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ABSTRACT

Inverse Problem for Non-viscous Mean Field Control: Example from

Traffic

by

Shaurya Agarwal

〈Dr. Monika Neda〉, Examination Committee Chair

Professor of Mathematical Sciences

University of Nevada, Las Vegas

〈Dr. Pushkin Kachroo〉, Examination Committee Co-chair

Professor of Electrical and Computer Engineering Department

University of Nevada, Las Vegas

This thesis presents an inverse problem for mean field games where we find the

mean field problem statement for which the given dynamics is the solution. We use

distributed traffic as an example and derive the classic Lighthill Whitham Richards

(LWR) model as a solution of the non-viscous mean field game. We also derive

the same model by choosing a different problem where we use travel time, which

is a distributed parameter, as the cost for the optimal control. We then study the

stationary versions of these two problems and provide numerical solutions for the

same.
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CHAPTER 1

INTRODUCTION

Mean field games (MFG) involve the study of Nash equilibrium among infinitely

many players where the interplay between individual dynamics and the continuum

limit of the players is studied ([1], [2], [3]). Mean field framework has been used

in many applications such as consensus building ([4]), complex networks ([5]), elec-

tric vehicles using smart grid ([6], [7]). There has been some work in utilizing the

mean field principles in transportation problems in one (vehicular traffic) and two

dimensions (pedestrian traffic) ([8], [9], [10]).

The solution to a calculus of variations problem involves solving ordinary dif-

ferential equations ([11]) arising from the corresponding Euler-Lagrange equations.

There is a great deal of interest in finding the Lagrangian in the calculus of variations

problem that results in a given ordinary differential equation. This is the inverse

problem that has a classic result called Helmholtz condition ([12]) and also has had

some recent results ([13]).

Vehicular traffic on the highways can be viewed microscopically ([14]), i.e. in terms

of each vehicle, or macroscopically, i.e. in terms of aggregate variables such as traffic

density and flow. The microscopic dynamics of vehicles such as the car-following mod-

els, result in the evolution of macroscopic dynamics ([15]), such as the LWR (Lighthill
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Whitham Richards) model ([16], [17]). Macroscopic traffic modeling [18] is very useful

in developing effective controls using ramp metering [19], observability analysis [20],

financial modeling [21] and other useful analysis such as [22] and [23]. Additionally,

researchers have worked on mesoscopic models to evaluate transportation systems for

infrastructure improvements [24]. The inherent interdependence of transportation

systems with other systems such as Economic, Environmental and Social systems

was also studied [25] [26]. Furthermore, the dynamic nature of transportation sys-

tems was analyzed using system dynamics and other modeling approaches [27]. The

outcomes of such studies have helped decision makers to design appropriate control

mechanisms for policy making [24].

In this thesis, we solve the inverse problem of deriving the LWR model from a

non-viscous mean field game, and also provides basic analysis and numerical solutions

of the stationary viscous and non-viscous cases. We then extend the model by adding

a distributed parameter to the model in terms of travel time which was developed in

([28], [29]).

The contributions of this thesis work are as follows. We derive the traffic dynam-

ics solving an inverse problem providing a link between the microscopic behavior of

drivers to the macroscopic behavior of traffic. This is similar to how Newton’s laws

and other physical fundamental laws for instance are derived from variational prin-

ciples of mechanics [12]. We further utilize the recently developed framework of the

mean field games to connect the optimizing behavior of the drivers to the evolving

macroscopic traffic behavior. There is some recent literature where mean field games
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are used to study pedestrian and crowd dynamics ([8], [9] and [30]) as well as steady

state traffic behavior ([10]). To our knowledge, this framework has not been used

before to derive the fundamental LWR traffic dynamics. Moreover, the travel time

dynamics developed by the first author, is being used to link driver behavior to the

evolved traffic behavior for the first time. This connection between the microscopic

and macroscopic behavior can lead researchers to design traffic controllers from both

sides.

The remainder of this thesis is organized as follows. Chapter 2 presents the fun-

damentals of the mean field games, and an introduction to the LWR model with the

corresponding Greenshield’s model for traffic along with an account of the Liouville

equation and the hyperbolic Hamilton Jacobi Bellman (HJB) equation which are the

non-viscous versions of the model obtained from the mean field equations. The first

main results of this thesis are developed in chapter 3 where the LWR model is derived

as the solution of the inverse mean field problem. These results are in the form of

lemma 1 and theorem 2. The derivation of the travel time Hamilton Jacobi partial

differential equation is provided in chapter 4 and the stationary versions of our models

are studied in chapter 5, where we also present their numerical simulations. Chapter

6 provides the concluding remarks.
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CHAPTER 2

MATHEMATICAL BACKGROUND

2.1 Mean Field Games

We consider agent stochastic differential model on a probability space (Ω,A, P )

with a filtration F t generated by w(t), the n-dimensional standard Wiener process

([31]). Here Ω is the sample space which consists of all outcomes for the state x at

any given time t, A is the sigma algebra of all events that the state at t can be in,

and P is the probability measure on the sigma algebra. The system is causal, and

hence is adapted to the filtration of progressively increasing sigma algebras generated

by the Wiener process.

dx = v(x(t), u(x(t)), ρ(x, t))dt+ σ(x(t))dw(t),

x(0) = x0,

(2.1)

where v : Rn×Rd×Rn → Rn, and σ : Rn → L(Rn;Rn) are measurable functions, ρ

is the probability density of the state x(t), and u(x(t)) is the state feedback control.

For existence and uniqueness, at least locally, we have that ([32]) ∃C ∈ R and C ∈

R||f(x, u, ρ)|+|σ(x)| ≤ C(1+|x|), and |f(x, u, ρ)−f(y, u, ρ)|+|σ(x)−σ(y)| ≤ D|x−y|.

The initial state x0, in general, is the random variable independent of the σ-algebra
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F t, t ≥ 0 with E[|x20|] <∞.

The objective for the control law design for the agent is the expected cost for a

given initial condition x and time t.

Jx,t[u(·)] = E

{
∫ T

t

r(x(s), u(x(s)), ρ(s))ds+ k(x(T ))

}

, (2.2)

where, r and k are known functions representing the running cost and the terminal

cost respectively.

The value function for this problem is

V(x, t) = inf
u(·)ǫ U

Jx,t[u(·)]. (2.3)

The PDE satisfied by the value function is the stochastic Hamilton-Jacobi-Bellman

(HJB) equation, given as

Vt(x, t) +
σ2

2
∆V(x, t) + min

u(·)ǫ U
{v(x, u, ρ, t)∇xV(x, t) + r(x, u)} = 0,

V(x, T ) = k(x).

(2.4)

The corresponding Kolmogorov or Fokker Planck (FP) equation for the evolution

of the state probability density is given by

ρt(x, t)−
σ2

2
∆ρ(x, t) +∇ · (ρv(x, u, ρ, t)) = 0,

ρ(x, 0) = ρ0(x).

(2.5)
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The combined two point boundary value problem given by equations (2.4) and

(2.5) is referred as the HJB-FP system or the coupled PDE system of the Mean Field

Games.

2.2 LWR and Greenshield’s Models for Traffic

The macroscopic traffic flow model formulates the relationship among the key

traffic flow parameters such as density, flow etc. The classic LWR (Lighthill-Whitham-

Richards) model was proposed in 1956. It is a one-dimensional macroscopic traffic

model named after the authors in [16] and [17]. The dynamics of traffic flow using

this model is given by equation (2.6),

ρt(t, x) + fx(t, x) = 0, (2.6)

where, ρ is the traffic density and f is the flux. Traffic flux is defined as the product of

traffic density and the traffic speed v , i.e. f = ρv. There are many models which link

traffic density to traffic speed. One of them is Greenshield’s model which proposes a

linear relationship between traffic density and traffic speed, [33]. This model is given

by equation (2.7),

v(ρ) = vf

(

1−
ρ

ρm

)

, (2.7)

where vf is the free flow speed and ρm is the maximum possible density or jam density.

Free flow speed is the traffic speed when the traffic density is zero. This means that
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an unimpeded single vehicle on the highway will have the free flow speed. Traffic jam

density is the density at which the traffic speed is zero. In other words, jam density

refers to that density of traffic when vehicles are most tightly packed resulting in zero

speed.

Traffic flow using Greenshield’s model is given by equation (2.8),

f(t) = vfρ(t)

(

1−
ρ(t)

ρm

)

, (2.8)

and the fundamental diagram of traffic flow is shown in figure 2.1.

ρ ρm

vf

v

ρc
ρ

ρm

f

Figure 2.1: Traffic Fundamental Diagram using Greenshield’s Model
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Next, we present generalized and weak solutions for the scalar conservation laws

and then state the initial boundary value problem.

2.2.1 Generalized Solutions

For a conservation law

ρt + fx(ρ) = 0 (2.9)

with initial condition

ρ(x, 0) = ρ0(x), (2.10)

where ρ0(x) ∈ L1
loc(R;Rn), solution in the distributional sense is defined below for a

given smooth vector field f : Rn → Rn, (see [34]).

Definition 1. A measurable locally integrable function ρ(t, x) is a solution in the

distributional sense of the Cauchy problem (2.9) if for every φ ∈ C∞

0 (R+ ×R) → Rn

∫∫

R+×R

[ρ(t, x)φt(t, x) + f(ρ(t, x))φx(t, x)] dx dt

+

∫

R

ρ0(x)φ(x, 0) dx = 0 (2.11)
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2.2.2 Weak Solutions

A measurable locally integrable function ρ(t, x) is a weak distributional solution of

the Cauchy problem (2.9) if it is a distributional solution in (0, T )×R satisfying (2.10)

and if ρ is continuous as a function from [0, T ] into L1
loc. We assume ρ(t, x) = ρ(t, x+)

and the continuity condition implies

lim
t→0

∫

R

|ρ(t, x)− ρ0(x)| dx = 0 (2.12)

2.2.3 Scalar Initial-Boundary Problem

Consider the scalar conservation law given by

ρt + fx = 0, (2.13)

with initial condition

ρ(0, x) = ρ0(x), (2.14)

and boundary conditions

ρ(t, a) = ρa(t) and ρ(t, b) = ρb(t). (2.15)

The boundary conditions cannot be prescribed point-wise, since characteristics

from inside the domain might be traveling to outside at the boundary. In that case,
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the data at the boundary influences the local dynamics at the boundary but does not

become equal to the value at the boundary. This is shown in Figure 2.2 where for

some time boundary data on the left can be prescribed when characteristics from the

boundary can be pushed in (see [35]). However when the characteristics are coming

from inside, the boundary data can not be prescribed.

N
o
B
ou

n
d
ar
y
C
on

d
it
io
n
s

S
p
ec
if
y
B
.C
.

N
o
B
.C
.

x = a x = b
Figure 2.2: Boundary Data

For the traffic density equation, it should satisfy the entropy Kruzkov solution,

[36].

Definition 2 (Kruzkov Solution). The Kruzkov entropy solution is a function ρ :

[0,∞) → LR

loc, such that ∀k > 0, φ > 0 ∈ C1
c (R

2) with the compact support of φ is in

t > 0, we have

∫∫

[|ρ− k|φt + (f(ρ)− f(k)) sgn(ρ− k)φx]dxdt ≥ 0 (2.16)

and there exists a set E of zero measure on [0, T ], such that for t ∈ [0, T ] − E, the

10



function ρ(t, x) is defined almost everywhere in R, and for any ball Kr = {|x| ≤ r}

lim
t→0

∫

Kr

|ρ(t, x)− ρ0(x)|dx = 0. (2.17)

It has been shown that entropy solutions such as Kruzkov are equivalent to van-

ishing viscosity solutions for hyperbolic conservation laws ([34], [37]).

2.3 Vanishing Viscosity Mean Field

In this section we study the connection between the mean field formulation with

the stochastic (semilinear parabolic) HJB-FP system and the system governed by the

hyperbolic HJB and the Liouville equation.

2.3.1 Liouville Equation

In this section, we review the Liouville equation for control systems and provide

its solution.

Let the control system be described by

ẋ(t) = v(x(t), u(t)) (2.18)

where x = (x1, . . . , xn) and u is the control input. The time evolution of the probabil-

ity density function of the initial state of the system is a function of the control input.

Given a point x and time t, the initial condition Ξ can be found if the control input
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u(·) is known for [0, t]. In such a case, the system can be considered an autonomous

system and the backward dynamics of (2.18) can be solved to find Ξ. Thus,

Ξ = Ξ(x, t, u(·)), (2.19)

and the Liouville equation becomes

ρ(x, t, u(·))t + [ρ(x, t, u(·))v(x(t), u(t))]x = 0. (2.20)

The solution to the Liouville equation can be obtained by the method of charac-

teristics as in [38] and [39] by letting

dx

ds
= v(x(t), u(t)) (2.21)

dt

ds
= 1 (2.22)

du

ds
= 0. (2.23)

Then the partial differential equation (2.20) becomes the ordinary differential equation

dρ(x, t, u(·))

ds
= −ψ(x, u(t))ρ(x, t, u(·)) (2.24)

where

ψ(x(t), u(t)) =

n
∑

i=1

∂vi(x, u(t))

∂xi
(2.25)

and vi(x, u(t)) is the ith component of v(x(t), u(t)). The solution to (2.20) is

12



ρ(x, t, u(·)) = ρ0(Ξ(x, t, u(·))) exp

[

−

∫ t

0

ψ(x̂(τ), u(τ)) dτ

]

(2.26)

where x̂(τ) denotes the trajectory starting at Ξx(x, t, u(·)) at time zero and ending

at x at time t.

2.3.2 Hyperbolic HJB and the Liouville equation

Letting σ → 0 in equation (2.4) and equation (2.5), we get vanishing viscosity

solutions for the following set of equations.

Vt(x, t) + min
u(·)ǫ U

{v(x, u, ρ, t)∇xV(x, t) + r(x, u)} = 0,

V(x, T ) = k(x),

(2.27)

ρt(x, t)−∇ · (ρv(x, u, ρ, t)) = 0,

ρ(x, 0) = ρ0(x).

(2.28)

The second equation is the Liouville equation instead of the Fokker Planck one

from before with the difference that in this case pde is not semilinear in general

anymore. We will show that the LWR model matches this set of vanishing viscosity

mean field model for the system.
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CHAPTER 3

LWR Model from HJB equation

We take the agent model to be

dx = u(t)dt+ σ(x(t))dw(t), x(0) = x0. (3.1)

Define a function h(x(t), t) as

h := −
vf
2
(1−

ρ(x(t), t)

ρm
), (3.2)

where vf is the traffic free flow speed, ρm is the traffic jam density and ρ(x(t), t) is

the density at time t and position x.

Now we define the running cost r(x(t), t, u(t)) as

r(x(t), t, u(t)) :=
1

2
u2(t), (3.3)

where u(t) is the control variable and the cost function as

Jx,t[u(·)] = E

{
∫ tf

t0

r(x(s), s, u(s))ds+

∫ xf

x

h(x(s), s)ds

}

, (3.4)

14



where t0 is the initial time, tf is the final time and xf is the final position. Next we

attempt to determine the control u(t) that minimizes Jx,t[u(·)], for all admissible x(t)

and for all t < tf . We will now present the main result that shows the LWR model

as the solution of the mean field vanishing viscosity problem. In order to prepare the

main result, we first provide a supporting lemma.

Lemma 1 (Inverse Derivation of the Greenshield’s Model). For the stochastic differ-

ential equation model given by (3.1) the optimal control for the cost function given by

(3.4) is given by

u(t) = vf (1−
ρ

ρm
). (3.5)

Proof. The value function for the system given by equation (3.1) whose cost function

is given by equation (3.4) is

V(x(t), t) = min
u(·)

E

{
∫ tf

t0

r(x(s), s, u(s))ds+

∫ xf

x

h(x(s), s)ds

}

. (3.6)

By subdividing the interval we obtain

V(x(t), t) = min
u(·)

E

{
∫ t+∆t

t

rdτ +

∫ tf

t+∆t

rdτ+

∫ x+∆x

x

hds+

∫ xf

x+∆x

hds

}

. (3.7)

The principle of optimality requires that

15



V(x(t), t) = min
u(t)

E

{
∫ t+∆t

t

rdτ +

∫ x+∆x

x

hds+ V(x+∆x, t+∆t)

}

, (3.8)

where V(x + ∆x, t + ∆t) is the minimum value of the process for the time interval

t+∆t < τ < tf , and with initial state x(t+∆t).

Assuming that the partial derivatives of the V exist and are bounded, we can

expand V(x+∆x, t +∆t) using Ito’s chain rule about the point (x(t), t) to obtain

V(x(t), t) = min
u(t)

E

{
∫ t+∆t

t

rdτ +

∫ x+∆x

x

hds+ V(x(t), t)+
[

Vt(x(t), t) +
σ2

2
∆V(x(t), t)

]

∆t +∇xV(x(t), t)∆x+ h.o.t.

}

,

(3.9)

where h.o.t. stands for the higher order terms. For small ∆t we can write

V(x(t), t) = min
u(t)

E

{

r∆t+ h∆x+ V(x(t), t) +

[

Vt(x(t), t) +
σ2

2
∆V(x(t), t)+

∇xV(x(t), t)u(t)

]

∆t + h.o.t.

}

,

(3.10)

here we have utilized the fact that u(t) = ∆x/∆t.

Now getting the terms involving V(x(t), t) and Vt(x(t), t) out of the min term as

they do not depend on u(t) and then canceling V(x(t), t) from both sides, we get

0 = Vt(x(t), t)δt +min
u(t)

E

{

r∆t+ h∆x+
[

σ2

2
∆V(x(t), t) +∇xV(x(t), t)u(t)

]

∆t+ h.o.t.

}

.

(3.11)
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Substituting ∆x = u(t)∆t, dividing by ∆t and letting ∆t→ 0 yields

0 = Vt(x(t), t) + min
u(t)

E

{

r + hu(t) +
σ2

2
∆V(x(t), t) +∇xV(x(t), t)u(t)

}

. (3.12)

Now we define the Hamiltonian H, where we have used the same notation for the

optimal control and corresponding V variables.

H = r + hu(t) +∇xV(x(t), t)u(t) +
σ2

2
∆V(x(t), t). (3.13)

Using the above equations (3.12) and (3.13) we obtain the stochastic Hamilton-

Jacobi equation as

0 = Vt(x(t), t) +H. (3.14)

Please note that the only point where the stochastic nature of the problem enters

into the HJB is in the last term of equation (3.13), which involves the second derivative

of the value function. In order to calculate the optimal value of the control u(t), we

differentiate H with respect to u(t) and equate to zero

∂H

∂u
=

∂

∂u

[

1

2
u2(t) + hu(t) +

σ2

2
∆V(x(t), t)+ ∇xV(x(t), t)u(t)

]

= 0. (3.15)

This gives the control law u(t) as
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u(t) = −(∇xV(x(t), t) + h). (3.16)

Now replacing the values of ∇xV(x(t), t) and h in the above equation yields Green-

shield’s traffic flow formula,

u(t) = vf (1−
ρ

ρm
). (3.17)

Next, we replace the value of the optimal control u(t) in equation (3.12) to obtain

the HJB equation as follows

0 = Vt(x(t), t) +
σ2

2
∆V(x(t), t) + vf (1−

ρ

ρm
)∇xV(x(t), t). (3.18)

The Fokker Planck equation for the evolution of the probability density function (pdf)

of the state is given by

ρt(x, t)−
σ2

2
∆ρ(x, t) +∇ · (ρv(x, u, ρ, t)) = 0,

ρ(x, 0) = ρ0(x).

(3.19)

Equations (3.18) and (3.19) represent the coupled PDE system of the Mean Field

Games.

Theorem 2 (Inverse Derivation of the LWR Model). For the stochastic differential

equation model given by equation (3.1) the vanishing viscosity solution for the mean
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field game for the cost function given by equation (3.4) is the LWR model

ρt + fx(ρ) = 0 (3.20)

where, f = ρv and

v(ρ) = vf (1−
ρ

ρm
) (3.21)

Proof. The lemma 1 showed that the optimal control, which is the vehicle speed

according to the model given by equation (3.1) is

v(ρ) = vf(1−
ρ

ρm
). (3.22)

Moreover, the Fokker Planck equation for the evolution of the pdf of the state is

given by

ρt(x, t)−
σ2

2
∆ρ(x, t) +∇ · (ρv(x, u, ρ, t)) = 0,

ρ(x, 0) = ρ0(x).

(3.23)

Letting σ → 0 gives us the conservation law of the LWR model.
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CHAPTER 4

Travel Time PDE using HJB equation and Pontryagin’s Minimization

Principle

We can also derive the LWR model by minimizing the travel time for an agent.

This strategy not only develops the LWR model, but also produces the travel time

dynamics in terms a PDE that models the evolution of the travel time field. The

travel time PDE developed is the same one developed for the first time in [28] and

[29], but in this case using the vanishing viscosity mean field framework.

We take the agent model once again to be

dx = u(t)dt+ σ(x(t))dw(t), x(0) = x0. (4.1)

We define the cost function to be the expected value of the travel time T (x(t), t)

of the agent to a fixed location,

Jx,t[u(·)] = E{T (x(t), t)}. (4.2)

The value function for the problem becomes
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V(x(t), u(t), t) = min
u(t)

E {T (x(t), t)} . (4.3)

By subdividing the interval we obtain

V(x(t), t) = min
u(t)

E {∆t+ V(x(t +∆t), t +∆t)} , (4.4)

where V(x+∆x, t +∆t) is the minimum expected travel time of the process for the

time interval t +∆t < τ < tf , and with initial state x(t +∆t).

Assuming that the partial derivatives of the V exist and are bounded, we can

expand V(x+∆x, t +∆t) using Ito’s chain rule about the point (x(t), t) to obtain

V(x(t), t) = min
u(t)

E

{

∆t + V(x(t), t) + Vt∆t+ Vx∆x+
σ2

2
∆V∆t + h.o.t.

}

. (4.5)

Simplifying and canceling V(x(t), t) from both sides we get

0 = min
u(t)

E

{

∆t + Vt∆t+ Vxu(t)∆t +
σ2

2
∆V∆t + h.o.t.

}

. (4.6)

Now dividing by ∆t and taking the limit as ∆t→ 0 we get

0 = min
u(t)

{

1 + Vt + Vxu(t) +
σ2

2
∆V

}

. (4.7)

Here we define the Hamiltonian H as
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H := min
u(t)

{1 + Vxu(t)} . (4.8)

The stochastic Hamilton-Jacobi-Bellman equation is

0 = Vt +
σ2

2
∆V +H. (4.9)

Pontryagin’s minimum principle asks to minimize H as a function of u ∈ [0, vf(1−

ρ/ρm)] at each fixed time t for this problem, as the speed is constrained by the given

traffic density in this formulation we are taking. Since H is linear in u, it follows that

the minimum occurs at one of the endpoints u = 0 or u = vf (1 − ρ/ρm), hence the

control is bang-bang. Since Vx is negative (travel time value decreases as a function of

x), hence to minimize the travel time we choose the maximum possible speed, which

is

u(t) = v(ρ) = vf(1−
ρ

ρm
). (4.10)

The dynamics of the expected travel time are given by the PDE

Vt + Vxu(t) +
σ2

2
∆V + 1 = 0. (4.11)

Replacing the value of optimal control u(t) in the above equation we obtain the

HJB equation for expected travel time as follows
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Tt + vf(1−
ρ

ρm
)Tx +

σ2

2
∆T + 1 = 0, (4.12)

and the Fokker Planck equation for the evolution of the pdf of the state is given by

ρt(x, t)−
σ2

2
∆ρ(x, t) +∇ · (ρv(x, u, ρ, t)) = 0,

ρ(x, 0) = ρ0(x).

(4.13)

Equations (4.12) and (4.13) represent the coupled PDE system for the Mean Field

Games.

Now in the case of vanishing viscosity equation (4.12) becomes the PDE shown

here, for the travel time field.

Tt(x, t) + Tx(x, t)v(ρ) + 1 = 0. (4.14)

Hence, in this chapter we have derived the travel time dynamics as well as the

Greenshield’s traffic velocity, which provides the LWR model by minimizing the travel

time for each agent in the mean field.
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CHAPTER 5

Stationary Mean Field Games and Traffic

In order to get some understanding of the system behavior we study the station-

ary dynamic problem (where the time variation has become zero) instead of the time

varying one, as the time varying system is much more complex. This gives us a solu-

tion in steady state and we can understand how the system would be after transients

have settled down. In this chapter we will discuss the stationary mean field games

for the two inverse problems of traffic formulated in previous sections.

5.1 Stationary MFG for LWR Model

Using equations (3.18) and (3.19) we can write the stationary MFG equations.

Stationary HJB equation for inverse problem of deriving LWR model is given as

σ2

2

d2

dx2
V(x) + vf(1−

ρ

ρm
)
d

dx
V(x) = 0, (5.1)

and the corresponding stationary FPK equation is given as

−
σ2

2

d2

dx2
ρ(x) +

d

dx
(ρv(ρ)) = 0. (5.2)

Equations (5.1) and (5.2) show that the system in the steady state has position
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invariants. Equation (5.1) produces the following position invariant (a constant) K1,

σ2

2

d

dx
V(x) + vf (1−

ρ

ρm
)V(x) = K1. (5.3)

Similarly, equation (5.2) produces the following position invariant (a constant)

K2,

−
σ2

2

d

dx
ρ(x) + ρv(ρ) = K2. (5.4)

Equation (5.4) can be rearranged in the form

∫

dρ

aρ2 + bρ+ c
=

∫

dx

and hence its closed form solution can be obtained from

x =

2 tan−1

(

(2aρ+ b)/(4ac− b2)1/2
)

(4ac− b2)1/2
+ constant term,

where

a =
−2vf
ρmσ2

, b =
2vf
σ2

and c =
−2K2

σ2
.

5.1.1 Existence of Unique Solutions

Equations (5.3) and (5.4) can be rearranged as follows:

V′(x) = −
2

σ2
vf(1− ρ/ρm)V(x) +

2

σ2
K1 =: F1(ρ,V) (5.5)
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ρ′(x) =
2

σ2
vf (1− ρ/ρm)ρ−

2

σ2
K2 =: F2(ρ,V) (5.6)

and accompanied by initial conditions (ρ0,V0).

We have the existence of a unique solution to the above initial value problem

(5.5)-(5.6), since F1, F2,
∂F1

∂ρ
, ∂F1

∂V
, ∂F2

∂ρ
, ∂F2

∂V
are continuous in a region that encloses the

initial condition.

5.1.2 Stability Analysis

Using the parameters listed in table 5.1 (column two), we solve for the critical

points (i.e. equilibrium solutions) of (5.3)-(5.4) and the resulting direction field is

shown in figure 5.1.

We can analyze the stability of this non linear system near a critical point. To

obtain the corresponding locally linear system we will try to find the Jacobian as

follows:

J =









F1V F1ρ

F2V F2ρ









=









− 2
σ2 vf (1−

ρ
ρm

) 2
σ2 vf

V

ρm

0 2
σ2 vf −

4
σ2 vf

ρ
ρm









and evaluating at the critical point (67.9,67.9) we get

J =









−0.294 1.105

0 −0.811








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Figure 5.1: Direction Fields for Inverse Problem-1

Let r1, r2 be the eigenvalues of the linear system described above. We find

r1 = −0.294, r2 = −0.811

As r1 < 0 and r2 < 0 we can conclude that the critical point (67.9, 67.9) is an

asymptotically stable nodal sink.

Now evaluating the above equation at the critical point (18.09, 18.09) and calcu-
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lating the eigenvalues we get

r1 = 0.811, r2 = −1.105

As r2 < 0 < r1 we can conclude that the critical point (18.09, 18.09) is an unstable

saddle point.

For solving (5.3) and (5.4), we need to provide the initial conditions V(0) and ρ(0)

as well as the values of the two constants K1 and K2. The solution obtained from

the second order ODEs (5.1) and (5.2) is the same as the one obtained from the first

order ODEs (5.3) and (5.4) provided the values of the boundary derivatives and the

constants are chosen to match each other at the boundary. The matching boundary

conditions become:

σ2

2

d

dx
V(x)

∣

∣

∣

∣

x=0

+ vf(1−
ρ

ρm
)V(0) = K1 (5.7)

and

−
σ2

2

d

dx
ρ(x)

∣

∣

∣

∣

x=0

+ ρv(ρ(0)) = K2. (5.8)

Using the parameters listed in table 5.1, numerical results are obtained for (5.3)

and (5.4) and the results are shown in figure 5.2. We used MATLAB to numerically

solve the ODEs. ODE45, the inbuilt ODE solver in MATLAB was used which is

based on an explicit Runge-Kutta (4,5) formula with a variable time step for efficient
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computation. The σ = 0 column of table 5.1 corresponds to the equilibrium solution.

Table 5.1: Parameters for Simulation 1

Parameter Values
σ 0 10 20 30
ρ(0) 67.9 40 30 20
V(0) 67.9 80 90 120
K1 1000 1000 1000 1000
K2 1000 1000 1000 1000
ρm 86 86 86 86
vf 70 70 70 70

In figure 5.2 we plot the value function V(x), traffic density ρ(x), the control

action u(x), and the traffic flow f(x) with respect to the spatial coordinate x, as the

dependence on time t is gone in the steady state. Notice that equation (5.4) is a first

order nonlinear ordinary differential equation with a quadratic drift term. On the

other hand equation (5.3), although has first order derivative in terms of the value

V(x), but because of the presence of the density ρ, it shows a second order behavior

with respect to x. We also notice the convergence of the plots towards the non-viscous

case (σ = 0), as x→ ∞.

5.2 Stationary MFG for Travel Time PDE

Using equations (4.12) and (4.13) we can write the stationary MFG equations .

Stationary HJB equation for inverse problem of deriving Travel Time dynamics is
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Figure 5.2: Numerical Results for Inverse Problem-1

given as

σ2

2

d2

dx2
T (x) + vf (1−

ρ

ρm
)
d

dx
T (x) + 1 = 0, (5.9)

and the corresponding stationary FPK equation is given as

−
σ2

2

d2

dx2
ρ(x) +

d

dx
(ρv(ρ)) = 0. (5.10)

Equations (5.9) and (5.10) also show that the system in the steady state has posi-

tion invariants. Equation (5.9) produces the following position invariant (a constant)

K3,

σ2

2

d

dx
T (x) + vf(1−

ρ

ρm
)T (x) + x = K3. (5.11)
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Similarly, equation (5.10) produces the following position invariant (a constant)

K4,

−
σ2

2

d

dx
ρ(x) + ρv(ρ) = K4. (5.12)

5.2.1 Existence of Unique Solutions

Equations (5.11) and (5.12) can be rearranged as follows:

T ′(x) = −
2

σ2
vf (1− ρ/ρm)T (x) +

2

σ2
(K3 − x) =: F1(ρ, T ) (5.13)

ρ′(x) =
2

σ2
vf(1− ρ/ρm)ρ−

2

σ2
K4 =: F2(ρ, T ) (5.14)

and accompanied by initial conditions (T0, ρ0).

We have the existence of a unique solution to the above initial value problem

(5.13)-(5.14), since F1, F2,
∂F1

∂ρ
, ∂F1

∂T
, ∂F2

∂ρ
, ∂F2

∂T
are continuous in a region that encloses

the initial condition.

5.2.2 Stability Analysis

Using the parameters listed in table 5.2 (column two) and for x = 100, we solve

for the critical points (i.e. equilibrium solutions) of (5.11)-(5.12) and the resulting

direction field is shown in figure 5.3.

For (5.11) and (5.12), we need to provide the conditions T (ℓ), which is 0, and ρ(ℓ)
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Figure 5.3: Direction Fields for Inverse Problem-2

as well as the values of the two constants K3 and K4. We can provide the matching

conditions for this case as well so that the second order and the first order ODEs

become equivalent.

We can also provide the corresponding initial conditions T (0) and ρ(0) as well as

the values of the two constants K3 and K4. The solution obtained from the second

order ODEs (5.9) and (5.10) is the same as the one obtained from the first order ODEs

(5.11) and (5.12) provided the values of the boundary derivatives and the constants
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are chosen to match each other at the boundary. The matching boundary conditions

become:

σ2

2

d

dx
T (x)

∣

∣

∣

∣

x=0

+ vf(1−
ρ

ρm
)T (0) = K3 (5.15)

and

−
σ2

2

d

dx
ρ(x)

∣

∣

∣

∣

x=0

+ ρv(ρ(0)) = K4. (5.16)

Similarly as in stationary MFG of LWR, for the travel time stationary case, we

have equations (5.11) and (5.12) that are parallel to equations (5.3) and (5.4). We

observe that equation (5.12) is the same as equation (5.4) and hence will have the

same solution as we provided for that. However, equation (5.11) has an additional

term x in the left hand side. This equation is still a linear ODE, although space

varying. The closed form solution of this ODE will be more complex than that of

equation (5.3).

Using the parameters listed in table 5.2, numerical results are obtained for (5.11)

and (5.12) and the results are shown in figure 5.4. We used MATLAB to numerically

solve the ODEs. ODE45, the inbuilt ODE solver in MATLAB was used which is

based on an explicit Runge-Kutta (4,5) formula with a variable time step for efficient

computation. The σ = 0 column of table 5.1 corresponds to the equilibrium solution.

For the case of zero viscosity, we get a constant value of density ρ (66.6). Using this

value in the non-viscous version of equation (5.11), we get the stationary travel time
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T (x) as a linear function of x as compared to a constant function that we obtained for

the equation (5.3), and as expected at the right boundary, T (x) is equal to zero. The

convergence results are also similar as for the stationary LWR case. Which means

that the behavior of the model for a given viscosity, i.e. for a given σ, as x → ∞, is

the same as in the non-viscous case.

Table 5.2: Parameters for Simulation 2

Parameter Values
σ 0 10 20 30
ρ(0) 66.6 40 30 20
T (0) 5 20 40 60
K3 80 80 80 80
K4 1050 1050 1050 1050
ρm 86 86 86 86
vf 70 70 70 70

It is very interesting to note that for the non-viscous case the travel time function

is a monotonic function of x as vehicles can not cross each other according to the

deterministic model for drivers, which leads to the speed being a function of density.

However, in the stochastic differential equations case, since there is stochasticity, two

vehicles at the same location can have different speeds as they would be two different

samples. Hence, in that case, the travel time function does not have to be monotonic.
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Figure 5.4: Numerical Results for Inverse Problem-2
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CHAPTER 6

Conclusion

This thesis solved two inverse problems using Mean Field Games. In order to

derive the classic traffic LWR model based on specific driver behavior cost leading

to that model, we identified the costs functions whose solutions through mean field

games lead to the derivation of LWR model for traffic. We also derived the travel

time spatio-temporal model obtained as a solution to an inverse problem. The paper

then discussed the stationary mean field games and solved the two inverse problems

numerically for the stationary case.

In our models, we have shown how the microscopic driver behavior leads to

the classic Greenshield’s fundamental relationship between traffic density and traffic

speed, as well as the well known LWR conservation law dynamics for traffic. We

then enhanced the formulation to also show how microscopic driver behavior based

on travel time considerations also produce the very significant distributed parameter

model for travel time dynamics. The analysis of the stationary versions of the models

showed behavior that is consistent with long term expectation of the evolution.
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