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Abstract 

We present an application program, Distributed Algorithm Simulator, to simulate the execution 

of distributed leader election algorithms in a ring-network. The application was developed using 

Visual C# on Microsoft .NET Framework 4.5. The Distributed Algorithm Simulator consists of 

two major components: A Visual Simulator, which visually demonstrates the execution of the 

algorithms; and a Textual Simulator, which simulates the execution in text format. In both cases 

the end-result can be saved to a file. 

The Visual Simulator displays the network in a ring orientation with circles representing 

the nodes, and numbers on them showing the node IDs. The user has the ability to choose which 

variables of the algorithm are displayed at each step and the speed at which each step is performed. 

Once a simulation has been finished, the user can step through the execution of the algorithm 

forward and backward. 

The Textual Simulator displays – in a multiline Textbox – the status of each variable at 

each step during the execution. As before, the user can run and pause the simulation as well as 

control the speed of the execution. Finally, the user can save the results to a text file. 
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Chapter 1  

 Introduction 

In this chapter we describe the contribution we hope to make with the Distributed Algorithm 

Simulator presented in this thesis. Then we outline each of the rest of the chapters in this 

document. 

 

1.1 CONTRIBUTION 

In this thesis we present an application to simulate the execution of distributed leader election 

algorithms in ring networks. The application, henceforth referred to as the Distributed Algorithm 

Simulator, has two major components; The Visual Simulator and the Textual Simulator. The 

Visual Simulator can visually simulate the execution of distributed leader election algorithms in 

networks containing up to 18 nodes. The Textual Simulator does not have an upper limit on the 

number of nodes. 

We hope this application will be a useful tool for education purposes. Because of their 

inherent distributed nature, it could be somewhat difficult to visualize and understand distributed 

algorithms. Our application’s visual nature, its ability to demonstrate the contents of each variable 
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at each step, the ability to step forward and backward through the execution, and the ability to 

save the results so they can be analyzed later should help students overcome those challenges. 

1.2 OUTLINE 

In Chapter 2 we give an introduction to distributed computing and take a look at its history and 

applications. First, we briefly introduce the concept of distributed computing and the central idea 

behind it. Then, we take a look at how and why it came to be widely used by going over the 

history of distributed computing. Finally, we list and explain a few practical applications of 

distributed applications that are in use today, focusing on the diversity of disciplines that make 

use of distributed computing. 

In Chapter 3 we introduce the distributed leader election algorithms. We start by defining 

the terminology used throughout this document. Then, we introduce the leader election problem 

by formally defining it, and move on to the leader election problem in networks of ring topology, 

which is the focus of the Distributed Algorithm Simulator. Finally, we introduce the two 

distributed leader election algorithms we have chosen to implement. First we informally describe 

them, and then we give a formal definition including all the steps that must be performed during 

the execution of the algorithms. 

Chapter 4 elaborates the design of the application. First, we introduce and explain the 

main components of the application and their inner workings. Later, using class diagrams we 

describe the structure of the application, and we use sequence diagrams to explain core processes 

of the application. 
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Chapter 5 takes a similar approach and describes in detail the implementation of the 

Distributed Algorithm Simulator. First, we present documentation of all the namespaces, classes, 

methods, and properties used in implementing the system. We give a description of each of those 

including their types, parameters, return values, and usage. Then, we focus on the core components 

of the system such as creating the network topology, the message communication methodology, 

and how the execution of algorithms is emulated, and give a detailed description using illustrations 

and code samples. 

Chapter 6 is organized as a user guide to the end-user of the Distributed Algorithm 

Simulator. Using screenshots, we first explain the installation, and then give a description of all 3 

windows of the application; namely, the main window, the Visual Simulator window, and the 

Textual Simulator window. We explain step-by-step how to use the application, and wrap up by 

giving a list of error messages the application generates. 

Finally, we conclude the thesis with Chapter 7, which contains both conclusion and our 

recommendations for future work. 
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Chapter 2 

 Background 

In this chapter we give an introduction to distributed computing and take a look at its history and 

applications. Then, we list and explain a few practical applications of distributed applications that 

are in use today, focusing on the diversity of disciplines that make use of distributed computing. 

 

2.1 INTRODUCTION TO DISTRIBUTED COMPUTING 

The natural world is full of distributed computing. Flocks of birds fly in perfect V-formation. A 

colony of termites comprising millions of individuals cooperate to build a mound 9 meters tall [1], 

which is about 1,000 times their body length. To put it into perspective, that would be the 

equivalent of humans building a skyscraper 1.7 kilometers tall. A school of fish swim in 

coordination to avoid predators. During the development of an embryo, billions of cells cooperate 

to make different body parts to ‘put together’ an animal. What all these have in common is 

distributed processing: a flock of bird doesn’t have a single bird which controls the behavior of 

the others, no single termite instructs the others on what to do to make a termite mound, neither 

does a school of fish has a leader choreographing the movements of the entire school, and, finally, 

embryonic cells are a collection of entities that are not even conscious, let alone having a central 
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controlling unit. What all of them do have are a set of local rules built into them by the process 

of evolution, and simply by each individual blindly following those same local rules they achieve 

these marvelous feats. 

The central idea behind distributed computing using computers is much the same; it 

combines a number of small, relatively less powerful, and often physically distributed computing 

units (henceforth called nodes) to perform a useful task and achieve a result which otherwise 

requires a considerably powerful machine. The most crucial aspect of distributed computing is 

that each node possesses the same algorithm and executes it on its own hardware, exactly the 

same as, say, termites in a termite colony. All the nodes have their private tasks to complete, but 

they must still share certain common resources and information, and a certain degree of 

coordination is necessary in order to successfully complete their individual tasks [2]. Once all the 

nodes complete their tasks the algorithm terminates, and by then the system as a whole must 

have achieved some useful result. 

2.2 HISTORY OF DISTRIBUTED COMPUTING 

In the early days of computing, any task that required large computations and massive processing 

power invariably called for supercomputers. However, with the price of personal computers rapidly 

declining while supercomputers remain expensive, an alternative was needed [3].  

One early solution to this problem was clustering. There are many forms of clustering, but 

Beowulf Clustering introduced by Donald Becker and Thomas Sterling in 1993 particularly made 

an effort to take off-the-shelf computers and put together a cluster that can rival supercomputers 
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[4]. However, due to a range of problems, such as needing a dedicated network, the lack of security, 

and the difficulty of writing specialized software, clustering never managed to solve the problem 

entirely. 

Distributed computing is much the same in many ways; it takes a large problem, breaks 

it into smaller units, and allows many nodes to work together in parallel. The key difference is 

that distributed computing allows the nodes to be multifunctional and multipurpose computers 

that can exist anywhere in the world as long as they are connected to the internet which lends in 

a great deal of flexibility. Whereas in clustering and supercomputing data is generally processed 

only once, distributed computing allows the distribution of work units to multiple nodes, multiple 

times. This serves two functions: to drastically decrease the possibilities of processing errors, and 

to account for processing which is done on slower CPUs. Furthermore, distributed computing 

focuses on making work units as small as possible so that they can be handled by any computer 

in the network. All of the above enables us to take advantage of millions of computers connected 

to the internet all over the world and to work as one system, which is an immensely powerful 

idea. 

2.3 APPLICATIONS OF DISTRIBUTED COMPUTING 

Because of its immense collective power, relatively cheap cost, and the ability to utilize 

millions of computers all around the world, distributed computing has become a major tool in 

computing in a wide range of fields. There are thousands of ongoing projects representing an array 
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of disciplines. Following are a few chosen examples to demonstrate the diversity. Each project’s 

discipline is listed inside brackets next to the title. 

2.3.1 Einstein@Home (Astrophysics) 

Einstein@Home [5] is a volunteer distributed computing project that searches through data from 

the LIGO (Laser Interferometer Gravitational-Wave Observatory) detectors for evidence of 

continuous gravitational-wave sources, which are expected from objects such as rapidly spinning 

non-axisymmetric neutron stars. Running on the Berkeley Open Infrastructure for Network 

Computing (BOINC) software platform, Einstein@Home is hosted by the University of Wisconsin–

Milwaukee and the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, 

Hannover, Germany). The project had discovered 49 pulsars as of December 2014. As of January 

2016, the project is reported to be using 773 active processing units [6]. 

2.3.2 Big and Ugly Rendering Project (Art) 

Big and Ugly Rendering Project (BURP) [7] is a non-commercial distributed computing project 

using the BOINC framework. It is under development to work as a publicly distributed system 

for the rendering of 3D graphics. BURP is a free software distributed under the GNU General 

Public License V3 license. 

2.3.3 Climateprediction.net (Climate Study) 

Climateprediction.net (CPDN) [8] is a distributed computing project to investigate and reduce 

uncertainties in climate modelling. It aims to do this by running hundreds of thousands of different 
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models (a large climate ensemble) using the donated idle time of ordinary personal computers, 

thereby leading to a better understanding of how models are affected by small changes in the 

many parameters known to influence the global climate. The project relies on the volunteer 

computing model using the BOINC framework where voluntary participants agree to run some 

processes of the project at the client-side on their personal computers after receiving tasks from 

the server-side for treatment. 

CPDN, which is run primarily by Oxford University in England, has harnessed more 

computing power and generated more data than any other climate modelling project. It has 

produced over 100 million model years of data so far. As of December 2010, there are more than 

32,000 active participants from 147 countries with a total BOINC credit of more than 14 billion, 

reporting about 90 teraflops (90 trillion operations per second) of processing power. [9]  

2.3.4 Folding@home (Molecular Biology) 

Folding@home [10] is a distributed computing project for disease research that simulates protein 

folding, computational drug design, and other types of molecular dynamics. The project uses the 

idle processing resources of thousands of personal computers owned by volunteers who have 

installed the software on their systems. Its main purpose is to determine the mechanisms of protein 

folding, which is the process by which proteins reach their final three-dimensional structure, and 

to examine the causes of protein misfolding. This is of significant academic interest with major 

implications for medical research into Alzheimer's disease, Huntington's disease, and many forms 

of cancer, among other diseases. Folding@home is developed and operated by the Pande 
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Laboratory at Stanford University, under the direction of Prof. Vijay Pande, and is shared by 

various scientific institutions and research laboratories across the world. 

This project has pioneered the use of GPUs, PlayStation 3s, Message Passing Interface 

(used for computing on multi-core processors), and some Sony Xperia smartphones for distributed 

computing and scientific research. The project uses a statistical simulation methodology that is a 

paradigm shift from traditional computational approaches. 

Folding@home is one of the world's fastest computing systems, with a speed of 

approximately 40 petaFLOPS [11]. This performance from its large-scale computing network has 

allowed researchers to run computationally expensive atomic-level simulations of protein folding 

thousands of times longer than formerly achieved. Since its launch on October 1, 2000, the Pande 

Lab has produced 129 scientific research papers as a direct result of Folding@home. 

2.3.5 SETI@home (Astrobiology) 

SETI@home [12] is an Internet-based public volunteer computing project employing the BOINC 

software platform, hosted by the Space Sciences Laboratory, at the University of California, 

Berkeley, in the United States. Its purpose is to analyze radio signals, searching for signs of 

extraterrestrial intelligence, and as such, is one of many activities undertaken as part of the 

worldwide SETI (Search for Extra-Terrestrial Intelligence) effort. SETI@home was released to the 

public on May 17, 1999, making it the third large-scale use of distributed computing over the 

Internet for research purposes.  
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Chapter 3 

 Distributed Leader Election Algorithms 

In this chapter we first introduce the distributed leader election problem, followed by an 

introduction to the leader election in ring networks which is the focus of this thesis. Then, we 

introduce the two distributed leader election algorithms we have chosen to implement to be 

simulated. 

 

3.1 TERMINOLOGY 

Below, we formally define and describe a number of terms and symbols that are consistently used 

throughout this document. 

 

NODE 

The units a ring is comprised of. In reality they may be actual computers connected via a LAN 

or over the Internet, or they may be processes in a multi-core computer. 
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RING 

A network comprised of nodes, connected by some medium laid out in a ring orientation. We 

consider networks of rings of nodes, 𝑃", 𝑃#, … 𝑃$, for n ≥ 2. The ring is bidirectional, meaning that 

information can flow in either direction. For unidirectional algorithms implemented, we choose 

the direction to be clockwise. As such, each node 𝑃% can receive messages only from its 

counterclockwise (left) neighbor, 𝑃%&", and can only send messages to its clockwise (right) neighbor, 

𝑃%'". We interpret all subscripts modulo n, e.g., 𝑃$'" = 𝑃" and 𝑃) = 𝑃$. 

We assume the asynchronous message passing model of computation. Each message takes 

at most one unit of time to reach its destination. However, we will also assume that no message 

is lost, and if 𝑃% receives several consecutive messages from 𝑃%&" while it is idle, 𝑃% will act on them 

in the order they are received. 

For the algorithm given in this document, we assume that no node knows the size of the 

ring. We also assume that each node P has an ID, P.id, which need not be distinct. Comparison 

is the only operation permitted on IDs. Henceforth, when we say ring network, or simply the ring, 

we mean a network which satisfies the above conditions. Let R be the class of all such networks. 

 

ALGORITHM 

When we say algorithm, we mean a uniform distributed algorithm, meaning, a distributed 

algorithm such that every node has the same code. We will also assume that every computation 

of an algorithm begins at a configuration where every node is at a designated initial state.   
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ID 

An ID used to identify nodes. An ID may or may not be unique within the ring. In case of a 

unique ID, we refer to it as a UID. 

 

n 

Size of the ring in terms of number of nodes. 

 

k 

Maximum number of times an ID occurs within the ring. For instance, consider a ring comprised 

of nodes carrying IDs 1, 2, 2, 5, 5, 5. Then k would be 3 as 5 repeats 3-times. In the case k = 1 all 

nodes carry unique IDs. 

 

STEP 

Since messages cannot pass each other in the ring, every computation in our model can be 

emulated by a synchronous computation. We define the steps accordingly. If a node P executes 

an action which takes place at time t in the synchronous emulation, we say that P executes that 

action at Step t. Since our model is asynchronous, nodes in different parts of the ring may execute 

the same step at different times. 
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ROUND 

A round consists of n consecutive steps. Again, since our model is asynchronous, nodes at different 

parts of the ring may complete a given round at different times. 

 

CLASSES OF RINGS 

A class of rings is a collection of rings with different combinations of IDs which share a set of 

common properties. The following table lists and explains the classes of rings which we refer to 

throughout this document. 

 
 

Table 1: Classes of ring networks. 

Class of Rings Description 
R All unidirectional ring networks. 
(𝐴 ⊂ 𝑅) Asymmetric rings. 
(𝑈 ⊂ 𝐴) Rings with unique IDs. 
𝑈∗ (𝑈∗ ⊂ 𝑈) Rings where at least one ID in the ring is unique. 

𝐾2 (𝐾2 ⊂ 𝐴) No ID occurs more than k times where k ≥ 1 is a given integer. 
Note: 𝐾" = 𝑈. 

𝑈2∗ 𝑈2∗ = 𝑈∗ ∩ 	𝐾2 
 

 

3.2 LEADER ELECTION PROBLEM 

In distributed computing, usually all the nodes in the network are identical except for the IDs 

they may possess.  Leader election is the process of electing a single node as the ‘leader’ in the 
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network so that it can be distinguished from all the other nodes in the ring [13]. Usually, the 

node’s ID is used for identifying the leader. It is not necessary for all the nodes in the network to 

have UIDs to solve leader election, but there must be at least one UID, and always a node with a 

UID will be elected as the leader. 

Before the leader election algorithm has begun, all nodes including the eventual leader are 

unaware of the node which will serve as the leader. Once the algorithm has finished execution, 

the leader must know it is the leader, all the other nodes must know they are not the leader, and 

they must also know the UID of the leader. For instance, one common practice is to compare 

UIDs of nodes and elect one among them that fits some criteria such as the largest or the smallest 

UID in the network. 

3.2.1 Formal Definition of Leader Election Problem 

An algorithm solves the leader election problem if: [14] 

• States of nodes are divided into elected and not elected states. Once elected, it remains as 

elected. 

• In every execution, exactly one node becomes elected and the rest determine that they are 

not elected. 

A valid leader election algorithm must meet the following conditions: [15] 

• Termination: the algorithm should finish eventually within a finite time once the leader 

is selected. 

• Uniqueness: there is exactly one node that considers itself as leader. 
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• Agreement: all other nodes know who the leader is. 

3.3 LEADER ELECTION IN RING NETWORKS 

The leader election in ring networks refers to the process of electing a leader in a network of ring 

topology. Any given node is connected to exactly two nodes, referred to as its clockwise neighbor 

and counter-clockwise neighbor. A ring can be one of two types: unidirectional and bidirectional. 

In unidirectional rings, messages can be transmitted in only one direction: either clockwise or 

counter-clockwise. In bidirectional rings, messages may be transmitted in either direction. The 

Distributed Algorithm Simulator can simulate both types of algorithms, but we have implemented 

only unidirectional algorithms. 

3.4 DISTRIBUTED LEADER ELECTION ALGORITHMS IN RING NETWORKS 

3.4.1 LCR Algorithm 

The LCR algorithm, proposed by Le Lann, Chang, and Roberts, is a leader election algorithm in 

a ring network [16]. It uses only unidirectional communication and does not required the 

knowledge of the size of the ring. The LCR algorithm requires all nodes in the ring have UIDs, 

and at the end of the execution elects the node with the highest UID.  

3.4.1.1 Informal Description 

In the first step, each node sends its UID to the clockwise neighbor. When a node receives a 

message, it compares the UID in the incoming message to its own. If the incoming UID is greater 
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than its own, it keeps passing the UID; if it is less than its own, it discards the incoming UID; if 

it is equal to its own, the node declares itself the leader. Afterwards, the leader sends its own UID 

in a special message to inform other nodes of the elected leader. Once the leader receives this 

special message back, the algorithm terminates. 

3.4.1.2 Formal Description 

Each node P has the following variables. 

• P.uid, integer type, non-negative. It is the UID of the node and does not change. 

• P.init, Boolean, initially TRUE. Becomes FALSE at the first step. 

• P.active, Boolean, which indicates that P is active. If !P.active, we say P is passive. 

Initially all nodes are active, and when the algorithm is finished all but the leader becomes 

passive. Once a node becomes passive it never becomes active. 

• P.leader, integer type, initially ⊥ (undefined). When the algorithm is finished, P.leader 

= L.uid for each P, where L is the leader. 

• P.is_leader, Boolean, initially FALSE. For L, P.is_leader becomes TRUE during the 

execution and remains so for the remainder of the execution. For all 𝑃	 ≠ 𝐿, P.is_leader 

remains FALSE for the entirety of the execution. 

• P.leader_elected, Boolean, initially FALSE. Eventually P.leader_elected becomes 

TRUE for all nodes. 
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The LCR algorithm uses a message of the form <u, sp> where, 

• u – Integer, UIDs sent by nodes. 

• sp – Boolean, indicates whether it’s the special message. If sp = TRUE, it is the special 

message and u is the elected leader; otherwise, a regular message. 

 

Following is an action table which formally describes the LCR algorithm. In the Distributed 

Algorithm Simulator, this is used as the base for the coding of the algorithm. Letters T and F are 

used to represent the Boolean values TRUE and FALSE respectively. 
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Table 2: Action table of LCR algorithm. 

Action Number Action Name Condition Action 
A1 Start P.init Send <P.uid, F> 

P.init ← F 
A2 Deactivate P.active 

Read <u, F> 
u > P.uid 

Send <u, F> 
P.active ← F 

A3 Terminate 
Message 

P.active 
Read <u, F> 
u < P.uid 

(nothing) 

A4 Elect 
Leader 

P.active 
Read <u, F> 
u = P.uid 

Send <P.uid, T> 
P.is_leader ← T 
P.leader_elected ← T 
P.leader ← P.uid 

A5 Passive 
Forward 

! P.active 
Read <u, F> 

Send <u, F> 

A6 Acknowledge 
Leader 

! P.active 
Read <u, T> 

Send <u, T> 
P.leader_elected ← T 
P.leader ← u 

A7 Finish P.active 
Read <u, T> 
u = P.uid 

(nothing) 

 

 

3.4.2 UNIQUE_k Algorithm 

The UNIQUE_k algorithm [17] is a distributed algorithm designed to solve the leader election 

problem in unidirectional ring networks. The ring must contain at least one node with a UID, and 

it may or may not contain nodes with repeating IDs. The algorithm elects the node which has the 

maximum UID as the leader. 
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3.4.2.1 Informal Description 

The fundamental idea of UNIQUE_k is that a node becomes passive if it reads a message which 

proves that its own ID is not unique. Eventually, all nodes with non-unique IDs become passive. 

This paradigm is implemented by tokens, each of which carries the ID of the node which 

initialized it. Each time a message is forwarded by a node which has the same ID as that of the 

message, the message’s counter is incremented by one. Thus, the counter in a message is a rough 

estimate of the frequency of its ID in the ring. Whenever a node can determine that its ID is not 

unique, it becomes passive. In order for the leader to be uniquely defined, the IDs of the nodes are 

used as a tie-breaker. If an active node P forwards a token with a larger ID which has the same 

counter value, and that value is at least 1, then P knows that it is not the leader, and thus 

becomes passive. 

3.4.2.2 Formal Description 

Each node P has the following variables. 

• P.id, of unspecified label type, which does not change. Labels can be compared. 

• P.init, Boolean, initially TRUE, which becomes FALSE at the first step. 

• P.active, Boolean, which indicates that P is active. If !P.active, we say P is passive. 

Initially all nodes are active, and when the UNIQUE_k is done the leader is the only active 

node. A passive node never becomes active. 

• P.count, an integer in the range 0… k+1. Initially, P.count = 0. 
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• P.leader, of label type, initially P.id. When UNIQUE_k is done, P.leader = L.uid for 

each P, where L is the leader. 

• P.is_leader, Boolean, initially FALSE for all P. Eventually, P.is_leader becomes TRUE 

and remains TRUE. P.is_leader remains FALSE for the entirety of the execution if 𝑃	 ≠

𝐿. 

• P.leader_elected, Boolean, initially FALSE for all P. Eventually P.leader_elected = 

TRUE for all P. P.leader_elected means that P knows a leader has been elected; once 

TRUE it never becomes false. 

 

UNIQUE_k algorithm uses only one kind of message of the form <x, c> where, 

• x – ID of the original node which generated the message. 

• c – An integer counter in the range 0… k+1. Incremented each time the message is 

forwarded by a node whose ID is equal to P.id. 

 

Following is an action table which formally describes the UNIQUE_k algorithm. In the 

Distributed Algorithm Simulator, this is used as the base for the coding of the algorithm. 
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Table 3: Action table of UNIQUE_k algorithm. 

Action 
Number 

Action 
Name 

Condition Action 

A1 Start 
P.init Send <P.id, 0> 

P.init ← FALSE 

A2 Passive 
Forward 

! P.active 
Read <x, c> 
x ≠ P.id 
c ≤ k 

Send <x, c> 

A3 Active 
Forward 

P.active 
Read <x, c> 
x ≠ P.id 
P.count = 0 or c > P.count 

Send <x, c> 

A4 Deactivate 

P.active 
Read <x, c> 
x ≠ P.id 
c < P.count 

Send <x, c> 
P.active ← FALSE 

A5 
Forward 
Inferior 

P.active 
Read <x, c> 
x < P.id 
c = P.count ≥ 1 

Send <x, c> 

A6 
Forward 
Superior 

P.active 
Read <x, c> 
x > P.id 
c = P.count ≥ 1 

Send <x, c> 
P.active ← FALSE 

A7 
Terminate 
Message 

! P.active 
Read <x, c> 
x = P.id 

(nothing) 

A8 
Increment 
Message 

P.active 
Read <x, c> 
x = P.id 
c = P.count ≤ k-1 

Send <x, c+1> 
P.count ← c+1 

A9 
Elect 
Leader 

P.active 
Read <x, k> 
x = P.id 
P.count = k 

Send <x, k+1> 
P.is_leader ← TRUE 
P.leader_elected ← TRUE 
P.count ← k+1 

A10 
Acknowledge 
Leader 

! P.active 
Read <x, k+1> 

Send <x, k+1> 
P.leader ← x 
P.leader_elected ← TRUE 

A11 Finish 

P.active 
Read <x, k+1> 
x = P.id 
P.count = k+1 

(nothing) 
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Chapter 4 

 Simulator Application – Design 

In this chapter we introduce and explain the main components of the Distributed Algorithm 

Simulator. Then, using class diagrams we describe the structure of the application, and then we 

use sequence diagrams to explain the core processes of the application. 

 

4.1 INTRODUCTION 

The Distributed Algorithm Simulator is a desktop application that simulates the execution of 

distributed leader election algorithms in ring networks. It consists of two main components, 

namely, the Visual Simulator and the Textual Simulator. The application is developed using 

Microsoft .NET Framework 4.5, and as such can only be run on Microsoft Windows platforms. 

4.1.1 Visual Simulator 

The Visual Simulator, as the name suggests, simulates the execution of the algorithm visually. 

The Visual Simulator can simulate the execution on networks containing up to 18 nodes. The 

restriction is purely due to limitations imposed by the screen size. If the number of nodes is greater 

than 18, the application will prompt the user with the option of running the Textual Simulator 
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instead. At the end of the execution the results can be saved to a text file. Following is a screen 

capture of an intermediate stage of the execution of UNIQUE_k algorithm described previously. 

 

 

Figure 1: Execution of UNIQUE_k algorithm in the Visual Simulator. 

 

 

 

The application lets the user either manually input the IDs of the nodes in the ring into a textbox, 

or read them from a CSV (Comma Separated Values) file. In either case the IDs must be in a 

clockwise orientation. Then the user can choose the algorithm to be run and execute it.  
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This opens up the window shown in the above figure, which prompts the user for more 

actions. The nodes in the ring are represented by circles. The node IDs are displayed on top of 

the circles. The nodes are displayed in a clockwise orientation. The Visual Simulator can display 

the status of the variables used in the algorithm as well as the messages being passed in each step, 

and the user has the freedom to choose which variables to be displayed. The user can also choose 

the speed with which the algorithm is executed, the default value of which is 1 second. The 

[Play/Pause] toggle button begins the execution of the algorithm, which also lets the user pause 

the execution. [Reset] stops the algorithm and returns to the initial status so a new execution can 

be started. [Next] and [Previous] lets the user execute the algorithm forward or backward, one 

step at a time, while [First] and [Last] buttons let the user navigate to the first and last steps of 

the execution respectively. During the execution, if a node is active and is still in candidacy to be 

the leader, it is displayed in a blue color. If a node becomes inactive and no longer a candidate to 

be the leader, it turns red. If a node is elected as the leader, it turns green. 

4.1.2 Textual Simulator 

The Textual Simulator can execute the algorithm on networks containing any number of nodes. 

However, due to the time it may take, it is advisable to limit the size of the network to a reasonably 

small n. 

Once the IDs of nodes are either entered by the user or read from a file, the user can check 

the [Textual] radio button to run the Textual Simulator. The textual simulation is displayed on 

a new window that opens up. It displays the contents of all the variables in the algorithm, at each 
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step. The [Run/Pause] toggle button lets the user run and pause the simulation. The simulation 

can be reset at any stage during the execution using the [Reset] button. Following is a screen 

capture of an intermediate stage of the execution of LCR algorithm described previously. 

 

 

Figure 2: Execution of LCR algorithm in the Textual Simulator. 
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4.2 SYSTEM REQUIREMENTS 

The Distributed Algorithm Simulator has been tested on the following operating systems and 

works correctly. 

• Microsoft Windows 8.0 

• Microsoft Windows 8.1 

• Microsoft Windows 10.0 

It has been tested on the following frameworks and works correctly. 

• Microsoft .NET 4.5 framework 

• Microsoft .NET 4.0 framework 

4.3 DESIGN 

The program adopts a modular design which keeps different components independent of each 

other. The Distributed Algorithm Simulator is comprised of 3 namespaces which are listed below. 

4.3.1 Namespaces 

4.3.1.1 DistributedAlgorithmSimulator Namespace 

This is the ‘main’ namespace of the application. All the System.Windows.Forms form classes that 

describe the Distributed Algorithm Simulator application windows, and the supplementary classes 

which are required for their functionality are categorized under this namespace. This includes the 

Distributed Algorithm Simulator main window, the Visual Simulator, and the Textual Simulator 

windows. 
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Classes in this namespace are unaware of the detailed implementation of the actual 

distributed leader election algorithms found in the DistributedAlgorithms namespace. This 

modularity gives both the applications and the algorithms a high degree of independence, so the 

application can be changed with minimal changes to the algorithms and vise versa. The modularity 

is achieved by making use of the WrapperClasses namespace which acts as a template for the 

classes in DistributedAlgorithms namespace. 

4.3.1.2 WrapperClasses Namespace 

This contains abstract classes that are inherited by the classes in DistributedAlgorithms 

namespace. The DistributedAlgorithmSimulator namespace uses these classes to send and receive 

messages, execute the algorithms, and get the current status of the execution of the algorithms. 

These classes dictate the common elements and the rules to which coded algorithms in the 

DistributedAlgorithms namespace must adhere. 

4.3.1.3 DistributedAlgorithms Namespace 

Classes in this namespace describe the actual leader election algorithms. It inherits the classes in 

the WrapperClasses namespace, and then defines each algorithm’s unique behavior. 

 

4.3.2 Code Map 

The following Code Map illustrates the relationship between namespaces and classes within them. 
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Figure 3: Code Map of Distributed Algorithm Simulator 

 

A pink arrow denotes a namespace/class calling another namespace/class, with the origin of the 

arrow denoting the calling party and the arrowhead the called party. A green arrow denotes 

inheritance with origin of the arrow representing the sub class and arrowhead the super class. 
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The DistributedAlgorithmSimulator class inside the like named namespace calls upon 

VisualSimulator and the TextualSimulator classes, while making use of other classes. Those 3 

classes together call both WrapperClasses and the DistributedAlgorithms namespace, and in turn, 

classes within them. 

4.4 UML DIAGRAMS 

4.4.1 Class Diagrams 

4.4.1.1 System Overview 

The following class diagram represents the system as a whole. 
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Figure 4: Class diagram of the entire system. 

 

 

 

DistributedAlgorithmSimulator, VisualSimulator, and TextualSimulator classes are the three 

main classes of the application program, each of which is a form window. They make use of 

ExtensionMethods and FileOperations classes. 
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Node, Utility, and Message abstract classes and their derived classes offer the functionality 

of the actual algorithms. The three main classes mentioned above create instances of these classes 

during the execution of the algorithm. 

4.4.1.2 DistributedAlgorithmSimulator Class 

Following is the DistributedAlgorithmSimulator class, which is a derived class of the .NET Forms 

class. It represents the Distributed Algorithm Simulator main window. 

 

 

Figure 5: Class diagram of DistributedAlgorithmSimulator class. 
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4.4.1.3 ExtensionMethods Class 

The ExtensionMethods class encompasses the supplementary methods used by the Distributed 

Application Simulator. 

 

Figure 6: Class diagram of ExtensionMethods class. 

 

 

 

4.4.1.4 FileOperations Class 

The FileOperations class contains methods for file read/write operations. 

 

Figure 7: Class diagram of FileOperations class. 
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4.4.1.5 VisualSimulator Class 

The Visual Simulator window class, which is a derived class of the .NET Forms class. 

 

 

Figure 8: Class diagram of VisualSimulator class. 
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4.4.1.6 Textual Simulator Class 

The Textual Simulator window class is a derived class of the .NET Forms class. 

 

 

Figure 9: Class diagram of TextualSimulator class. 
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4.4.1.7 Node Classes 

The abstract Node class and its derived classes. 

 

Figure 10: Class diagram of Node class and its derived classes. 
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4.4.1.8 Utility Classes 

The abstract Utility class and its derived classes. 

 

 

Figure 11: Class diagram of Utility class and its derived classes. 
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4.4.1.9 Message Classes 

The abstract Message class and its derived classes. 

 

Figure 12: Class diagram of Message class and its derived classes. 

 

 

4.4.2 Sequence Diagrams 

4.4.2.1 Launching Simulator 

The following illustrates the launching sequence of Visual Simulator and Textual Simulator. 

Depending on user choices the application selects the appropriate algorithm and launches the 

simulation.  
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Figure 13: Sequence diagram of simulation launch process. 
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4.4.2.2 Initializing Visual Simulation 

The following sequence diagram illustrates the initiating sequence of the Visual Simulator. 

 

 

Figure 14: Sequence diagram of the initialize process of Visual Simulator.  
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4.4.2.3 Initializing Textual Simulation 

The following sequence diagram illustrates the initiating sequence of the Textual Simulator. 

 

 

Figure 15: Sequence diagram of the initialize process of Textual Simulator. 

 

 

 

4.4.2.4 TimerCallback 

The following diagram illustrates the TimerCallback() method sequence. It is the method executed 

at each time-step of the algorithm. 
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Figure 16: Sequence diagram of TimerCallback process. 
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Chapter 5 

 Simulator Application – Implementation 

In this chapter we describe in detail the implementation of Distributed Algorithm Simulator. We 

present documentation of all the namespaces, classes, methods, and properties used in 

implementing the system. Then, we focus on core components of the system and give a detailed 

description using illustrations and code samples. 

 

5.1 SOURCE CODE DOCUMENTATION 

In this section, we present a list of namespaces, classes, methods, and fields – along with 

descriptions – used in the Distributed Algorithm Simulator. 

5.1.1 DistributedAlgorithmSimulator Namespace 

Description: This namespace includes classes used for development of the application. 
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Table 4: Classes of DistributedAlgorithmSimulator namespace. 

 Class Description 

 Common Contains common fields. 

 DistributedAlgorithmSimulator Main Windows of the Distributed Algorithm 
Simulator application. 

 ExtensionMethods Extension methods used for various tasks. 

 FileOperations Static class offering file read/write operations 
tailored to Distributed Algorithm Simulator. 

 History Keeps a record of state of all the variables of the 
algorithm. One History object refers to one step in 
the execution of the algorithm. 

 NodeControl A control that represents a node in the Visual 
Simulator. Consists of a circular shaped graphic 
that represents a node and text on it that represents 
node IDs. 

 NodeInfoControl A control that represents variables to be displayed 
alongside each node control. 

 TextualSimulator Textual Simulator window. 

 VisualSimulator Visual Simulation window. 
 

 

Table 5: Enumerations of DistributedAlgorithmSimulator namespace. 

 Enumeration Description 

 Algorithm Algorithm Type 
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5.1.1.1 Algorithm Enumeration 

Description: Denotes algorithm type. 

 

 

Table 6: Algorithm enumeration syntax. 

C# Syntax 

public enum Algorithm 
 

 

Table 7: Members of Algorithm enumeration. 

 Member name Value Description 

 LCR 0 LCR Algorithm 

 UniqueK 1 UniqueK Algorithm 
 

 

5.1.1.2 Common Class 

Description: Contains common fields. 

 

Table 8: Common class syntax. 

C# Syntax 

public static class Common 
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Table 9: Fields of Common class. 

 Name Description 

 
CAPTION_ERROR Caption: ERROR! Used as general error message 

MessageBox caption. 

 
CAPTION_FILE_ERROR Caption: FILE ERROR. Used as file error message 

MessabeBox caption. 

 
CAPTION_FILE_WRITE Caption: FILE WRITE. Used as file write error message 

MessageBox caption. 

 
CAPTION_INVALID_ID Caption: INVALID ID ERROR. Used as caption for 

invalid ID error messages MessageBox. 

 
CAPTION_TEXT_SIM Caption: TEXTUAL SIMULATION. Used as caption for 

prompt for textual simulation MessageBox. 

 
ERR_MSG_SUCCESS Success message. 

 
STR_ALG Sting: Algorithm 

 
STR_ALG_LCR String: LCR 

 
STR_ALG_UNIQUE_K String: UniqueK 

 
STR_DEFAULT_SAVE_FILE String: SimulationResults (Default output file name 

without extension) 

 
STR_DIR_CCW String: Counter Clockwise 

 
STR_DIR_CW String: Clockwise 

 
STR_FINISHED String: Finished! 

 
STR_TEXT_SIM_TITLE String: Textual Simulation 

 
STR_VISUAL_SIM_TITLE String: Visual Simulation 
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5.1.1.3 DistributedAlgorithmSimulator Class 

Description: The main windows of the Distributed Algorithm Simulator application. 

 

 

Table 10: DistributedAlgorithmSimulator class syntax. 

C# Syntax 

public class DistributedAlgorithmSimulator : Form 
 

 

Table 11: DistributedAlgorithmSimulator class constructor. 

 Name Description 

 DistributedAlgorithmSimulator Initializes a new instance of the 
DistributedAlgorithmSimulator class. 
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Table 12: DistributedAlgorithmSimulator class methods. 

 Name Description 

 btnExit_Click Exits the application. 

 btnOpenFile_Click Launches a FileOpen dialog which lets the user select 
the input file. 

 btnRead_Click Reads the node IDs and creates a list of IDs. Depending 
on the user's selection, reads either from a user selected 
file or takes input from a text box. 

 btnRun_Click Executes the simulation depending on user preference of 
Visual or Textual simulation. If the number of nodes is 
greater than 18, prompts the user to launch a Textual 
Simulation. 

 CreateNetwork Creates a ring network which can pass messages in 
either clockwise or counter-clockwise directions Nodes 
are linked to their CW and CCW neighbors using a 
private id called LinkID (which isn't a part of the 
algorithm) 

 Initializations Performs initializations such as setting initial values of 
controls. 

 InitializeComponent Required method for Designer support - do not modify 
the contents of this method with the code editor. 

 LaunchSimulation Launches either a Visual Simulation or a Textual 
Simulation of an algorithm of user's choice. 

 LoadAlgorithms Loads available algorithms into "Algorithm Type" 
combo box. 

 rbInputIDs_CheckedChanged Specifies user preference of reading input from a 
textbox. 

 rbReadFromFile_CheckedChanged Specifies user preference of reading input from a file. 

 SimulatorMain_Load Form load event of the main window. 
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5.1.1.4 ExtensionMethods Class 

Description: Extension methods used for various tasks. 

 

 

Table 13: ExtensionMethods class syntax. 

C# Syntax 

public static class ExtensionMethods 
 

 

Table 14: ExtensionMethods class methods. 

 Name Description 

 DeepClone(T) Makes a new copy of an object without keeping a reference. 

 DrawCircle Draws a circle using given parameters on a Graphics object. 

 SetHighQuality Sets high quality parameters to a Graphics object. 
 

 

5.1.1.5 FileOperations Class 

Description: Static class offering file read/write operations tailored to Distributed Algorithm 

Simulator. 
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Table 15: FileOperations class syntax. 

C# Syntax 

public static class FileOperations 
 

 

Table 16: FileOperations class methods. 

 Name Description 

 ReadCSVFile Reads a CSV file and store values in a list of integers. 

 SaveToFile Opens a SaveFileDialog to allow user to save the file. 
 

 

5.1.1.6 History Class 

Description: Keeps a record of states of all the variables of the algorithm. One History object 

refers to one step in the execution of the algorithm. 

 

Table 17: History class syntax. 

C# Syntax 

public class History 
 

 

Table 18: History class constructor. 

 Name Description 

 History Initializes an instance of the History class. 
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Table 19: History class properties. 

 Name Description 

 RoundNum Round number in the execution. 

 RoundSteps Step number in the current round of execution. 

 StateList List of NodeState objects representing the current step. 

 TotalSteps Step number in the overall execution. 
 

 

5.1.1.7 NodeControl Class 

Description: A control that represents a node in the Visual Simulator. Consists of a circular 

shaped graphic that represents a node and text on it that represents node IDs. 

 

 

Table 20: NodeControl class syntax. 

C# Syntax 

public class NodeControl : Control 
 

 

Table 21: NodeControl class constructor. 

 Name Description 

 NodeControl Initializes an instance of a NodeControl class. 
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Table 22: NodeControl class methods. 

 Name Description 

 SetNodeColor Sets the node color. 

 SetTextColor Sets the node ID text color. 
 

 

5.1.1.8 NodeInfoControl Class 

Description: A control that represents variables to be displayed alongside each node control. 

 

 

Table 23: NodeInfoControl class syntax. 

C# Syntax 

public class NodeInfoControl : Control 
 

 

Table 24: NodeInfoControl class constructor. 

 Name Description 

 NodeInfoControl Initializes an instance of a NodeInfoControl class. 
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5.1.1.9 TextualSimulator Class 

Description: The Textual Simulator window. 

 

Table 25: TextualSimulator class syntax. 

C# Syntax 

public class TextualSimulator : Form 
 

 

Table 26: TextualSimulator class constructor. 

 Name Description 

 TextualSimulator Initializes an instance of the TextualSimulator class. 
 
 

Table 27: TextualSimulator class methods. 

 Name Description 

 btnExit_Click Exits the Textual Simulation window. 

 btnResetTextSim_Click Resets the execution. 

 btnRunTextSim_Click Runs the execution. 

 btnSaveTextSim_Click Saves execution results to a file. 

 InitializeComponent Required method for Designer support - do not modify 
the contents of this method with the code editor. 

 numUpDownSpeed_ValueChanged Change the execution speed based on NumericUpDown 
control value. 

 Reset Resets all variables to initial state. 

 TimerCallback Performs one step of the execution of the algorithm. 
Called from the Timer, at each time tick. 

 ToggleRunPause Toggles Run/Pause button. 
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5.1.1.10 VisualSimulator Class 

Description: The Visual Simulation window. 

 

 

Table 28: VisualSimulator class syntax. 

C# Syntax 

public class VisualSimulator : Form 
 

 
Table 29: VisualSimulator class constructor. 

 Name Description 

 VisualSimulator Initializes an instance of the VisualSimulator class. 
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Table 30: VisualSimulator class methods. 

 Name Description 

 btnExit_Click Exits the Visual Simulator window. 

 btnFirst_Clicked Jumps to the first step of the execution. 

 btnLast_Clicked Jumps to the last step of the execution. 

 btnNext_Clicked Advances one step forward through the history. 

 btnPlayPause_Clicked Play/Pause button click. Runs/Stops the execution. 

 btnPrev_Clicked Advances one step backward through the history. 

 btnReset_Clicked Resets all variables and counters. 

 btnSaveToFile_Clicked Saves the result of the execution to a file. 

 CalculateRingProperties Calculates the XY-coordinates and the radius of the 
ring. 

 chkBox_CheckedChanged Update the list of variables to be displayed based on 
check status of check boxes. 

 CreateDynamicControls Dynamically creates controls. 

 DrawNodes Draws nodes in the ring. 

 FillInfoList Gets the variables associated with the algorithm. 

 gbSimulation_Paint Draws the circle representing the ring. 

 InitializeComponent Required method for Designer support - do not modify 
the contents of this method with the code editor. 

 numUpDownSpeed_ValueChanged Updates the execution speed depending on the user 
selected value. 

 RefreshSimulator Resets all variables to initial state. 

 SaveData Saves the result of the execution to a file. 

 SetCheckStatus Sets the checked status of check boxes. 

 SetCouners Sets the values of TotalSteps, RoundNumber, and Steps 
in the Round counters. 

 SetStatusOfPlaybackButtons Sets the enabled statues of playback buttons. 

 TimerCallback Performs one step of the execution of the algorithm. 
Called from the Timer, at each time tick. 

 UpdateInfoList Updates the list of variables to be displayed depending 
on check status of check boxes. 
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5.1.2 WrapperClasses Namespace 

Description: Wrapper classes that facilitate a template API for distributed algorithms 

implemented in the DistributedAlgorithms namespace. 

 

 

Table 31: Classes of WrapperClasses namespace. 

 Class Description 

 Message MESSAGE super class. Used in the SimulatorMain. Each algorithm will derive 
from this to define its own message. 

 Node Node super class. Used in the SimulatorMain. Each algorithm's libraries will 
derive from this to implement the node. 

 NodeState Represents a state of variables of a node during the execution of the algorithm. 

 Utility Common Utility class. Classes of different algorithms must override these and 
perform appropriate changes. 

 

 

Table 32: Structures of WrapperClasses namespace. 

 Structure Description 

 NodeState.Item Represents a variable of a node. 

 

 

5.1.2.1 Message Class 

Description: Message super class. Used in the SimulatorMain. Each algorithm will derive from 

this to define its own message. 
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Table 33: Message class syntax. 

C# Syntax 

[SerializableAttribute] 
public abstract class Message 
 

 

5.1.2.2 Node Class 

Description: Node super class. Used in the SimulatorMain. Each algorithm's libraries will derive 

from this to implement the node. 

 

Table 34: Node class syntax. 

C# Syntax 

[SerializableAttribute] 
public abstract class Node 
 

 

Table 35: Node class properties. 

 Name Description 

 CcwNeighbor LinkID of the counter-clockwise neighbor. 

 CwNeighbor LinkID of the clockwise neighbor. 

 LinkId The ID used to create the network. Different from node IDs. 

 RcvdMsg Received message at each step. 

 SentMsg Sent message at the end of each step. 

 UID Node IDs of nodes. 
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Table 36: Node class methods. 

 Name Description 

 TimeTick Actions performed at each time step. This is the coded Actions Table. 
 

 

5.1.2.3 NodeState Class 

Description: Represents a state of variables of a node during the execution of the algorithm. 

 

Table 37: NodeState class syntax. 

C# Syntax 

[SerializableAttribute] 
public class NodeState 
 

 

Table 38: NodeState class constructor. 

 Name Description 

 NodeState Initializes a new instance of NodeState class. 
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Table 39: NodeState class properties. 

 Name Description 

 CcwId LinkID of the counter-clockwise neighbor. 

 CwId LinkID of the clockwise neighbor. 

 ItemList List of variables. 

 LinkId The ID used to create the network. Different from node IDs. 
 

Table 40: NodeState class methods. 

 Name Description 

 AddItem Adds an item to the Item List. 
 

 

5.1.2.4 NodeState.Item Structure 

Description: Represents a variable of a node. 

 

Table 41: NoteState.Item structure syntax. 

C# Syntax 

public struct Item 
 

 

Table 42: NodeState.Item structure properties. 

 Name Description 

 ItemName Variable name. 

 ItemValue Variable value. Converted to object type. 
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5.1.2.5 Utility Class 

Description: Common Utility class. Classes of different algorithms must override these and 

perform appropriate changes. 

 

 

Table 43: Utility class syntax. 

C# Syntax 

public abstract class Utility 
 

 

Table 44: Utility class methods. 

 Name Description 

 ErrorChecks Checks for errors. 

 GetStatus Returns (as a reference) the state of all the nodes as a NodeState list. 

 GetVariables Gets a list of variables that the algorithm uses. 

 Initialize Performs required initializations. 

 IsFinished Checks whether the algorithm execution is finished. 

 PrintList Prints the ring orientation in clockwise order. 

 PrintStep Returns (as a reference) the state of all the nodes as a single string. 
 

 
Table 45: Utility class fields. 

 Name Description 

 ERR_MSG_SUCCESS Successful operation. 
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5.1.3 DistributedAlgorithms Namespace 

Description: This namespace includes the coded distributed leader election algorithms in ring 

networks that are used in this simulator. Namely, LCR algorithm and UNIQUE_k algorithm. 

 

Table 46: Classes of DistributedAlgorithms namespace. 

 Class Description 

 LCRMsg Message prototype for messages used in LCR algorithm. 

 LCRNode Contains LCR Algorithm actions. 

 LCRUtility A utility class that performs actions such as initializations and error checks. 
It acts as an interface to the main application which obtains the status of 
the algorithm at each step. 

 UniqueKMsg Message prototype for messages used in UNIQUE_k algorithm. 

 UniqueKNode Contains UniqueK Algorithm actions. 

 UniqueKUtility A utility class that performs actions such as initializations and error checks. 
It acts as an interface to the main application which obtains the status of 
the algorithm at each step. 

 

 

5.1.3.1 LCRMsg Class 

Description: Message prototype for messages used in LCR algorithm. 

Table 47: LCRMsg class syntax. 

C# Syntax 

[SerializableAttribute] 
public class LCRMsg : Message 
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Table 48: LCRMsg class constructor. 

 Name Description 

 LCRMsg Initializes message values. 
 

 

Table 49: LCRMsg class properties. 

 Name Description 

 SP Indicates whether a message is a special message or not. True: special message, False: 
regular message. 

 UID Unique IDs of nodes. Non-negative values. 
 

 

5.1.3.2 LCRNode Class 

Description: Contains LCR Algorithm actions. 

 

Table 50: LCRNode class syntax. 

C# Syntax 

[SerializableAttribute] 
public class LCRNode : Node 
 

 

Table 51: LCRNode class constructor. 

 Name Description 

 LCRNode Initializes a new instance of the LCRNode class. 
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Table 52: LCRNode class properties. 

 Name Description 

 Active Represents whether the node is active or not. 

 CcwNeighbor LinkID of the counter-clockwise neighbor. (Inherited from Node.) 

 CwNeighbor LinkID of the clockwise neighbor. (Inherited from Node.) 

 Init Represents whether algorithm is initialized or not. 

 IsLeader True: if the node is the leader. False: otherwise. 

 Leader Elected leader's ID 

 LeaderElected True: the nodes know that a leader has been elected by the algorithm. 
False: otherwise. 

 LinkId The ID used to create the network. Different from node IDs. (Inherited 
from Node.) 

 
NOMESSAGE An LCR algorithm message containing NOMESSAGE as its X value 

represents a non-message. i.e., the same as no message being sent through 
the channel. 

 RcvdMsg Received message at each step. (Inherited from Node.) 

 SentMsg Sent message at the end of each step. (Inherited from Node.) 

 UID Node IDs of nodes. (Inherited from Node.) 
 

 

Table 53: LCRNode class methods. 

 Name Description 

 TimeTick Actions performed at each time step. This is the coded Actions Table. (Overrides 
Node.TimeTick(List(Message), List(Message)).) 

 

5.1.3.3 LCRUtility Class 

Description: A utility class that performs actions such as initializations and error checks. It acts 

as an interface to the main application which obtains the status of the algorithm at each step. 
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Table 54: LCRUtility class syntax. 

C# Syntax 

public class LCRUtility : Utility 
 

 

Table 55: LCRUtility class constructor. 

 Name Description 

 LCRUtility Initializes a new instance of the LCRUtility class 
 

 

Table 56: LCRUtility class methods. 

 Name Description 

 ErrorChecks Checks for errors. (Overrides Utility.ErrorChecks(Int32, List(Int32), String).) 

 
FindK Finds the maximum number of repeating IDs in a list of integers 

 GetStatus Returns (as a reference) the state of all the nodes as a NodeState list. 
(Overrides Utility.GetStatus(Int32, List(Node), List(NodeState)).) 

 GetVariables Returns a list of variables used in the algorithm. (Overrides 
Utility.GetVariables().) 

 Initialize Performs required initializations (Overrides Utility.Initialize(Int32, 
List(Node), List(Message), String).) 

 IsFinished Checks whether the algorithm execution is finished. (Overrides 
Utility.IsFinished(Int32, List(Node)).) 

 PrintList Prints the ring orientation in clockwise order. (Overrides 
Utility.PrintList(Int32, List(Node), String, String).) 

 PrintStep Returns (as a reference) the state of all the nodes as a single string. 
(Overrides Utility.PrintStep(Int32, Int32, List(Node), String, String).) 
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5.1.3.4 UniqueKMsg Class 

Description: Message prototype for messages used in UniqueK algorithm. 

 

 

Table 57: UniqueKMsg class syntax. 

C# Syntax 

[SerializableAttribute] 
public class UniqueKMsg : Message 
 

 

Table 58: UniqueKMsg class constructor. 

 Name Description 

 UniqueKMsg Initializes message values. 
 

 

Table 59: UniqueKMsg class properties. 

 Name Description 

 C Counter. 

 X IDs of the originating node. 
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5.1.3.5 UniqueKNode Class 

Description: Contains UniqueK Algorithm actions. 

Table 60: UniqueKNode class syntax. 

C# Syntax 

[SerializableAttribute] 
public class UniqueKNode : Node 
 

 

Table 61: UniqueKNode class constructor. 

 Name Description 

 UniqueKNode Initializes a new instance of the UniqueKNode class. 
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Table 62: UniqueKNode class properties. 

 Name Description 

 Active Represents whether the node is active or not. 

 CcwNeighbor LinkID of the counter-clockwise neighbor. (Inherited from Node.) 

 Count P.count variable. 

 CwNeighbor LinkID of the clockwise neighbor. (Inherited from Node.) 

 Init Represents whether algorithm is initialized or not. 

 IsLeader True: if the node is the leader. False: otherwise. 

 K K, the maximum number of times a node ID is repeated in the ring. 

 Leader Elected leader's ID. 

 LeaderElected True: the nodes know that a leader has been elected by the algorithm. 
False: otherwise. 

 LinkId The ID used to create the network. Different from node IDs. (Inherited 
from Node.) 

 
NOCOUNT An undefined count state. 

 
NOMESSAGE An LCR algorithm message containing NOMESSAGE as its X value 

represents a non-message. i.e., the same as no message being sent through 
the channel. 

 RcvdMsg Received message at each step. (Inherited from Node.) 

 SentMsg Sent message at the end of each step. (Inherited from Node.) 

 UID Node IDs of nodes. (Inherited from Node.) 

 
UNDEFINED Denotes an undefined state. 

 

 

Table 63: UniqueKNode class methods. 

 Name Description 

 TimeTick Actions performed at each time step. This is the coded Actions Table. (Overrides 
Node.TimeTick(List(Message), List(Message)).) 
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5.1.3.6 UniqueKUtility Class 

Description: A utility class that performs actions such as initializations and error checks. It acts 

as an interface to the main application which obtains the status of the algorithm at each step. 

 

 

Table 64: UniqueKUtility class syntax. 

C# Syntax 

public class UniqueKUtility : Utility 
 

 

Table 65: UniqueKUtility class constructor. 

 Name Description 

 UniqueKUtility Initializes a new instance of the UniqueKUtility class. 
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Table 66: UniqueKUtility class methods. 

 Name Description 

 ErrorChecks Checks for errors. (Overrides Utility.ErrorChecks(Int32, List(Int32), 
String).) 

 
FindK(List(Int32)) Finds the maximum number of repeating IDs in a list of integers. 

 
FindK(List(Node)) Finds the maximum number of repeating IDs in a list of nodes. 

 GetStatus Returns (as a reference) the state of all the nodes as a NodeState list. 
(Overrides Utility.GetStatus(Int32, List(Node), List(NodeState)).) 

 GetVariables Returns a list of variables used in the algorithm. (Overrides 
Utility.GetVariables().) 

 Initialize Performs required initializations (Overrides Utility.Initialize(Int32, 
List(Node), List(Message), String).) 

 IsFinished Checks whether the algorithm execution is finished. (Overrides 
Utility.IsFinished(Int32, List(Node)).) 

 PrintList Prints the ring orientation in clockwise order. (Overrides 
Utility.PrintList(Int32, List(Node), String, String).) 

 PrintStep Returns (as a reference) the state of all the nodes as a single string. 
(Overrides Utility.PrintStep(Int32, Int32, List(Node), String, String).) 

 

 

5.2 EXPLANATION OF CRUCIAL COMPONENTS 

In this section, we describe in detail the implementation of some of the crucial core components 

of the Distributed Algorithm Simulator. 
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5.2.1 Source Code Organization 

Inside the Visual Studio IDE, the source code is arranged under the ‘Source’ folder according to 

the following structure. 

 

Figure 17: Source code organization in Visual Studio IDE. 
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The relationship between namespaces and folders are as follows. 

 

 

Table 67: Organization of folders according to namespaces. 

Namespace Folder(s) 
DistributedAlgorithms Algorithm_LCR 

Algorithm_UniqueK 
DistributedAlgorithmSimulator ApplicationMain 

Common 
TextualSimulator 
VisualSimulator 

WrapperClasses WrapperClasses 
 

 

5.2.2 Creating the Network 

The Distributed Algorithm Simulator simulates the execution of algorithms in a ring network. As 

such we need a way to denote nodes arranged in a ring orientation, and their relationship to other 

nodes. 

In a ring network, any given node has only two neighbors which we call the clockwise 

neighbor and the counter-clockwise neighbor, as shown in the following illustration. 
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Figure 18: Organization of nodes in a ring network. 

 

 

 

This is implemented by using a list (.NET class: System.Collections.Generic.List) of Node class 

objects which we have defined in the WrapperClasses namespace. In the Node class, we have 

defined 3 integer type variables for the purpose of implementing the network as follows. 

• LinkId – A positive non-zero integer assigned at the network creation time, and is used to 

identify each node’s position relative to other nodes in the network. This is different from 

node IDs used in the algorithms. 

• CwNeighbor – LinkID of the current Node object’s clockwise neighbor. 

• CcwNeighbor – LinkID of the current Node object’s counter-clockwise neighbor. 
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For example, let us consider a network with 6 nodes. Let us also assume the arbitrary node IDs 

of the nodes are 11, 22, 33, 44, 55, and 66. We assign LinkID = 1 and ID = 11 to the first node, 

LinkID = 2 and ID = 22 to the second node, so on and so forth. Following figure illustrates the 

state of variables of each node after the network is created. 

 

 

Figure 19: Relationships between neighboring nodes in a ring network. 
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In the CreateNetwork() method, we create a list of Node objects using a for-loop that runs from 

1 to n, n being the size of the network. Each Node object is assigned a LinkID such that the first 

node gets the LinkID = 1, the second node gets the LinkID = 2, so on and so forth. At the same 

time, each Node object’s CwNeighbor and CcwNeighbor values are calculated and assigned. For 

first and last nodes in the list, when calculating CcwNeighbor and CwNeighbor respectively, we 

wrap around. At the same time, we also assign actual node IDs (either read from a file or taken 

from user input) to each node, in the order they are listed in the file or the user input. 

Below is the CreateNetwork() method with error handling sections removed to better focus 

on the core of the method. 
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Figure 20: CreateNetwork() method. 

 

 

Once the CreateNetwork() function finishes execution, we have a list of Node objects that 

represents the network. Each node is aware of its own position in the network and that of the two 
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neighbors on either side of it. We use this knowledge when the algorithms are being executed as 

explained in the next section. 

5.2.3 Executing Algorithm Steps 

We use a timer (.NET class: System.Threading.Timer) object and a callback method to execute 

the algorithms step-by-step. The callback method is called at every time-tick of the timer and 

represents the execution of one time-step in the algorithm. Let us take a look at this callback 

method, once again error handling sections removed. 
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Figure 21: TimerCallback() method. 

 

 

 

The Node class contains a TimeTick() method which executes the actions of the algorithms which 

are performed at each step. In the TimerCallback() method, we traverse through each Node object 

in the list of Node objects created in the CreateNetwork() method and execute the TimeTick() 

method. This is equivalent to each node executing one step in a real distributed system.  
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The Utility class contains the method IsFinished() which checks if all the nodes in the 

network satisfy the conditions for termination. Therefore, if IsFinished() returns true at any given 

time during the execution, that implies the algorithm has finished its work. In which case the 

TimerCallback() method disposes the timer object and finishes the execution. 

5.2.4 Message Communication 

The distributed algorithms described in this document use message passing as the mode of 

communication. In a real distributed system this would be done by some sort of message passing 

protocol such as MPI. In this application, we use a message buffer to simulate the node. 

To describe the process, let us consider a ring network consisting of 6 nodes, and let us 

assume that the nodes are represented by a list of Node class objects as described in the ‘Creating 

the Network’ section above. The following figure illustrate the configuration, with labels inside 

the list items indicating each node’s LinkId, and the labels below the list items indicating each 

node’s zero-based index in the list. 

 

 

Figure 22: Representation of list of nodes and their LinkIDs. 
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To hold the messages, we use a message buffer which is a list of Message class objects. Each 

algorithm (such as the LCR algorithm or the UNIQUE_k algorithm) has its own message class 

which is a derived class of the Message class, and thus defines message types according to that 

particular algorithm’s requirements. The crucial connection here is that in the list of Message class 

objects, each item corresponds to the like index item of the Node list. The Message Buffer can be 

thought of as set of mail boxes assigned to each node in the node list; receiving mail must be 

retrieved from your own mailbox, and sending mail must be put inside intended receiver’s mailbox. 

 

 

Figure 23: Relationship between node list and message buffer. 

 

 

 

Consider the case where the node with LinkId = 3 (index = 2) receiving and sending messages. 

As described in the ‘Creating the Network’ section above, its clockwise and counter-clockwise 

neighbors are LinkId = 4 and LinkId = 2 respectively, and thus the corresponding indices are 3 

and 1. Now if we assume the algorithm passes messages in the clockwise direction, it would mean 
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that a node receives messages from the counter-clockwise neighbor, and it sends messages to the 

clockwise neighbor.  

When LinkId = 3 node wants to receive a message, it grabs the message from the item 

corresponding to its own index in the message buffer. That is, it copies the message from index 2 

of message buffer, as illustrated below. As such, regardless of whether the algorithm operates 

clockwise or counter-clockwise, receiving messages are always retrieved from the index 

corresponding to the receiver’s own index.  

 

 

Figure 24: Receiving a message from the counter-clockwise neighbor. 

 

 

Conversely, when sending a message, the LinkId = 3 node copies the message it wants to send to 

the item corresponding to the index of its clockwise neighbor in the message buffer. In other words, 

LinkId = 3 node copies a message to the index 3 of message buffer. If the algorithm was operating 

in the counter-clockwise direction, conversely, sending message must be copied to the index 1 of 

the message buffer. 
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Figure 25: Sending a message to the clockwise neighbor. 

 

 

 

5.2.5 Visual Simulator – Drawing Nodes 

The colored circles that represent nodes and the information displayed next to them are displayed 

using two class objects, namely, NodeControl and NodeInfoControl, which are derived classes of 

Microsoft .NET Control class. 

 

Figure 26: An instance of a NodeControl control. 

 

 

Figure 27: An instance of a NodeInfoControl control. 
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5.2.5.1 NodeControl Class 

The NodeControl class which is derived from the .NET Control class contains two major 

components: 

• A fill circle – Represents a node. Drawn using Graphics.FillEllipse() .NET method. 

• A string of text – Represents a node ID. Drawn using Graphics.DrawString() .NET 

method. 

The NodeControl class contains two methods, DrawNode() and DrawID(), which are called from 

the overridden OnPaint() method of the class, which draws the circle representing the node and 

the text representing the node ID, respectively [18].  
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Figure 28: Code sample of the NodeControl class. 
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5.2.5.2 NodeInfoControl Class 

The NodeControl is also derived from the .NET Control class, and it contains a number of label 

controls matching the variables of the algorithm that must be displayed. For instance, the LCR 

algorithm contains four variables that can be displayed, namely, Active, IsLeader, LeaderElected, 

and Leader. 

We pass a list of strings which contains the names of the variables to be displayed, and a 

NodeState object which contains the values of those variables, to the constructor. The 

DrawLables() method iterates through the list and draws two labels for each variable that must 

be shown; one to display the name of the variable and the other to display the value. 
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Figure 29: Code Sample of the NodeInfoControl Class. 
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Chapter 6 
 User Guide 

This chapter is organized as a user guide to the end-user of the Distributed Algorithm Simulator. 

We provide step-by-step guides for installation, basic overview of the system, and the usage of the 

Visual Simulator and the Textual Simulator. 

 

6.1 DOWNLOAD 

The Distributed Algorithm Simulator setup file can be downloaded from the following BitBucket 

repository. In addition, the entire repository can also be obtained at the same link. 

• https://bitbucket.org/sachintha81/distributedalgorithmsimulator-public/downloads 
 

6.2 INSTALLATION 

Following steps will guide you through the installation process. 

• Download the DistributedAlgorithmSimulatorSetup.zip file and extract it. 

• Double-click the DistributedAlgorithmSimulatorSetup.exe file on the extracted folder. 

• [Preparing to Install…] screen will be displayed. Wait for the next screen. 
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Figure 30: [Preparing to Install] screen. 

 

 

• Click [Next >] at the Distributed Algorithm Simulator splash screen. 

 

Figure 31: Distributed Algorithm Simulator splash screen. 
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• Click [Next >] at the [Welcome] screen. 

 

Figure 32: [Welcome] screen. 

 

 

• The [Destination Folder] screen lets the user select the install directory. Either leave the 

default directory, or click [Change…] to select a different directory. Click [Next >] 
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Figure 33: [Destination Folder] screen. 

 

 

• Click [Install] at the [Ready to Install the Program] screen. 

 

Figure 34: [Ready to Install the Program] screen. 
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• Wait until the installation is complete. 

 

Figure 35: [Installing Distributed Algorithm Simulator] screen. 

 

 

 

• Click [Finish] at the [InstallShield Wizard Complete] screen. If [Launch the program] check 

box is checked, it will launch the installed Distributed Algorithm Simulator program. 
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Figure 36: [InstallShield Wizard Complete] screen. 

 

 

 

6.3 DISTRIBUTED ALGORITHM SIMULATOR MAIN WINDOW 

Launching the application opens the following Distributed Algorithm Simulator main window. 
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Figure 37: Distributed Algorithm Simulator main window. 

 

 

 

• [Input IDs] and [Read from File] radio buttons let user input the node IDs to the [Input 

IDs] textbox, or read them from a file. 

• By default, [Input IDs] radio button is checked. 

• [Node IDs] textbox displays the node IDs, in clockwise orientation, once read. 
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• [Visual] and [Textual] radio buttons let the user select the type of simulation to run: The 

Visual Simulation or the Textual Simulation. 

• [Algorithm Type] drop down list lets the user select the algorithm to run. 

• The [RUN SIMULATION] button is deactivated by default. It becomes activated once the 

node IDs are read. 

• The [EXIT] button lets the user terminate the Distributed Algorithm Simulator. 

6.3.1 Input IDs into a Textbox. 

• Select the [Input IDs] radio button. [Input IDs] textbox will be enabled. 
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Figure 38: Selecting [Input IDs] radio button. 

 

• Type into the [Input IDs] textbox. Input IDs must be non-negative integers, separated by 

commas. There is no limit on the number of IDs that can be entered. 
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Figure 39: Entering node IDs. 

 

 

 

6.3.2 Select an input File 

• Select the [Read from File] radio button. [Select File] textbox will be enabled. By default, 

the textbox will contain the string “Input.csv”. If there is a file by the same name in the 
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same directory in which the application executable resides, it can be read in. The input 

file type must be a Comma Separated Values (CSV) file. 

 

 

Figure 40: Selecting [Read from File] radio button. 

 

 

• To select a different file, click the [Select] button. It will open up the [Open] file open 

dialog box. Select a .CSV file and click the [Open] button. 
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Figure 41: File open dialog box. 

 

 

 

• The file path will be displayed in the [Select File] textbox. 
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Figure 42: File path of the selected file. 

 

 

 

6.3.3 Read Data 

• Once either node IDs are typed into the [Input IDs] textbox, or a .CSV file containing the 

IDs selected, click the [Read] button. The IDs will be read and displayed in the [Node IDs] 
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textbox, in clockwise orientation, as shown below. The [RUN SIMULATION] button will 

be enabled at this time. 

 

Figure 43: Reading data from the input source. 

 

 

 

Note: Once the [Read] button is clicked and ID’s are displayed, if a modification needs to be 

done, it must be done either in the [Input IDs] textbox or changes should be made to the .CSV 



 
 

99 

file, and then read once again using the [Read] button. Editing the displayed IDs in the [Node 

IDs] textbox will not effect the already read IDs. 

 

 

6.3.4 Running the Simulation 

• Read in the node IDs as described in the previous step. 

• Select the algorithm from the [Algorithm Type] drop down list. 
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Figure 44: Selecting an algorithm to simulate. 

 

 

 

• To run the Visual Simulation, select the [Visual] radio button. 
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Figure 45: Selecting the Visual Simulation type. 

 

 

 

• To run the Textual Simulation, select the [Textual] radio button. 
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Figure 46: Selecting the Textual Simulation type. 

 

 

 

• Click the [RUN SIMULATION] button. It will launch either the Visual Simulation or the 

Textual Simulation depending on the user choice. 

 

Note: The maximum number of nodes allowed for the Visual Simulation is 18. If the number of 

nodes in the network is more than that, and the user selected [Visual] radio button, upon clicking 
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the [RUN SIMULATION] button, user will be prompted to either cancel the simulation or run 

the Textual Simulation instead. 

 

 

Figure 47: Prompting user to run a Textual Simulation. 

 

 

 

• [Yes] – Runs the Textual Simulation. 

• [No] – Cancels the simulation and returns to the main window. 

 

6.4 VISUAL SIMULATOR 

Following is the Visual Simulator with the selected algorithm being LCR and the nodes with node 

IDs 1, 2, 3, and 4 in clockwise orientation, at the initial state. The four navigation icons (Previous, 

Next, First, and Last) are disabled at first. Navigating through the algorithm can only be done 

when the simulation is run to the completion at least once, at which point they becomes enabled. 

Figure 48: Visual Simulator initial state. 
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Following legend explains the button icons and their functionality. 

 

Table 68: Visual Simulator button icons and their functionality. 

Icon Meaning Functionality 

 Play Executes the simulation. 
 Pause Pauses the simulation. 
 Next Advances the simulation by one step in forward direction. 
 Previous Advances the simulation by one step in backward direction. 

 Last Proceeds to the final step of the simulation. 
 First Proceeds to the first step of the simulation. 
 Reset Resets the simulation. 
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The four labels at the top left corner of the simulation window displays the round and step 

numbers. Their meanings are as follows. 

 

 

Table 69: Descriptions of counters used in Visual Simulator. 

Counter Meaning 
N Number of nodes in the network. 
Round The round number. One round is equivalent to N-steps. 
Steps The number of steps elapsed in the current round. 
Total Steps The number of steps elapsed in the whole execution. 

 

 

6.4.1 Selecting Variables for Display 

The variables to be displayed can be selected using the check boxes in the [Select Variables to 

Display] group box. Following is an intermediate stage of the execution, with only [Active] and 

[Leader] variables selected for display. 
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Figure 49: Displaying only selected variables. 

 

 

 

6.4.2 Simulation Speed 

The [Speed] numeric up down control lets the user set the speed of the execution. The default 

value is 1000ms, the minimum allowed is 500ms and the maximum allowed is 5000ms. 
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6.4.3 Play / Pause 

To start the simulation, click the [Play] button. The simulation starts running, and the [Play] 

button image changes to a [Pause] icon. 

 

 

Figure 50: Executing the simulation. 

 

 

 

Clicking the button again pauses the simulation, and the button icon changes to a [Play] icon. 

Clicking a third time resumes the simulation 
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6.4.4 Reset 

During the execution, or once the execution is finished, clicking the [Reset] button resets the 

simulation to its initial state. 

6.4.5 Navigation Buttons 

The four navigation buttons become enabled once the simulation finishes. 

 

 

Figure 51: Enabled navigation buttons. 
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The buttons can be used to navigate through the simulation forward and backward, one step at 

a time. The status of the variables changes accordingly. 

Clicking [Next] or [Last] buttons while at the last step of the simulation generates the 

following notification. 

 

Figure 52: [End of the Simulation] message. 

 

 

 

Clicking [Previous] or [First] buttons while at the first step of the simulation generates the 

following notification. 

 

Figure 53: [Beginning of the Simulation] message. 
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6.4.6 Saving Results to a File 

Once the simulation is finished, the results can be saved to a file. Clicking the [Save to File] button 

opens up the [Save to File] dialog box. 

 

 

Figure 54: [Save to File] dialog box. 

 

 

 

Results can be saved as one of two types of files; .txt or .log. The [Save as type:] drop down lets 

the user select a type. 
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Figure 55: Save as a text file. 

 

 

 

Figure 56: Save as a log file. 
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6.5 TEXTUAL SIMULATOR 

Following is the Visual Simulator with the selected algorithm being LCR and the nodes with node 

IDs 1, 2, 3, and 4 in clockwise orientation, at the initial state. The topmost textbox displays N, 

the number of nodes in the network, and the node IDs in clockwise orientation. 

 

 

Figure 57: Textual Simulator initial state. 
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6.5.1 Run / Pause 

Clicking the [Run] button starts the simulation and changes the button text to [Pause]. Clicking 

it again pauses the simulation and changes the button text to [Run]. Clicking a third time resumes 

the simulation. 

 

 

Figure 58: Running the Textual Simulator. 
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Once the simulation finishes the execution, the word “FINISHED!” is displayed as the last time of 

the text box. The [Run / Pause] button text returns to the original [Run] state. 

 

 

Figure 59: Finished status of the Textual Simulation 
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6.5.2 Reset 

During the execution, or once the execution is finished, clicking the [Reset] button resets the 

simulation to its initial state. 

6.5.3 Simulation Speed 

The [Speed] numeric up down control lets the user set the speed of the execution. The default 

value is 1000ms, the minimum allowed is 100ms and the maximum allowed is 5000ms. 

6.5.4 Saving the Results 

Once the simulation is finished, the results can be saved to a file by clicking the [Save to File] 

button. Its functionality is identical to the [Save to File] button in the Visual Simulation. 

6.5.5 Output Format of the Textual Simulation 

The textual simulation takes the following format. 
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Figure 60: Output format of the Textual Simulation. 

 

 

 

The state of each variable of each node is displayed as a group, under the corresponding step 

number (total steps in the execution). At the end of each round, the string “End of Round {round 

number}” is displayed. 
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6.6 ERROR MESSAGES 

6.6.1 File Errors 

If the specified file path or the file name cannot be found, the following error message is displayed. 

 

 

Figure 61: [Could not Find the File] error message. 

 

 

 

6.6.2 Input Errors 

If the user input node IDs in the in the [Input IDs] textbox, or the node IDs listed in the input 

file are not according to the constraints (must be non-negative integers, separated by commas, in 

one line), the following message is displayed. 

 

 

Figure 62: [Incorrect Input String Format] error message. 
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If the [Read] button is clicked when the [Input IDs] textbox is empty, the following message is 

displayed. 

 

 

Figure 63: [Node IDs not Entered] error message. 
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6.6.3 Node ID Errors 

While less than 3 node IDs are entered, if the UNIQUE_k algorithm is chosen and [RUN 

SIMULATION] button is pressed, the following error message is displayed. 

 

Figure 64: [Insufficient number of Node IDs] error message for UNIQUE_k. 

 

 

 

While less than 2 node IDs are entered, if the LCR algorithm is chosen and [RUN SIMULATION] 

button is pressed, the following error message is displayed. 

 

 

Figure 65: [Insufficient number of Nodes IDs] error message for LCR. 
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If the LCR algorithm is chosen and the node IDs contain one or more repeating IDs, the following 

error message is displayed. 

 

 

Figure 66: [Ring Contains Non-Unique IDs] error message. 

 

 

 

If the UNIQUE_k algorithm is chosen and the node IDs contain no repeating IDs, the following 

error message is displayed. 

 

 

Figure 67: [Ring does not Contain Repeating IDs] error message. 
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If the UNIQUE_k algorithm is chosen and the node IDs does not contain at least one repeating 

ID, the following error message is displayed. 

 
 

Figure 68: [No Unique ID] error message. 
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Chapter 7 

 Conclusion and Future Work 

This chapter concludes the thesis and offers some suggestions for related future work. 

 

7.1 CONCLUSION 

The Distributed Algorithm Simulator is an application program designed to simulate, in a non-

distributed environment, the execution of distributed leader election algorithms. The distributed 

nature of these algorithms sometimes makes it difficult to comprehend, especially when learning 

them for the first time, and as such we believe this would be a useful tool in the classroom. 

Particularly, the ability of the Visual Simulator to step through the execution of an 

algorithm, not only forward but also backward, could be very useful when analyzing how the 

algorithms work at each step. The ability to save the results for later analysis is another feature 

that, we believe, would be a useful teaching tool. 

 

7.2 FUTURE WORK 

The Distributed Algorithm Simulator is developed using the Visual C# programming language 

on the Microsoft .NET framework. As such, it can only be used on Microsoft Windows platforms 
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(unless a Virtual Machine is being used). It would be more useful if it could be implemented using 

a platform independent language such as Java, as there are a large number of students and 

teachers who use other operating systems such as Mac OS or Linux-based systems. It would be 

even more useful if it can be converted into a web application and/or a mobile app, which would 

increase its usability.  

Finally, the Distributed Algorithm Simulator can only simulate leader election algorithms 

in ring networks. If it could be extended to simulate leader election algorithms in other network 

topologies, that would make this a more comprehensive learning tool. 
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