerate discrete quantities in the visual domain was correlated with their 

abilility to enumerate in the auditory domain. Specifically, the ability to count 

simultaneously presented visual items was correlated with the ability to count 

sequentially presented auditory items. More interestingly, the specific range of 

enumeration (subitizing versus counting) was important. Simple meter processing ability 

was correlated with enumeration ability across both ranges, but complex meter 

processing only correlated with performance on the counting range. Further, whereas 

performance on the complex meter task correlated significantly with working memory 

capacity, performance on the simple meter task did not. 

 These results offer novel evidence and strong support in favor of the theory that 

the difficulty with complex meters arises because of its greater cognitive requirements. 

Namely, simple meters are processed with hierarchical encoding of the entire rhythm 

(2:1, for instance). In contrast, complex meters, with irregular ratios between consecutive 

intervals, may require explicit processing for each time interval  (Chapin, Zanto, Jantzen, 

Kelso, Steinberg & Large, 2010; Sakai, et al., 1999). In the domain of enumeration, 

subitizing has been described as being an automatic or implcit process, whereas counting 
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has been described as being effortful, and requiring a larger working memory load  

(Shimomura & Kumada, 2011).   

 The second experiment explored the extent to which this distinction between 

simple and complex meter processing is innate, versus driven by experience. By using 

metrical ratios that varied in complexity, the results demonstrated that complex meters 

were processed differently, even by those to whom they were familiar. Specifically, while 

processing simple meter rhythms, listeners’ brain activity initially showed greater N1 

amplitudes in response to the expected beat in the simple meter versus in the complex 

meter condition. As the trial progressed, however, the pattern of activation reversed, with 

larger amplitudes in response to the imagined beat in the complex meter trials than in the 

simple meter trials. Together, these two sets of results were taken to suggest greater 

attention and better predictability in the simple meter condition, than in the complex 

meter condition. Further, the complex meter ratio used in this experiment (3:2:2) is 

typical of Balkan and Indian music, unlike the highly complex (7:4) ratios used in 

Hannon, Soley & Ullal (2012);. Thus, the distinction in performance between simple and 

complex meters in the Non-Western group should not have been due to unfamiliarity 

with these ratios. Instead, it suggests that experience with complex meters overrides the 

difficulty in performing a behaioral task. It is noteworthy that prior studies that used on-

line sensitive measures of detecting differences in simple and complex meter processing 

in those familiar with both, found that these participants produced both meters with equal 

ease  (Ullal-Gupta, Hannon, & Snyder, 2014).  

 Taken together, this study revealed that the constraints with complex meter 

processing arise out of greater, more effortful cognitive demands. Further, the results 
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suggest that it is not the lack of experience with complex meters that causes this 

difficulty. Instead, with greater experience with these meters, we presumably develop 

cognitive strategies to overcome the constraits, yielding more accurate perception and 

production. In a future study, it would be extremely interesting to replicate the first 

experiment with those who are familiar with complex meters.  
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Appendix A 

Correlation coefficient including all variables. 

 

 

MT WMC MA 

Vsim% 

Sub 

Vsim% 

Count 

VsimR

Sub 

VsimR

Count 

Vseq% 

Sub 

Vseq% 

Count 

VseqR

Sub 

VseqR

Count 

Aseq%

Sub 

Aseq%

Count 

AseqR

Sub 

AseqR

Count WH OK OH Tonal Rtm 

MT 1.00                    

WMC .32
* 

1.00                   

MA 0.05 -0.10 1.00                  

Vsim%Sub -0.28 0.07 -0.16 1.00                 

Vsim%Count -0.19 0.16 -0.15 0.05 1.00                

VsimRSub -0.11 -0.08 0.13 -0.10 0.36
*
 1.00               

VsimRCount -0.17 -0.12 0.15 0.07 0.66
***

 0.70
***

 1.00              

Vseq%Sub 0.01 -0.07 -0.04 -0.14 -0.11 -0.05 0.01 1.00             

Vseq%Count 0.30 0.00 -0.09 0.06 -0.14 -0.09 0.04 0.00 1.00            

VseqRSub 0.01 0.10 -0.03 0.33
*
 -0.12 -0.26 -0.10 0.07 -0.06 1.00           

VseqRCount -0.12 0.02 0.13 0.21 0.09 0.08 0.16 -0.20 0.00 0.26 1.00          

Aseq%Sub -0.03 0.02 -0.36
*
 0.48

***
 -0.13 -0.35

*
 -0.22 -0.11 0.12 0.33

*
 0.00 1.00         

Aseq%Count 0.21 0.32
*
 -0.19 -0.06 0.07 -0.04 -0.07 0.10 0.04 0.07 -0.07 0.11 1.00        

AseqRSub -0.17 0.10 0.02 0.08 0.15 0.39
**

 0.20 -0.17 -0.13 -0.19 0.16 -0.28 -0.17 1.00       

AseqRCount 0.13 0.19 0.10 0.19 -0.17 0.29
*
 0.02 -0.13 0.03 -0.14 0.05 -0.21 0.01 0.37

*
 1.00      

WH 0.02 0.00 0.09 -0.06 0.24 -0.13 0.13 -0.06 -0.03 0.21 0.11 0.00 -0.08 -0.03 -0.16 1.00     

OK -0.09 0.07 0.10 -0.14 0.29
*
 -0.18 0.05 0.01 -0.07 0.00 -0.01 -0.17 0.19 0.05 -0.13 0.58

***
 1.00    

OH -0.08 -0.10 -0.02 0.01 0.22 -0.18 0.05 -0.30
*
 -0.06 0.06 0.08 0.00 0.05 -0.09 -0.20 0.58

***
 0.63

***
 1.00   

Tonal .48
*** 

0.13 -0.30 -0.23 0.05 -0.06 -0.09 0.20 0.00 0.17 -0.21 0.09 0.32
*
 -0.13 -0.14 -0.02 0.11 0.03 1.00  

Rtm .49
*** 

.38
*** 

-0.32 -0.11 0.06 -0.21 -0.22 0.04 -0.14 0.14 -0.07 0.06 0.27 -0.10 0.00 0.11 0.22 0.25 0.72
***

 1.00 

Mean: 1.91 5.46 22.40 .97 .83 715.81 1472.98 .73 .37 601.83 695.90 .94 .42 656.12 770.28 .75 .47 .45 25.00 26.70 

SD: 3.60 1.01 5.95 .06 .20 144.71 389.09 .27 .12 95.46 104.50 .11 .18 89.91 97.97 1.11 .88 1.03 3.73 3.87 

Note: N=48 
 

*
 p < .05. 

**
 p < .01. 

***
 p < .001.  

MT Number of years of music training 

WMC Composite working memory score  

MA Math Anxiety score 

VSim%Sub Accuracy on Visual Simultaneous Enumeration – Subitizing Range 

VSim%Count Accuracy on Visual Simultaneous Enumeration – Counting Range 

VSimRSub Response Time on Visual Simultaneous Enumeration – Subitizing Range 

VSimRCount Response Time on Visual Simultaneous Enumeration – Counting Range 

VSeq%Sub Accuracy on Visual Sequential Enumeration – Subitizing Range 

VSeq%Count Accuracy on Visual Sequential Enumeration – Counting Range 

VSeqRSub Response Time on Visual Sequential Enumeration – Subitizing Range 

VSeqRCount Response Time on Visual Sequential Enumeration – Counting Range 

ASeq%Sub Accuracy on Auditory Sequential Enumeration – Subitizing Range 

ASeq%Count Accuracy on Auditory Sequential Enumeration – Counting Range 

ASeqRSub Response Time on Auditory Sequential Enumeration – Subitizing Range 

ASeqRCount Response Time on Auditory Sequential Enumeration – Counting Range 

WH Score on Within Harmony trials 

OK Score on Out of Key trials 

OH Score on Out of Harmony trials 

Tonal Score on Tonal Subtest of AMMA 

Rtm Score on Rhythm Subtest of AMMA 
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Appendix B 

In the following mean amplitude figures, the electrodes are organized as follows: 

 

FC1 

 

FCz 

 

FC2 

 

C1 

 

Cz 

 

C2 

 

CP1 

 

CPz 

 

CP2 

 

 

Scale: 
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1. Simple meter: LSS (slow tempo): Accented versus Unaccented 

 

Western Group 

 

Non-Western Group 
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2. Simple meter: LSS (fast tempo): Accented versus Unaccented 

 

Western Group 

 

  

Non-Western Group 
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3. Simple meter: SSL (slow tempo): Accented versus Unaccented 

 

Western Group 

 

  

Non-Western Group 
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4. Simple meter: SSL (fast tempo): Accented versus Unaccented 

 

Western Group 

 

  

Non-Western Group 
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5. Simple meter: LSS (slow tempo) versus SSL (slow tempo): accented 

Western Group 

 

 

Non-Western Group 
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6. Simple meter: LSS (fast tempo) versus SSL (fast tempo): accented 

Western Group 

 

Non-Western Group 
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7. Simple meter: LSS (slow tempo) versus SSL (slow tempo): unaccented 

Western Group 

 

 

Non-Western Group 

 



114 

 

 

8. Simple meter: LSS (fast tempo) versus SSL (fast tempo): unaccented 

Western Group 

 

Non-Western Group 
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9. Complex meter: LSS (slow tempo): accented versus unaccented 

Western Group 

 

 

Non-Western Group 
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10. Complex meter: LSS (fast tempo): accented versus unaccented 

Western Group 

 

 

Non-Western Group 
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11. Complex meter: SSL (slow tempo): accented versus unaccented 

Western Group 

 

 

Non-Western Group 
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12. Complex meter: SSL (fast tempo): accented versus unaccented 

 

Western Group 

 

 

Non-Western Group 
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13. Complex meter: LSS (slow tempo) versus SSL (slow tempo): accented 

Western Group 

 

 

Non-Western Group 
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14. Complex meter: LSS (fast tempo) versus SSL (fast tempo): accented 

Western Group 

 

 

Non-Western Group 
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15. Complex meter: LSS (slow tempo) versus SSL (slow tempo): unaccented 

Western Group 

 

 

Non-Western Group 
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16. Complex meter: LSS (fast tempo) versus SSL (slow tempo): unaccented 

Western Group 

 

 

Non-Western Group 
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Appendix C 

 

In the following evoked activity time frequency figures, the electrodes are organized as 

follows: 

 

Cz 

 

C1 

 

FC1 

 

FCz 

 

FC2 

 

AF4 

 

FP2 

 

AF3 

 

FP1 
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1. Simple meter: LSS (slow tempo): Accented 

 

Western Group 

 

Non-Western Group 
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2. Simple meter: LSS (slow tempo): Unaccented 

 

Western Group 

 

Non-Western Group 
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3. Simple meter: LSS (fast tempo): Accented 

 

Western Group 

 
 

Non-Western Group 
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4. Simple meter: LSS (fast tempo): Unaccented 

 

Western Group 

 
 

Non-Western Group 
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5. Simple meter: SSL (slow tempo): Accented 

 

Western Group 

 

Non-Western Group 

 



129 

 

6. Simple meter: SSL (slow tempo): Unaccented 

 

Western Group 

 

Non-Western Group 
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7. Simple meter: SSL (fast tempo): Accented 

 

Western Group 

 

Non-Western Group 
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8. Simple meter: SSL (fast tempo): Unaccented 

 

Western Group 

 

Non-Western Group 
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9. Complex meter: LSS (slow tempo): Accented 

 

Western Group 

 

Non-Western Group 
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10. Complex meter: LSS (slow tempo): Unaccented 

 

Western Group 

 

Non-Western Group 
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11. Complex meter: LSS (fast tempo): Accented 

 

Western Group 

 

Non-Western Group 
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12. Complex meter: LSS (fast tempo): Unaccented 

 

Western Group 

 

Non-Western Group 
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13. Complex meter: SSL (slow tempo): Accented 

 

Western Group 

 

Non-Western Group 
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14. Complex meter: SSL (slow tempo): Unaccented 

 

Western Group 

 

Non-Western Group 
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15. Complex meter: SSL (fast tempo): Accented 

 

Western Group 

 

Non-Western Group 
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16. Complex meter: SSL (fast tempo): Unaccented 

 

Western Group 

 

Non-Western Group 
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Appendix D 

In the following induced activity time frequency figures, the electrodes are organized as 

follows: 

 

Cz 

 

C1 

 

FC1 

 

FCz 

 

FC2 

 

AF4 

 

FP2 

 

AF3 

 

FP1 
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1. Simple meter: LSS (slow tempo): Accented 

 

Western Group 

 

Non-Western Group 
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2. Simple meter: LSS (slow tempo): Unaccented 

 

Western Group 

 

Non-Western Group 
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3. Simple meter: LSS (fast tempo): Accented 

 

Western Group 

 

Non-Western Group 
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4. Simple meter: LSS (fast tempo): Unaccented 

 

Western Group 

 

Non-Western Group 
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5. Simple meter: SSL (slow tempo): Accented 

 

Western Group 

 

Non-Western Group 
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6. Simple meter: SSL (slow tempo): Unaccented 

 

Western Group 

 

Non-Western Group 
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7. Simple meter: SSL (fast tempo): Accented 

 

Western Group 

 

Non-Western Group 
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8. Simple meter: SSL (fast tempo): Unaccented 

 

Western Group 

 

Non-Western Group 
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9. Complex meter: LSS (slow tempo): Accented 

 

Western Group 

 

Non-Western Group 
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10. Complex meter: LSS (slow tempo): Unaccented 

 

Western 

Group

 
 

Non-Western Group 
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11. Complex meter: LSS (fast tempo): Accented 

 

Western Group 

 

Non-Western Group 
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12. Complex meter: LSS (fast tempo): Unaccented 

 

Western Group 

Non-Western Group 
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13. Complex meter: SSL (slow tempo): Accented 

 

Western Group 

 

Non-Western Group 
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14. Complex meter: SSL (slow tempo): Unaccented 

 

Western Group 

 

Non-Western Group 
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15. Complex meter: SSL (fast tempo): Accented 

 

Western Group 

 

Non-Western Group 
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16. Complex meter: SSL (fast tempo): Unaccented 

 

Western Group 

 

Non-Western Group 
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