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Abstract

The Markoff equation is x2+y2+z2 = 3xyz, and all of the positive integer solu-

tions of this equation occur on one tree generated from (1, 1, 1), which is called the

Markoff tree. In this paper, we consider trees of solutions to equations of the form

x2 + y2 + z2 = xyz + A. We say a tree of solutions satisfies the unicity condition

if the maximum element of an ordered triple in the tree uniquely determines the

other two. The unicity conjecture says that the Markoff tree satisifies the unicity

condition. In this paper, we show that there exists a sequence of real numbers

{cn} such that the tree generated from (1, cn, cn) satisfies the unicity condition for

all n, and that these trees converge to the Markoff tree. We accomplish this by

first recasting polynomial solutions as linear combinations of Chebyshev polyno-

mials, and showing that these polynomials are distinct. Then we evaluate these

polynomials at certain values and use a countability argument. We also obtain

upper and lower bounds for these polynomial expressions.
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CHAPTER 1

HISTORICAL BACKGROUND

1.1 Markoff Equation and the Unicity Conjecture

This dissertation is about the Markoff equation and the unicity conjecture,

which can be traced back to Andrei Andreyevich Markoff and Ferdinand Georg

Frobenius, respectively. Markoff worked on approximating irrational numbers by

rational numbers, which led him to study the Lagrange spectrum. For those not

familiar with the Lagrange spectrum, we provide the following definition.

Definition 1. Pick any real number r. We define the Lagrange number of r as

L(r) = supL, where the supremum is taken over all L such that the following holds

for infinitely many rational numbers p

q
:

|r − p

q
| < 1

Lq2
.

We define the Lagrange spectrum as L = {L(r) : r ∈ R \ Q}, and the Lagrange

spectrum below 3 as L<3 = {L(r) : r ∈ R \Q, L(r) < 3}.

In 1879 and 1880 (see [16] and [17]), Markoff used continued fractions and

indefinite quadratic forms to demonstrate that there is a 1-1 correspondence be-

tween elements of L<3 and the positive integer solutions of the following equation,
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which is known as the Markoff equation:

x2 + y2 + z2 = 3xyz.

Specifically, he showed that

L<3 =

{
√
9m2 − 4

m
: m ∈ M

}

,

where M is the set of all positive integer solutions of the Markoff equation.

We call (x, y, z) ∈ R3 an ordered triple if x ≤ y ≤ z, and we call (x, y, z) a

Markoff triple if it is an ordered triple solution to the Markoff equation with x, y,

and z all positive integers. It is easy to show that if (x, y, z) is a Markoff triple

then so are (x, z, 3xz − y) and (y, z, 3yz − x). Thus, any ordered triple solution

creates additional solutions, forming a tree of solutions for the Markoff equation.

In particular, we can generate a tree of solutions from (1, 1, 1), which we refer

to as the Markoff tree M, as shown in Figure 1.1. We say (1, 1, 1) is the root of

the Markoff tree, and more generally, if (x, y, z) is the triple that generates a tree

of solutions T, then we say (x, y, z) is the root of T. Markoff used a method of

descent to show that every Markoff triple descends all way down to (1, 1, 1) in a

finite number of steps. Thus, all of the Markoff triples appear in M. Notice that

the Markoff tree behaves like a binary tree starting at the triple (1, 2, 5). The only

triples with repeated coordinates are (1, 1, 1) and (1, 1, 2), which J. W. S. Cassels

calls singular solutions [6].
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(1,1,1)

(1,1,2)

(1,2,5)

(1,5,13) (2,5,29)

(1,13,34) (5,13,194) (2,29,169) (5,29,433)

..
.

..
.

..
.

..
.

..
. ..
.

..
.

..
.

Figure 1.1: The Markoff tree M.

In 1913, Frobenius conjectured that the largest entry z of a Markoff triple

uniquely determines the other two [11]. Another way to say this is that the max-

imal element is unique. This is now known as the unicity conjecture. Despite

several attempts over the last century, this conjecture remains unsolved. Richard

K. Guy has even called the unicity conjecture too difficult for anyone to try to

solve [12]. Some partial results of the unicity conjecture have been settled. The

following results are due to Arthur Baragar, J. O. Button, Feng-Juan Chen, and

Yang-Gao Chen. It is known that if z or 3z ± 2 is a prime, twice a prime, or four

times a prime then it is unique [3]; or if z is a prime power then it is unique [5].

Currently, it is known that z is unique if z = k · pβ, with k ≤ 1035, p prime and

k relatively prime to p [5]; and if 3z ± 2 = k · pβ, with k ≤ 1010, p prime, and

k relatively prime to p [7]. The upper bounds for k in these last two results are

based on the empirical result that z is unique if z < 10140 [3]. In 2007, Ying Zhang

provided an elementary proof that if z is a prime power or twice a prime power

then z is unique [30]. In 2009, Anitha Srinivasan provided an elementary proof
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for further results, including the case that if the greatest odd divisor of 3z ± 2 is

a prime power then z is unique [27].

Even though Frobenius was the first person to state the unicity conjecture, it

was Cassel who brought it to the attention of most mathematicians. In his 1957

book An Introduction to Diophantine Equations (see [6]), he describes the results

of Markoff and Frobenius, and states on page 33 of chapter 2 (titled “The Markoff

Chain”) that:

“There is a slight ambiguity in the notation Fm since no one has shown that

there cannot be two distinct solutions (m,m1, m2), (m,m∗
1, m

∗
2) occurring in dif-

ferent portions of the tree. No case of this is known and it seems improbable.”

1.2 Generalizations of the Markoff Equation

The Markoff equation has been generalized in different ways. In his 1907 paper

(see [14]), Adolf Hurwitz introduced the Hurwitz-Markoff equations, which are of

the form

Mz,n : x2
1 + x2

2 + ... + x2
n = zx1x2...xn.

He showed that if z > n then Mz,n has no positive integer solutions, and if z = n

then Mz,n has exactly one tree of positive integer solutions generated by the root

(1, 1, ..., 1). Hurwitz knew that if z < n then there were possibly multiple trees of

positive integer solutions for Mz,n, but he was not able to settle this case. Hurwitz

4



does provide a table of all roots that generate a tree of integer solutions for Mz,n

for 1 ≤ z ≤ n ≤ 10 [14]. The case when z < n was completely solved by Norman

P. Herzberg. In 1974, he provided a 7 step algorithm that gives every root (that

generate a tree of positive integer solutions) forMz,n in Theorem 2 of [13]. Baragar

showed that for every r > 0, there exists a pair (zr, nr) such that Mzr,nr
has at

least r roots that generate a tree of positive integer solutions (see Theorems 2.1

and 2.2 in [2]).

Another generalization of the Markoff equation was studied by L. J. Mordell.

Mordell looked at generalized Markoff equations of the form

x2 + y2 + z2 = axyz + b.

In particular, he studied x2+y2+z2+2xyz = n in his 1953 paper (see [19]), which

he compared to cubic equations of the form

x3 + y3 + z3 + w3 = m.

He proves many results, including that when n = 2r, there are infinitely many

solutions when r is odd, but only the solution x = y = z = 0 when r is even [19].

In 1980, Gerhard Rosenberger studied equations of the form

ax2 + by2 + cz2 = dxyz,
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with a, b, and c all dividing d, which are called the Markoff-Rosenberger equa-

tions [23]. Rosenberger showed that only a finite number of these equations have

infinitely many solutions of positive integers. A recent development involves a

2013 paper by Enrique Gonzalez Jimenez and Jose M. Tornero. They show that

there can be only a finite number of solutions of Markoff-Rosenberg numbers in

arithmetic progression [15].

Many authors have looked at Markoff’s equation in the following form:

x2 + y2 + z2 = xyz.

Later in this work, we study Markoff equations of the form

MA : x2 + y2 + z2 = xyz + A.

Hence, we denote x2 + y2 + z2 = xyz as M0. It is easy to see that (x, y, z) is a

solution of x2 + y2 + z2 = axyz + b if and only if (ax, ay, az) is a solution of Ma2b.

In particular, (x, y, z) is a solution to the original Markoff equation if and only if

(3x, 3y, 3z) is a solution to M0. Hence, MA is the one parameter equivalent of the

generalized Markoff equations in two parameters that Mordell studied.

1.3 More Results and Approaches

Over the last century, several methods have been developed to make connec-

tions between the Markoff equation and other branches of mathematics, as well
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as produce partial solutions to the unicity conjecture. There is a connection be-

tween integer solutions of the Markoff equation and with algebraic number theory,

combinatorics, diophantine approximation, and hyperbolic geometry. For those

interested in more details of these connections than this section provides, an ex-

cellent source is the book “Markov’s Theorem and 100 Years of the Uniqueness

Conjecture” by Martin Aigner [1]. Details of the connection between integer so-

lutions of M0 and exceptional representative sheaves on the complex projective

plane P2 can be found in A. N. Rudakov’s paper [24]. Note that we have already

mentioned some partial results of the unicity conjecture earlier in the previous

sections.

In his 1913 paper, Frobenius provided some evidence to the unicity conjecture

by ordering some of the Markoff triples using Farey fractions [11]. In addition,

Frobenius established some of the first results about the Markoff numbers and the

unicity conjecture, such as if m is an odd Markoff number and a prime number p

divides m, then p ≡ 1 mod 4, and if m is an even Markoff number then m ≡ 2

mod 8.

In 1955, Harvey Cohn used 2× 2 matrices to analyze the Markoff equation [8].

He was the first to observe the connection between M0 and the following equation,

which is known as Fricke’s identity:

tr(A)2 + tr(B)2 + tr(AB)2 = tr(A)tr(B)tr(AB) + tr(ABA−1B−1) + 2,
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where A and B are 2 X 2 matrices with integer entries and tr(A) is the trace of

the matrix A. It is worth noting that matrices representing Markoff numbers first

appear in [11], even though Frobenius never mentions Fricke’s identity. It is easy

to verify that the triple (tr(A), tr(B), tr(AB)) is a Markoff triple if and only if

tr(ABA−1B−1) = −2.

In 1976, Rosenberger claimed to have a proof of the unicity conjecture, using

2 × 2 matrices and Fricke’s identity [22]. It was shown to have a nontrivial flaw

by reviewer Richard T. Bumby. He mentioned that some of Rosenberger’s ideas

were brilliant but the overall proof was not correct. Specifically, in Lemma 3 on

page 363 of [22], Rosenberger’s statement of the following inequality is false:

tr(AB2)n > tr(AB2n−1).

The most recent development using matrices is attributed to Norbert Riedel.

Riedel claimed to have a solution of the unicity conjecture using nilpotent 3 × 3

matrices (see [20]), but reviewer S. Perinne has found a nontrivial flaw in each

of his preprints. However, Riedel reveals an interesting result on page 9 of his

preprint, which seems to suggest that there is something special about the two

equations M0 and M4. Riedel also appears to be the first to state the connection

between Chebyshev polynomials of the first kind (Tn’s) and M4 [20].

Next, we look at methods involving Euclid trees (we note here that we formally

define a Euclid tree in Chapter 2). The first person to use this approach was Cohn
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[9]. He created a coordinate pair (a, b) for each entry in the Markoff tree and said

that (a, b) = (a′, b′) + (a′′, b′′) is a euclidean partition if and only if a′b′′ − b′a′′ = 1.

Cohn used the coordinate pairs to analyze the connection between the Markoff

equation and a free semigroup of symbols.

In 1982, Don Zagier established an upper bound for the nth Markoff number,

and found the asymptotic behavior of M(N), which is the number of Markoff

triples with x ≤ y ≤ z ≤ N . Zagier proved the following result:

M(N) = C(lnN)2 +O(lnN(ln lnN)2),

where C is approximately equal to 0.1807 [29]. He conjectures that the nth Markoff

number is approximately 1
3
A

√
n, where A = e

1
√

C , which is approximately 10.51015.

He obtained these results using the ln(3x) function, which approximately maps the

Markoff tree to the Euclid tree [29].

Later, we use Chebyshev polynomials and Euclid trees to represent Markoff

numbers in MA as distinct polynomials, which is one of the main results of this

work. These polynomials are labelled pn,j and qn,j, and in chapter 2, we show that

the pairs (n, j) from these labelings satisfy a similar relationship to the coordinate

pairs in a Euclidean partition of [9] (a similar relationship also appears in [11]).

Next, we look at a ring theory approach. Baragar was the first person to show

certain types of Markoff numbers are unique using quadratic integer rings (as

Baragar points out in [3], Zagier and Cohn knew about this approach, so actually,

9



Baragar was the first person to publish a result showing this approach). He showed

the connection between the unicity conjecture and elements of a ring with exactly

one pair of principal ideals (see Theorem 1.1 of [3]). Button also used ring theory

to show that prime Markoff numbers are unique [4]. Other mathematicians have

studied the Markoff equations using abstract algebra, including Srinivasan [27].

Next, we briefly mention the last approach involving hyperbolic geometry.

Cohn was the first person to find a connection between the Markoff equation

and geodesics in the hyperbolic plane [10]. Cohn considers the geodesics trans-

ferred to the perforated torus, and the geodesic of a Markoff form becomes closed

under translations of the lattice periods. It is known that the unicity conjecture

is equivalent to showing that two simple closed geodesics of the same length are

equivalent (on this new surface). Other mathematicians who studied the Markoff

equation using hyperbolic geometry are Mark Sheingorn and Caroline Series (see

[26] and [25]).

Most of the papers in the literature deal with tree(s) of positive integer solutions

to the original Markoff equation or one of its generalizations. Greg McShane and

Hugo Parlier wrote one of the very few papers that considers trees of real and not

necessarily integral solutions [18]. We will say more about this paper throughout

the next few chapters since it contains many important results that are similar to

results in this work.
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CHAPTER 2

POLYNOMIAL AND EUCLID TREES

2.1 Polynomial Trees

Throughout the rest of this work, we only consider generalized Markoff equa-

tions of the form

MA : x2 + y2 + z2 = xyz + A,

where A is any real number. Recall that in Chapter 1, we observed that there is a

one-to-one correspondence between the equations x2+y2+z2 = axyz+b andMa2b.

Specifically, (x, y, z) is a solution to x2+y2+z2 = axyz+b if and only if (ax, ay, az)

is a solution to Ma2b. In particular, there is a one-to-one correspondence between

the Markoff equation and M0. That is, the triple (x, y, z) is a solution to the

Markoff equation if and only if (3x, 3y, 3z) is a solution to M0.

We define maps τ and σ that generate a tree of solutions corresponding to MA

as follows:

τ(x, y, z) = (x, z, xz − y)

σ(x, y, z) = (y, z, yz − x).

Given a triple ~r = (r1, r2, r3) ∈ R3, we define T(~r) to be the tree rooted at ~r and

generated by τ and σ. Later, when we consider ~r as a triple of polynomials instead

11



of numbers, we refer to T(~r) as a polynomial tree. For ease of notation, we use T(~r)

and T(r1, r2, r3) interchangably (i.e., we use T(r1, r2, r3) instead of T((r1, r2, r3))).

We call ~r the root of T(~r) associated with MA, and since the root satisfies MA, we

have

A = r21 + r22 + r23 − r1r2r3.

We emphasize here that we consider ~r and A to be real, not necessarily integral.

For example, we consider the tree T(3, π, π) associated with the equation M9−π2

in section 4.3 after Theorem 11. G. McShane and H. Parlier also looked at trees

of solutions with real numbers associated with M0 [18]. Theorem 11 of this paper

is similar to their Theorem 1.3, but our result holds for arbitrary A 6= 0, and we

use different methods [18].

In cases where τ(~x) = ~x, σ(~x) = ~x, or τ(~x) = σ(~x) for any ~x in a tree of

solutions with root ~r, we use the notation T(~r) for the tree that collapses the

branches that contain repeated triples, and we use the notation T′(~r) for the tree

that does not (see Figure 2.1 for an example).

(2,3,3)

(2,3,3)

(3,3,7)

(2,3,3)

(3,3,7)

(3,7,18)

(3,7,18)

(2,3,3)

(3,3,7)
(3,7,18)

...

...

...

...

...

...
...

...
...

...

σ

στ

τ

T(2,3,3) (2,3,3)T

Figure 2.1: The trees T(2, 3, 3) and T′(2, 3, 3).
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In the next section, we show that if ~r is an ordered triple with 2 ≤ r1 then τ(~x)

and σ(~x) are ordered triples whenever ~x is an ordered triple, for every ~x in T(~r)

(or in T′(~r)). Hence, we assume from now on that 2 ≤ r1 ≤ r2 ≤ r3. Of particular

interest are polynomial trees rooted at the ordered triple (a, x, x) (see Figure 2.2).

Definition 2. We say that T(~r) satisfies the unicity condition if the maximum

element of any triple in T(~r) uniquely determines the other two.

Remark 1. The unicity conjecture states that the maximum element of a Markoff

triple uniquely determines the other two. Since all Markoff triples appear in the

Markoff tree, this is equivalent to saying that T(3, 3, 3), satisfies the unicity con-

dition. We emphasize here that it is possible that for some A, the maximal com-

ponent of an integer solution may not uniquely determine the other two, yet trees

of integer solutions for MA could still satisfy the unicity condition.

(a,x,x)

(a,x,(a-1)x)

(a,(a-1)x,(a2-a-1)x)

(a,(a2-a-1)x,(a3-a2-2a+1)x)

((a-1)x,(a2-a-1)x,(a3-2a2+1)x2-a)

(x,(a-1)x,(a-1)x2-a)
(x,(a-1)x2-a,(a-1)x3-(2a-1)x)

((a-1)x,(a-1)x2-a,(a2-2a+1)x3-(a2-a+1)x)

(x,x,x2-a) (x,x2-a,x3-(a+1)x)

(x,x3-(a+1)x,x4-(a+2)x2+a)

(x2-a,x3-(a+1)x,x5-(2a+1)x3+(a2+a-1)x)

...

...

...

...

...

...
...

...

...

...
...

...

Figure 2.2: The polynomial tree rooted at (a, x, x).
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One of our main results is the following theorem (especially when a = c = 3),

which we prove in section 4.3:

Theorem 12. For any pair of rational numbers (a, c) with 2 < a ≤ c, there

exists a sequence of real numbers {cn} such that the sequence of trees T(a, cn, cn)

converges to T(a, c, c), and T(a, cn, cn) satisfies the unicity condition for every n.

2.2 Proper Ordering of Trees

Throughout this section, we assume that 2 ≤ a ≤ x, implying (a, x, x) is an

ordered triple. Since (x, y, z) branches to τ(x, y, z) and σ(x, y, z), if (a, x, x) is

the root of a tree, then (a, x, x) branches to the two triples (a, x, (a − 1)x) and

(x, x, x2 − a). It is straightforward to show that if 2 ≤ a ≤ x then (a, x, (a− 1)x)

and (x, x, x2−a) are both ordered triples. Next, we show that all triples generated

from (a, x, x) are ordered triples.

Theorem 1. If 2 ≤ a ≤ x, then every triple in T(a, x, x) and T′(a, x, x) is an

ordered triple.

Proof. First, assume 2 < a. Suppose that we have an ordered triple (b, c, d) in

T(a, x, x) with b > 2. If bd− c ≤ d then (b− 1)d ≤ c, which implies

d < (b− 1)d (since b > 2)

≤ c (since bd− c ≤ d)

≤ d (since b ≤ c ≤ d),
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a contradiction. Thus, bd − c > d. Similarly, cd − b > d. Hence, all nodes in the

tree T(a, x, x) are ordered triples.

Now assume a = 2. Then T(2, 2, 2) only consists of the triple (2, 2, 2) since

(2)(2)− (2) = 2, and T(2, 2, 2) collapses the branches with repeated triples. When

2 = a < x, we do not branch in the τ direction since (2)(x) − (x) = x, and

(2, x, x) branches in σ direction to the triple (x, x, x2 − 2), where x2 − 2 > x since

x > 2. Thereafter, our situation is as before and all nodes in the tree T(2, x, x)

are ordered triples. Therefore, all nodes in the tree T(a, x, x) with 2 ≤ a ≤ x are

ordered triples, and it follows that all nodes in the tree T′(a, x, x) with 2 ≤ a ≤ x

are ordered triples as well.

Theorem 1 shows that polynomials are properly ordered by the maps τ and

σ when we evaluate x at values satisfying 2 ≤ a ≤ x (we emphasize here that

x is a variable and a is a constant for these polynomials). It is mentioned after

Lemmas 2, 3 that this is the same as ordering polynomials by their degrees.

2.3 Euclid Trees

The Euclid tree E(~r∗) is the tree rooted at ~r∗ = (r∗1, r∗2, r∗3) with each r∗i

a nonnegative integer satisfying r∗1 + r∗2 = r∗3, and defined by the following
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branching operations:

τ∗(x∗, y∗, z∗) = (x∗, z∗, x∗ + z∗)

σ∗(x∗, y∗, z∗) = (y∗, z∗, y∗ + z∗).

As before, we define E′(~r∗) to be the Euclid tree that does not collapse the

branches when σ∗(~x∗) = ~x∗, τ∗(~x∗) = ~x∗, or τ∗(~x∗) = σ∗(~x∗) (see Figure 2.3 for an

example). The Euclid trees E(1, 2, 3) and E′(0, 1, 1) are used in definition 3. Note

that E(1, 2, 3) is a subtree of E′(0, 1, 1) (see Figure 2.3). It follows from the maps σ∗

and τ∗ that x∗+y∗ = z∗ for all (x∗, y∗, z∗) ∈ E(~r∗). The tree E(~r∗) is called a Euclid

tree since descending the tree is equivalent to performing the Euclidean algorithm.

Note that the descent in these trees is unique, since the Euclidean algorithm

is unique. Of particular interest are Euclid trees with gcd(r∗1, r∗2) = 1, which

guarantees that the Euclidean algorithm only involves relatively prime numbers.

(0,1,1)

(0,1,1)

(1,1,2)

(0,1,1)

(1,1,2)

(1,2,3)

(1,2,3)

(0,1,1)

(1,1,2)
(1,2,3)

...

...

...

...

...

...
...

...
...

...

σ
∗

τ
∗

E (0,1,1)E(0,1,1)

τ
∗

σ
∗

τ
∗

τ
∗

σ
∗

σ
∗

Figure 2.3: The Euclid trees E(0, 1, 1) and E′(0, 1, 1).
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For any composite map µ = σe1 ◦ τ e2 ◦ ... ◦ σek defined on T(~r), we define µ∗

on E′(~r∗) by σe1
∗ ◦ τ e2∗ ◦ ... ◦ σek

∗ . Then, for any ~r and ~r∗, we define:

Ψ : T(~r) → E
′(~r∗)

µ(~r) 7→ µ∗(~r∗).

This is the map defined by Cohn and Zagier, under appropriate choices for ~r and

~r∗ (see [9] and [29]). Note that Ψ depends on ~r and ~r∗. Let us consider ~r and ~r∗

with r∗1 < r∗2 < r∗3 and deg(rk) = r∗k for k = 1, 2, 3. Under these conditions, it

is easy to see that E′(~r∗) = E(~r∗) and Ψ is invertible.

Before proving the next two lemmas, we mention their significance. Lemma 2

shows that the triples in E(~r∗) uniquely determine the polynomial triples in T(~r).

Lemma 3 shows that identities (2.1) and (2.2) (which appear on page 21) rely on

unique m and k in their recursions, a fact that we use in Theorem 7 in Section 3.

Lemma 2. Let r∗1 < r∗2 < r∗3 and deg(rk) = r∗k for k = 1, 2, 3. Then for every

~x in T(~r), we have Ψ(~x) = (deg(x1), deg(x2), deg(x3)).

Proof. The result clearly holds for ~x = ~r. If we pick any arbitrary nonzero polyno-

mials P1, P2, and P3 such that deg(P1) < deg(P2) < deg(P3), then it is clear that

deg(P1P3 − P2) = deg(P1) + deg(P3) and deg(P2P3 − P1) = deg(P2) + deg(P3).

Therefore, it follows inductively from the maps σ, σ∗, τ , and τ∗ that Ψ(~x) =

(deg(x1), deg(x2), deg(x3)) holds for all ~x in T(~r).

Therefore, Ψ maps ordered triples of polynomials to their degrees, and since Ψ
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is invertible, the degree triples uniquely determine the polynomial triples.

Lemma 3. For any relatively prime integers n and j with 0 < j < n
2
, there exists

exactly two solution pairs of integers (n1, j1) and (n2, j2) = (n − n1, j − j1) with

each nk < n such that |njk − nkj| = 1 and 0 < jk <
nk

2
holds for k = 1, 2.

Proof. It follows from the Euclidean algorithm and the fact that j has a unique

inverse in Z×
n that there exists only two positive integer solutions (n1, j1) and

(n2, j2) satisfying |njk−nkj| = 1, one for njk−nkj = 1 and one for njk−nkj = −1.

Then n2 = n− n1 and j2 = j − j1 holds because

|n(j − j1)− j(n− n1)| = |nj − nj1 − nj + jn1|

= |nj1 − jn1|

= 1.

For each k, if njk − bkj = ±1 then njk = bkj ± 1 < bkn

2
± 1. Thus, we can

conclude that jk < bk
2
for each k.

Let us fix ~r = (x, x2 − a, x3 − (a + 1)x) and ~r∗ = (1, 2, 3). From before, we

know that the tree E(1, 2, 3) (which appears in [9] and [29]) consists of all triples

~x∗ = (x∗1, x∗2, x∗3) with gcd(x∗1, x∗2) = 1, x∗1 + x∗2 = x∗3, and x∗1 ≤ x∗2 ≤ x∗3.

Each ~x∗ descends (uniquely) to (1, 2, 3). Thus, for any integer n > 2, there are

1
2
ϕ(n) triples ~x∗ in E(1, 2, 3) so that x∗3 = n, where ϕ is the Euler totient function

(see [29] for details).
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We have a bijection Ψ from T(x, x2 − a, x3 − (a+1)x) to E(1, 2, 3) (see Figure

2.4), from which it follows that each ~x in T(x, x2−a, x3− (a+1)x) with deg(x1) ≤

deg(x2) ≤ deg(x3) appears exactly once in the tree. Our main goal is to prove

Theorem 7, which shows that each polynomial appears exactly once in the tree as

a maximum element.

(x,x2-a,x3-(a+1)x)

(x,x3-(a+1)x,x4-(a+2)x2+a)

(x2-a,x3-(a+1)x,x5-(2a+1)x3+(a2+a-1)x)

...

...
...

...

(1,2,3)
(1,3,4)

(2,3,5)

...

...

...

...

Ψ

Figure 2.4: The map Ψ : T(x, x2 − a, x3 − (a+ 1)x) → E(1, 2, 3).

Before we continue, we should make a remark about the ordering of polynomial

triples. It is natural to assume that polynomials are ordered by their degrees, but

by “ordered triple” we mean ordered by magnitude when we plug in a value for x

satisfying 2 ≤ a ≤ x. By Theorem 1 and the previous two lemmas, these orderings

are the same.

Definition 3. For each polynomial x3 that appears as a maximum element in

T(~r) where ~r = (x, x2 − a, x3 − (a + 1)x), we assign two parameters n and j in

the following way. For each ~x, there exists a composite map µ (depending on ~x)
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such that ~x = µ(~r). We let Ψ(~x) = µ∗(1, 2, 3) = (x∗1, x∗2, x∗3) in E(1, 2, 3) and

µ∗(0, 1, 1) = (y∗1, y∗2, y∗3) in E′(0, 1, 1). Then we let n = x∗3 and j = y∗3. We now

define x3 as pn,j . We also define p1,0 = x and p2,1 = x2 − a.

The following corollary shows that this definition of pn,j is well-defined. In

Section 3, Theorem 7 shows that pn,j is unique.

Corollary 4. The pair (n, j) uniquely determines pn,j.

Proof. First, we want to show that j satisfies the properties in Lemma 3. Clearly,

it does for the triple (x, x2−a, x3− (a+1)x). Suppose we have a triple (x1, x2, x3)

in T(x, x2 − a, x3 − (a + 1)x) where for k = 1, 2, 3, each xk is associated with

parameters (nk, jk), and that n1 + n2 = n3, j1 + j2 = j3, and n2j1 − n1j2 = ±1.

We just need to show that n3j2 − n2j3 = ±1 holds (with n3j1 − n1j3 = ±1 being

shown in a similar way). So,

n3j2 − n2j3 = (n1 + n2)j2 − n2(j1 + j2)

= n1j2 − n2j1 = ∓1.

Also, note that if j1 <
n1

2
and j2 <

n2

2
then j3 = j1 + j2 <

n1+n2

2
= n3

2
.

It now follows from the previous paragraph and from Lemmas 2 and 3 that

pn,j(x) is well-defined, and when it is a maximum element (with respect to degrees),

it uniquely determines ~x.

Thus, T(x, x2−a, x3−(a+1)x) = T(p1,0, p2,1, p3,1), as in Figure 2.5. As a result
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of Lemma 3 and Corollary 4, and the definitions of the maps τ and σ, we get the

following recursion, which holds throughout all of T(x, x2−a, x3−(a+1)x), where

m and k are unique and dependent on n and j:

pn,j = (pm,k)(pn−m,j−k)− (pn−2m,j−2k). (2.1)

Now we take a look at T(a, x, (a − 1)x). We use qn,j = qn,j(x) to denote the

polynomials in this tree. We define the qn,j’s in a similar way as the pn,j’s. That is

to say, if the composite map µ maps (x, x2−a, x3−(a+1)x) to (pn1,j1, pn2,j2, pn3,j3)

then µ maps (a, x, (a − 1)x) to (qn1,j1, qn2,j2, qn3,j3). For example, q1,0 = a, q2,1 =

x, q5,2 = (a − 1)x2 − a and q7,3 = (a − 1)x3 − (2a − 1)x. Then each qn,j occurs

exactly once in T(a, x, (a− 1)x), and the following recursion

qn,j = (qm,k)(qn−m,j−k)− (qn−2m,j−2k), (2.2)

holds throughout this tree where m and k are unique and depend on n and j.

Since the degrees of a, x, and (a − 1)x are 0, 1, and 1, respectively, qn,j is a

(p1,0,p2,1,p3,1)

(p1,0,p3,1,p4,1)

(p2,1,p3,1,p5,2)

(p1,0,p4,1,p5,1)

(p3,1,p4,1,p7,2)

(p2,1,p5,2,p7,3)

(p3,1,p5,2,p8,3)

...

...

...

...

...

...

...

...

Figure 2.5: The tree T(p1,0, p2,1, p3,1) = T(x, x2 − a, x3 − (a + 1)x).
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polynomial of degree j, not degree n. Also, in T(x, x2−a, x3− (a+1)x), there are

only a finite number of polynomials of degree n for each n, which are all monic,

but in T(a, x, (a− 1)x), there are infinitely many polynomials of degree n for each

n which, besides q2,1 = x, are all not monic when a > 2 (this will be shown

later in the proof of Theorem 7). Since q2,1 = x does not represent the maximum

element of any triple in T(a, x, (a− 1)x), all of the polynomials that represent the

maximum element of a triple in T(a, x, (a − 1)x) are not monic. We use the fact

that the polynomials in T(x, x2 − a, x3 − (a+ 1)x) are all monic and the maximal

polynomials in T(a, x, (a− 1)x) are all not monic in Theorem 7.

Remark 2. There is an alternate way to define the parameters n and j for the

Markoff tree T(3, 3, 3) using Farey fractions, worth mentioning because Farey frac-

tions were shown to give an ordering of some of the Markoff numbers (see [11] or

[1]). For those who are familiar with the Farey fraction indexing of the Markoff

numbers, we use the notation that (1, 2, 5) corresponds to (m 0

1

, m 1

1

, m 1

2

) [1]. Sim-

ilarly, in the tree T(3, 3, 3), the triple (3, 6, 15) corresponds to (3m 0

1

, 3m 1

1

, 3m 1

2

).

The polynomials of T(x, x2−a, x3−(a+1)x), when evaluated at x = a = 3, satisfy

pn,j = 3m j

n−j
.

This can be easily verified by using induction and identity (2.1).
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CHAPTER 3

CHEBYSHEV POLYNOMIALS

3.1 Markoff Numbers as Chebyshev Polynomials

Let us consider triples in T(x, x2 − a, x3 − (a + 1)x) of the form

τk−2(x, x2 − a, x3 − (a+ 1)x) = (p1,0, pk,1, pk+1,1). The τ map implies that

pk+1,1(x) = x · pk,1(x) − pk−1,1(x) holds for all k ≥ 2. This recursion is similar to

the recursion for the Chebyshev polynomials.

Chebyshev polynomials are a sequence of orthogonal polynomials (we discuss

orthogonality later) that were first studied by Chebyshev. They have many inter-

esting properties and applications in various branches of mathematics, and Cheby-

shev polynomials are important in approximation theory because their roots are

used as nodes in polynomial interpolation [21]. In the next two paragraphs, we

list some important identities and facts about the Chebyshev polynomials that are

used to establish identities (3.1) - (3.6) (see [21] for details).

The Chebyshev polynomials of the first and second kind, denoted Tn = Tn(x)

and Un = Un(x), respectively, are defined recursively as follows:

Tn+1(x) = (2x)Tn(x)− Tn−1(x), (n ≥ 1), and

T0 = 1, T1 = x,
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for the first kind, and

Un+1(x) = (2x)Un(x)− Un−1(x), (n ≥ 1), and

U0 = 1, U1 = 2x,

for the second kind. The first few such polynomials with nonnegative indices are:

T0 = 1 U0 = 1

T1 = x U1 = 2x

T2 = 2x2 − 1 U2 = 4x2 − 1

T3 = 4x3 − 3x U3 = 8x3 − 4x

T4 = 8x4 − 8x2 + 1 U4 = 16x4 − 12x2 + 1

T5 = 16x5 − 20x3 + 5x U5 = 32x5 − 32x3 + 6x.

The Chebyshev polynomials of the first kind are orthogonal on the interval (-

1, 1) with respect to the weight 1√
1−x2

, and the inner product
∫ 1

−1
Tn(x)Tm(x)

dx√
1−x2

.

The Chebyshev polynomials of the second kind are orthogonal on [-1, 1] with

respect to the weight
√
1− x2, and the inner product

∫ 1

−1
Un(x)Um(x)

√
1− x2 dx.

Remark 3. The following characterization shows a connection between Chebyshev

polynomials of the second kind and twin primes (see [28] for details). The following

statements are equivalent:

24



(i) n and n+ 2 are primes,

(ii) Un(
x
2
) + 1 has exactly two irreducible factors, and

(iii) Un(
x
2
)− 1 has exactly two irreducible factors.

The Chebyshev polynomials of the first kind satisfy the following for all x:

Tn(cosx) = cos(nx).

The Chebyshev polynomials of the second kind satisfy the following:

Un(cosx) =
sin((n+ 1)x)

sin(x)
.

Noting that cos(−nx) = cos(nx), we are motivated to define T−n = Tn. Similarly,

we are motivated to define U−n = −Un−2. The following identities are derived

from the product to sum formulas for cosine and sine:

TjTk =
1

2
(Tj+k + Tj−k)

TjUk =
1

2
(Uk+j + Uk−j)

UjUk =
Tj+k+2 − Tj−k

2(T 2
1 − 1)

.

Now, notice that when we fix a = 1, we get the following relationship between
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pn,j and the Chebyshev polynomials of the second kind:

p1,0(2x) = 2x = U1(x), and

p2,1(2x) = 4x2 − 1 = U2(x).

We can prove pk,1(2x) = Uk(x), for all k ≥ 2 by induction using identity (2.1).

Also, notice that when we fix a = 2, we get the following relationship between pn,j

and the Chebyshev polynomials of the first kind:

p1,0(2x) = 2x = 2T1(x), and

p2,1(2x) = 4x2 − 2 = 2T2(x).

We can prove pk,1(2x) = 2Tk(x), for all k ≥ 2 by induction using identity (2.1) as

well.

Next, we show that the pn,j’s with an arbitrary value of a can always be written

in terms of the pn,j’s that use the specific values of a = 1 and a = 2. To help avoid

confusion with the parameter a, when a = 1 we define

u1 = p1,0, and

uk = pk,1, (k ≥ 2),

26



and when a = 2, we define

t1 = p1,0, and

tk = pk,1, (k ≥ 2).

We use the notation tn and un for the polynomials at the fixed values of a = 2

and a = 1, respectively, because of their direct connection to the Chebyshev

polynomials Tn and Un. Hence, we have the following identities (which hold for

all j, k):

tjtk = tj+k + tj−k, (3.1)

tjuk = uk+j + uk−j, (3.2)

ujuk =
tj+k+2 − tj−k

t21 − 4
, (3.3)

tk+1 = t1tk − tk−1, (3.4)

and uk+1 = u1uk − uk−1. (3.5)

Notice that the first three identities (3.1, 3.2, 3.3) come from the Chebyshev

polynomial identities derived from the product to sum formulas of sine and cosine,

and the last two identities come from identities (2.1) and (2.2). Let us consider

T(x, x2 − a, x3 − (a+ 1)x) for any real a. We now show that pn,1 with the general
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a can be represented in terms of pn,1 with a fixed as 1 or 2. Observe that

p1,0 = x

= t1 − (a− 2)u−1 ( since u−1 = 0),

p2,1 = x2 − a

= t2 − (a− 2)u0,

p3,1 = x3 − (a + 1)x = t3 − (a− 2)u1.

We show that pn,1 = tn− (a−2)un−2, for all n. Assume by induction that we have

shown that pn,1 = tn − (a− 2)un−2 holds for all n up to k. Then

pk+1,1 = (pk,1)(p1,0)− pk−1,1 (by (2.1))

= (tk − (a− 2)uk−2)(t1)− (tk−1 − (a− 2)uk−3)

(by induction hypothesis)

= (t1tk − tk−1)− (a− 2)(u1uk−2 − uk−3) (since t1 = u1)

= tk+1 − (a− 2)uk−1 (by (3.4) and (3.5)).

Therefore, by mathematical induction, we have obtained the following result for

T(x, x2 − a, x3 − (a+ 1)x):

pn,1 = tn − (a− 2)un−2, n ≥ 2. (3.6)
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Hence, for every real number a, we can represent all the polynomials as lin-

ear combinations of Chebyshev polynomials. In a similar way, we can show by

induction that the polynomials in T(a, x, (a− 1)x) satisfy

qn,1 = (un−2(a)− un−3(a))x = (un−2(a)− un−3(a))t1(x).

We emphasize here that the tn’s and un’s are polynomials of the variable x, and

that the expression un−2(a)−un−3(a) is just the coefficient of t1 = x. For example,

q5,1(x) = (a3 − a2 − 2a + 1)x

= (u3(a)− u2(a))x

= (u3(a)− u2(a))t1(x),

and it is still a polynomial of degree 1. Therefore, we can represent all the poly-

nomials of T(a, x, (a − 1)x) as linear combinations of Chebyshev polynomials as

well.

Representing the polymonials of T(a, x, x) as linear combinations of Chebyshev

polynomials makes it easier to show that all of these polynomials are distinct and

uniquely determine its triple in the tree of solutions (we show this in chapter 4). In

the next section, we look at M4, which Zagier showed fails the unicity condition as

part of his analysis of calculating the number of Markoff numbers below a certain

bound (M4 appears as equation 13 of [29]).
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3.2 The Equation M4

In this section, we use the representation of Markoff numbers as Chebyshev

polynomials in the case when a = 2. Note that for every x,T(2, x, x) is a tree of

solutions for the Markoff equation M4. This can be easily seen by the following:

4 + x2 + x2 = 2 · x · x+ 4.

We now show that each polynomial tree associated with M4 of the form T(2, x, x)

does not satisfy the unicity condition.

Lemma 5. The equation M4 fails the unicity condition infinitely many times.

Proof. By observation, we see that (2, x, x) is a solution for any real x. When

x = 2, the entire tree collapses to the only solution of (2, 2, 2). For x > 2, the root

(2, x, x) moves in σ direction to (x, x, x2 − 2) which moves to T(t1, t2, t3). From

before when a = 2, the polynomials of T(t1, t2, t3) satisfy pn,1 = tn, for all n ≥ 1.

Then

pn,2 = p2k+1,2

= pk,1pk+1,1 − p1,0 (by (2.1))

= tktk+1 − t1

= t2k+1 (by (3.4)).

Assume pn,j = tn, holds for all n and for all j < J . Then, for any n, there exists
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unique integer pair (m, j) with j < J such that

pn,J = pm,jpn−m,J−j − pn−2m,J−2j (by (2.1))

= tmtn−m − tn−2m (by the induction hypothesis)

= tn. (by (3.4))

Since n was arbitrary, pn,j = tn, for all n and j. Hence, the 1
2
ϕ(n) polynomials of

degree n that appear (in each tree) are the same, and the result follows.

Remark 4. Since M4 has (tj , tk, tj+k) as a solution for all real x and any relatively

prime integers j, k, we obtain the following identity:

Tj(x)
2 + Tk(x)

2 + Tj+k(x)
2 = 2Tj(x)Tk(x)Tj+k(x) + 1.

Since each tn(2 cos θ) = 2 cos(nθ), we also obtain the following trigonometric iden-

tity:

cos(jθ)2 + cos(kθ)2 + cos((j + k)θ)2 = 2 cos(jθ) cos(kθ) cos((j + k)θ) + 1,

where j, k are relatively prime positive integers. This result seems to be known,

and it is easy to verify that this trigonometric identity holds for all real j, k by

using the sum addition formula for cosine and the Pythagorean identity. Also,

Riedel mentions that M4 has (tj , tk, tj+k) as a solution for all real x on page 9 of

[20].
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It is known that Un = 2(Tn + Tn−2 + ...+ T1) when n is odd, and Un = 2(Tn +

Tn−2+ ...+T2)+1 when n is even (see page 9 of [20]). Hence, un = tn+tn−2+ ...+t1

when n is odd, and un = tn + tn−2 + ... + 1 when n is even. Thus, identity (3.6)

can be written as

pn,1 = tn − (a− 2)(tn−2 + tn−4 + ...). (3.7)

Identity (3.7) is used in the proof of Theorem 7, which is the main technical result

of this paper.

3.3 Extra Identity of Chebyshev Polynomials

This section is optional for the reader. It contains an identity that the author

finds interesting, but is not used in the rest of the text. Let x = s + s−1. It is

already known from previous work on Chebyshev polynomials that

Tn(1) = 1, and Un(1) = n+ 1,

holds for all n ≥ 0. Recall that this corresponds with tn(2) = 2, un(2) = n + 1,

for all n ≥ 0, since tn(2x) = 2Tn(x) and un(2x) = Un(x). We find expressions for

arbitrary values of s, hence, x, using the following lemma.

Lemma 6. For all n ≥ 0 and for all s > 0, tn(s+ s−1) = sn + s−n,

un(s + s−1) = sn+1−s−n−1

s−s−1 .
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Proof. Pick any s > 0 and let gn(s+s−1) = sn+s−n and hn(s+s−1) = sn+1−s−n−1

s−s−1 ,

for all n. Note that

g0(s+ s−1) = s0 + s0 = 2,

g1(s+ s−1) = s1 + s−1 = s+ s−1,

h0(s+ s−1) =
s1 − s−1

s− s−1
= 1, and

h1(s+ s−1) =
s2 − s−2

s− s−1

=
(s− s−1)(s+ s−1)

s− s−1

= s+ s−1.

Thus, g0(x) = 2, g1(x) = x, h0(x) = 1, and h1(x) = x hold for x = s + s−1.

To prove gn = tn and hn = un holds for all n ≥ 0, it suffices to show that

gn+1(x) = xgn(x)− gn−1(x) and hn+1(x) = xhn(x)− hn−1(x). Then

(s+ s−1)gn(s+ s−1)− gn−1(s+ s−1) = (s+ s−1)(sn + s−n)− (sn−1 + s−(n−1))

= sn+1 + s−n+1 + sn−1 + s−n−1 − sn−1 − s−n+1

= sn+1 + s−(n+1) = gn+1(s+ s−1), and

(s+ s−1)hn(s+ s−1)− hn−1(s+ s−1) = (s+ s−1)(
sn+1 − s−n−1

s− s−1
)− (

sn − s−n

s− s−1
)

=
sn+2 − s−n + sn − s−n−2

s− s−1
− sn − s−n

s− s−1

=
sn+2 − s−n−2

s− s−1
= hn+1(s+ s−1).
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Thus, gn = tn and hn = un, for all n ≥ 0, as desired.

Here are a few examples:

tn(
5

2
) =

4n + 1

2n
,

un(
5

2
) =

4n+1 − 1

3 · 2n ,

tn(
10

3
) =

9n + 1

3n
,

un(
10

3
) =

9n+1 − 1

8 · 3n ,

tn(
π2 + 1

π
) =

π2n + 1

πn
,

un(
π2 + 1

π
) =

π2n+2 − 1

πn+2 − πn
.
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CHAPTER 4

THE UNICITY CONDITION

4.1 Distinct Polynomials

Using the results of chapters 2 and 3, we now show that all of the polynomials

in T(a, x, x) are distinct, and hence, uniquely determine the triple they appear in.

Theorem 7. All entries in the polynomial tree T(a, x, x) are distinct when a > 2.

More specifically, any two polynomials of degree n from T(x, x2 − a, x3 − (a+1)x)

differ by a polynomial whose degree is exactly n−2; any two polynomials of degree

n from T(a, x, (a− 1)x) differ by a polynomial whose degree is exactly n; and any

two polynomials of degree n with one from T(x, x2−a, x3− (a+1)x) and one from

T(a, x, (a− 1)x) differ by a polynomial whose degree is exactly n.

Proof. When a > 2, we do not get trees associated with A = 4, which does not

have distinct polynomials by Lemma 5. For simplicity, let α = a − 2. It is clear

that polynomials of different degrees are different, so we only need to show that

polynomials of the same degree are different.
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First, we look at T(x, x2 − a, x3 − (a+ 1)x). Notice that

p2k+1,2 = pk,1pk+1,1 − p1,0 (by (2.1))

= (tk − αtk−2 − 〈∗〉)(tk+1 − αtk−1 − 〈∗〉)− t1

(by identity (3.7))

= tktk+1 − α(tktk−1 + tk+1tk−2)− 〈∗〉

= t2k+1 − 2αt2k−1 − 〈∗〉,

where 〈∗〉 denotes lower degree terms. Hence, pn,j = tn − jαtn−2 − 〈∗〉, holds for

all n, and for j = 1, 2. Assume pn,j = tn − jαtn−2 − 〈∗〉, holds for all n, and for

all j < J . Then, for any n, there exists a unique pair of integers (m, j) (uniqeness

guaranteed by Lemma 3) with j < J such that

pn,J = pm,jpn−m,J−j − pn−2m,J−2j (by (2.1))

= (tm − jαtm−2 − 〈∗〉)(tn−m − (J − j)αtn−m−2 − 〈∗〉)−

(tn−2m − (J − 2j)αtn−2m−2 − 〈∗〉) (by the induction hypothesis)

= tmtn−m − α(jtm−2tn−m + (J − j)tn−m−2tm)− 〈∗〉

= tn − Jαtn−2 − 〈∗〉.

Since n was arbitrary, we obtain the following result:

pn,j = tn − jαtn−2 − 〈∗〉,
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which holds for all n and j. Therefore, for any j1 6= j2,

pn,j1 − pn,j2 = (j1 − j2)αtn−2 − 〈∗〉, which is a polynomial of degree n − 2. In

particular, they are not equal.

Next, we look at T(a, x, (a − 1)x). Recall that qn,j is a polynomial of degree

j not n. We know that qn,1 = (un−2(a) − un−3(a))x. Theorem 1 guarantees that

n1 > n2 implies qn1,1 > qn2,1, as long as a > 2. Let us refer to the leading coefficient

of qn,1 as Cn (C2 = 1, C3 = a− 1, etc.). Since q2k+1,2 = qk,1qk+1,1 − q1,0 by identity

(2.2), it follows that the leading term of q2k+1,2 is (CkCk+1)x
2. More generally, it

can be established that the leading term of qn,j is (C
j−r
k Cr

k+1)x
j , where n = kj+ r,

with 0 < r < j.

We already have mentioned that n1 > n2 implies that the leading coefficient

of qn1,1 is bigger than the leading coefficient of qn2,1. Pick any j > 1. Let n1 > n2.

We show that the leading coefficient of qn1,j is bigger than the leading coefficient

of qn2,j. By applying Euclidean division, there exists integers k1, k2, r1, and r2 such

that n1 = jk1 + r1 and n2 = jk2 + r2.

Case 1: k1 = k2, r1 > r2. The leading coefficient of qn1,j is C
j−r1
k1

Cr1
k1+1, and the

leading coefficient of qn2,j is C
j−r2
k1

Cr2
k1+1. Since

C
j−r1
k1

Cr1
k1+1 =

(

Ck1+1

Ck1

)r1−r2

C
j−r2
k1

Cr2
k1+1

and
(

Ck1+1

Ck1

)r1−r2

> 1,
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the result follows for this case.

Case 2: k1 > k2, r1 ≥ r2. The leading coefficient of qn1,j is C
j−r1
k1

Cr1
k1+1, and the

leading coefficient of qn2,j is C
j−r2
k2

Cr2
k2+1. Since k1 > k2 implies Ck1 > Ck2, we get:

C
j−r1
k1

Cr1
k1+1 > C

j−r1
k2

Cr1
k2+1

≥ C
j−r2
k2

Cr2
k2+1 (by case 1)

Thus, the result follows in this case.

Case 3: k1 − k2 = 1, r1 = 1, r2 = j − 1. The leading coefficient of qn1,j is

C
j−1
k1

Ck1+1, and the leading coefficient of qn2,j is Ck1−1C
j−1
k1

. Since Ck1+1 > Ck1−1,

the result follows in this case.

Case 4: k1 > k2, r1 < r2. The leading coefficient of qn1,j is C
j−r1
k1

Cr1
k1+1, and the

leading coefficient of qn2,j is C
j−r2
k2

Cr2
k2+1. Then

C
j−r1
k1

Cr1
k1+1 ≥ C

j−r1
k2+1C

r1
k2+2 (by case 2, since k1 − k2 ≥ 1)

≥ C
j−1
k2+1Ck2+2 (by case 1, since r1 ≥ 1)

> Ck2C
j−1
k2+1 (by case 3)

≥ C
j−r2
k2

Cr2
k2+1 (by case 1, since j − 1 ≥ r2).

Thus, the result follows in this case. These four cases represent all possibilities.
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Hence, all polynomials are distinct in T(a, x, (a − 1)x). Furthermore, when two

polynomials have the same degree n, their leading coefficients are different, and

therefore, their difference is a polynomial of degree n.

We now know that the maximal polynomials are monic polynomials in T(x, x2−

a, x3 − (a+ 1)x) but not in T(a, x, (a− 1)x) (as long as a > 2), so it is clear that

any two polynomials of degree n with one from T(x, x2 − a, x3 − (a + 1)x) and

the other from T(a, x, (a − 1)x) are distinct and have a difference that is exactly

degree n.

The previous two results show that when a = 2, the polynomials of the same

degree are all the same, but when a > 2, all the polynomials are different (we

also know the exact degree when we subtract any two polynomials of the same

degree). However, this does not imply that in the latter case, the polynomials

are all distinct at a specific value, which is what the unicity condition implies.

However, it suggests that there is something special about M4 and why it should

fail the unicity condition more significantly than any other parameters.

4.2 Trees Satisfying the Unicity Condition up to Level N

Suppose for fixed a that there exist two different polynomials in T(a, c, c), say

pn1,j1 and pn2,j2, such that pn1,j1(c) = pn2,j2(c) = m, for some real numbers m and

c with m ≥ c ≥ a. This is equivalent to the tree T(a, c, c) failing the unicity condi-

tion, because m is no longer unique as a maximum element in T(a, c, c) (note that

we are using the same a, c, and m as in the previous sentence). More generally, the
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statement “(ai, bi, m) is an ordered triple solution of T(a, c, c) for i = 1, 2 implies

a1 = a2, b1 = b2” is equivalent to the statement “(pn1,j1 − pn2,j2)(c) 6= 0, (pn1,j1 −

qn1,j1)(c) 6= 0, (pn1,j1 − qn2,j2)(c) 6= 0, (pn2,j2 − qn1,j1)(c) 6= 0, (pn2,j2 − qn2,j2)(c) 6= 0,

and (qn1,j1−qn2,j2)(c) 6= 0 in T(a, c, c), for all n1, n2, j1, j2”. For the sake of brevity,

this last statement can be phrased as “(λ1 − λ2)(c) 6= 0 for each distinct pair

λ1, λ2 in {pn1,j1, pn2,j2, qn1,j1, qn2,j2}, for all n1, j1, n2, j2. Also, when we say “for all

n1, n2, j1, j2”, we mean for all n1, n2, j1, j2 such that pn1,j1, qn1,j1, pn2,j2 and qn2,j2

represent distinct spots in T(a, c, c). Thus, we have the following definition.

Definition 4. When (λ1 − λ2)(c) 6= 0 for each distinct pair λ1, λ2 in

{pn1,j1, pn2,j2, qn1,j1, qn2,j2}, for all n1, j1, n2, j2, we say T(a, c, c) satisfies the unicity

condition, and when (λ1 − λ2)(c) 6= 0 for each distinct pair λ1, λ2 in

{pn1,j1, pn2,j2, qn1,j1, qn2,j2}, for all n1, j1, n2, j2 ≤ N , we say T(a, c, c) satisfies the

unicity condition up to level N .

In the following proof, we start with (a, x, x) with a being constant but x being

a variable to create the polynomials pn,j and qn,j, which are functions of x instead

of numbers associated with a specific MA. Then we find rational numbers q that

give us the T(a, q, q)’s satisfying the unicity condition up to level N , and then we

find the parameters associated with T(a, q, q); i.e., we want A = a2 + 2q2 − aq2.

Notice that if a is rational, then the maps τ and σ always produce polynomials

with rational coefficients in T(a, x, x), because the coefficients are just products

and differences of rational numbers. Hence, if a is rational, then T(a, c, c) contains

polynomials (of c now) with rational coefficients, even if A and c are irrational.
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This fact is used after Theorem 11.

Theorem 8. Given any rational number a > 2, any positive integer N , and any

subset X of [a,∞) that contains infinitely many rational numbers, there exists

infinitely many rational numbers q ∈ X such that T(a, q, q) satisfies the unicity

condition up to level N .

Proof. For any a > 2, the polynomials are all distinct by Theorem 7. Let Fn1,n2,j1,j2 =

{x ∈ X : (λ1−λ2)(c) = 0 for each distinct pair λ1, λ2 in {pn1,j1, pn2,j2, qn1,j1, qn2,j2},

for all n1, j1, n2, j2}. Since pn1,j1 and pn2,j2 are distinct polynomials, their differ-

ence is a nonzero polynomial of degree at most the maximum of n1 and n2. Hence,

pn1,j1 = pn2,j2 for at most max{n1, n2} real numbers. Using a similar argument

for the other five polynomial differences, the set Fn1,n2,j1,j2 contains only a finite

number of points in X . Since j1 < n1

2
≤ N

2
and j2 < n2

2
≤ N

2
, the collection of

Fn1,n2,j1,j2 for all positive integers n1, n2, j1, j2 with n1, n2 ≤ N is finite. Therefore,

the union of all Fn1,n2,j1,j2 must be a finite subset in X . Thus, T(a, q, q) satisfies the

unicity condition up to level N , for infinitely many rational q ∈ X , as desired.

Remark 5. Let us fix any pair of rational numbers (a, c) with 2 < a ≤ c. As a

consequence of Theorem 8 (using X = [c, c + ǫ]), given any ǫ > 0, we now know

that there are infinitely many rational numbers q in the interval (c, c+ǫ) such that

T(a, q, q) satisfies the unicity condition up to level N , for any large N . Specifically,

we obtain the following corollary:

Corollary 9. Given any arbitrarily large N and any small ǫ > 0 (each independent
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of each other), there exists infinitely many rational numbers q ∈ [3, 3+ ǫ] such that

T(3, q, q) satisfies the unicity condition up to level N .

We can use a diagonalization argument from this last corollary to obtain the

following result:

Corollary 10. There exists a sequence of rational numbers {qn} with each qn ≥ 3

such that for each n, T(3, qn, qn) satisfies the unicity condition up to level n, and

qn → 3 as n → ∞.

Proof. Pick any small ǫ > 0. By previous corollary, there exists infinitely many

rational numbers in the interval (3, 3+ ǫ], call them q(1,1), q(1,2), q(1,3), ..., such that

T(3, q(1,k), q(1,k)) satisfies the unicity condition up to level 1, for each k. Next, we

apply the previous corollary to obtain infinitely many rational numbers in the in-

terval (3, q(1,1)], call them q(2,1), q(2,2), q(2,3), ..., such that T(3, q(2,k), q(2,k)) satisfies

the unicity condition up to level 2, for each k. Inductively, we apply the previous

corollary to obtain infinitely many rational numbers in the interval (3, q(n,n)], call

them q(n+1,1), q(n+1,2), q(n+1,3), ..., such that T(3, q(n+1,k), q(n+1,k)) satisfies the unic-

ity condition up to level n + 1, for each k. Then we take the diagonal elements

qn = q(n,n), and form the desired sequence.

Remark 6. Since all of the zeros of a finite collection of polynomials are clearly

bounded, for every N there exists xN such that for every rational a > 2,T(a, c, c)

satisfies the unicity condition up to level N for every rational number c > xN .

If for some a, all of the zeros of all the differences of any two polynomials are
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uniformly bounded, say by M , then T(a, c, c) satisfies the unicity condition for all

c > M .

Remark 7. The argument in Theorem 8 cannot work for a = 2 because all of the

polynomials of the same degree are the same in M4. Hence, every real number

satisfies (pn,j1 −pn,j2)(x) = 0, so Fn,n,j1,j2 = X , instead of a finite number of points

in X . This once again shows that M4 is special.

Theorem 8 can be expanded to trees T(a, c, c) for any real a and any real c, as

we show in the next section.

4.3 Trees Satisfying the Unicity Condition

Theorem 11. Given any real number a > 2, the set of all real numbers x ≥ a

such that T(a, x, x) satisfies the unicity condition is the complement of a countable

set. In particular, the set of all real numbers x ≥ a such that T(a, x, x) satisfies

the unicity condition is uncountable and dense in [a,∞).

Proof. Just like in Theorem 8, when a 6= 2, the polynomials are all distinct.

Therefore, the sets Fn1,n2,j1,j2 (which were defined in Theorem 8) only contain a

finite number of points. When we consider the union of all the Fn1,n2,j1,j2’s, we get

a countable union of finite sets. Therefore, the complement of this union, which is

the set of all real numbers x ≥ a such that T(a, x, x) satisfies the unicity condition,

is the complement of a countable set, and in particular, is uncountable and dense

in [a,∞), as desired.
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Theorem 11 shows that for the ordered pairs (a, c) with 2 < a ≤ c, T(a, c, c)

satisfies the unicity condition for almost every c, i.e., for all but a set of measure

zero (in Theorem 1.3 of [18], they use the phrase “Baire dense”). However, the

existence of a tree T(a, c, c) with a and c both rational or algebraic is still an

open problem. When a is rational, all of the polynomials in T(a, c, c) have rational

coefficients. Hence, as a consequence of Theorem 11, T(3, ω, ω) satisfies the unicity

condition for every transcendental number ω (note the similarity between this last

statement and the last sentence of [18]). For example, in M9−π2 ,T(3, π, π) satisfies

the unicity condition since π is transcendental. Since transcendental numbers are

dense among the real numbers, we now know that there exists a sequence of real

numbers {cn} such that cn → 3 as n → ∞ and T(3, cn, cn) satisfies the unicity

condition for all n. The concept of cn → 3 as n → ∞ is related to the concept

of the sequence of trees T(3, cn, cn) converging to T(3, 3, 3), which we define in

Section 5.3. More generally, we obtain the following theorem with our main result

as a consequence:

Theorem 12. For any pair of rational numbers (a, c) with 2 < a ≤ c, there exists

a sequence of real numbers {cn} such that the sequence of trees T(a, cn, cn) converge

to T(a, c, c), and T(a, cn, cn) satisfies the unicity condition for every n.

Note that Theorem 12 does not mention whether T(a, c, c) satisfies the unicity

condition or not. Hence, Theorem 12 even holds for pairs of rational numbers

(a, c) such that T(a, c, c) fails the unicity condition.
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CHAPTER 5

POLYNOMIAL METHODS

5.1 Rational Root Theorem

In this section, we show new methods involving polynomials for analyzing the

unicity condition. For now, let us consider the tree T(x, x2−a, x3− (a+1)x). The

next result shows that there are several cases where the polynomials are distinct

from each other at a specific value. The proof of the following theorem only uses

a simple induction argument and the rational root theorem.

Theorem 13. Let a be an integer.

a) Pick any rational number c such that c does not divide 2a or c is not an integer.

If n and m are neither both odd, both congruent to 0 mod 4, nor both congruent

to 2 mod 4, then pn,j1(c) 6= pm,j2(c).

b) Let a, c both be odd integers. If exactly one of {n+ j1, m+ j2} is divisible by 3,

then pn,j1(c) 6= pm,j2(c).

c) Let a be even and c be odd integer. If exactly one of {n,m} is divisible by 3,

then pn,j1(c) 6= pm,j2(c).

Proof. a) It is easy to see that pn,1(0) = 0 when n is odd, and pn,1(0) = (−1)
n
2 a

when n is even. Inductively, using pn,j = pm,kpn−m,j−k − pn−2m,j−2k, we can also

show that for all j, pn,j(0) = 0 when n is odd, and pn,j(0) = (−1)
n
2 a when n is
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even (the reader may notice that the induction fails if m and n−m are both even,

but this cannot happen since n,m, and n−m all have to be relatively prime). If

n and m are neither both odd, both congruent to 0 mod 4, nor both congruent

to 2 mod 4, then, (pn,j1 − pm,j2)(0) = ±a [or 2a]. Since pn,j1 − pm,j2 is a monic

polynomial with integer coefficients, by the rational root theorem, divisors of 2a

are the only possible rational numbers that might be zeros. Hence, if c is not an

integer or does not divide 2a then pn,j1(c) 6= pm,j2(c).

The proofs for parts b) and c) are similar, so they will just be outlined here.

We first substitute y = x+2−c. With this substitution, we go from a, x, x2−a, ...

to a, y+c−2, y2−2(c−2)y+((c−2)2−a), ..., but we will still be using the notation

pn,j to describe the corresponding polynomials of variable y. Note that x = c if

and only if y = 2. Next, we conclude (using pn,j = pm,kpn−m,j−k−pn−2m,j−2k) that

if a is odd and c is odd then pn,j(0) is even if and only if n + j is divisible by 3,

and if a is even and c is odd then pn,j(0) is even if and only if n is divisible by 3.

Hence, by rational root theorem, the result follows.

This approach can be generalized, but it is limited in the fact that it only

shows parts of the trees satisfying the unicity condition instead of the entire tree

satisfying the unicity condition. Another approach is demonstrated in the next

section.
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5.2 Upper and Lower Bounds

In this section, we obtain upper and lower bounds for the polynomials pn,j’s in

T(x, x2−a, x3−(a+1)x). Once we establish these bounds, we show that pn,j < pn,1

when j > 1. For simplicity, we let pn = pn,1. Next, we prove the following lemma.

Lemma 14. For all y ≥ x, px · py − py−x = py+x − (a− 2)ux−2py.

Proof. Let α = a− 2 for simplicity. Recall that pn = tn − αun−2, for all n. Then

pxpy − py−x = (tx − αux−2)(ty − αuy−2)− (ty−x − αuy−x−2)

= txty − αtxuy−2 − αux−2(ty − αuy−2)− ty−x + αuy−x−2

= ty+x − α(uy+x−2 + uy−x−2)− αux−2py + αuy−x−2 (by (1), (2))

= (ty+x − αuy+x−2)− αux−2py

= py+x − αux−2py.

When a ≥ 3 and x ≥ 2, then (a − 2)ux−2 ≥ 1. Hence, for 2 ≤ x ≤ y, we get

px · py < py+x. We now establish upper and lower bounds for the polynomials pn,j.

Lemma 15. For all n and j (where n = jk + r),

p
j−r
k · prk+1 − (j − 1)pr1 · pj−2

k ≤ pjk+r,j ≤ p
j−r
k · prk+1,

with the inequalities being strict for j ≥ 3.
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Proof. Result is clear for j = 1 (both inequalities cannot be strict here), and since

p2k+1,2 = pk · pk+1 − p1, result holds for j = 2, with right side inequality being

strict. Since

p3k+1,3 = pk · p2k+1,2 − pk+1

= p2k · pk+1 − (p1 · pk + pk+1),

and since

p1 · pk > pk+1,

the result holds for n = 3k + 1. Similarly,

p3k+2,3 = pk · p2k+1 − (p1 · pk+1 + pk)

and

p1 · pk+1 < p21 · pk and pk < p21 · pk

implies that the result holds for n = 3k+ 2. Therefore, the result holds for j = 3.

Assume we have proved the result for all j ≤ I−1. Pick any n associated with

I. From before, there exists a unique pair (m, J) such that pn,I = pm,J ·pn−m,I−J −

pn−2m,I−2J . Also, there exists a k and r such that n = Ik+r, from which it follows
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that m = Jk + s, for some s < r. Then,

pn,I < (pJ−s
k · psk+1)(p

I−J−r+s
k · pr−s

k+1)− pn−2m,I−2J

< pI−r
k · prk+1, since pn−2m,I−2J > 0.

Thus, upper bound holds for j = I. Also,

pn,I > (pJ−s
k · psk+1 − (J − 1)ps1 · pJ−2

k )(pI−J−r+s
k · pr−s

k+1 − (I − J − 1)pr−s
1 · pI−J−2

k )

− pI−2J−r+2s
k · pr−2s

k+1

> pI−r
k · prk+1 − (J − 1)ps1 · pI−r+s−2

k · pr−s
k+1 − (I − J − 1)pr−s

1 · pI−s−2
k · psk+1

− pI−2J−r+2s
k · pr−2s

k+1 .

We know that p1 · pk > pk+1, so (p1 · pk)m > pmk+1, for every positive integer m.

Thus,

ps1 · pI−r+s−2
k · pr−s

k+1 = pr1 · pI−2
k · (ps−r

1 · ps−r
k · pr−s

k+1)

< pr1 · pI−2
k ,

because (p1 · pk)r−s > pr−s
k+1, and

pr−s
1 · pI−s−2

k · psk+1 = pr1 · pI−2
k · (p−s

1 · p−s
k · psk+1)

< pr1 · pI−2
k ,
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because (p1 · pk)s > psk+1. Also,

pI−2J−r+2s
k · pr−2s

k+1 = pr1 · pI−2
k · (p−r

1 · p−2J−r+2s+2
k · pr−2s

k+1 )

< pr1 · pI−2
k ,

because p2sk · prk+1 < p2sk+1 · pr1 · p2J−2+r
k .

Therefore, we get that

pn,I > pI−r
k · prk+1 − [(J − 1) + (I − J − 1) + 1](pr1 · pI−2

k )

= pI−r
k · prk+1 − (I − 1)pr1 · pI−2

k .

Thus, the lower bound holds for j = I. Therefore, by induction on j, for every

pn,j,

p
j−r
k · prk+1 − (j − 1)pr1 · pj−2

k ≤ pjk+r,j ≤ p
j−r
k · prk+1.

Pick any j > 1. For pn,j, there exists an l and an s such that n = jl+ s. Thus,

pn > pl · pn−l > ... > (pl)
j−s(pl+1)

s. Therefore, for all n and for all j < n
2
with

gcd(n, j) = 1,

pn > pn,j.

The previous two sections only dealt with the subtree T(x, x2−a, x3−(a+1)x).

When x is evaluated at a, the subtree T(a, x, (a − 1)x) collapses, and the tree
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T(a, x, x) only produces the subtree T(x, x2 − a, x3 − (a + 1)x). Hence, when

trying to analyze trees of the form T(a, a, a) for a > 2, it suffices to only consider

the subtree T(x, x2 − a, x3 − (a+ 1)x).

5.3 Convergence of Trees

In this section, we explain what we mean by convergence of a sequence of trees.

Let {cn} be a sequence of real numbers such that T(a, cn, cn) satisfies the unicity

condition (or satisifies the unicity condition up to level N) for all n. Let cn → c

as n → ∞ in the usual sense, i.e., for all ǫ > 0, there exists N(ǫ) = N > 0 such

that if n > N then |cn − c| < ǫ.

All polynomial functions are continuous, so each pm,j and qm,j that appear in

T(a, c, c) is continuous. Notice that each polynomial occurs in the same spot of

every tree, regardless of parameters. For example, p5,2 = x5 − (2a + 1)x3 + (a2 +

a− 1)x occurs as the maximum element of a triple at τ(x, x2 − a, x3 − (a+ 1)x),

for each T(a, cn, cn) and for T(a, c, c). Hence, we have the following definition.

Definition 5. We say that the sequence of the trees T(a, cn, cn) converges to the

tree T(a, c, c), if for each pm,j and qm,j, pm,j(cn) converges to pm,j(c) and qm,j(cn)

converges to qm,j(c). We let pm,j(cn) converge to pm,j(c) in the usual sense, i.e., for

every ǫ > 0, there exists M > 0 (where M = M(pm,j) depends on the polynomial)

such that if n > M then |pm,j(cn)− pm,j(c)| < ǫ.

Since the M ’s may vary from polynomial to polynomial, we do not necessarily

have uniform convergence.
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Since all the trees of generalized Markoff equations consist of ordered triples of

polynomials, we say T(a, cn, cn) converges to T(a, c, c), when for each pm,j, pm,j(cn)

converges to pm,j(c) (and for each qn,j as well).
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CHAPTER 6

CONCLUSION

The Markoff equation and its generalizations have been studied for over a cen-

tury with many connections to several branches of mathematics. Some partial

results of the unicity conjecture have been settled, but it still remains unsolved.

In this paper, we recasted the solutions to generalized Markoff equations as poly-

nomials and considered analyzing trees of solutions of these equations satisfying a

unicity condition. Finding trees that satisfy the unicity condition is difficult, espe-

cially when we only consider trees with rational solutions. However, we were able

to find uncountably many parameters that contain a tree that satisfies the unicity

condition, and infinitely many rational ones that contain a tree that satisfies the

unicity condition up to level N , for arbitrary large N .

Furthermore, for every pair of rational numbers (a, c) with 2 < a ≤ c, we

were able to show that there exists a sequence of real numbers {cn} such that

T(a, cn, cn) satisfies the unicity condition for all n, and cn → c as n → ∞. All of

these results were obtained by rewriting the ordered triple of solutions of MA as

linear combinations of Chebyshev polynomials. In particular, the product to sum

formula for Chebyshev polynomials of the first kind (the Tn’s) was very crucial to

obtaining the key result, which was that all of the polynomials of a tree associated
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with MA are all distinct from each other (except when A = 4, which fails the

unicity condition significantly).

Future works will consist of putting a bound on roots that the polynomials

have in common, in order to find trees of rational solutions satisfying the unicity

condition; tightening up the upper and lower bounds obtained in Chapter 5 so we

can order the numbers in these trees; and analyzing other diophantine equations

similar to generalized Markoff equations, and seeing if the techniques used in this

work can be applied to other equations.
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