
UNLV Theses, Dissertations, Professional Papers, and Capstones

August 2015

A Survey of Network Coding and Applications A Survey of Network Coding and Applications

Jonny L. Winger
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Winger, Jonny L., "A Survey of Network Coding and Applications" (2015). UNLV Theses, Dissertations,
Professional Papers, and Capstones. 2505.
http://dx.doi.org/10.34917/7777333

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2505&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/7777333
mailto:digitalscholarship@unlv.edu

A SURVEY OF NETWORK CODING AND APPLICATIONS

by

Jonny L. Winger

Bachelor of Science (B.Sc.) University of Nevada, Las Vegas 2011

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

August 2015

c© Jonny L. Winger, 2015

All Rights Reserved

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

June 4, 2015

This thesis prepared by

Jonny L. Winger

entitled

A Survey of Network Coding and Applications

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Ajoy Datta, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Interim Dean

Juyeon Jo, Ph.D.
Examination Committee Member

Lawrence Larmore, Ph.D.
Examination Committee Member

Venkatesan Muthukumar, Ph.D.
Graduate College Faculty Representative

Abstract

Common networks with source, internal, and destination nodes put data packets in queues for

forwarding.Network coding aims to improve network throughput and energy consumption by com-

bining received data packets before forwarding. In this survey, we will explore various network

coding schemes, along with the behavior of network coding in applications. Sensor, wireless routing,

and distributed storage networks can benefit greatly from network coding implementations. Flood-

ing is a procedure in distributed systems which broadcasts a message to all nodes in the network.

NC-Flooding is introduced, which uses network coding to possibly decrease the message complexity

and/or time complexity of flooding.

iii

Acknowledgements

Thank you to my advisor and chair Dr. Datta, my family, and friends for their support and

understanding.

Jonny L. Winger

University of Nevada, Las Vegas

August 2015

iv

Contents

Abstract iii

Acknowledgements iv

Contents v

List of Tables viii

List of Figures ix

List of Algorithms x

1 Introduction 1

1.1 Contribution . 1

2 Foundations of Network Coding 2

2.1 A Brief History of Network Coding . 2

2.2 Galois Field . 3

2.3 Max-Flow Min-Cut Theorem . 4

3 Network Coding Schemes 5

3.1 Simple Network Coding . 5

3.2 Linear Network Coding . 6

3.2.1 Example of Random Linear Network Coding 6

3.3 Erasure Coding . 7

4 NC-Flooding: Flooding Using Network Coding 11

4.1 NC-Flooding Protocol Variables . 12

4.1.1 Variables . 12

4.1.2 NC-Flooding Protocols . 13

v

4.2 NC-Flooding Example . 15

4.3 Node Network Count Analysis . 16

5 Network Coding in Peer-to-Peer Networks 22

5.1 Benefits of Network Coding in Peer-to-peer Networks 22

5.2 Tree Coding . 23

5.3 Avalanche . 23

5.4 UUSee . 24

6 Wireless Routing Networks 25

6.1 COPE . 25

6.1.1 COPE Overview . 25

6.1.2 COPE Performance Gains . 26

6.2 MORE . 27

6.2.1 MORE Protocol . 27

6.2.2 MORE Gains . 28

6.3 Wireless Networks with Collisions . 28

7 Network Coding in Mobile and Wireless Sensor Networks 30

7.1 Network Coding in Mobile Networks . 30

7.1.1 Mobile Network Coding in Developing Countries 31

7.1.2 Problems of Mobile Network Coding . 31

7.2 RDTS Implementation for A Wireless Sensor Network 31

8 Network Coding in Cloud and Distributed Storage 34

8.1 Cloud Storage Overview . 34

8.1.1 Various Architectures . 35

8.2 RAID overview . 35

8.2.1 RAID in Cloud . 35

8.3 Simple Regenerating Codes . 37

8.3.1 Simple Regenerating Code Read / Write Operation Analysis 38

8.3.2 Simple Regenerating Codes Benefits . 39

8.3.3 Problems with Simple Regenerating Codes 39

8.4 NC-Cloud . 39

8.5 Proposed Improvements and Implementations to Network Coding in Cloud and Dis-

tributed Storage Networks . 40

8.5.1 Cooperative Recovery Codes . 40

8.5.2 Tree Formation in a Network-Coding-based Repository 41

8.6 Cryptographic Benefits of Network Coding in Cloud Storage 41

8.6.1 NC-Audit . 41

9 Network Security 44

10 Limitations of Network Coding 45

10.1 Network Topology . 45

10.2 Limitations of Network Coding in NC-Flooding . 46

10.3 Limitations of Network Coding in Peer-To-Peer Networks 47

11 Open Issues 48

12 Conclusion and Future Work 49

Bibliography 50

Vita 53

List of Tables

4.1 NC-Flooding packet data . 12

4.2 NC-Flooding node data . 13

4.3 NC-Flooding Example Phase Packets . 16

4.4 Node Network Count Phases 1 and 2 . 20

4.5 Node Network Count Phase 3 . 21

4.6 Node Network Count Comparison . 21

8.1 Repair Variables . 36

8.2 Theoretical Summary of Performance . 39

viii

List of Figures

2.1 A Classic Butterfly Network . 3

3.1 Traditional Routing in Mobile Network . 8

3.2 Simple Routing in Mobile Network . 9

3.3 Random Linear Network Coding in Butterfly Network 10

4.1 Network Topology for NC-Flooding . 15

6.1 Butterfly Collision Example . 29

7.1 An RDTS Transmission Example . 33

8.1 Cloud Storage Layout Example . 43

10.1 Chain Topology . 46

10.2 Four-way Bottleneck . 46

ix

List of Algorithms

1 NC-Flooding Decoding Protocol . 13

2 NC-Flooding Encoding Protocol . 14

3 Node Network Count . 17

x

Chapter 1

Introduction

[5] shows network coding to be an alternative method to traditional store-and-forward routing;

encoding and decoding schemes are implemented to increase the amount of data in each packet.

Thus, higher throughput, greater efficiency, and less bandwidth usage are expected from network

coding schemes. The basis of these schemes stem from analysis Dr. Ahlswede, Li, Cai, and Yeung

first contributed [1].

1.1 Contribution

This report contributes theoretical analysis to the read, write, and repair operations in Cloud

and Distributed Storage with Network Coding. RAID-6 and Simple regenerating codes include

individual analysis of their respective basic operations which apply to storage systems. In addition,

network coding is applied to flooding, and theoretical analysis is included as a contribution from

this report.

1

Chapter 2

Foundations of Network Coding

Network coding, often times abbreviated to NC, is a fairly recent field of interest starting in 2000

[12]. Ahlswede is seen as the father of network coding. He and peers combined network topology,

algorithms, and mathematical computations to construct what is now the foundation of NC. A staple

in NC research articles is the exploration of benefits found within a butterfly network topology. And

to prove NC has the theoretical capabilities to improve the performance of networks in any form,

the max flow-min cut and Ford Fulkerson algorithm are applied. The Galois field is often used in

most network coding schemes, and will be explained in section 2.2.

2.1 A Brief History of Network Coding

According to [12], network coding surfaced in 2000 by Ahlswede and peers during work on

multi-casting. This in turn led to studies of network coding benefits in specific network topologies.

Ahlswede’s article Network Information Flow was the first article to use the term network coding

[1, p. 1204]. In it, intermediate nodes, or routers, were viewed as locations which could provide

better throughput for data through additional computational tasks. [12, 5, 28] and other sources

have discussed the benefits of network coding by demonstration via a butterfly network, similar to

figure 2.1.

A few years later, studies of wireless network coding emerged [12]. Up until 2006, network

coding remained theoretical, but Sachin Katti and peers created [12], which aimed to deploy COPE:

wireless routing with network coding interleaved. Then in 2007, [6] discussed Avalanche, also known

as Microsoft Secure Content Distribution (MSCD). This was a deployed peer-to-peer file distribution

network which also utilized network coding. A common visual display for the benefits NC has to

offer is the butterfly network. In figure 2.1, two source nodes are to broadcast their packets to

2

Source 1

Relay 1

Source 2

Relay 2

Destination
1

Destination
2

Figure 2.1: A Classic Butterfly Network

both destination nodes. According to [19], with multi-casting implemented, NC performs better at

relaying data to both destination nodes. In both NC and traditional, Source 1 will send its packet

to Destination 1, and Source 2 to Destination 2, in one round respectively. However, the difference

in performance occurs at relay node 1. Without NC, Relay 1 will need two rounds in order to deliver

all received packets to Relay 2. Relay 2 will broadcast to the destination nodes for two rounds. Thus

it will take four rounds for all packets to be delivered to Destination 1 and Destination 2.

With NC, however, both incoming packets can be combined and sent to relay node 2 in one round.

Relay 2 will broadcast only one packet to Destination 1 & 2. Then, Destination 1 & 2 will decode

based on the decoding scheme specified for the particular network. Thus, all destination nodes will

receive all packets in three rounds. Thus with network coding, a 25% throughput improvement can

be noted in a butterfly network. However, depending on the specified field size of the network, this

may not be the case. This network coding benefit in a butterfly network can be explained using the

max-flow min-cut theorem.

2.2 Galois Field

A Galois Field, more commonly referred to as a finite field, is a set of numbers represented as

GF(n) or Fn. The parameter n is a prime number in which the set contains all whole numbers {0,

3

1, ... n-1}. [24]. For the purpose of practical network coding in sets of hardware, operating systems,

and software, the most efficient galois field set is {0, 1}, which is represented as GF(2) [21]. And

according to [21], GF (2t) generates a vector of t entries from the set GF(2). For example, a node in

a network will need to generate coding vectors, which will be discussed further starting in chapter

3. These coding vectors are the resulting set from GF(2t), and each element is multiplied with a

respective incoming packet, and all the packets multiplied over the vector are summed to form an

outgoing packet [5]. Given a node generates GF (24) = {0, 1, 1, 1}, the outgoing packet at that node

is {0B1 + 1B2 + 1B3 + 1B4} [21]. According to [19], an ideal finite field size, which will work

efficiently with most general computers, is from 28 to 216.

2.3 Max-Flow Min-Cut Theorem

[1, p. 1205-1207] discusses max-flow min-cut theorem and how it relates to the theoretical analysis

of network coding. Given a network with one source node, several sink nodes internal nodes, the

edges connecting all of the nodes have a certain integral capacity. Flow is the usage of an edge

to its capacity at most. F is the symbol for a flow in the network from the source to any of the

sink nodes. A general network flow rule is that the total incoming flow should equal to the total

outgoing. This applies from the scope of a singular node to the network as a whole, which is referred

to as Kirchloff’s Current Laws [24]. The maximum flow is the flow of the path from the source to

any of the sink nodes which uses as much of the edge capacities as possible to achieve the highest

throughput.

[24] discusses min cut: Nodes are put into two sets: S and Sc. The sink will always be in the set

Sc, and the source will always be in the set S. The capacity of a cut is the total edges from S to Sc.

The cut occurs at edges in the path from the source to the sink that do not utilize the edge at full

capacity. When that cut is met, all nodes in the same side as the source are in set S, and all nodes

on the side of sink are in the set Sc. The cut capacity is the total capacity of edges separating sets S

and Sc. According to [24], max flow and min cut are proven to be equal by the Fulkerson algorithm,

when all capacities are of an integer value. And accoding to [24, p. 609], Menger’s Theorem states

that ”the number of edge-disjoint paths from the source to the sink is equal to the max-flow of the

network”.

4

Chapter 3

Network Coding Schemes

The purpose of network coding is to increase the throughput and efficiency of transmitting

data within a network. With this goal in view, encoding and decoding schemes are created for

designated nodes in a network. Simple network coding involves a quick encoding and decoding

scheme using ⊕, also referred to as XOR or exclusive-or, which can also be referred to as bit-wise

addition [5]. Linear network coding involves a more complex encoding and decoding scheme which

includes a coefficient matrix that contains important information used at decoding nodes [5]. Erasure

coding is an encoding and decoding scheme primarily used for information redundancy, and generally

performed only at source and destination nodes [25]. In simple and linear network coding, any node

in the network, that is not the destination node, may encode two or more packets together [10, 5].

The following sub-sections will discuss simple, linear, and erasure network coding in greater detail.

3.1 Simple Network Coding

Simple network coding uses bit-wise addition between packet data, also referred to as the XOR

operation, and is one of the most easily understood network coding schemes. When a node receives

packets from two different sources, simply XOR them together, and send them to outgoing nodes

[28]. Encoding involves adding zeros for padding, if needed, and then performing bit-wise addition

in any manner the receiving node is aware. Additionally, a receiving node must maintain a record

of at least n - 1 original packets encoded in the simple packet received [5]. This scheme works well

for wireless communication. To decode, the destination node simply XORs the data received, with

the packet it has kept in memory, in the appropriate manner to get the full packet. Thus, network

coding has an added benefit of cryptography, since an interceptor would not easily recognize the

file’s manipulation process [5].

5

With all network coding schemes, receiving nodes must have some data to use in order to decode

packet information received. There are several more network coding schemes mentioned in great

detail in [28]. Simple network coding is efficient, in terms of overhead, and is acceptable for multi-

casting, broadcasting, or two-way communication.

3.2 Linear Network Coding

Linear coding extends simple network coding by incorporating additional information and in-

cluding it in the packet payload. A node can multiply some coefficient with a fixed size of data in

the original message, and combine its own data with a coefficient [5].

The following encoding and decoding process is generalized from [5]. For an incoming packet to

be combined with a packet the node has generated, first the node must add padding, if necessary, to

match the size of the encoded information, excluding the coefficient matrix. At the same position

in each packet, multiply the desired size by a coefficient. Normally, a coefficient applies to a whole

packet. But if a network wants more security, applying coefficients to some partition of a packet

payload may be possible. Then the node adds all of the encoded segments at that position to the

same position in the incoming packet. And finally, the finished coefficient vector used in the new

packet will be added to the incoming coefficient matrix, if available, and included in the payload.

There are several ways to decode, which generally varies for each network coding scheme, but the

most simple implementation is to perform Gaussian elimination to solve for the original data by

each position [5]. In order to decode, the coefficient matrix must have a total rank greater than or

equal to the number of packets encoded.

One drawback of linear network coding is the increase in overhead of encoding and decoding

data. As will be seen in later sections, computational overhead makes some network coded cloud

storage systems inefficient in comparison to more widely known redundancy configurations. Also,

[5] notes that the coefficients must be strategically chosen so as to maintain linear independence in

each row of data.

3.2.1 Example of Random Linear Network Coding

With linear network coding, the coefficient matrix that the destination nodes will receive comprise

of coefficient vectors with values chosen over a Galois Field [5]. Within round 1 of figure 3.3a, source

nodes 1 and 2 will send the set
〈
c, P

〉
, where P is the packet generated from the source, and c is the

coefficient vector. If a packet is native, meaning it is not decoded, generally a native flag is raised

in the packet header.

6

In the second time slot of linear network coding, as shown in figure 3.3b, Destination 1 & 2

receive packets from Source 1 & 2 respectively. Relay 1 computes its outgoing file by receiving

two random coefficients from Galois Field 2, multiplying them by the two incoming packets, and

summing them up to receive an encoded packet. The generated coefficient vector
[
1 1

]
is appended

to one of the incoming coefficient vectors, since they are equal. A zero is added to the incoming

coefficient vector for alignment at the destination node solely, but this is not required practice at

relay nodes.

In the final round, as shown in figure 3.3c, Relay 2 simply forwards the incoming packet to the

destination nodes. This is simply for a more simple decoding process, but all relay nodes can further

encode incoming packets of any degree if they so choose.

The decoding process at Destination 1 & 2 are similar in practice. The coefficient matrix for

Destination 1 is
[
1 0
1 1

]
. According to [5], this coefficient matrix needs to be linearly independent

amongst at least n rows in order to decode the packets successfully. This coefficient matrix is put

into Gaussian elimination format with the encoded and native packets they arrived with. In the

end, destination 1 and 2 decode
[
4 0
2 8

]
and

[
2 1
1 0

]
.

3.3 Erasure Coding

Erasure coding is in the class of fountain codes [5]. When a packet is erasure encoded, only

the destination node may manipulate it, for sake of decreasing overhead. Fountain codes are used

for cryptography. The primary purpose of erasure coding is to ensure information redundancy in a

network where dropped packets can occur frequently [5]. One property in erasure coding is called

maximum distance separable, which has the form MDS(n,k) [23]. MDS(n, k) ensures that out of n

packets being delivered to a destination, up to n-k can be lost, and the receiving node can rebuild

the lost information from remaining packets [23]. In terms of cloud storage, up to n - k repositories

may fail at a given time without loss of data. Another form of erasure coding involves encoding

based on the Vandermonde matrix [25]. This matrix shows linear independence in any subset of the

matrix; linear equations remains solvable up to a certain threshold in loss of rows. This matrix is

used in Reed-Solomon codes, which are also used in RAID-6 construction [25, 23].

7

Wireless
Access
Point

Cell 1 Cell 2

Hello, Cell 2

(a) Round 1

Wireless
Access
Point

Cell 1 Cell 2

Hello, Cell 1

(b) Round 2

Wireless
Access
Point

Cell 1 Cell 2

Hello, Cell 1

(c) Round 3

Wireless
Access
Point

Cell 1 Cell 2

Hello, Cell 2

(d) Round 4

Figure 3.1: Traditional Routing in Mobile Network

Wireless
Access
Point

Cell 1 Cell 2

Cell 1 memory: Hello, Cell 2

Hello, Cell 2

(a) Round 1

Wireless
Access
Point

Cell 1 Cell 2

Cell 2 memory: Hello, Cell 1

Hello, Cell 1

(b) Round 2

Wireless
Access
Point

Cell 1 Cell 2

Hello, Cell 1 ⊕ Hello, Cell 2

Cell 1 memory ⊕
(Hello, Cell 1 ⊕ Hello, Cell 2)

Hello, Cell 1 ⊕ Hello, Cell 2

Cell 2 memory ⊕
(Hello, Cell 1 ⊕ Hello, Cell 2)

(c) Round 3

Figure 3.2: Simple Routing in Mobile Network

Source 1

Relay 1

Source 2

Relay 2

Destination
1

Destination
2

〈
1,

[
4 0
2 8

]〉

〈
1,

[
4 0
2 8

]〉

〈
1,

[
2 1
1 0

]〉

〈
1,

[
2 1
1 0

]〉

Source 1 outgoing:[
4 0
2 8

] Source 2 outgoing:[
2 1
1 0

]

(a) Round 1

Source 1

Relay 1

Source 2

Relay 2

Destination
1

Destination
2

Outgoing Relay 1:〈[
1 0
1 1

]
,
[
6 1
3 8

]〉

Dest 1 incoming:〈
1,

[
4 0
2 8

]〉 Dest 2 incoming:〈
1,
[
2 1
1 0

]〉
(b) Round 2

Source 1

Relay 1

Source 2

Relay 2

Destination
1

Destination
2

Outgoing Relay 2:〈[
1 0
1 1

]
,
[
6 1
3 8

]〉

Dest 1 incoming:〈
1,

[
4 0
2 8

]〉〈[
1 0
1 1

]
,
[
6 1
3 8

]〉
Dest 2 incoming:〈

1,
[
2 1
1 0

]〉〈[
1 0
1 1

]
,
[
6 1
3 8

]〉
(c) Round 3

Figure 3.3: Random Linear Network Coding in Butterfly Network

Chapter 4

NC-Flooding: Flooding Using

Network Coding

In this chapter, the flooding algorithm, commonly used in distributed systems, is modified to

incorporate network coding principles. The routing packet information and protocols are mentioned.

A sample runthrough is provided in section 4.2, where a node count network operation is applied to

the NC-enhanced flooding protocol, and theoretical analysis is provided at the end of the chapter.

Flooding in distributed systems broadcasts a message across all nodes in a network. The dis-

tributed system must be strongly connected, meaning there must be at least one path from and

to all other nodes in the system. In most distributed systems, a singular message or message type

floods the network for a finite number of rounds. A time unit, or a round, contains the computation

of all incoming messages within a brief timeframe, and the transmitting of a message to one or more

neighbors [18, 3]. For instance, alpha synchronizers tell nodes to broadcast a READY message in

order to signify that node is ready to start a new synchronous round in an asynchronous system

[18, 3]. According to [18, 3], the time complexity to flood a network with a message is O (diam) and

the message complexity is O (|E|), where diam is the diameter of the network, and E is the total

edges found in the network. The diameter is the maximum shortest path between any two nodes in

the network [18, 3].

However, nodes that want to flood individual messages into the network increases this complexity

in a traditional store and forward distributed system. If all nodes wish to flood the network with

unique messages, in a traditional routing system this is equivalent to each node broadcasting in

a network of the same size where only that node’s packet has the highest priority. Thus, in a

distributed system with N nodes and E edges, the complexity to flood N individual packets is as

11

follows:

1. Message Complexity = O (N × |E|)

2. Time Complexity = O (N × diam)

Network coding can potentially reduce the message or time complexity of this unique flooding

situation. NC-flooding will be used to name network coding enhancements for flooding in an asyn-

chronous distributed system. Simple network coding, which uses exclusive-or to combine packets,

is the recommended coding scheme for packets with no particular source, destination, or number of

hops from source to destination. [11] introduced a simple network coding simulation which speci-

fied the packet structure and encoding and decoding algorithms needed for successful transmission,

which will be applied to flooding.

4.1 NC-Flooding Protocol Variables

4.1.1 Variables

Each edge has a LINK ID, and are bidirectional; each edge can handle incoming and outgoing

traffic simulataneously. However in packets, LINK ID can be a list of neighboring link IDs in which

the packet should be delivered onto. Each node will be assigned a unique ID, NODE ID, which will

be used for creating packet IDs (PACKET ID). For each node in the network, a data pool, incoming

queue, and outgoing queue will be used to keep track of the packets for encoding or decoding pur-

poses. Some packet header data from [11] is also useful for simple network coding implementations;

IS NATIVE, PACKET SEQUENCE, NO OF PACKETS, and DATA POOL were adapted to the

NC-Flooding implementation. Table 4.1 lists the packet data used during the decoding and encod-

ing processes. Table 4.2 lists the objects and variables each node will use locally for the construction

and deconstruction of packets.

LINK ID List of edge IDs
PACKET ID Outgoing Packet ID
IS NATIVE Flag if the packet is native
PACKET SEQUENCE List of PACKET IDs for decoding
NO OF PACKETS Number of encoded packets
PAYLOAD The data to be transmitted
ACK Acknowledgement of PACKET ID on LINK ID
NACK Cannot acknowledge PACKET ID on LINK ID

Table 4.1: NC-Flooding packet data

12

NODE ID Unique ID of the node
INCOMING QUEUE Queue holding all incoming packets
OUTGOING QUEUE Outgoing queue of packets
TOTAL LINK IDS CONNECTED Number of LINK IDs connected to NODE ID

DATA POOL Native packet data stored:
〈
PACKET ID, LINK ID, PAYLOAD

〉
PACKET COUNTER Returns and increments the next packet count for the PACKET ID, starting at 0

Table 4.2: NC-Flooding node data

4.1.2 NC-Flooding Protocols

The decoding protocol pseudo-code is shown in algorithm 1.

Algorithm 1 NC-Flooding Decoding Protocol

1: while true do
2: while INCOMING QUEUE.isEmpty() do . Ensure there is an incoming message to process
3: trigger NC-Flooding encoding protocol

4: P = INCOMING QUEUE.pop()
5: if P.IS NATIVE then
6: if not already in DATA POOL then
7: DATA POOL.put(

〈
P.PACKET SEQUENCE, P.LINK ID, P.PAYLOAD

〉
)

8: if NODE ID.LINK ID - P.LINK ID > 0 then
9: OUTGOING QUEUE.put(

〈
P.PACKET SEQUENCE,NODE ID.LINK ID -

P.LINK ID,P.PAYLOAD
〉
)

10: send ACK of P.PACKET ID on P.LINK ID
11: else if P.ACK then . process for ACK
12: else
13: Decode using P.PACKET SEQUENCE and DATA POOL
14: if node cannot decode then
15: send NACK with P.PACKET ID on P.LINK ID
16: discard P
17: store all new native packets into DATA POOL and OUTGOING QUEUE
18: put ACK containing P.PACKET ID and P.LINK ID on OUTGOING QUEUE

The encoding protocol is outlined in algorithm 2. Each node will start decoding and then

encoding once all links connected to the node have sent their respective messages. The decoding

process will trigger the encoding process once finished decoding all in the INCOMING QUEUE. This

is to ensure that no errors occur further into the protocols as well as give an opportunity for network

coding to enable. The assumption is that there are no hardware-related issues which prevent the

protocol or NC-Flooding algorithm to execute successfully.

During the encoding process, at most two packets can be encoded at a time in order to ensure

that the packet will be decoded at all neighboring nodes. [11] discusses an encoding policy which

13

Algorithm 2 NC-Flooding Encoding Protocol

1: while TRIGGERED do
2: if OUTGOING QUEUE.isEmpty() then . Want to ensure there is data to process
3: TRIGGERED = FALSE
4: Process and send all ACK and NACK packets from OUTGOING QUEUE on appropriate

LINK IDs first
5: if !OUTGOING QUEUE.isEmpty() then
6: Packet P = OUTGOING QUEUE.pop()
7: Packet N = null
8: P COUNTER = PACKET COUNTER
9: if TOTAL LINK IDS CONNECTED == 2 then . NODE ID can combine and

send another packet in OUTGOING QUEUE if it only communicates with two other nodes in
the network.

10: Packet N =OUTGOING QUEUE.pop()
11: if N != null && P COUNTER != 0 then
12: P.IS NATIVE = FALSE
13: else
14: P.IS NATIVE = TRUE
15: else if OUTGOING QUEUE.isEmpty() then . If only packet P is outgoing
16: P.IS NATIVE = TRUE
17: else . Can only send out one native packet at a time
18: N = DATA POOL.get(NODE IDs Native Packet)
19: P.IS NATIVE = FALSE
20: if ! P.IS NATIVE then
21: P.PAYLOAD = P.PAYLOAD ⊕ N.PAYLOAD
22: P.PACKET SEQUENCE =

〈
P.PACKET ID,N.PACKET ID

〉
23: P.LINK ID =

〈
P.LINK ID,N.LINK ID

〉
24: P.NO OF PACKETS = 2
25: else
26: P.PACKET SEQUENCE =

〈
P.PACKET ID

〉
27: P.NO OF PACKETS = 1
28: P.PACKET ID = NODE ID-P COUNTER
29: send P on P.LINK ID

14

Node 1

Node 2

Node 3

Node 4

2

3

4

1

Figure 4.1: Network Topology for NC-Flooding

is adapted to NC-Flooding; a node may only be encoded into a packet if the possibility of all

destination nodes to decode the packet is significantly high. In a distributed system, nodes have a

low visibility of their neighbors and only perform the operations instructed. Therefore, when a node

has TOTAL LINK IDS CONNECTED greater than two, it is not guaranteed that a neighboring

node will be able to decode more than two encoded packets. Note that these protocols do not have

a finite amount of steps or terminate within the parameters because it is up to which distributed

algorithm applied that determines when these protocols terminate. Any acknowledgement packets

from a distributed algorithm can be passed within the payload of the ACK packet, hence the

comment to process an ACK in algorithm 1.

4.2 NC-Flooding Example

NC-Flooding can be applied to any distributed algorithm. One example algorithm that will be

applied to the NC-Flooding protocol is allowing each node in a network to determine how many

other nodes are in the network. Figure 4.1 is the network topology that will be used for application

and analysis of the distributed algorithm and NC-flooding protocol. The NODE ID is simply the

number appended to Node, and the LINK ID is the number on each edge. There will be three phases

to this application. In the first phase, each node sends out their NODE ID in the payload to all

neighboring nodes. All neighboring nodes will put an ACK in their OUTGOING QUEUE to each

node that has sent their packet and propagate that data to all other neighboring nodes. Receiving

an ACK from all neighboring nodes signifies the end of phase one. In the second phase, each node

will send out a ready packet, called READY contained in the PAYLOAD, once all neighboring nodes

have sent an ACK back to the node and there are no further packets in the OUTGOING QUEUE.

15

A node will signify it knows its ID is being propagated by sending out a READY packet, but can

only proceed to the third phase once it receives a READY from all neighbors. This packet does

not have to be unique; each node may simply store and forward a READY packet. Note that a

node must still accept any incoming messages and possibly send out messages during this phase. In

the final phase, each node will send out a special acknowledgment packet, the FINAL ACK packet,

which signifies a node is ready to terminate. These example phase packets can be found in table 4.3.

Once all neighboring nodes send a FINAL ACK packet, a node can safely terminate. To determine

if a node can transition to a different phase, ACK POOL and FINACK POOL will be used in order

to Right before termination, each node will count how many native packets are in its DATA POOL

to determine how many nodes are in the network.

NODE COUNT Number of nodes detected in the network, including self
FINAL ACK Signal in which a node wants to terminate. Found within the ACK payload
READY Signal in which a node wants to move to the final phase. Found within a regular packet payload
PHASE Used to determine which phase a node is in: 1, 2, or 3
ACK POOL A list of acknowledgement packets from LINK ID only related to the native packet sent in the first PHASE
READY POOL A list of acknowledgement packets from LINK ID sent in the second PHASE
FINACK POOL A list of final acknowledgement packets from LINK ID

Table 4.3: NC-Flooding Example Phase Packets

The algorithm for Node Network Count is provided in 3.

In addition, algorithms 1 and 2 need to be modified to perform well with this Node Network

Count algorithm. In algorithm 1, processing of ACK packets will involve reading and storing〈
PACKET ID,LINK ID

〉
in the appropriate acknowledgement pool based on the message in the

PAYLOAD. For the algorithm 2, FINAL ACK packets should not be sent out of order, like other

acknowledgement packets are allowed in the protocol.

4.3 Node Network Count Analysis

A sample run displaying the input and output queues using figure 4.1 is shown in tables 4.4 and

4.5. For sake of brevity, ACK rounds were combined with the next important round. However,

this does not compromise the integrity of the sample run or example, because acknowledgement

packets will only double the time and message complexity. Since the theoretical analysis following

will be theoretical worst-case, doubling does not alter a theoretical mathematical derivation. Thus

acknowledgements, except the FINAL ACK in this case since it is significant, can be compressed

and/or omitted.

16

Algorithm 3 Node Network Count

1: PHASE = 1
2: NODE ID SENT = FALSE
3: while TRUE do
4: process all incoming and outgoing using NC-Flooding decoding protocol
5: allow NC-Flooding to update ACK POOL and FINACK POOL
6: if PHASE == 1 then
7: if NODE ID SENT then
8: if ACK POOL.size() == TOTAL LINK IDS CONNECTED then
9: send READY packet to all neighbors with IS NATIVE = TRUE

10: PHASE = 2
11: else
12: send NODE ID to all neighbors
13: NODE ID SENT = TRUE
14: else if PHASE == 2 then
15: if READY POOL.size() == TOTAL LINK IDS CONNECTED then
16: send FINAL ACK to all neighbors
17: PHASE = 3
18: else
19: if FINACK POOL.size() == TOTAL LINK IDS CONNECTED then
20: NODE COUNT = DATA POOL.size()
21: terminate algorithm

The first five rounds in 4.4 show the hindrance NODE 1 puts on the entire network to advance

to the final phase. READY is not sent until all native packets from other nodes connected to NODE

1 have been propagated. However, this also demonstrates the safety of the provided Node Network

Count algorithm and NC-flooding protocols; since the network is strongly connected, no node will

be able to terminate if a node has a large queue because this node has a path to all nodes in the

network.

Node Network Count Theoretical Analysis

As mentioned in chapter 4, the message and time complexity of flooding N messages in a tradi-

tional distributed system are O (N × |E|) and O (N × diam) respectively. In all phases, each node is

originating the following packets: NODE ID, READY, ACK, and FINAL ACK. The ACK packets

add an additional diam of message complexity and an additional |E| per message sent.

Assume that in a traditional flooding implementation, each node can send differing packets on

each connected link, just as in the NC-Flooding protocol. In both traditional and NC-protocols,

acknowledgements will still take at most one time unit to send to their respective neighbors. To

17

explain the complexity of ACK, these packets are essentially transmitting in the opposite direction

the packet it is acknowledging in the network. Since the distance a message travels is diam, the

ACK packet also takes a diam in the network.

The READY and FINAL ACK messages only need to be transmitted once; the FINAL ACK

is in the acknowledgement payload for the READY packet. Thus they will be counted once in the

complexity. The total message and time complexity in a traditional distributed system, without

network coding involved, is calculated in equations 4.2 and 4.1.

Time Complexity(Node Detection Without NC)

= ((NODE ID +ACK)× diam+READY + FINAL ACK)N × diam

= (2× diam+ 1 + 1)N × diam

= (2 + 2× diam)N × diam

= (2N + 2N × diam)× diam

= 2N × diam+ 2N × diam2

(4.1)

Message Complexity(Node Detection Without NC)

= (NODE ID × 2 +READY + FINAL ACK)N × |E|

= (2 + 1 + 1)N × |E|

= 4N × |E|

(4.2)

Time Complexity(Node Detection With NC)

= ((NODE ID +ACK)× diam+READY + FINAL ACK)N × diam

= (2× diam+ 1 + 1)N × diam

= (2 + 2× diam)N × diam

= (2N + 2N × diam)× diam

= 2N × diam+ 2N × diam2

(4.3)

18

Message Complexity(Node Detection With NC)

= (NODE ID × 2 +READY + FINAL ACK)N × |E|

= (2 + 1 + 1)N × |E|

= 4N × |E|

(4.4)

With NC-Flooding protocols enabled, the worst case scenario must be observed, as without NC-

Flooding the worst case scenario is calculated as well. In this scenario, the worst case is when all

nodes in the network have more than two neighboring nodes. In this case, a time unit must be

consumed in order to propagate each incoming packet that is not an ACK. Thus, it behaves as the

traditional routing protocol. As seen in equations 4.4 and 4.3, the message and time complexities

are 4N × |E| and 2N × diam+ 2N × diam2 respectively.

The best case scenario for NC-Flooding is when all nodes in the network have exactly two links

to neighboring nodes. This topology can best be represented as a ring network, where each node

can only have two neighbors. Each message will still have a time and message complexity of diam

and |E|, where |E| is N, the amount of nodes in the network, and diam is N
2 . This network behaves

in a similar manner as seen in the wireless butterfly figure 3.2. It is observed that the time unit

is reduced for each NODE ID being transmitted in the network. Thus the best case message and

time scenario for NC-Flooding are 5N and N + N2

2 respectively. The best case scenario in this

same ring topology using traditional flooding means that at each round, a node may only broadcast

one message to at most all neighbors. Thus, the time and message complexities are applied to

the equations 4.2 and 4.1. Simplifying the diameter and amount of edges, the message and time

complexity of traditional flooding in Node Network Count are 5N and 1
2N

3 +N2. Network coding,

in this application, improved the time complexity in comparison to traditional routing. A final

comparison chart is provided in table 4.6.

19

NODE ID
INCOMING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉 OUTGOING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉
1 - <1, (1,2, 3)>
2 - <2, 2>
3 - <3,(4,3)>
4 - <4, (4,1) >

(a) Round 1

NODE ID
INCOMING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉 OUTGOING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉
1 <4,1><3,3><2,2> <4, (2, 3)><3, (1,2)><2, (1, 3)><ACK,(1,2,3) >
2 <1,2> <ACK,(2) >
3 <1, 3><4,4> <(1⊕3), (3,4)><ACK,(3,4) >
4 <1,4><1,1> <(1⊕3), (3,4)><ACK,(1,4) >

(b) Round 2

NODE ID
INCOMING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉 OUTGOING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉
1 <(1⊕3),(3,1) ><ACK,(3,1,2)> <3, (1, 2)><2, (1,3)><ACK,(1,2,3) ><READY,(1,2, 3)>
2 <4,(2,3)><ACK,2 > <READY,2 >
3 <ACK,(3,4) ><4,3 ><(1⊕3),4 > <ACK, (3,4)><READY,(3,4) >
4 <(1⊕3),4><ACK,(4,1) > <ACK,4 ><READY,(1,4) >

(c) Round 3

NODE ID
INCOMING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉 OUTGOING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉
1 <READY,(1,2,3) ><ACK,1> <2, (1,3)><READY,(1,2, 3)>
2 <3,2> <ACK,2 >
3 <READY,4 > -
4 <READY,4><3,1 > <ACK,1 >

(d) Round 4

NODE ID
INCOMING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉 OUTGOING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉
1 - <READY,(1,2, 3)>
2 - -
3 <2,3 > <2,4 >
4 <2,1><3,1 > <2,4 >

(e) Round 5

NODE ID
INCOMING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉 OUTGOING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉
1 <ACK,(1,3) > -
2 <READY,2 > -
3 <2,4 ><READY,3 > <ACK,4 >
4 <2,4><READY,1 > <ACK,4 >

(f) Round 6

Table 4.4: Node Network Count Phases 1 and 2

NODE ID
INCOMING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉 OUTGOING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉
1 - <FINAL ACK,(1,2,3) >
2 - <FINAL ACK,2 >
3 <ACK,4 > <FINAL ACK,(3,4) >
4 <ACK,4 > <FINAL ACK,(1,4) >

(a) Round 7

NODE ID
INCOMING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉 OUTGOING QUEUE:〈
PAY LOAD, (LINK ID LIST)

〉
1 <FINAL ACK,(1,2,3) > NODE COUNT & terminate
2 <FINAL ACK,2 > NODE COUNT & terminate
3 <FINAL ACK,(3,4) > NODE COUNT & terminate
4 <FINAL ACK,(1,4) > NODE COUNT & terminate

(b) Round 8

Table 4.5: Node Network Count Phase 3

O (TimeComplexity) O (MessageComplexity) ΩTime Complexity Ω Message Complexity
Node Network Count Without NC-Flooding 2N × diam+ 2N × diam2 4N × |E| 1

2N
3 +N2 5N

Node Network Count With NC-Flooding 2N × diam+ 2N × diam2 4N × |E| N + N2

2 5N

Table 4.6: Node Network Count Comparison

Chapter 5

Network Coding in Peer-to-Peer

Networks

The most popular peer-to-peer network is called Bit Torrent. The network model for Bit Torrent,

and most other peer-to-peer networks, involves one or more central server locations and several peers

which connect to the server. Once connected, central servers can share data blocks with peers, or

allow peers to exchange data between one another directly. Peers are simply consumers which are

allowed to leave the network at any time. Most likely, a peer will leave once they receive all data

blocks needed to construct the entire data, be it an application, media, etc. However, peers that

stay longer than expected, to contribute to the network as a whole, may receive perks.

In this chapter, the Coupon Collector’s problem will be used to show how network coding can

improve performance in peer-to-peer networks. A brief introduction to tree coding will be presented.

Microsoft’s network-coding enhanced peer-to-peer network “Avalanche”, and a media streaming ser-

vice with NC implementation, called “UUSee” are briefly discussed to show that real life applications

are being created with decent performance outcomes.

5.1 Benefits of Network Coding in Peer-to-peer Networks

The main theoretical benefit NC can bring to peer-to-peer networks is derived from the coupon

collector problem [5, 19]. The coupon collector’s problem is the probability of discovering a new

coupon from a pile of coupons that are put back into the pile after viewing them [19]. As the amount

of pulls occur, the probability of choosing a new coupon diminishes. Network coding can eliminate

this issue with its redundancy in packet transmissions [19]. If a person picked four coupons at a

time, that person would be more likely to discover all coupons in the pile more quickly than a person

22

picking one coupon at a time.

Theoretically, it would take θ(n) rounds in a centralized system for all nodes to receive all

coupons, and it would take θ(n log(n)) in a decentralized system [5]. However with NC, it takes θ(n)

rounds in a decentralized and centralized system [5]. Therefore, optimal performance is achieved

with network coding. In each round, every packet could contain several new coupons, which increases

the probability of a new coupon to be discovered. The coupon collector problem is applicable to

notable peer-to-peer network issues. With NC, peers are able to receive unique datablocks more

frequently as opposed to traditional store and forwarding [5, 19].

5.2 Tree Coding

[26] presented a tree-structured network-coded peer-to-peer system. A tree structure consist of

leaves, internal nodes (which contain leaves or other internal nodes as children), and a root node.

All nodes not leaves must contain at most two child nodes. The leaves of the tree are original data

blocks multipled by a coefficient [26].

At the second layer, which are parents of the leaves, these nodes are the XOR operation between

both child nodes. According to [26], data should be spread across multiple trees in which each

tree should use different coefficients. All trees consist of sub-trees, which any internal node can be

temporarily considered a root node, and all successors underneath it create the tree [26]. According

to theorem 6 in [26, p. 119], tree coding with k trees each peer has a worst case read/write complexity

of O
(
kn log2(n) + ns

)
and average complexity O

(
kn log2(n)

)
. In comparison to traditional peer-

to-peer network read/write complexity, which is simply the number of blocks in the system, an

additional complexity of O
(
k log2(n)

)
theoretically is a small increase when the perks of NC are

taken into consideration.

Tree coding performs perfectly for two types of communication topologies. The first topology

has a depth 1 in the online model with one tree with a policy with worst case read/write complexity

nr + ns”, and the second has a depth [of] 2 in the online model with k = 2pt log(n) trees where p is

the number of peers in depth 1” [26, p. 119]. Note that t is the number of rounds, n is the number

of blocks [26]. The average read/write complexity for tree coding is O
(
ptn log3(n)

)
[26, p. 119].

5.3 Avalanche

Avalanche is Microsoft’s contribution of peer-to-peer networks [5, 19]. Avalanche uses NC to solve

the issue of premature peer exits from the network. The mechanics of Avalanche are as follows, from

[19]: files are divided into r blocks. All peers send random linear encoded blocks of received blocks.

23

Neighbors accept datablocks until they can reconstruct from r linearly independent coded blocks.

A global encoding vector sent in the header of each packet, for decoding purposes.

5.4 UUSee

UUSee is a streaming system which uses a network coding system called R2 in order to propagate

streaming data [19]. The results are less buffering delays and bandwidth costs. According to [19,

loc. 2230] UUSee is satisfactory for ”normal-quality videos”.

24

Chapter 6

Wireless Routing Networks

In this chapter, COPE and MORE, two wireless networks which utilize network coding, are

explained. Each of these inject a layer between the IP and MAC layers which contain important

information used for encoding and decoding packets. Their performance gains are mentioned, and

each has the potential to outperform traditional wireless routing networks. The chapter ends with

Analog NC, which is network coding at a physical level, which encourages packet transmission

collisions.

6.1 COPE

COPE is a wireless routing network protocol which takes advantage of network coding [12, 19].

According to [12], the two prominent design principles for COPE are to exploit broadcasting and

network coding.

6.1.1 COPE Overview

In addition to broadcasting and network coding, COPE seizes as many opportunities as possible

to propagate data in a network as quickly as possible. Between the IP & MAC packet header is

where COPE network coding data is injected [12]. Each node has a pool, or a buffer, to store native

packet data retrieved. Opportunistic listening can be included, which allows nodes in vicinity to

overhear packets being transmitted. If an overheard packet contains new data, store it in the local

data pool [12].

[12, p. 3] discusses the importance of reception reports in COPE. At some specified time interval,

all nodes send out a list of packet IDs that are in their buffer. Empty buffer nodes send out an

empty report. In addition to opportunistic listening, opportunistic coding can be utilized [12, 19].

25

A node should ”maximize the number of native packets delivered in a single transmission, while

ensuring that each intended nexthop has enough information to decode its native packet” [12, p. 3].

A general rule is that packets can be combined only if the node is certain all next-hop neighbors

have all but one of the packets being combined [12, 19].

How nodes learn the state of each neighbor, so as to determine which packets to combine, etc.,

is by analyzing incoming reception reports [12, 19]. However, if the network is congested, the

second best solution is to use guessing. According to [12], the process is as follows: compute the

delivery probability of all paths, broadcast the results, and use the results in link-state [stored data

about neighboring nodes]. A guess may be incorrect, but NC is resilient against erroneous data;

in the event of a wrong guess, encode more native packets for next retransmission [12]. Packets

contain three blocks of data. They are the IDs of the coded native packets, reception reports, and

an accumulation of acknowledgments that should be delivered [12]. Upon receiving a new packet,

process any acknowledgments and reception reports, and update the local neighbor status [12]. If

the packet contains encoded data, decode and store locally any new native packets and then send

out an acknowledgment and reception report for such packets [12].

6.1.2 COPE Performance Gains

According to [19], COPE halves the amount of transmissions needed to propagate data through

a network. The main reason is due to broadcasting encoded packets; network coding frees up

bandwidth by condensing packets as well as the queue of relay nodes, but broadcasting encoded

packets also creates redundancy in the network. The positive traits of encoding and redundancy

and bandwidth reduction, in theory and practice, create a more efficient network.

Coding + MAC gains in COPE benefit stressed networks, i.e., networks with severe bottleneck.

[12, p. 4] states that ”MAC divides the bandwidth equally” between nodes in a network. Consider

again the wireless butterfly network in figure 3.2. The bottleneck is through the singular relay node

in the network. Without NC, the router would need to send more packets with limited bandwidth,

if the end users are constantly transmitting data. This creates bottleneck. With NC utilized, the

relay node can double the data it transmits to the end users, which, in theory, doubles throughput

in the bottleneck network .

According to [12, p. 4], the maximum coding gains without opportunistic listening, but with

coding + MAC, is 2 and it is achievable. However, with opportunistic listening included, there is no

bound to the maximum coding gain [12, p. 5]. To prove this, a wheel topology was observed in [12].

A single relay node is in the middle of several users in a circular arrangement. In order for any two

nodes to communicate, it takes two time slots; send data to the relay node, and the relay node will

26

forward to the target user. However, users which are not directly opposite from one another in the

network topology can overhear transmissions from the eligible users.

Without NC, communication will always require two timeslots; N transmissions will be needed

for the middle node, where N is the number of units within the network [12]. This means that

there is a bandwidth of 1
N per node [12]. However, with coding + MAC without opportunistic

listening, the relay node can encode all N packets received and simply broadcast the data outward;

broadcasting is only one packet [12]. Thus, the coding + MAC gain, in comparison to not using

NC, is N [12]. With opportunistic listening, users can overhear packets from other users not directly

opposite in the topology. Thus, the use of the relay node may not be necessary to complete most

transmissions. As N, the number of users, grows, there is no bound to the gains a wheel topology

network can experience with coding + MAC and opportunistic listening [12].

6.2 MORE

MORE is a wireless routing implementation which uses intra-flow network coding [19]. In other

words, packets which have the same destination are converged, or encoded, together. Opportunistic

routing protocols can be utilized to reduce the probability of packet loss [19]. MORE works best

routing general files of common size.

6.2.1 MORE Protocol

As with COPE, MORE is a routing protocol data is located between the IP and MAC layer of

packets. However, MORE uses a multicast protocol. The source node performs several tasks [19]:

The source node, which may be known as the central network server, must partition the file into K

native packets. Then a random linear combination of the K packets must be performed, and the

resulting packet broadcasted to all neighbors. In addition to the encoded packet, the coefficient vector

used to encode, the batch of packet IDs, source and destination addresses, and eligible intermediate

nodes are all transmitted with the packet. The source will continue to broadcast coded packets until

receiving nodes send an acknowledgment packet.

The intermediate, or relay, nodes then perform the following tasks upon receiving incoming data

[19]: Relay nodes listen for packets and check if they are eligible to forward the packet. Decode any

packets an eligible node can forward. If an innovative packet is present from the decoded packet,

then the relay node will store that native packet data within its data pool, and create a new random

linear combination of all packets in its data pool. Note that the data pool with MORE protocol can

consist of native and encoded packets, but during the encoding process, all packets in the data pool

27

are treated the same way.

The destination node will decode the incoming packets, by using matrix inversion on the incoming

encoded packet, discard all redundant packets while accepting innovative packets, and send an

acknowledgment packet [19].

6.2.2 MORE Gains

MORE was compared against two other multicast protocols: Srcr, a multicast tree protocol,

and ExOR, which ”exploits the broadcast nature of the medium to deliver a packet to multiple

nodes simultaneously” [19, loc. 1636]. The results from [19] state that MORE had 35-200% more

throughput over ExOR, and 100-300% throughput over Srcr. As the number of destination nodes

increased during testing, MORE was reported to have more gains due to the fact that network-coding

yielded higher throughput over the other protocols [19].

6.3 Wireless Networks with Collisions

Collisions in networks can occur when two or more units transmit data to the same destination

at the same time, and their signals entwine. Network coding can take advantage of two collided

signals, which creates a branch of study known as Analog Network Coding [19]. For example, a

wireless butterfly network can demonstrate the benefit of analog NC over simple or linear NC [19].

Each user will keep a copy of their transmitted data in local memory as they broadcast, as seen in

figure 6.1a. In figure 6.1b, it is shown that the wireless access point will simply broadcast what is

received; it will not perform any encoding or decoding operations as relay nodes do in other network

coding implementations. Instead, the receiving users will subtract the signal they transmitted from

the siganl they received so that the new message may reveal itself. In comparison to simple NC,

which takes three timeslots to complete in a wireless butterfly network, Analog NC takes only two

steps; the users unicast simultaneously, and the wireless access point broadcasts anything received

to both users.

Two recovery schemes for Analog NC are explained in [29] and go into great deal the mechanics of

separating signals, which mainly occurs at the physical layer of packet transmissions. These recovery

schemes are called BPSK and π
4 - QPSK [29]. BPSK recovers packets from a network with links

that can only send and receive [29]. However with π
4 - QPSK, a link consists of two parallel data

streams; one stream is dedicated for incoming data traffic, and the other for outgoing data traffic

[29]. With π
4 - QPSK, the signal from the other user will be computed based on the incoming and

outgoing data streaming from the parallel data links.

28

Wireless
Access
Point

Cell 1 Cell 2

Cell 1 memory: Hello, Cell 2 Cell 2 memory: Hello, Cell 1

Hello, Cell 2 Hello, Cell 1

(a) Round 1: Simultaneous sending

Wireless
Access
Point

Cell 1 Cell 2

Cell 1 memory: Hello, Cell 2 Cell 2 memory: Hello, Cell 1

HHeelloo,, CCeellll 12 HHeelloo,, CCeellll 12

(b) Round 2: Analog NC Forwarding

Figure 6.1: Butterfly Collision Example

Chapter 7

Network Coding in Mobile and

Wireless Sensor Networks

Mobile networks present an overt but rewarding hurdle for network coding implementations to

overcome. In comparison to a desktop machine or laptop, cell phones have significantly smaller

battery life and computational power, which are two resources network coding needs in order to

better the performance of a system. However, broadcasting data to several mobile devices could

prove to be a compelling reason to choose network coding with the propagation of data.

Mobile networks in developing countries can also benefit from network coding, as will be shown in

section 7.1.1. And the chapter ends with RDTS, a wireless sensor network created to reduce energy

consumption during the transmission of data from the sensors to the central servers the network

reports to.

7.1 Network Coding in Mobile Networks

Multiple cell phones can be located in the same vicinity at any given time. If more than one

cell phone is streaming the same data, given how costly NC can be, it would be best to avert the

usage of an overlay network and simply share data directly. But for mobile devices at a reasonable

distance apart, unicast or broadcast content exchange is an option. There are perks for using either,

depending on the amount of receivers. A unicast is ideal if the amount of target mobile devices

are small, and can save on energy consumption in comparison to a broadcast implementation [19].

However, broadcasting is an effective solution, but it needs error correcting code implemented upon

arrival to destination. Forwarding to close neighbors reduces server load for broadcasting.

30

7.1.1 Mobile Network Coding in Developing Countries

Developing countries may not have the means, at the moment, to install several wireless access

points across the land. Therefore, routers and data sharing are imperative for wireless data to be

propagated to all network users. Mesh networks are a common practice in developing countries; by

relying upon nearby routers to forward data from wireless access points, data can reach several users

at a reasonable cost. Network coding can help increase efficiency and throughput in these special

networks.

Users near a wireless access point, or a hot-spot, are able to broadcast the data received to

neighboring users [19]. Receiving users collect, and can forward, the extra data received. With

network coding, the receiving neighboring users are able to receive more data more frequently. Multi-

path reception is an addition that improves data transmission [19]. Air interfaces are added for more

ways a node can retrieve wireless data. However, a wi-fi link could be erroneous at times. But using

NC to duplicate and disperse packets reduces the amount of errors that could occur. Another benefit

mobile networks receive from using NC is explained by the coupon collector’s problem, in section

5.1.

7.1.2 Problems of Mobile Network Coding

Random linear network coding is generally considered for mobile network coding. This requires

a random coefficient be generated at relay nodes when combining packets. However, according to

[19], built-in random number generators are not reliable. The best remedy for this is to use a trusted

random number generator algorithm [19].

Another issue arises from performing arithmetic operations. These can be resolved by using the

Euclidean algorithm for division, and Gauss-Jordan algorithm for decoding [19]. Varying mobile

device specifications can cause additional strugles with incorporating NC. These can change the

efficiency of data processing and computational speed. From a benchmark study mentioned in [19],

the highest amount of throughput (50%) was achieved with a data block size of 10, and a field size

of 216. However, the larger the block size, the greater the possibility of partitioning to occur during

transmission between access points. If any partition becomes erroneous, the whole data block will

be useless to the targeted user [19].

7.2 RDTS Implementation for A Wireless Sensor Network

[25] proposed an erasure coding implementation for wireless sensor data networks called Reliable

Data Transfer Scheme. It uses the Vandermonde matrix to encode data, but each node in transit is

31

able to encode and decode data, if necessary.

The following generalized process is from [25]: At the source, which is a sensor, n packets encoded

through the Vandermonde matrix to create n+k packets, and then transmitted. At each node,

the first n transmissions received are accepted, and all others from that source are dropped until

completion of the current batch. A tally of the amount of original packets, labeled o in Illustration

4: RDTS transmission example, is performed over the n packets, and compared to the amount of

packets the next node needs to receive, labeled t. If the amount of original packets are at least t

- n, then forward all packets received. If not, then decode all packets, and re-encode to produce t

packets needed for the next hop.

This implementation of RDTS was compared to end-to-end erasure coding, or EEEC for short

[25]. The simulations involved wireless sensor networks in increasing size. EEEC needed to transmit

data more frequently as the size of the network grew. Even though RDTS had more coding overhead,

it was negligible, and performed better overall than EEEC in all reported size networks. Also, RDTS

needed to transmit data less often than EEEC, which conserved more energy; a difference of total

transmission size of 300 mega-bytes was noted in one simulation run between RDTS and EEEC

[25]. Network coding shows the most promise in networks where relatively small data is transferred

frequently, such as in wireless sensor networks. However there are some, albeit smaller, benefits to

network coding in more dense data transmission, such as cloud storage repairs.

32

Sensor
Modem

Sensor3

Wireless
Access
Point

Sensor1

Sensor2

Router1 Router2
Sensor
Server1

Sensor
Server2

Needs 8 packets from
Router1

First n packets received from Sensor3
T=8
N=4
O=2

2 <(8-4)

Decode/Encode

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5=1+2

Packet 6=3+4

Packet 7=1+4

Packet 8=2+3

Packet 1
Packet 2
Packet 3
Packet 4

Packet5 =1+2

Packet 6=3+4

Packet 7= 1+4

Packet 8 = 2+3

Packet 1
Packet 2
Packet 3
Packet 4

MDS(4,2)

Packet 5 =1+2

Packet 6=3+4

Sensor3 Packets

Packet 1
Packet 2
Packet 3
Packet 4
MDS(4,2)

Packet 5 =1+2

Packet 6=3+4

Sensor3 Packets

Figure 7.1: An RDTS Transmission Example

Chapter 8

Network Coding in Cloud and

Distributed Storage

In this chapter, cloud storage systems with network coding are explained in detail. Traditional

storage networks implement RAID-5 or RAID-6, which both disperse incoming data, and encoded

partitins created, onto several repositories. RAID-6 will be the basis of comparison to Simple

Regenerating Codes, also abbreviated to SRC, starting in sub-section 8.3.1. In addition, NC-Cloud,

another form of network-coding storage which performs similarly to a linear network coding scheme,

is briefly discussed.

Several articles discuss concepts or include implementations which could improve the performance

of network coding in Cloud and distributed storage networks, which is discussed in more detail in

section 8.5. For added security during storage, a key could be provided during transmission of data

from a user to the repository. NC-Audit, a network coding repository system which emphasizes

secure data access, is discussed in more detail in section 8.6.

8.1 Cloud Storage Overview

Storage systems are a fundamental part of storage as a service (SaaS), and a multitude of services

provided by Clouds [13]. Since one characteristic of Cloud services is location transparency, Cloud

storage can be referred to as cloud repositories, or simply part of the cloud. Currently there are three

types of cloud models, which cater to the consumer’s needs; there are public, private, and hybrid

clouds [13]. Public clouds cater to a general population, private clouds are accessed by a specific

group, like a company or organization, and hybrid clouds have flexible data capabilities which are

able to move between clouds [13]. In all models, the storage system must correctly store and quickly

34

retrieve data upon consumer request.

8.1.1 Various Architectures

Cloud storage architectures vary; besides the necessity of repositories, there does not exist a

standard cloud storage architecture [13]. However, a common feature amongst all clouds is the

existence of storage management. This can come in the form of middle-ware [13] or a lead server

[14]. These communicate with Cloud storage repositories, and would be the location of network

coding implementations to the system. [27] also mentions the importance of primary and backup

storage; primary cloud storage can be used for more frequent and smaller reads and writes, while

backup storage is used to store larger, less used data; primary storage can be compared to Read

Access Memory, and back storage to magnetic disks on a computer. Understanding these two types

of cloud storage may be key for optimum performance in a specific cloud system. For added security,

some Clouds also contain a hyper-visor, which monitors access requests and state of data in the Cloud

[13].

8.2 RAID overview

In several articles, comparisons to replication or triplication are included in evaluations of the

speed and efficiency of their network coding implementations. Replication is RAID-1, which involves

duplicating the entire contents of one storage node, and storing it in the other. Triplication has data

contents copied into three storage nodes. This allows for two storage node failures to be tolerated

without loss of data.

8.2.1 RAID in Cloud

According to [8] and [23], RAID-6 is used as a standard comparison to network coding imple-

mentations in Cloud. This is due to RAID-6’s efficient redundancy. RAID-6 is similar to RAID-5,

but with the addition of another parity block [8]. This additional parity block allows for up to two

failed storage nodes to be tolerated without loss of data.

RAID-6 Repair Analysis

[23] explains the concept of maximum distance separable. MDS(n, k) is a property which states

that out of n storage nodes, n-k of the lot contain enough content to repair all other nodes [23].

According to [9] and [27], RAID-5 refers to MDS(n, n-1), n ≥ 3, which implies that this system can

35

only tolerate n-(n-1) = 1 storage failures at a time. RAID-6, however, has MDS(n, n-2), n ≥ 4;

RAID-6 can handle up to two repository failures at a given time without loss of data.

To repair up to two failed nodes, all other available nodes must send copies of the appropriate

blocks to replacing nodes for reconstruction [7]. Personal analysis of the entire theoretical process

was conducted. A table of variables mentioned throughout the duration of this article is in table

8.1.

b Total number of blocks to repair
nfailed Number of failed nodes
navailable Number of alive nodes
d Decode cost
e Encode cost
div File division for mds(n, k) cost
Ftotal Total number of files in a storage node
s Sparse code cost

Table 8.1: Repair Variables

total number of data sent = bnfailed(n− nfailed)

= bnfailed(navailable)

total repair = bnfailed(navailable + navailabled)

In section 8.3.1, the total repair of RAID-6 will be compared to total repair cost of SRC.

RAID-6 Read/ Write Operation Analysis

To write files, according to [23], divide file into k partitions, adding padding if necessary. Next,

run the partitions through MDS(n, k). Finally, store the resulting bits circularly in the cloud

repository in parallel. The cost to store f files is:

f(div + e+ n)

Reading files in [7] is relatively simple; collect all relevant blocks in navailable repositories and send

them to the central control. If navailable = n, then reading f files takes O (fn) time. If there is a

storage node failure, parity blocks must be decoded before sending to the receiver. Thus, reading

during storage node failure takes f(navailable + d).

36

RAID-6 Benefits

According to [7] and [23], RAID-5 and RAID-6 offer fast parallel reads and writes. Also, there

is less computational overhead in comparison to network coding implementations.

Problems with RAID / Triplication

Replication and triplication have a standard, reliable outcome [23]. However, the primary deter-

rent from their usage in most Clouds is cost; duplicating data on multiple storage nodes fills space

quickly, and thus requires more storage nodes to handle any further storage.

Pertaining to RAID-6, repairing a single node alone is about 3
4 the efficiency of an SRC imple-

mentation [9]. SRC will be explained in further detail shortly. In [27], several issues with cloud

RAID implementations are discussed. One issue mentioned is the need for handling multiple writes;

files that are only written to the system once is a rare occurrence [27]. Also, storing and transmit-

ting large blocks of data could be an issue, depending on the purposes of the cloud; enterprises and

organizations may need to store and update large sets of data repeatedly.

8.3 Simple Regenerating Codes

SRC stands for simple regenerating codes [23]. It builds upon RAID-6 in the sense that MDS(n,

k) is used. MDS(n, k) has a process which uses linear algebra to divide a file into several pieces, and

XOR certain sections to create redundancy. However, an additional parameter is added, to specify

how many incoming files can be stored together, which is referred to as f, to create SRC(n,k,f) [23].

The f files are each divided into k equal pieces and ran through separate MDS(n,k) operations per

file, and then the output is ran through a sparse encoder, part of the erasure coding process, which

performs an XOR operation between output blocks to create parity blocks for all f. This is similar

to the encoding process found in [25].

The storage nodes in figure 8.1 are labeled from 0 to n-1. These pieces are then circularly

dispersed into block slots designated for all n storage nodes. [22] discusses the various manners

in which the parity blocks may be placed in a storage system for redundancy. In [23], however,

it is a standard rotation placement method. For each block, with f files in it that need to be

reconstructed, the appropriate chunks must be received from min(n−1, 2f) nodes [23], and perform

(f + 1)d operations to get the appropriate chunk. Note, that a chunk is 1
f+1 of a block.

The total repair cost is: ftotal

b nfailed(2f + (f + 1)d) In comparison to repair costs of RAID-6

(left-hand side taken from results in RAID repair analysis):

bnfailed(navailable + navailabled) ≡ ftotal

b
nfailed(2f + (f + 1)d)

37

assume decode is 1 unit:

bnfailednavailable2 ≡
ftotal
b

nfailed(2f + f + 1)

assume navailable = 2f which happens when network coded packet compression is done:

bnfailednavailable2 ≡
ftotal
b

nfailed(navailable + (f + 1))

f + 1 is the bulk of computational overhead in SRC repairs. From these calculations, RAID-6 may

appear less computationally taxing, but according to [23] and [8], SRC is proven to have better

repair cost over RAID-6.

8.3.1 Simple Regenerating Code Read / Write Operation Analysis

Theoretically, reading data in SRC is relatively the same as in RAID-6 [23, 7]. The process

involves collecting all relevant partitions from the active repositories, in parallel, and forwarding to

the receiver. This takes O (fn) time without storage node failure. With storage node failure, parity

bits are taken from available nodes instead, as in RAID-6. Thus, the read cost with storage node

failure is:

f(n− nfailed + d)

The simulation results in [23] mimic theoretical calculations, generally.

Taken from [23], writing first divides files into k partitions, adding padding if necessary. Then

run each file’s partitions through their own MDS(n,k) in parallel. Upon completion, run all output

through a sparse coder, which outputs 2n chunks to be stored circularly upon cloud repositories.

Each node gets a total of f + 1 chunks. The cost to store f files is:

div + e+ s+ n(f + 1)

Comparing SRC write cost (right-hand side) to RAID-6 write cost:

f(div + e+ n) ≡ div + e+ s+ n(f + 1)

assume d, e, and s are 1 unit:

f(1 + 1 + n) ≡ 1 + 1 + 1 + n(f + 1)

f + f + fn ≡ 1 + 1 + 1 + nf + n

2f + fn ≡ 3 + nf + n

2f ≡ 3 + n

38

O (f) vs O (n) The number of files being stored may increase at a faster rate than the amount of

cloud repositories. And, with the option of uploading multiple files at once as in [4], multiple file

uploading may increase as the years progress. Also, 3 + n increases at a much slower rate than 2f,

which means SRC may perform repairs more swiftly in real cloud networks.

8.3.2 Simple Regenerating Codes Benefits

In terms of the articles reviewed, SRC appears to have faster repair times over RAID-6, and a

nearly identical read performance. And from personal theoretical analysis, the results are almost in

parallel; SRC appears to have worse repair times than RAID-6, primarily due to the computational

overhead. But RAID-6 and SRC have nearly identical theoretical read and write costs. SRC utilizes

erasure coding to store multiple files at once, while keeping a storage method similar to RAID-6.

8.3.3 Problems with Simple Regenerating Codes

[27] reports bottleneck can occur during writes in SRC. Table 8.2 summarizes the theoretical

performance gathered from RAID-6 and SRC in cloud:

Simple Regenerating Codes RAID-6
Read Performance (f(n− nfailed + d) f(n− nfailed + d)
Write Performance div + e + s + n(f+1) f(div + e + n)

Repair Performance ftotal

b nfailed(2f + (f + 1) ∗ d) bnfailed(navailable + navailabled)

Table 8.2: Theoretical Summary of Performance

8.4 NC-Cloud

[2] proposes a linear network-coded cloud system called NC-Cloud. The storage process is slightly

different from SRC; only encoded blocks are stored in all repositories. However, all blocks are stored,

retrieved, and repaired in the same manner as SRC [2]. The NC-Cloud implementation has 3 layers

[2]. The file system layer, which includes a mounted drive. The coding layer contains encoding

and decoding functions as well as metadata. And finally, the storage layer consists of read / write

requests between cloud repositories.

The process of storing data in the NC-Cloud implementation is explained in [2]. To store a file,

k(n - k) partitions are made of the original file. For each partition, an encoding vector with k(n -

k) entries is created. Per encoding vector, each element is multiplied by its respective file partition.

39

All multiplied operations are then added together into one file that is approximately the size of one

file partition. At the end of this process, each cloud repository will receive n(n - k) of these encoded

blocks, along with the encoding vectors. Repairs, file upload, and file downloads, all perform linear

encoding and decoding to store and restore data. [2] reports a 25 - 50% greater repair performance

to RAID-6. However, computational costs are driven in the process. Simulation results in [2] also

show slightly higher read and write times in comparison to RAID-6; at one time up to a two second

difference. The article admits the slight increase in response time is due to overhead from linearly

combining and deconstructing blocks of data. The deployment of NC-Cloud depends on the amount

of reads and writes are expected in the network.

To study the importance of read / write performance, [17] was reviewed. In this article, a college

cloud repository network was monitored during a busy school semester in hopes of reporting typical

cloud usage. While there was no known mention of cloud storage failure, read / write performance

was shown to be important in certain situations. Most file upload and downloads were small, and

thus little reading and writing was performed overall. There were two types of accounts which

provided access to the cloud: personal, and group [17]. Personal accounts overall did not utilize

reading and writing as much as group accounts. This can be equivalent to a public cloud with a

small set of personal users.

However, the group accounts used significantly more storage, and performed a higher amount

of reads and writes. The ratio of group to personal reads, in Gigabytes, was 40.322, and the ratio

of group to personal writes to the cloud, also in Gigabytes, was 18.97 [17]. A group account can

thus be reflective of a typical private cloud for some enterprise. Extrapolating from the article, the

importance of read / write performance may depend on the model of the cloud; NC-Cloud may

function best in a small public cloud model.

8.5 Proposed Improvements and Implementations to Network Coding in

Cloud and Distributed Storage Networks

8.5.1 Cooperative Recovery Codes

Cooperative recovery codes, or CRC, are a slight improvement in the recovery process SRC

presents [8]. In multiple storage loss, these nodes may be repaired in parallel in both SRC and CRC,

in the same process. However, the two repairing repositories may exchange decoded chunks the

other may need [8]. This reduces the amount of repair bandwidth necessary; only 2 calls between

the repairing nodes is favorable over 4 calls between repairing nodes and active nodes.

While [8] and [9] are for distributed systems and not necessarily clouds, an adaptation is easy. The

40

central control mechanism has a connection to all cloud repositories. While they are all connected

as well, the central control mechanism may update living repositories more quickly when a storage

node has failed. When a replacement is installed, the central control can update active repositories

that a new storage unit is in place. At which time, the repositories may open any direct connections

to the new node, or forward all data through central controls to the replacement node. In which

case, this configuration is similar to a distributed storage system, where all repositories may act

independently of one another.

8.5.2 Tree Formation in a Network-Coding-based Repository

In [16], a tree formation in a distributed file system was implemented and compared to a star

network, which is a typical generalized view of a repository network like Cloud. Given a set of

repositories, construct a tree formation; nodes can receive data from any other repository, but must

send data only to one node, which is their parent. Upon arrival, a new node is given a parent which

will send it network-encoded packets to decode and store. The process is as follows: a newcomer

request will bubble up to the root. And then the root will send an encoding scheme of data chunks

for the newcomer to store. [16] reports improvements over a star network.

8.6 Cryptographic Benefits of Network Coding in Cloud Storage

As mentioned in earlier sections, network coding has an added benefit of encryption; packets of

data intercepted are not in the original format and require some effort to properly decode. NC-Audit

implements stricter encryption on data stored with in cloud repositories [15].

8.6.1 NC-Audit

In [15], NC-Audit is a symmetric key-based cryptographic protocol. In addition to the cloud

repositories and control mechanism, an auditor is assigned to authorizing cloud storage access and

retrieval requests. In a general overview of NC-Audit, an encryption key is created based on the

consumer’s MAC address [15]. This encoding key, along with linearly encoded data destined for

storage, are sent to the cloud repository [15]. Data is processed and stored in the same manner as

the NC-Cloud.

In addition, the MAC address of the user is sent to the cloud auditor. If data needs to be

checked, or requests need to be authorized, then an auditor may use the MAC key to re-create

the encryption key and access user data stored in the cloud[15]. Some properties of NC-audit, as

41

proven by evaluations in [15], include efficient integrity checking, efficient support for repair and

data dynamics, and efficient privacy protection.

42

Switch

Storage3

Storage2

Storage0

Storage1

Central
Control

Storage4

Figure 8.1: Cloud Storage Layout Example

Chapter 9

Network Security

Network coding has a naturally added measure of security against malicious attacks from inter-

ceptors. [13] reports that even if an attacker were to modify a packet in a network, the attack alone

would not alter correctness of the network as a whole. Attackers would alter messages from at least

one edge in a network, but not all edges are expected to be tampered by a single attacker. Since

redundancy is a key trait associated with network coding, duplicates of native packets propagate

throughout. If a node cannot properly decode an incoming packet, be it due to linear dependency

in the data or malicious tampering, an incoming packet from a later session and a different neighbor

is expected to have correct data.

[13] goes on to discuss another instance of malicious attack that NC protects against. If an

attacker wishes to read data from a network with NC implemented, the attacker would need to have

all previous native packets received by the intercepted router. Even if the attacker were to receive all

native packets needed to decode, they would need to guess the last combination in order to decode

all data successfully. However, the possibility of a successful attack is not negligible. One solution

against link tapping is to combine outgoing data with useless data. However, this may increase

chances of an erroneous packet upon decoding if a receiving node cannot discern between useful and

useless data successfully.

44

Chapter 10

Limitations of Network Coding

While network coding has been shown to provide many benefits, such as greater energy efficiency,

faster download times, there are specific flaws which currently prohibit network coding for competing

with traditional store-and-forward schemes. The network topology itself could be a hindrance to the

performance of network coding; nodes in such networks that do not have the opportunity to encode

data from multiple incoming neighbors are probably better using a traditional routing protocol.

NC-Flooding, the network-coding-enhanced protocol provided in chapter 4, cannot perform well

in networks where nodes have more than two neighbors. Pertaining to network coding in peer-to-

peer networks, the primary reason for its lack of popularity is due to the high computational costs

for encoding and decoding data; since the computational power of peers is unknown, a peer may

perform worse in an NC-peer-to-peer network as opposed to a traditional peer-to-peer network.

10.1 Network Topology

Network coding excels primarily in network topologies which have little bottleneck, as can be

inferred from section 2.3. Expanding upon Menger’s Theorem mentioned in [24], a topology with

minimal links or edges from source to sink nodes may not have a proper flow to see a significant

performance increase. For instance, a chain topology only has n-1 edges, as seen in figure 10.1. If

node 1 were to send a message to node 4, no network coding would increase the throughput; the

message must only pass through node 2 and then node 3 in order to reach its destination. Only

erasure coding, which is encoding and decoding only at the source and destination respectively, can

increase the throughput of this network topology in comparison to a traditional store and forward

routing method. Thus, network coding is of little use in topologies with minimal edges between any

pair of nodes.

45

node 1 node 2 node 3 node 4

Figure 10.1: Chain Topology

Node 1

Node 2

Node 3

Node 4

Node 5

Figure 10.2: Four-way Bottleneck

10.2 Limitations of Network Coding in NC-Flooding

NC-Flooding does not perform well with network topologies in which more than two links per

node are common. This is due to a rule for simple network coding which must be adhered to in order

to ensure successful decoding of packets. [11] states that when encoding an outgoing packet, a node

must have a high probability that all nodes receiving the packet will be able to decode successfully.

Consider figure 10.2. Node 1 has just received M2, M3, M4, and M5, which are messages from

the corresponding nodes in the network. Node 1 ’s next outgoing packet must be decodeable by all

nodes. If any two of the incoming messages were combined and broadcasted, only two nodes would

be able to decode, while the other nodes will drop the packet since it is not decodeable. Thus, only

one message per time unit can ge broadcasted to all of the other nodes. An enhancement to reduce

the time is to send differing encoded or native packets on each link.

46

10.3 Limitations of Network Coding in Peer-To-Peer Networks

Bit Torrent remains more notable and prominent peer-to-peer network over Avalanche, Mi-

crosoft’s NC-infused answer [26]. Computational overhead is perhaps the main reason NC peer-to-

peer networks are not popular. The target computer specifications may vary from peer to peer.

Thus, slower computers may affect the performance of said peer in the network, since it would take

longer to decode and encode data blocks. Theorem 5 from [26, p. 117] states that the read/write

complexity of Network Coding of each peer is in the worst case at most nrns and O
(
n2

)
in the

average”. This means peers must read O
(
n2

)
data blocks in order to send n message blocks, as

opposed to the traditional store-and-forward implementation Bit Torrent uses.

47

Chapter 11

Open Issues

Open issues are briefly provided in hopes of exciting more exploration of network coding. [23]

reports there are currently no practical code constructions of efficiently repairable codes with data

rates above 1
2 . [8] reports three open issues. The first issue is discovering the optimal scheme for

repair links if the repair bandwidth varies, as in the real world. The second issue is creating an

encoding and decoding scheme which allows the file system to expand, as opposed to maintaining

a fixed amount of repositories. And the final open problem mentioned in [8] is creating a coding

scheme with less overhead. [26, p. 122] mentions that an ”efficient network coding with optimal

performance for all communication graphs” is not known. And in relation to communication, an

”... NC [implementation] for multiple concurrent communication session[s]” is needed [20, p. 242].

Research on the benefits of COPE is ongoing; [12] reports that maximum achievable coding gains

for unicast transmissions, and for opportunistic listening, are yet to be determined.

48

Chapter 12

Conclusion and Future Work

The practical applications of network coding have been shown to have the potential to de-

crease download times, increase data throughput in networks, and improve the overall theoretical

performance of a distributed algorithm. A primary issue with network coding is the amount of

computational power needed in order to analyze these condensed packet payloads from senders in a

network.

This is perhaps one of the main reasons why Bit Torrent is still more successful than Microsoft’s

Avalanche project. When mobile devices have very little resources dedicated to computation, and

a small battery life, NC implementations become very challenging. However, since NC is still a

relatively new research topic, there is much progress to be made in enhancing the practical NC

application to common network-related issues. The more studies and articles which come out on

findings of new techniques and shortcuts in which network coding implementations can use, the

better the likelihood of more popular software applications incorporating network coding. Thus,

future work will be to remain current with new articles published on network coding and new

mathematical techniques in which network coding could be enhanced by its application.

49

Bibliography

[1] R. Ahlswede, Ning Cai, S.-Y.R. Li, and R.W. Yeung. Network information flow. Information

Theory, IEEE Transactions on, 46(4):1204–1216, Jul 2000.

[2] H.C.H. Chen, Yuchong Hu, P.P.C. Lee, and Yang Tang. Nccloud: A network-coding-based

storage system in a cloud-of-clouds. Computers, IEEE Transactions on, 63(1):31–44, Jan 2014.

[3] Ajoy Datta. Lecture notes in distributive computing, March 2013.

[4] Dropbox. HTML. www.dropbox.com.

[5] Christina Fragouli, Jean-Yves Le Boudec, and Jörg Widmer. Network coding: An instant

primer. SIGCOMM Comput. Commun. Rev., 36(1):63–68, January 2006.

[6] Christina Fragouli and Emina Soljanin. Network coding applications. Found. Trends Netw.,

2(2):135–269, January 2007.

[7] Fujitsu. Raid. HTML Flash, 1995-2015. www.fujitsu.com/global/services/computing/storage/

eternus/glossary/raid/.

[8] Yuchong Hu. Cooperative recovery of distributed storage sys-

tems from multiple losses with network coding. Powerpoint, 2010.

http://www.inc.cuhk.edu.hk/sites/default/files/seminars/slides/Demo - presentation (Yu-

chong Hu dd201010).ppt.

[9] Yuchong Hu, Yinlong Xu, Xiaozhao Wang, Cheng Zhan, and Pei Li. Cooperative recovery

of distributed storage systems from multiple losses with network coding. Selected Areas in

Communications, IEEE Journal on, 28(2):268–276, February 2010.

[10] A.A. Kadhim, T.A. Sarab, and H. Al-Raweshidy. Improving throughput using simple network

coding. In Developments in E-systems Engineering (DeSE), 2011, pages 454–459, Dec 2011.

[11] A.A. Kadhim, T.A. Sarab, and H. Al-Raweshidy. Improving throughput using simple network

coding. In Developments in E-systems Engineering (DeSE), 2011, pages 454–459, Dec 2011.

[12] S. Katti, H. Rahul, Wenjun Hu, D. Katabi, M. Medard, and J. Crowcroft. Xors in the air:

Practical wireless network coding. Networking, IEEE/ACM Transactions on, 16(3):497–510,

June 2008.

[13] Gurudatt Kulkarni, Rani Waghmare, Rajnikant Palwe, Vidya Waykule, Hemant Bankar, and

Kundlik Koli. Cloud storage architecture. In Telecommunication Systems, Services, and Appli-

cations (TSSA), 2012 7th International Conference on, pages 76–81. IEEE, 2012.

50

[14] A. Kumar, Byung Gook Lee, HoonJae Lee, and A. Kumari. Secure storage and access of data

in cloud computing. In ICT Convergence (ICTC), 2012 International Conference on, pages

336–339, Oct 2012.

[15] Anh Le and A. Markopoulou. Nc-audit: Auditing for network coding storage. In Network

Coding (NetCod), 2012 International Symposium on, pages 155–160, June 2012.

[16] Jun Li, Shuang Yang, Xin Wang, Xiangyang Xue, and Baochun Li. Tree-structured data

regeneration with network coding in distributed storage systems. In Quality of Service, 2009.

IWQoS. 17th International Workshop on, pages 1–9, July 2009.

[17] Songbin Liu, Xiaomeng Huang, Haohuan Fu, and Guangwen Yang. Understanding data charac-

teristics and access patterns in a cloud storage system. In Cluster, Cloud and Grid Computing

(CCGrid), 2013 13th IEEE/ACM International Symposium on, pages 327–334, May 2013.

[18] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1996.

[19] Muriel Médard and Alex Sprintson. Network coding: fundamentals and applications. Academic

Press, 2012.

[20] Zoran Miličević and Zoran Bojković. Goals and perspectives of the network coding. XXIX

Simpozijum o novim tehnologijama u potanskom i telekomunikacionom, 2011.

[21] Aishwarya Nagarajan, Michael J. Schulte, and Parameswaran Ramanathan. Galois field hard-

ware architectures for network coding. In Proceedings of the 6th ACM/IEEE Symposium on

Architectures for Networking and Communications Systems, ANCS ’10, pages 35:1–35:9, New

York, NY, USA, 2010. ACM.

[22] E. Pakhomova and J. Pakhomova et al. Raid 6 recovery. HTML, 2009.

http://www.freeraidrecovery.com/library/raid6-recovery.aspx.

[23] D.S. Papailiopoulos, Jianqiang Luo, A.G. Dimakis, Cheng Huang, and Jin Li. Simple regener-

ating codes: Network coding for cloud storage. In INFOCOM, 2012 Proceedings IEEE, pages

2801–2805, March 2012.

[24] K.V. Rashmi, NiharB. Shah, and P. Vijay Kumar. Network coding. Resonance, 15(7):604–621,

2010.

[25] M.S. Srouji, Zhonglei Wang, and J. Henkel. Rdts: A reliable erasure-coding based data transfer

scheme for wireless sensor networks. In Parallel and Distributed Systems (ICPADS), 2011 IEEE

17th International Conference on, pages 481–488, Dec 2011.

[26] Arne Vater, Christian Schindelhauer, and Christian Ortolf. Tree network coding for peer-to-

peer networks. In Proceedings of the Twenty-second Annual ACM Symposium on Parallelism

in Algorithms and Architectures, SPAA ’10, pages 114–123, New York, NY, USA, 2010. ACM.

[27] Jianzong Wang, Weijiao Gong, P. Varman, and Changsheng Xie. Reducing storage overhead

with small write bottleneck avoiding in cloud raid system. In Grid Computing (GRID), 2012

ACM/IEEE 13th International Conference on, pages 174–183, Sept 2012.

[28] Raymond W. Yeung, S-y Li, and N. Cai. Network Coding Theory (Foundations and Trends(R)

in Communications and Information Theory). Now Publishers Inc., Hanover, MA, USA, 2006.

51

[29] Jingyao Zhang, Kai Cai, K.B. Letaief, and Pingyi Fan. A network coding unicast strategy

for wireless multi-hop networks. In Wireless Communications and Networking Conference,

2007.WCNC 2007. IEEE, pages 4221–4226, March 2007.

52

Vita

Graduate College University of Nevada, Las Vegas Jonny L. Winger

Degrees:

Bachelor of Science in Computer Science 2011 University of Nevada Las Vegas

Thesis Title: A Survey of Network Coding and Applications

Thesis Examination Committee:

Chairperson, Dr. Ajoy Datta, Ph.D.

Committee Member, Dr. Ju-Yeon Jo, Ph.D.

Committee Member, Dr. Lawrence L. Larmore, Ph.D.

Graduate Faculty Representative, Dr. Venkatesan Muthukumar, Ph.D.

53

	A Survey of Network Coding and Applications
	Repository Citation

	tmp.1446073208.pdf.I6oL7

