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ABSTRACT

In this thesis we discuss the positive integer solutions to the equation known as

the Markoff equation

x2 + y2 + z2 = 3xyz.

Each solution to the equation is a permutation of a triple (x, y, z) with 0 ≤ x ≤

y ≤ z, which is called a Markoff triple and each integer of the triple is referred to as

a Markoff number.

In 1913, Fröbenius conjectured that given an ordered Markoff triple (x, y, z), then

both x and y are uniquely determined by z. In other words, if both (x1, y1, z) and

(x2, y2, z) are solutions to the Markoff equation with xi ≤ yi ≤ z, then x1 = x2 and

y1 = y2. When this is true for a particular z, we say that z is unique. Since the

time of Fröbenius there have been numerous results on what we refer to now as the

Fröbenius Conjecture.

In 1996 Baragar proved that given a Markoff number z, it is unique whenever z,

3z − 2, or 3z + 2 is a prime, twice a prime or four times a prime. In 2001, Button

proved that z is unique whenever z = pr, where p is prime and also when z = kpr for

p prime and k < 4
√
z . In 2012, Chen proved the conjecture holds when 3z ± 2 = kpr

for p prime and k < 14
√
3z ± 2 . There is a recent result due to Srinivasan that utilizes

divisors of the discriminant of quadratic forms, the details of which will be explained

in the thesis.
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The goal of this thesis is to empirically investigate how “good” these results are, in

the sense that we wish to know how many Markoff triples are shown to be unique with

each successive result. In Baragar’s paper from 1996, it was shown that all Markoff

triples with z < 10140 are unique, and that approximately 6% of them satisfied the

conditions of his main result. Due to the results from Button (2001) and Chen (2012),

roughly 60% of all Markoff triples with z < 10140 are proven to be unique. This is

accomplished by writing computer algorithms to test each result.
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CHAPTER 1

INTRODUCTION AND RESULTS

1. INTRODUCTION

The Markoff equation has been studied by many famous mathematicians for over

100 years. It was discovered early, that all the positive solutions to the Markoff

equation could be generated from just a single solution (1, 1, 1), which is called the

fundamental solution. Suppose that (x, y, z) is a solution to the Markoff equation.

Then it is easy to verify through substitution that the following are also solutions:

(x, y, 3xy − z)

(x, z, 3xz − y)

(y, z, 3yz − x)

If x ≤ y ≤ z, then the first triple is will not yield a triple with a greater maximal

element, whereas the other two will. Consider a solution (x, y, z) under the following

transformations:

ϕ : (x, y, z) 7−→ (x, z, 3xz − y)

ψ : (x, y, z) 7−→ (y, z, 3yz − x)

All positive solutions of the Markoff equation can be generated from the fundamental

solution (1, 1, 1) and these two transformations. In fact, these two transformations

generate a binary tree, where the top branch is given by ϕ and the bottom branch

is given by ψ. We call this tree the Markoff Tree. The figure below explains the

branching process.
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Figure 1.1

With the introduction of the Markoff Tree, the uniqueness condition could be

summarized as,“A Markoff number is unique if it occurs exactly once as the largest

component of a Markoff triple in the Markoff Tree”.

This branching concept is quite useful as it allows us to quickly create a list of

Markoff numbers. We can write a computer algorithm that emulates this branching

process in order to generate all 18,906 Markoff Numbers below 10140 in only a few

minutes.

The code in this thesis is written primarily in Python. The initial programs are

fairly simple and do not require more than basic arithmetic. However, as we progress

through the results, we are forced to use more advanced functions. One of the main

issues we will encounter is primality testing, since it will be necessary for us to test

whether certain numbers are prime. Specifically, the results due to Baragar, Button,

and Chen all revolve around prime numbers.
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At that time we will switch to SAGE, which is an open-source mathematical

computing software suite utilizing the Python programming language. It includes

numerous packages such as NumPy, SciPy, and matplotlib. Included in the mathe-

matical packages are modules and functions used for primality testing and factoring

of integers, the latter of which will be quite handy when trying to test Srinivasan’s

result. For readers who may not be familiar with Python, semi-colons and braces are

not used to indicate statements and bodies of code as they do in other programming

languages. Python alleviates the need to use these symbols by keeping track of space

and indentation. For example, in C++, if we want to write a for-loop to print out the

first 10 positive integers it would look something like this:

for(int i = 1; i < 11; i++)

{

cout << i;

}

Note that although this code has indentation, it is merely common practice to indent

for easier reading even if it has no effect on the code. We could just as easily have

written this code in a single line.

for(int = 1; i < 11; i++){cout << i}

However, this is not optimal when the body of a loop contains more than one com-

mand. In Python, the same script would be written this way:

for i in range(1,11):

print i

3



Python requires indentation in order for it to know if a line of code is connected to the

previous line. This is just an example for the reader to keep in mind whilst reading

through the code given throughout this thesis.

2. RESULTS

The goal of this thesis is to ascertain the usefulness of the other theorems. Due to

time constraints and hardware, only the first 6,000 Markoff numbers are considered

for many of the theorems.

In [2], Baragar mentions that among all Markoff numbers below 10140, roughly

6% of them satisfy the conditions of the following theorem.

Theorem 1 (Baragar 1996). If either m, 3m− 2, or 3m+ 2 is a prime, twice a

prime, or four times a prime, then there exists at most one integer pair (x, y) so that

(x, y,m) is a Markoff triple.

The first theorem that we look at will be the main theorem from Button[4], which

is given here:

Theorem 2 (Button 2001). If (x, y,m) is an integer solution to the Markoff

equation, then m is unique if m = kpr, where p is prime and k4 < m.

The reader will notice that the algorithm used for Theorem 2 in Chapter 2 only

tests for solutions of the form m = kp. The reason for this is that when the code

is changed to check for solutions of the form m = kpr, only one solution in the first

6,000 Markoff numbers satisfied found. This seems at first glance, to be deceptive,

since one might expect the extension to powers of p to be significant. On the other
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hand, the number of solutions of the form m = kp is quite significant. In the first

6,000 Markoff numbers, roughly 37% satisfy the conditions of Theorem 2, whereas

almost 12% satisfy the conditions of Theorem 1. This theorem captures many more

solutions and most certainly has some substance to it. The next theorem, due to F.

Chen and Y. Chen[5], can be thought of as a completion of Button’s result.

Theorem 3 (Chen 2013). If (x, y,m) is an integer solution to the Markoff equa-

tion, then m is unique if 3m − 2 = kpr or 3m + 2 = kpr, where k < 14
√
3m− 2 or

14
√
3m+ 2 respectively.

In the first 6,000 Markoff numbers, roughly 20% satisfy the conditions of Theorem

3. The reader should note that although these solutions satisfy the conditions of

Theorem 3, many of those also satisfy Theorems 1 and 2 as well. In fact, only 9%

of the first 6,000 Markoff numbers satisfy only theorem 3. Although not as large

of a gain as Button’s, it is significant. The last theorem that we cover is due to

Srinivisan[7].

Theorem 4 (Srinivasan 2009). Let m be an odd Markoff number and d = 9m2−4.

Assume that for every 0 < d1 <
√
d with d = d1d2, d1 - 3m − 2 and gcd(d1,d2) = 1,

one of the following is true.

(1) There exists a prime r | d1 such that (d2
r
) = −1.

(2) There exists a prime r | d2 such that (d1
r
) = −1.

Then m is unique.

This theorem requires us to factor the discriminant and examine each divisor in

turn. Since factoring is a computationally intensive task, only the first 2,200 Markoff

5



numbers are considered for theorem 4. In the first 2,200 Markoff numbers roughly

13% satisfy the conditions of Srinivasan’s theorem. However, most of them also satisfy

the conditions of the other theorems. In fact in the first 2,200 Markoff numbers, only

65 were unique, which is just under 3%. In other words, in the first few thousand

Markoff numbers, this theorem is not much of an improvement over the other ones.

Listed below is a graph representing the number of unique Markoff numbers which

can be shown to be unique by the previous theorems. Each new line represents adding

another theorem into the mix. For example, the line labeled as Button, shows the

total number of Markoff numbers which satisfy the conditions of either Baragar’s

theorem or Button’s theorem. Graphing the results of the tests in this way will give

us an idea of how many more Markoff numbers are “captured” by each successive

theorem.

We can see that with the addition of Button’s theorem and Chens’ theorem, there

is quite a large increase of new Markoff numbers being “captured”. Whereas, very

few new Markoff numbers are captured by the addition of Srinivasan’s theorem.

6



Figure 1.2
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CHAPTER 2

METHODS

The first step in setting out to test these theorems is to obtain a list of all the

Markoff numbers below 10140. In [2], Baragar found 18,906 Markoff numbers below

10140, and determined that 1197 of them fall under the conditions of his theorem.

This set of solutions will be used as input for each test. It would be very slow to

run a for loop to print out the values that satisfy the Markoff equation, so instead

we use a recursive function to generate the solutions and print them to a file for later

use. Since the values are being written to a file instead of being stored, the program

executes at a much faster pace.

Recall that all the positive solutions to the Markoff equation can be generated

from a single solution (1, 1, 1) using the following transformations:

(x, y, z) 7−→ (x, z, 3xz − y) and (x, y, z) 7−→ (y, z, 3yz − x)

The first generates the top branch while the second one generates the bottom branch

at each node of the Markoff Tree. This concept is what we will use to generate all

the solutions below 10140, the code for the main function of the script is given below.

def go(list_, i, T):

if list_[2] < (10**T):

f = open(‘solutions’,‘a+’)

f.write(“%r\n % list_[2]))

f.close()
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go(top_(list_), i, T)

go(bottom_(list_), i, T)

i = i + 1

else:

return list_

The first thing we should take note of in this section are the variables being passed

to the function. The first variable, list_, is an array representing an ordered triple

(x0, x1, x2). The second variable i is used here to keep a tally of how many total

solutions have been found. In Python, variables defined outside of a function are not

automatically categorized as global variables, which would be more useful to use than

to simply keep passing the variable i to the function each time. The same thing could

be said about the next variable T, which is the exponent of 10T , which is used to stop

the function from calling itself indefinitely.

Each time the function go is called, it first checks whether the z component of

the triple passed to it is less than 10140. If the z component is below the bound,

the function opens the Solutions.txt file in writing mode and writes to it the current

value of the list_[2] and then immediately closes the file. The next two lines of code

both call the go function, each with a different input. The line go(top_(list_),i,T)

calls the go function using top_(list_) which takes the current value of list_ and

returns the next Markoff triple using the transformation,

(x, y, z) 7−→ (x, z, 3xz − y)

The code for this transformation is given by:

def top_(list_):
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return [list_[0],list_[2],3*list_[0]*list_[2]-list_[1]]

The second line, go(bottom_(list_),i,T) calls the go function using the value of

bottom_(list_) which returns the next Markoff triple using the transformation,

(x, y, z) 7−→ (y, z, 3yz − x)

which is represented by the code,

def bottom_(list_):

return [list_[1],list_[2],3*list_[1]*list_[2]-list_[0]]

The go function will continue to call itself until the list_[2] is no longer less than

10140. In this way, the function will go through all the triples in the topmost branch

of the Markoff Tree until it reaches a triple whose z component is too large. Then

it will print the bottom branch of that same node. The end result will be a list of

Markoff numbers which are less than 10140.

In terms of running time, this script is quite fast, taking nine minutes to find,

write to a file, and count all Markoff numbers below 10140. In [2], Baragar mentioned

that at the time of his 1996 paper, the same calculation took about ten hours of

computing time. Although the previous script will give us a list of Markoff numbers,

they are not in numerical order. We use a simple script to sort the values in the file.

With the solutions sorted, the next step is to write code that will check how many

fall under the conditions of Baragar’s results.

Once we have sorted the output we can write scripts to test Baragar’s results.

This brings us to the first theorem.
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Theorem 1 (Baragar). If either m, 3m−2, or 3m+2 is a prime, twice a prime,

or four times a prime, then there exists at most one integer pair (x, y) so that (x, y,m)

is a Markoff triple.

This theorem is one of the more elegant theorems, due in most part to the sim-

plicity of the theorem’s statement. Not only is it simply stated, but it is obvious how

we should write a script to test it. Since we need to be able to test whether a number

is prime or not, as mentioned previously, We need to switch from base packages to

the more advanced libraries available to python programmers. We will need to test

each possible outcome from the theorem (m = p, m = 2p, etc.), and we do this by

combining all of the possible tests into a single script.

from sage.all import*

f = open(“Sorted Solutions.txt ”,’r’)

count = 0

prime_count = 0

twice_a_prime = 0

3m_plus_two_prime = 0

3m_plus_two_twice_a_prime = 0

3m_plus_two_four_a_prime = 0

3m_minus_two_prime = 0

3m_minus_two_twice_a_prime = 0

3m_minus_two_four_a_prime = 0

for line in f:

num = long(line[:len(line)-2])
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3m_plus_two = 3 * num + 2

3m_minus_two = 3 * num - 2

if is_prime(num) == True:

prime_count+= 1

if num % 2 ==0 and is_prime(num/2) == True:

twice_a_prime += 1

if is_prime(3m_plus_two) == True:

3m_plus_two_prime += 1

if 3m_plus_two % 2 == 0 and is_prime(3m_plus_two/2) == True:

3m_plus_two_twice_a_prime += 1

if 3m_plus_two % 4 == 0 and is_prime(3m_plus_two/4) == True:

3m_plus_two_four_a_prime += 1

if is_prime(3m_minus_two) == True:

3m_minus_two_prime += 1

if 3m_minus_two % 2 == 0 and is_prime(3m_minus_two/2) == True:

3m_minus_two_twice_a_prime += 1

if 3m_minus_two % 4 == 0 and is_prime(3m_minus_two/4) == True:

3m_minus_two_four_a_prime += 1

count += 1

print “We have checked %r many solutions.” % count

f.close()

The reader will have noticed the % symbol in the code above. This is the modulus

symbol, for use in modular arithmetic. The variables at the beginning of the code are

12



pretty self-explanatory, except for maybe count, which just keeps track of how many

Markoff numbers have been checked so far. The others simply keep track of how

many fall into each category. The next block of code uses a for-loop to run through

the Sorted Solutions.txt file.

for line in f:

num = long(line[:len(line)-2])

3m_plus_two = 3 * num + 2

3m_minus_two = 3 * num - 2

The numbers stored in Sorted Solutions.txt are each on their own line, and the

for-loop in the code will iterate over each line. Therefore, the variable line will

assume the value of each number as the for-loop continues. The numbers stored in

file are stored as strings, so they must first be converted to integers for them to be of

any use. The following line of code will take the string from the current line in the

file, and then convert it into an integer:

num = long(line[:len(line)-2])

Once each string has been converted to an integer, the variables three_m_plus_two

and three_m_minus_two are defined in the next two lines of code. At this point, there

are variables each representing z, 3z+2, and 3z−2, and the next step is to test whether

each one is prime, twice a prime, or four times a prime. The following code was used

to actually perform the testing, for each value of num:

if is_prime(num) == True:

prime_count+= 1

if num % 2 == 0 and is_prime(num/2) == True:
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twice_a_prime += 1

if is_prime(3m_plus_two) == True:

3m_plus_two_prime += 1

if 3m_plus_two % 2 == 0 and is_prime(3m_plus_two/2) == True:

3m_plus_two_twice_a_prime += 1

if 3m_plus_two % 4 == 0 and is_prime(3m_plus_two/4) == True:

3m_plus_two_four_a_prime += 1

if is_prime(3m_minus_two) == True:

3m_minus_two_prime += 1

if 3m_minus_two % 2 == 0 and is_prime(3m_minus_two/2) == True:

3m_minus_two_twice_a_prime += 1

if 3m_minus_two % 4 == 0 and is_prime(3m_minus_two/4) == True:

3m_minus_two_four_a_prime += 1

count += 1

The is_prime function will return True if the input is prime and False otherwise,

as one might expect. The first if statement will test whether the number is prime.

The second if statement first checks whether the number is divisible by two (i.e.

congruent to 0 modulo 2) and whether its half is prime. If so, then num is twice

a prime, and the script increments corresponding variable by one. The remaining

if statements all follow the same format. They first test whether the variable is

prime, twice, or four times a prime by using % 2 == 0 or % 4 == 0. Then they test

whether the variable itself is prime, or the variable divided by two or four is prime,

respectively.
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The next order of business is to check for solutions which satisfy the criteria of

Button’s result, which is summarized by the following theorem.

Theorem 2 (Button). If (x, y,m) is an integer solution to the Markoff equation,

then m is unique if m = kpr, where p is prime and k4 < m.

Since all the Markoff numbers below 10140 have been verified as unique, we can

use this to our advantage in order to test the effectiveness of this theorem as well

as the others. In the case of theorem 2, we know that m will be unique as long as

k < 1035. When we get to theorem 3 our bound for will change to k < 1010, in order

to stay below 10140.

Until this theorem, the only thing that we needed to be able to do was tell whether

an integer was prime. This theorem requires us to factor the Markoff number m,

which is much more computationally intensive than primality testing. Fortunately,

SAGE has built in functions for factoring integers, specifically, the factor() function.

This function is not limited to factoring integers, but that is all that is needed here.

Suppose we were to factor the integer 126. Then factor(126) would return the

output 2 * 3^2 * 7. However, this is not a string, but a SAGE object and is simply

what is returned by the function and is not easily used in code.

The instance factor(126) of the Factorization class, is not itself an array, but

it does contain an array that represents the factorization of its input for easy use.

Consider the following for loop,

for x in factor(126):

print x

which will return the following output,
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(2,1)

(3,2)

(7,1).

Each tuple that was printed out is of the form (pi, ei) where
∏
peii = 126. Further, the

elements of each tuple can be accessed in code exactly as one would access elements

of an array. For example,

factor(126)[0] = (2,1)

factor(126)[0][0] = 2

factor(126)[0][1] = 1.

This enables the user to find, store, and use each factor of the integer. This is

what will be used for Button’s theorem. Below is the code,

if factor(num)[len(factor(num))-1][0]**factor(num)[len(factor(num))-1][1]

>= (num ** float(3.0/4)):

Although it is a single line of code, there is quite a bit happening here. The first

thing to observe is

factor(num)[len(factor(num))-1][0].

Recall that the variable num will assume the value of each Markoff number below 10140,

so it is necessary that the code will work for any integer, no matter how large. If num =∏
peii , then factor(num) will contain the array [(p1,e1), (p2,e2), ...,(pn,en)],

which is an array of length n. However the element factor(num)[n] will return an

error since it is outside the index range, so it must be offset by 1 in order to ensure
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that the last tuple is referenced without error, which yields the segment of code above.

That is, to access the last prime factor, the index len(factor(num))-1 is used and

factor(num)[len(factor(num))-1] = (pn,en). It is straightforward to see that

the entire segment of code above will represent the value of pn. The second segment,

factor(num)[len(factor(num))-1][1].

represents the exponent en, and the ** operator is the operation of exponentiation.

Therefore, the initial segment of the code represents the largest prime(power) factor

of the variable num. Instead of taking the product of the remaining factors to form k,

which would increase computing time, we instead use the largest prime(power) factor

and test whether it is greater than the cube of the fourth root of num. That is, if

k < 4
√
m, then m

k
= penn ≥ 4

√
m3. Testing penn will cut down on the computing time

and is just as valid. The last part of the code is where this is done.

(num ** float(3.0/4))

With the completion of this algorithm, we can now set our sights on Chens’ theorem.

Theorem 3 (Chen). If (x, y, z) is an integer solution to the Markoff equation,

then m is unique if 3m−2 = kpr or 3m+2 = kpr, where k < 14
√
3m− 2 or 14

√
3m+ 2

respectively.

The first thing to note, is that the bound on k is different. In this case we need

k < 14
√
3m± 2. The code for testing this is almost exactly the same as the code we

used for Button’s result, with that slight modification. The code is as follows:

kay = m_plus

if m_plus != 1:

17



kay = kay / (factor(m_plus)[len(factor(m_plus))-1][0]

**factor(m_plus)[len(factor(m_plus))-1][1])

if kay < m_plus ** float(1.0/14):

3m_plus_two_kp += 1

kay = m_minus

if m_minus != 1:

kay = kay / (factor(m_minus)[len(factor(m_minus))-1][0]

**factor(m_minus)[len(factor(m_minus))-1][1])

if kay < m_minus ** float(1.0/14):

3m_minus_two_kp += 1

The variables m_plus and m_minus represent the value of 3m + 2 and 3m − 2, re-

spectively. The case where 3m − 2 = 1 is handled separately, since the factor()

function does not treat 1 the same as other integers. Recall that an instance of the

Factorization class contains an array with all the factors of the given input.

kay = kay / (factor(m_minus)[len(factor(m_minus))-1][0]

**factor(m_minus)[len(factor(m_minus))-1][1])

This segment of the code takes kay, which is equal to 3m ± 2, and divides it by

the largest prime power factor of 3m ± 2. This factors 3m ± 2 into kpr as desired.

Once k has been determined a simple comparison test is used.

if kay < m_plus ** float(1.0/14):

3m_plus_two_kp += 1

Up until this point, the theorems mentioned were all quite straightforward, and

easy to digest. The next theorem requires a little more effort.
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Theorem 4 (Srinivasan). Let m be an odd Markoff number and d = 9m2 − 4.

Assume that for every 0 < d1 <
√
d with d = d1d2, d1 - 3m − 2 and gcd(d1,d2) = 1,

one of the following is true.

(1) There exists a prime r | d1 such that (d2
r
) = −1.

(2) There exists a prime r | d2 such that (d1
r
) = −1.

Then m is unique.

Note that in condition (1), the Jacobi symbol is used with d2 and a prime r | d1,

and vice versa in condition (2). This means that for every d1 dividing the discriminant

d, we must test (d2
r
) for each prime r dividing d1. The same must be done for d2 as

well. The first thing that we must do is define functions which will test conditions

(1) and (2) above. The functions are given below.

def condition1(*args):

for prime in factor(d_1):

if kronecker_symbol(d_2, prime[0]) == -1:

return True

else:

return False

def condition2(*args):

for prime in factor(d_2):

if kronecker_symbol(d_1, prime[0]) == -1:

return True

else:

return False

19



The two functions are quite similar, as you would expect. Observe that each

function is passed the *args argument. We use this when we are not certain of how

many arguments to pass to the function. In other words, the functions will accept

any number of variables when called. A new SAGE function is introduced here, the

kronecker_symbol() function. Note that in condition (1) and (2) of Srinivasan’s

theorem, the Jacobi symbols (d2
r
) and (d1

r
), are used. As was mentioned previously,

the Jacobi symbol is a generalization of the Legendre symbol with a nonnegative

integer modulus. The Kronecker symbol is simply a generalization of the Jacobi

symbol to all integers.

The rest of the code will determine what values to use for d1 and d2, and finally, to

determine whether or not a Markoff number satisfies the conditions of the theorem.

The remaining code is given here below.

unique_count = 0

count = 0

for num in f:

c = long(num)

d= 9*c**2 -4

list_ = []

for num in divisors(d):

if num < math.sqrt(d) and (3*c-2) % num != 0:

list_ += [num]

pass_count = 0

fail_count = 0
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for d_1 in list_:

d_2 = d / d_1

if condition1(d_1, d_2) == True or condition2(d_1,d_2) == True:

pass_count += 1

else:

fail_count += 1

break

if pass_count == len(list_) and len(list_) != 0:

g.write(”%r \n” % c)

unique_count += 1

count += 1

if count % 100 == 0:

print ”There are %r many unique markoff numbers below %r”

%(unique_count, count)

g.write( ”-*70 + ”\n”)

The variable unique_count is a running total of all the Markoff numbers that

satisfy the theorem’s conditions, whereas count is just a total of how many solutions

we have checked. The first for-loop at the beginning is the standard one used to

pull each number from the input text. The loop begins by setting d = 9*c**2 - 4.

Consider the next segment of code, the second for-loop.

for num in divisors(d):

if num < math.sqrt(d) and (3*c-2) % num != 0:

list_ += [num]
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This segment of code is what we use to determine which divisors of the discrimi-

nant d are going to be tested. The divisors(n) function accepts an integer as input

and returns an array of all the integer divisors of n. In this way the loop then tests

whether each divisor of d satisfies the assumptions of the theorem. If one of the

divisors does pass this initial test, it is then added to the list_ array to be used

later. Once the candidates for d1 have been determined, the variables pass_count

and fail_count are initialized, and will count how many d1’s pass or fail the test.

It is important to keep in mind that in Srinivasan’s theorem, every possible d1

must pass condition (1) or (2). That is for every pair of d1 and d2, there exists either a

prime r dividing d1 such that (d2
r
) = −1 or a prime r dividing d2 such that (d1

r
) = −1.

So if there is even one pair of d1 and d2 that fails both condition (1) and (2), then

the given Markoff number fails Srinivasan’s test. This is the motivation for the next

segment of code.

for d_1 in list_:

d_2 = d / d_1

if condition1(d_1, d_2) == True or condition2(d_1,d_2) == True:

pass_count += 1

else:

fail_count += 1

break

if pass_count == len(list_) and len(list_) != 0:

unique_count += 1
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This for-loop takes each d1 from the list_ array and tests whether the pair of d1

and d2 satisfy either condition (1) or (2). If so, then pass_count is incremented by 1.

If not, then fail_count is incremented by 1 and the for-loop immediately ends, due

to the break command. By escaping the for-loop upon a failure, computing time is

diminished, since there is no point in continuing once a failure has been found. The

variable pass_count is the number d1’s that pass condition (1) or (2). A Markoff

number passes Srinivasan’s test if every possible d1 passes the conditions. Therefore,

if the number of passes is the same as the number of d1’s, then the given Markoff

number passes the test. This is seen in the if statement above.

It should not surprise the reader to learn that this script runs incredibly slow.

This theorem requires us to factor the discriminant and examine each divisor in turn.

For this reason alone, we consider only the first 2,200 Markoff numbers.
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CHAPTER 3

HISTORY AND BACKGROUND OF THE MARKOFF

EQUATION

One of the most common problems in mathematics is the approximation of irra-

tional numbers. One might start by asking, given an irrational number, is it possible

to find a rational number arbitrarily close to it? Anyone familiar with analysis will

say that this is trivial. Given any irrational number α, there exists a rational number

r such that,

|α− r| < ϵ

for any ϵ > 0. It is well-known that every irrational number is the limit of some

sequence of rational numbers. However, the terms of such sequences tend to have

very large denominators, making them tedious to work with and computationally

cumbersome. This introduces a new question, similar to the first one. Is it possible

to find a rational number close to the number α, whose denominator is relatively

small? An answer to this was provided by Dirichlet.

Theorem 5 (Dirichlet 1837). Let α ∈ R and N ∈ N. Then there exists a rational

number p
q
with q ≤ N such that,

|α− p
q
| < 1

qN
.

This theorem of Dirichlet first placed a bound on the denominator. The following

corollary provides an even stronger result.
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Corollary 6. Let α be an irrational number. Then there are infinitely many

rational numbers p
q
such that

|α− p
q
| < 1

q2

Although not a direct corollary to Dirichlet’s theorem, the following proposition

is also relevant.

Proposition 7. If α ∈ Q, then for each C > 0, there exists only finitely many

values p
q
∈ Q such that

|α− p
q
| < C

q2
.

This corollary provides a way for checking whether or not a real number is rational.

For if there are not infinitely many p
q
satisfying the first inequality, then α must not

be irrational. Before continuing we define the order of approximation. We say that a

real number α can be approximated to order t if there exists a constant Cα ∈ R and

infinitely many rational numbers p
q
such that

|α− p
q
| < Cα

qt

From the corollary we can see that if α is irrational, then it can be approximated

to order of at least 2. The previous results only dealt with rational and irrational

numbers, but what about the algebraic numbers? The following theorem due to

Liouville provides some insight.

Theorem 8 (Liouville 1844). Let α be irrational and algebraic of degree d. Then

there exists a C > 0 such that for every p
q
∈ Q,

C
qd
< |α− p

q
|.
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This theorem provides a bound for algebraic numbers, but its corollary is much

more interesting.

Corollary 9. An algebraic number of degree d can be approximated to order at

most d.

One can see how this corollary is quite useful. Recall that if α is the root of a

non-zero polynomial d of finite degree in Z[x], we say that α is an algebraic num-

ber. Every rational number is algebraic of degree 1, and every algebraic irrational

number is algebraic of degree greater than 1. However, not every real number is al-

gebraic, for instance, the numbers π and e are both irrational. A real number which

is not the root of some polynomial in Z[x] with finite degree, is called transcendental.

From the previous corollary we obtain an interesting categorization of real numbers.

Specifically, if a real number α can be approximated to order greater than 1, it is

irrational. Furthermore, if it can be approximated to every order k, then it must

be transcendental. Roth later showed that 1
q2

is the best possible bound for |α − p
q
|

for infinitely many p
q
. However, this does not mean that the constant 1 is the best

possible constant. Consider the inequality,

|α− p
q
| < 1

xq2
.

Consider the set of all positive real numbers x that satisfy the inequality for infinitely

many rational numbers p
q
. We define Lα to be the supremum of this set, also called

the Lagrange number of α.

Definition 1. The Lagrange Spectrum L, is the set of all possible Lα’s for all

real numbers α. That is, L = {Lα : α ∈ R}.
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At this point the reader may wonder what this has to do with the Markoff equation.

It is not quite obvious how this is important. It turns out that what is referred to as

L<3 = {Lα ∈ L : Lα < 3}, the portion of the Lagrange Spectrum that is below 3, has

a direct connection with the set of Markoff numbers.

Consider the equation,

x2 + y2 + z2 = 3xyz

which is more commonly known as the Markoff Equation. The solutions to this

equation are integer triples (x, y, z), also called Markoff Triples, and each integer of

the triple is a Markoff number. From here on the set of all Markoff numbers will be

denoted by M. The relation of the set M to the Lagrange Spectrum is seen in this

theorem, due to Markoff.

Theorem 10 (Markoff 1879). There exist a sequence {γm} of irrational numbers

with

γm = am+
√
9m2−4

bm
, m ∈ M

with integers am and bm, so that Lγm < 3. Specifically, the Lagrange Spectrum below

3 can be written in the form,

L<3 = {
√
9m2−4
m

: m ∈ M}

Markoff himself was not directly interested in the Lagrange Spectrum, but in

quadratic forms. In order to see where this theorem comes from, some information

on quadratic forms is necessary. The reader should be aware that Markoff’s theorem

was sufficiently complex that Enrico Bombieri published his own proof of the theorem

in [3].
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Definition 2. A function of the form f(x, y) = ax2 + bxy+ cy2, with a, b, c ∈ R,

is called a quadratic form. The discriminant of a quadratic form f is denoted by

∆ = b2−4ac. A quadratic form is said to be definite if ∆ < 0 and indefinite if ∆ > 0.

Let f be an indefinite quadratic form. The following definitions will be important:

Definition 3. Let f be an indefinite quadratic form. The uniform arithmetic

minimum of the form f is given by,

m(f) = inf{|f(x, y)| : f(x, y) ̸= 0, x, y ∈ Z}

and the Markoff value for the form f is given by,

M(f) =
√
∆

m(f)
.

The Markoff Spectrum is the collection of all the Markoff values M(f) over the

set of all indefinite forms. We will denote the Markoff Spectrum by M ′, and this set

has a nonempty intersection with the Lagrange Spectrum. Specifically, the Lagrange

Spectrum and the Markoff Spectrum are the same up until 3, that is, L<3 =M ′. But

this still doesn’t explain how the two are related.

Let m be a Markoff number in the triple (x, y,m) with x, y ≤ m. Then we have

that m divides x2 + y2. To see this, consider the Markoff equation,

x2 + y2 +m2 = 3mxy

x2 + y2 = (3xy −m)m

This in turn yields the congruence, x2 ≡ −y2 (mod m). Since all the elements of

a Markoff triple are relatively prime, the two congruences xv ≡ ±y (mod m) have

28



the unique solutions u and u′, where u, u′ > 0 and u, u′ < m. Furthermore the

congruences,

x2u2 ≡ y2 ≡ −x2 (mod m)

x2 ≡ −y2 (mod m)

together imply that u2 ≡ −1 (mod m). The same holds true for u′ as well. The

number u is called the characteristic number for the Markoff triple (x, y,m). Since

u2 ≡ −1 (mod m) there exists a ν > 0 such that u2 = −1 + νm. This brings us to

the next definition.

Definition 4. The Markoff form fm(x, y) associated with the Markoff triple

(xm, ym,m) with xm, ym ≤ m and characteristic number u, with u2 = −1 + νm, is

given by,

fm(x, y) = mx2 + (3m− 2u)xy + (ν − 3u)y2

Since u2 = −1 + νm the discriminant of the form is,

∆ = (3m− 2u)2 − 4(m)(ν − 3u)

= 9m2 + 4(u2 − νm)

= 9m2 − 4

Also note that for the Markoff form fm,

m(fm) = inf{|fm(x, y)| : fm(x, y) ̸= 0 with x, y ∈ Z} = m
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Finally, it can be seen that,

M(fm) =

√
∆

m(fm)

=

√
9m2 − 4

m

Markoff himself proved that every form f withM(f) < 3 is equivalent to a Markoff

form and since he also showed that the two spectra are equal below 3, we can now

see the connection between the Markoff numbers and the Lagrange Spectrum. Cusick

and Flahive [6], provide an elegant proof as to why the arithmetic minimum m(fm)

is equal to m. For a more complete and thorough explanation of the history of the

Markoff equation and the Unicity conjecture, see Aigner [1].

In the definition of the Markoff form, the form fm depended on the Markoff triple

(x, y,m). However, there could possibly be more than one Markoff triple that has

maximal element m. This observation leads to two interesting questions. The first,

does every Markoff number exist as the maximum element of a Markoff triple, and

secondly, can it appear as the maximum element in more than one Markoff triple? It

turns out that the first question is quite easy to answer, but the second is exactly the

Unicity conjecture.

We now look at a summary of Baragar’s Results.

Definition 5. Let I be and integral domain. A function N : I → Z+ ∪ {0} with

N(0) = 0 is said to be a norm on I.

The norm on an integral domain can be thought of as a way of measuring the

“size” of one of its elements. Although the base definition of a norm requires the

image of an element to be a positive integer, we can extend the idea of a norm to
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create a field norm. For a quadratic field K = Q(
√
D), we define the field norm to

be N : K → Q by N(x+
√
Dy) = x2 −Dy2.

Theorem 11 (Baragar 1996). If either m, 3m− 2, or 3m+ 2 is a prime, twice a

prime, or four times a prime, then there exists at most one integer pair (x, y) so that

(x, y,m) is a Markoff Triple.

This theorem relies on fixing a Markoff number m and considering the remaining

quadratic as a norm equation in a real quadratic field:

x2 + y2 − 3mxy = −m2

Which can be written in the form:

α2 −Dβ2 = −m2

where α =
(
2y−3xz

2

)
and β = x

2
and D = 9m2 − 4 = (3m+ 2)(3m− 2).

At this point, we can see where the 3m−2 and 3m+2 originate. This equation which

resulted from fixing a Markoff number m, is the same as the norm for the quadratic

field Q(
√
D), and can be shortened to,

NK/Q(γ) = −m2

where γ is an element of R = Z + ωZ, the ring of integers of K = Q(ω) where ω is

the largest solution to the equation x2 + 3mx + 1 = 0. By considering the Markoff

equation as a norm equation, Baragar reformulates the uniqueness condition in his

second theorem.

Theorem 12 (Baragar). If m is an odd Markoff number, then m is the maximal

element of a unique Markoff triple if and only if there exists exactly one pair of

principal ideals γR, γ̄R in R such that γ satisfies the norm equation above.
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Baragar notes that since the norm of γR is relatively prime to the discriminant

∆ = 9m2 − 4, the factorization of γR in R is unique. It is also important to note

that since gcd(x, y,m)= 1, the ideal γR is a primitive ideal. That is, γR cannot be

written as nJ where J is an R-ideal and n ∈ Z. This leads to the following corollary.

Corollary 13. If m is an odd prime Markoff number, then m is the maximal

element of a unique Markoff triple.

Proof. Assume that m is a prime Markoff number, then the ideal mR is either

a prime ideal or splits into two prime ideals, ρ and ρ̄ (i.e. mR = ρρ̄). Since γR is a

primitive ideal and m ∈ Z, we have that γR ̸= mR. Therefore, mR = ρρ̄, and γR is

equal to either ρ2 or ρ̄2. Since there is only a single pair, m is the maximal element

of a unique Markoff triple, by the previous theorem. �

Suppose, towards a contradiction, that both γ and δ are elements of R that satisfy

the norm equation above which generate different pairs of ideals. Their corresponding

R-ideals can be factored into prime ideals, which may have some factors in common,

and the ones that aren’t common must be conjugates. That is, γR = ρ1ρ2 and

δR = ρ1ρ̄2, where ρ1 and ρ2 are not all of R. Consider the product of the two ideals,

which yields,

γδR = ρ21ρ2ρ̄2.

At this point it is important to mention equivalency of ideals. We say that two ideals

I and J are narrow class equivalent if there exist α1, α2 ∈ R with N(α1), N(α2) > 0,

such that α1I = α2J and denote the equivalence by I
+∼ J . If the restriction on the

norms of α1 and α2 is removed, we say the two ideals are class equivalent, denoted
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by I ∼ J . Returning to the ideals above, we see that R and ρ21 are narrow class

equivalent. Similarly, R
+∼ ρ22 by considering the product of γR and ρR. Of these two

possibilities, one of the ideals satisfies the inequality,

N(ρi) < m < 1
2

√
∆,

and so the goal is to classify all primitive ideals I in K which have norm less than

1
2

√
∆ and also that I

+∼ Ī. Baragar uses the following results,

Lemma 14 (Baragar). If I is a primitive ideal, then there exists a basis over Z

for I of the form r + ω,N(I), for some r ∈ Z. Furthermore, r may be chosen such

that,

√
∆−N(I) < r + ω ≤

√
∆.

Corollary 15. If J is a primitive ideal and J = J̄ , then N(J) divides ∆.

Lemma 16 (Baragar). Suppose that I
+∼ Ī. then there exists an ideal J in R such

that J is primitive ideal, N(J) divides ∆, and I ∼ J .

Lemma 17. Suppose a primitive ideal I satisfies N(I) < 1
2

√
∆. Then xI has a

periodic continued fraction expansion, where

xI =
r + ω

N(I)
.

Using the previous results, all the ideals I can be found by considering the periodic

part of the continued fraction expansion of xJ for all ideals J with N(J) dividing ∆.

Baragar notes that for a fixed value of m this approach works well, but is if little use

for arbitrary m. At this point we can finally address the case where 3m−2 or 3m+2

is a prime. If either is prime, then we will have that N(I) divides ∆ and as such,
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the ideals ρi cannot exist, yielding the contradiction. However, we need the next two

lemmas.

Lemma 18. Suppose N(J) = t and tu = 3m − 2 with u ∈ Z. That is, suppose

N(J) divides 3m− 2. Then N(I) = t or u.

Lemma 19. Suppose N(J) = t and tu = 3m + 2 with u ∈ Z and m > 3. Then

N(I) = t or u.

It is important to note that in both of the previous lemmas, if N(J) = 3m±2 then

J is a principal ideal. Together, these two theorems are used to prove the following

corollary.

Corollary 20 (Baragar). Suppose p = 3m−2 or 3m+2 is prime, and p divides

N(J). Then there exists a J ′ such that J ∼ J ′ and N(J ′) divides ∆/p.

Proof. Suppose that p = 3m − 2 or 3m + 2 is prime, and p | N(J). Then the

ideal ρ =
(

p+
√
∆

2

)
Z× pZ has norm p. By the previous lemmas, ρ is principal. Since

J and ρ are principal, we have that J ∼ ρJ . However, N(ρJ) will not divide ∆, since

p2 - ∆, which implies that ρJ is not primitive. Let J ′ be the ideal such that nJ ′ ∼ ρJ ,

where n is the largest factor of ρJ in Z. Since p divides n, we have that J ′ ∼ J and

N(J ′) | ∆p
p2

= ∆
p
. �

Therefore, by the corollary if 3m ± 2 is prime, then N(I) | ∆, yielding our con-

tradiction. J
+∼ J ′.

We need only consider the case where m is even. Since the elements of a Markoff

triple are relatively prime, the remaining two elements, x and y, must be both odd.

We again consider the equation,
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x2 + y2 − 3mxy = −m2.

Since every Markoff number is either 1 or 2 modulo 4, we can rewrite the equation

with m = 2k, where k is odd.

(x− 3ky)2 − (9k2 − 1)y2 = −4k2

Note that since x, y, and k are all odd, x− 3ky is even and 9k2 − 1 is congruent to 0

modulo 4. Then, by dividing both sides by 4 we get the following equation,

α2 − β2y2 = −k2

where α = x−3ky
2

and β2 = 9k2−1
4

. Baragar continues from here as before this time

with ω = −3k +
√
9k2 − 1. Noting that the discriminant ∆ = 9k2 − 1 is relatively

prime to k, there is unique factorization of the ideals dividing k2R, where R = Z+βZ.

Continuing along the same path as before, suppose that there are two ideals γR and

δR, and consider all possible ideals I which satisfy,

N(I) < k < 1
2

√
∆.

Then if, N(J) = t and tu = 3k−1
2

, we have that N(I) = t or u as before and when

N(J) = 3k−1
2

, we have that u = 1 and J is principal. Similarly, if N(J) = t with tu =

3k+1
2

, t, u ≥ 2, N(I) divides ∆, and if N(J) = 3k+1
2

J again is principal. Therefore,

when 3m± 2 is four times a prime, N(I) divides ∆ yielding our contradiction.
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CHAPTER 4

ELEMENTARY METHODS

This chapter will discuss elementary methods of proofs for some of the earlier

results. Some basic results about Markoff numbers will be used throughout this

section.

(1) If (x, y,m) is a Markoff triple, then gcd(x, y,m) = 1.

(2) Every odd Markoff number is congruent to 1 modulo 4.

(3) Every even Markoff number is congruent to 2 modulo 4.

(4) If m is an even Markoff number, then 3m−2
4

and 3m+2
8

are both odd integers.

This elementary proof is due to Srinivasan[7], and is a proof of uniqueness when m

is a prime power or twice a prime power.

Lemma 21. Let (x1, y1,m) and (x2, y2,m) be two Markoff triples. Then

(x1x2 − y1y2)(x1y2 − y1x2) = m2(x1y1 − x2y2).

Theorem 22. If m is a Markoff number that is an odd prime power or two times

an odd prime power, then m is unique.

Proof. Let (x1, y1,m) and (x2, y2,m) be two Markoff triples with xi ≤ yi ≤ m.

Suppose that x1y1−x2y2 = 0. By the lemma we have that (x1x2−y1y2)(x1y2−y1x2) =

0 and so we have two cases,

x1x2 = y1y2 or x1y2 = y1x2.
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Consider the case where x1y2 = y1x2. Since (x1, y1,m) and (x2, y2,m) are Markoff

triples, gcd(x1, y1) = 1 and gcd(x2, y2) = 1, so all primes dividing x1 must divide

x2 and all primes dividing x2 must divide x1, and the same is true of y1 and y2.

Therefore, it must be that x1 = x2 and y1 = y2. In the case where x1x2 = y1y2, it

must be that x1 = y2 and x2 = y1, by the same argument as the first case. In both

cases we have that x1y1 − x2y2 ̸= 0. Let g > 2 be an odd prime divisor of m and

suppose that x1x2 ≡ y1y2 (mod g) and x1y2 ≡ x2y1 (mod g). Then

x21x2y2 ≡ x21x2y2 (mod g)

which implies that,

x21 ≡ y21 (mod g)

since gcd(xi, yi,m) = 1. Note that g also divides x21 + y21, but this is impossible since

gcd(b1,m) = 1. Thus, it must be that

gcd(x1x2 − y1y2, x1y2 − y1x2,m
′) = 1

where m′ = m when m is odd and m
2
when m is even. Then m = pq or m = 2pq,

depending on whether m is odd or even, respectively. We have that

x1x2 − y1y2 ≡ 0 (mod p2) and x1y2 − y1x2 ≡ 0 (mod q2)

If m is an odd prime power or twice an odd prime power then either p or q must

be 1. Then p(or q) = m or m
2
based on the parity of m.

In the case where m is odd, then x1x2 − y1y2 ≡ 0 (mod m2) which implies that

x1x2 = y1y2. However, since elements of Markoff triples are relatively prime, this

cannot happen.
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If m is even, then x1x2 − y1y2 ≡ 0 (mod 4). Thus,

x1x2 − y1y2 ≡ 0 (mod m2

4
)

and because m2

4
is odd, we have that x1x2 − y1y2 ≡ 0 (mod m2), which again leads to

the same contradiction. �

The next proof, which is also due to Srinivasan, shows that if the largest factor of

3m− 2 or 3m− 2 is a prime power, then m is unique.

Theorem 23. Let m be a Markoff number such that the greatest odd divisor of

either 3m− 2 or 3m+ 2 is a prime power. Then m is unique.

Proof. Again let (x1, y1,m) and (x2, y2,m) be two Markoff triples and let

Xi =
xi−yi

2
and Yi =

xi+yi
2

. Then it follows that,

(2− 3m)X2
1 + (2 + 3m)Y 2

1 = −m2

(2− 3m)X2
2 + (2 + 3m)Y 2

2 = −m2

and by subtracting the two previous equations,

(3m− 2)(X2
1 −X2

2 ) = (3m+ 2)(Y 2
1 − Y 2

2 ).

Now, suppose that m is odd and that 3m + 2 is a prime power of the prime p. If

p | gcd(2(X1 + X2), 2((X1 − X2))), then p | X1 and p | m, which is a contradiction.

Thus, if 3m+ 2 is a prime power of p, then either 3m+ 2 | 2(X1 +X2) or

3m+ 2 | 2(X1 −X2), but since xiyi ≤ m and xi ≤
√
m,

3m+ 2 ≤ 2(X1 +X2) ≤ 2(m− 1) + 2
√
m.
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If m is even, it is not divisible by 4 and we also have that both 3m−2
4

and 3m+2
8

are

odd integers (as mentioned at the beginning of this chapter). Therefore, it must be

that 2Xi is even and the xi, yi are all odd. This implies that the Xi, Yi’s are integers

with Xi all odd and Yi all even, since Xi − Yi = yi.

Finally, the case where 3m−2
4

and 3m+2
8

are prime powers are handled in the fol-

lowing way. Suppose 3m−2
4

is a prime power. Then,

3m− 2

4

X2
1 −X2

2

3m+ 2
=
Y 2
1 − Y 2

2

4

is a false statement if xi ≤ yi ≤ m, and therefore |Y1+Y2

2
| ≤ m

2
�
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