
UNLV Theses, Dissertations, Professional Papers, and Capstones

May 2016

A Simulator Application for Distributed Leader Election A Simulator Application for Distributed Leader Election

Algorithms Algorithms

Sugeeswara Gurudeniya
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Gurudeniya, Sugeeswara, "A Simulator Application for Distributed Leader Election Algorithms" (2016).
UNLV Theses, Dissertations, Professional Papers, and Capstones. 2677.
http://dx.doi.org/10.34917/9112075

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2677&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/9112075
mailto:digitalscholarship@unlv.edu

A SIMULATOR APPLICATION FOR DISTRIBUTED

LEADER ELECTION ALGORITHMS

by

Sugeeswara Gurudeniya
Bachelor of Science in Mathematics
University of Peradeniya, Sri Lanka

2006

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science in Computer Science

Department of Computer Science
Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas
May 2016

Copyright 2016 by Sugeeswara Gurudeniya
All Rights Reserved

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

April 21, 2016

This thesis prepared by

Sugeeswara Gurudeniya

entitled

A Simulator Application for Distributed Leader Election Algorithms

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Ajoy Datta, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Interim Dean

Yoohwan Kim, Ph.D.
Examination Committee Member

John Minor, Ph.D.
Examination Committee Member

Venkatesan Muthukumar, Ph.D.
Graduate College Faculty Representative

 iii

Abstract

We present an application program, Distributed Algorithm Simulator, to simulate the execution

of distributed leader election algorithms in a ring-network. The application was developed using

Visual C# on Microsoft .NET Framework 4.5. The Distributed Algorithm Simulator consists of

two major components: A Visual Simulator, which visually demonstrates the execution of the

algorithms; and a Textual Simulator, which simulates the execution in text format. In both cases

the end-result can be saved to a file.

The Visual Simulator displays the network in a ring orientation with circles representing

the nodes, and numbers on them showing the node IDs. The user has the ability to choose which

variables of the algorithm are displayed at each step and the speed at which each step is performed.

Once a simulation has been finished, the user can step through the execution of the algorithm

forward and backward.

The Textual Simulator displays – in a multiline Textbox – the status of each variable at

each step during the execution. As before, the user can run and pause the simulation as well as

control the speed of the execution. Finally, the user can save the results to a text file.

 iv

Acknowledgements

I would like to express my sincere gratitude to my thesis advisor Dr. Ajoy K. Datta for giving me

the opportunity to work with him on this thesis. Without his guidance, support, and

encouragement this thesis would not have come to fruition.

Furthermore, I would like to thank my committee members, Dr. Yoohwan Kim, Dr. John

Minor, and Dr. Venkatesan Muthukumar for their support and for being part of my thesis

committee.

Finally, I would like to thank my wife, Sandamali Weerasooriya, for her constant support

and encouragement through the good times and the bad alike.

SUGEESWARA GURUDENIYA

University of Nevada, Las Vegas

May 2016

 v

Table of Contents

Abstract ... iii	

Acknowledgements ... iv	

Table of Contents .. v	

List of Tables ... vii	

List of Figures .. xi	

1	 Introduction .. 1	

1.1	 Contribution ... 1	

1.2	 Outline ... 2	

2	 Background .. 4	

2.1	 Introduction to Distributed Computing ... 4	

2.2	 History of Distributed Computing ... 5	

2.3	 Applications of Distributed Computing ... 6	

3	 Distributed Leader Election Algorithms ... 10	

3.1	 Terminology ... 10	

3.2	 Leader Election Problem .. 13	

3.3	 Leader Election in Ring Networks .. 15	

3.4	 Distributed Leader Election Algorithms in Ring Networks 15	

4	 Simulator Application – Design .. 22	

 vi

4.1	 Introduction ... 22	

4.2	 System Requirements ... 26	

4.3	 Design .. 26	

4.4	 UML Diagrams ... 29	

5	 Simulator Application – Implementation ... 42	

5.1	 Source Code Documentation .. 42	

5.2	 Explanation of Crucial Components .. 68	

6	 User Guide ... 85	

6.1	 Download ... 85	

6.2	 Installation ... 85	

6.3	 Distributed Algorithm Simulator Main Window .. 90	

6.4	 Visual Simulator ... 103	

6.5	 Textual Simulator .. 112	

6.6	 Error Messages ... 117	

7	 Conclusion and Future Work ... 122	

7.1	 Conclusion .. 122	

7.2	 Future Work .. 122	

Bibliography .. 124	

Curriculum Vitae .. 126	

 vii

List of Tables

Table 1: Classes of ring networks. ... 13	

Table 2: Action table of LCR algorithm. ... 18	

Table 3: Action table of UNIQUE_k algorithm. ... 21	

Table 4: Classes of DistributedAlgorithmSimulator namespace. ... 43	

Table 5: Enumerations of DistributedAlgorithmSimulator namespace. 43	

Table 6: Algorithm enumeration syntax. ... 44	

Table 7: Members of Algorithm enumeration. ... 44	

Table 8: Common class syntax. ... 44	

Table 9: Fields of Common class. .. 45	

Table 10: DistributedAlgorithmSimulator class syntax. .. 46	

Table 11: DistributedAlgorithmSimulator class constructor. ... 46	

Table 12: DistributedAlgorithmSimulator class methods. ... 47	

Table 13: ExtensionMethods class syntax. .. 48	

Table 14: ExtensionMethods class methods. .. 48	

Table 15: FileOperations class syntax. .. 49	

Table 16: FileOperations class methods. .. 49	

Table 17: History class syntax. .. 49	

Table 18: History class constructor. .. 49	

Table 19: History class properties. ... 50	

 viii

Table 20: NodeControl class syntax. ... 50	

Table 21: NodeControl class constructor. .. 50	

Table 22: NodeControl class methods. ... 51	

Table 23: NodeInfoControl class syntax. ... 51	

Table 24: NodeInfoControl class constructor. .. 51	

Table 25: TextualSimulator class syntax. .. 52	

Table 26: TextualSimulator class constructor. .. 52	

Table 27: TextualSimulator class methods. ... 52	

Table 28: VisualSimulator class syntax. .. 53	

Table 29: VisualSimulator class constructor. ... 53	

Table 30: VisualSimulator class methods. ... 54	

Table 31: Classes of WrapperClasses namespace. .. 55	

Table 32: Structures of WrapperClasses namespace. ... 55	

Table 33: Message class syntax. ... 56	

Table 34: Node class syntax. ... 56	

Table 35: Node class properties. .. 56	

Table 36: Node class methods. ... 57	

Table 37: NodeState class syntax. ... 57	

Table 38: NodeState class constructor. .. 57	

Table 39: NodeState class properties. .. 58	

Table 40: NodeState class methods. .. 58	

 ix

Table 41: NoteState.Item structure syntax. ... 58	

Table 42: NodeState.Item structure properties. ... 58	

Table 43: Utility class syntax. ... 59	

Table 44: Utility class methods. .. 59	

Table 45: Utility class fields. ... 59	

Table 46: Classes of DistributedAlgorithms namespace. .. 60	

Table 47: LCRMsg class syntax. ... 60	

Table 48: LCRMsg class constructor. .. 61	

Table 49: LCRMsg class properties. .. 61	

Table 50: LCRNode class syntax. .. 61	

Table 51: LCRNode class constructor. ... 61	

Table 52: LCRNode class properties. ... 62	

Table 53: LCRNode class methods. ... 62	

Table 54: LCRUtility class syntax. .. 63	

Table 55: LCRUtility class constructor. .. 63	

Table 56: LCRUtility class methods. ... 63	

Table 57: UniqueKMsg class syntax. ... 64	

Table 58: UniqueKMsg class constructor. .. 64	

Table 59: UniqueKMsg class properties. .. 64	

Table 60: UniqueKNode class syntax. ... 65	

Table 61: UniqueKNode class constructor. .. 65	

 x

Table 62: UniqueKNode class properties. .. 66	

Table 63: UniqueKNode class methods. ... 66	

Table 64: UniqueKUtility class syntax. ... 67	

Table 65: UniqueKUtility class constructor. .. 67	

Table 66: UniqueKUtility class methods. .. 68	

Table 67: Organization of folders according to namespaces. .. 70	

Table 68: Visual Simulator button icons and their functionality. .. 104	

Table 69: Descriptions of counters used in Visual Simulator. .. 105	

 xi

List of Figures

Figure 1: Execution of UNIQUE_k algorithm in the Visual Simulator. 23	

Figure 2: Execution of LCR algorithm in the Textual Simulator. ... 25	

Figure 3: Code Map of Distributed Algorithm Simulator .. 28	

Figure 4: Class diagram of the entire system. .. 30	

Figure 5: Class diagram of DistributedAlgorithmSimulator class. ... 31	

Figure 6: Class diagram of ExtensionMethods class. ... 32	

Figure 7: Class diagram of FileOperations class. ... 32	

Figure 8: Class diagram of VisualSimulator class. ... 33	

Figure 9: Class diagram of TextualSimulator class. ... 34	

Figure 10: Class diagram of Node class and its derived classes. .. 35	

Figure 11: Class diagram of Utility class and its derived classes. .. 36	

Figure 12: Class diagram of Message class and its derived classes. ... 37	

Figure 13: Sequence diagram of simulation launch process. .. 38	

Figure 14: Sequence diagram of the initialize process of Visual Simulator. 39	

Figure 15: Sequence diagram of the initialize process of Textual Simulator. 40	

Figure 16: Sequence diagram of TimerCallback process. ... 41	

Figure 17: Source code organization in Visual Studio IDE. ... 69	

Figure 18: Organization of nodes in a ring network. ... 71	

Figure 19: Relationships between neighboring nodes in a ring network. 72	

 xii

Figure 20: CreateNetwork() method. ... 74	

Figure 21: TimerCallback() method. ... 76	

Figure 22: Representation of list of nodes and their LinkIDs. ... 77	

Figure 23: Relationship between node list and message buffer. ... 78	

Figure 24: Receiving a message from the counter-clockwise neighbor. .. 79	

Figure 25: Sending a message to the clockwise neighbor. .. 80	

Figure 26: An instance of a NodeControl control. ... 80	

Figure 27: An instance of a NodeInfoControl control. ... 80	

Figure 28: Code sample of the NodeControl class. .. 82	

Figure 29: Code Sample of the NodeInfoControl Class. ... 84	

Figure 30: [Preparing to Install] screen. ... 86	

Figure 31: Distributed Algorithm Simulator splash screen. ... 86	

Figure 32: [Welcome] screen. ... 87	

Figure 33: [Destination Folder] screen. .. 88	

Figure 34: [Ready to Install the Program] screen. ... 88	

Figure 35: [Installing Distributed Algorithm Simulator] screen. .. 89	

Figure 36: [InstallShield Wizard Complete] screen. ... 90	

Figure 37: Distributed Algorithm Simulator main window. .. 91	

Figure 38: Selecting [Input IDs] radio button. ... 93	

Figure 39: Entering node IDs. ... 94	

Figure 40: Selecting [Read from File] radio button. ... 95	

 xiii

Figure 41: File open dialog box. .. 96	

Figure 42: File path of the selected file. .. 97	

Figure 43: Reading data from the input source. .. 98	

Figure 44: Selecting an algorithm to simulate. .. 100	

Figure 45: Selecting the Visual Simulation type. ... 101	

Figure 46: Selecting the Textual Simulation type. .. 102	

Figure 47: Prompting user to run a Textual Simulation. .. 103	

Figure 48: Visual Simulator initial state. ... 103	

Figure 49: Displaying only selected variables. ... 106	

Figure 50: Executing the simulation. ... 107	

Figure 51: Enabled navigation buttons. ... 108	

Figure 52: [End of the Simulation] message. .. 109	

Figure 53: [Beginning of the Simulation] message. .. 109	

Figure 54: [Save to File] dialog box. .. 110	

Figure 55: Save as a text file. .. 111	

Figure 56: Save as a log file. .. 111	

Figure 57: Textual Simulator initial state. .. 112	

Figure 58: Running the Textual Simulator. ... 113	

Figure 59: Finished status of the Textual Simulation ... 114	

Figure 60: Output format of the Textual Simulation. ... 116	

Figure 61: [Could not Find the File] error message. .. 117	

 xiv

Figure 62: [Incorrect Input String Format] error message. .. 117	

Figure 63: [Node IDs not Entered] error message. ... 118	

Figure 64: [Insufficient number of Node IDs] error message for UNIQUE_k. 119	

Figure 65: [Insufficient number of Nodes IDs] error message for LCR. 119	

Figure 66: [Ring Contains Non-Unique IDs] error message. .. 120	

Figure 67: [Ring does not Contain Repeating IDs] error message. .. 120	

Figure 68: [No Unique ID] error message. .. 121	

1

Chapter 1

 Introduction

In this chapter we describe the contribution we hope to make with the Distributed Algorithm

Simulator presented in this thesis. Then we outline each of the rest of the chapters in this

document.

1.1 CONTRIBUTION

In this thesis we present an application to simulate the execution of distributed leader election

algorithms in ring networks. The application, henceforth referred to as the Distributed Algorithm

Simulator, has two major components; The Visual Simulator and the Textual Simulator. The

Visual Simulator can visually simulate the execution of distributed leader election algorithms in

networks containing up to 18 nodes. The Textual Simulator does not have an upper limit on the

number of nodes.

We hope this application will be a useful tool for education purposes. Because of their

inherent distributed nature, it could be somewhat difficult to visualize and understand distributed

algorithms. Our application’s visual nature, its ability to demonstrate the contents of each variable

2

at each step, the ability to step forward and backward through the execution, and the ability to

save the results so they can be analyzed later should help students overcome those challenges.

1.2 OUTLINE

In Chapter 2 we give an introduction to distributed computing and take a look at its history and

applications. First, we briefly introduce the concept of distributed computing and the central idea

behind it. Then, we take a look at how and why it came to be widely used by going over the

history of distributed computing. Finally, we list and explain a few practical applications of

distributed applications that are in use today, focusing on the diversity of disciplines that make

use of distributed computing.

In Chapter 3 we introduce the distributed leader election algorithms. We start by defining

the terminology used throughout this document. Then, we introduce the leader election problem

by formally defining it, and move on to the leader election problem in networks of ring topology,

which is the focus of the Distributed Algorithm Simulator. Finally, we introduce the two

distributed leader election algorithms we have chosen to implement. First we informally describe

them, and then we give a formal definition including all the steps that must be performed during

the execution of the algorithms.

Chapter 4 elaborates the design of the application. First, we introduce and explain the

main components of the application and their inner workings. Later, using class diagrams we

describe the structure of the application, and we use sequence diagrams to explain core processes

of the application.

3

Chapter 5 takes a similar approach and describes in detail the implementation of the

Distributed Algorithm Simulator. First, we present documentation of all the namespaces, classes,

methods, and properties used in implementing the system. We give a description of each of those

including their types, parameters, return values, and usage. Then, we focus on the core components

of the system such as creating the network topology, the message communication methodology,

and how the execution of algorithms is emulated, and give a detailed description using illustrations

and code samples.

Chapter 6 is organized as a user guide to the end-user of the Distributed Algorithm

Simulator. Using screenshots, we first explain the installation, and then give a description of all 3

windows of the application; namely, the main window, the Visual Simulator window, and the

Textual Simulator window. We explain step-by-step how to use the application, and wrap up by

giving a list of error messages the application generates.

Finally, we conclude the thesis with Chapter 7, which contains both conclusion and our

recommendations for future work.

4

Chapter 2

 Background

In this chapter we give an introduction to distributed computing and take a look at its history and

applications. Then, we list and explain a few practical applications of distributed applications that

are in use today, focusing on the diversity of disciplines that make use of distributed computing.

2.1 INTRODUCTION TO DISTRIBUTED COMPUTING

The natural world is full of distributed computing. Flocks of birds fly in perfect V-formation. A

colony of termites comprising millions of individuals cooperate to build a mound 9 meters tall [1],

which is about 1,000 times their body length. To put it into perspective, that would be the

equivalent of humans building a skyscraper 1.7 kilometers tall. A school of fish swim in

coordination to avoid predators. During the development of an embryo, billions of cells cooperate

to make different body parts to ‘put together’ an animal. What all these have in common is

distributed processing: a flock of bird doesn’t have a single bird which controls the behavior of

the others, no single termite instructs the others on what to do to make a termite mound, neither

does a school of fish has a leader choreographing the movements of the entire school, and, finally,

embryonic cells are a collection of entities that are not even conscious, let alone having a central

5

controlling unit. What all of them do have are a set of local rules built into them by the process

of evolution, and simply by each individual blindly following those same local rules they achieve

these marvelous feats.

The central idea behind distributed computing using computers is much the same; it

combines a number of small, relatively less powerful, and often physically distributed computing

units (henceforth called nodes) to perform a useful task and achieve a result which otherwise

requires a considerably powerful machine. The most crucial aspect of distributed computing is

that each node possesses the same algorithm and executes it on its own hardware, exactly the

same as, say, termites in a termite colony. All the nodes have their private tasks to complete, but

they must still share certain common resources and information, and a certain degree of

coordination is necessary in order to successfully complete their individual tasks [2]. Once all the

nodes complete their tasks the algorithm terminates, and by then the system as a whole must

have achieved some useful result.

2.2 HISTORY OF DISTRIBUTED COMPUTING

In the early days of computing, any task that required large computations and massive processing

power invariably called for supercomputers. However, with the price of personal computers rapidly

declining while supercomputers remain expensive, an alternative was needed [3].

One early solution to this problem was clustering. There are many forms of clustering, but

Beowulf Clustering introduced by Donald Becker and Thomas Sterling in 1993 particularly made

an effort to take off-the-shelf computers and put together a cluster that can rival supercomputers

6

[4]. However, due to a range of problems, such as needing a dedicated network, the lack of security,

and the difficulty of writing specialized software, clustering never managed to solve the problem

entirely.

Distributed computing is much the same in many ways; it takes a large problem, breaks

it into smaller units, and allows many nodes to work together in parallel. The key difference is

that distributed computing allows the nodes to be multifunctional and multipurpose computers

that can exist anywhere in the world as long as they are connected to the internet which lends in

a great deal of flexibility. Whereas in clustering and supercomputing data is generally processed

only once, distributed computing allows the distribution of work units to multiple nodes, multiple

times. This serves two functions: to drastically decrease the possibilities of processing errors, and

to account for processing which is done on slower CPUs. Furthermore, distributed computing

focuses on making work units as small as possible so that they can be handled by any computer

in the network. All of the above enables us to take advantage of millions of computers connected

to the internet all over the world and to work as one system, which is an immensely powerful

idea.

2.3 APPLICATIONS OF DISTRIBUTED COMPUTING

Because of its immense collective power, relatively cheap cost, and the ability to utilize

millions of computers all around the world, distributed computing has become a major tool in

computing in a wide range of fields. There are thousands of ongoing projects representing an array

7

of disciplines. Following are a few chosen examples to demonstrate the diversity. Each project’s

discipline is listed inside brackets next to the title.

2.3.1 Einstein@Home (Astrophysics)

Einstein@Home [5] is a volunteer distributed computing project that searches through data from

the LIGO (Laser Interferometer Gravitational-Wave Observatory) detectors for evidence of

continuous gravitational-wave sources, which are expected from objects such as rapidly spinning

non-axisymmetric neutron stars. Running on the Berkeley Open Infrastructure for Network

Computing (BOINC) software platform, Einstein@Home is hosted by the University of Wisconsin–

Milwaukee and the Max Planck Institute for Gravitational Physics (Albert Einstein Institute,

Hannover, Germany). The project had discovered 49 pulsars as of December 2014. As of January

2016, the project is reported to be using 773 active processing units [6].

2.3.2 Big and Ugly Rendering Project (Art)

Big and Ugly Rendering Project (BURP) [7] is a non-commercial distributed computing project

using the BOINC framework. It is under development to work as a publicly distributed system

for the rendering of 3D graphics. BURP is a free software distributed under the GNU General

Public License V3 license.

2.3.3 Climateprediction.net (Climate Study)

Climateprediction.net (CPDN) [8] is a distributed computing project to investigate and reduce

uncertainties in climate modelling. It aims to do this by running hundreds of thousands of different

8

models (a large climate ensemble) using the donated idle time of ordinary personal computers,

thereby leading to a better understanding of how models are affected by small changes in the

many parameters known to influence the global climate. The project relies on the volunteer

computing model using the BOINC framework where voluntary participants agree to run some

processes of the project at the client-side on their personal computers after receiving tasks from

the server-side for treatment.

CPDN, which is run primarily by Oxford University in England, has harnessed more

computing power and generated more data than any other climate modelling project. It has

produced over 100 million model years of data so far. As of December 2010, there are more than

32,000 active participants from 147 countries with a total BOINC credit of more than 14 billion,

reporting about 90 teraflops (90 trillion operations per second) of processing power. [9]

2.3.4 Folding@home (Molecular Biology)

Folding@home [10] is a distributed computing project for disease research that simulates protein

folding, computational drug design, and other types of molecular dynamics. The project uses the

idle processing resources of thousands of personal computers owned by volunteers who have

installed the software on their systems. Its main purpose is to determine the mechanisms of protein

folding, which is the process by which proteins reach their final three-dimensional structure, and

to examine the causes of protein misfolding. This is of significant academic interest with major

implications for medical research into Alzheimer's disease, Huntington's disease, and many forms

of cancer, among other diseases. Folding@home is developed and operated by the Pande

9

Laboratory at Stanford University, under the direction of Prof. Vijay Pande, and is shared by

various scientific institutions and research laboratories across the world.

This project has pioneered the use of GPUs, PlayStation 3s, Message Passing Interface

(used for computing on multi-core processors), and some Sony Xperia smartphones for distributed

computing and scientific research. The project uses a statistical simulation methodology that is a

paradigm shift from traditional computational approaches.

Folding@home is one of the world's fastest computing systems, with a speed of

approximately 40 petaFLOPS [11]. This performance from its large-scale computing network has

allowed researchers to run computationally expensive atomic-level simulations of protein folding

thousands of times longer than formerly achieved. Since its launch on October 1, 2000, the Pande

Lab has produced 129 scientific research papers as a direct result of Folding@home.

2.3.5 SETI@home (Astrobiology)

SETI@home [12] is an Internet-based public volunteer computing project employing the BOINC

software platform, hosted by the Space Sciences Laboratory, at the University of California,

Berkeley, in the United States. Its purpose is to analyze radio signals, searching for signs of

extraterrestrial intelligence, and as such, is one of many activities undertaken as part of the

worldwide SETI (Search for Extra-Terrestrial Intelligence) effort. SETI@home was released to the

public on May 17, 1999, making it the third large-scale use of distributed computing over the

Internet for research purposes.

10

Chapter 3

 Distributed Leader Election Algorithms

In this chapter we first introduce the distributed leader election problem, followed by an

introduction to the leader election in ring networks which is the focus of this thesis. Then, we

introduce the two distributed leader election algorithms we have chosen to implement to be

simulated.

3.1 TERMINOLOGY

Below, we formally define and describe a number of terms and symbols that are consistently used

throughout this document.

NODE

The units a ring is comprised of. In reality they may be actual computers connected via a LAN

or over the Internet, or they may be processes in a multi-core computer.

11

RING

A network comprised of nodes, connected by some medium laid out in a ring orientation. We

consider networks of rings of nodes, 𝑃", 𝑃#, … 𝑃$, for n ≥ 2. The ring is bidirectional, meaning that

information can flow in either direction. For unidirectional algorithms implemented, we choose

the direction to be clockwise. As such, each node 𝑃% can receive messages only from its

counterclockwise (left) neighbor, 𝑃%&", and can only send messages to its clockwise (right) neighbor,

𝑃%'". We interpret all subscripts modulo n, e.g., 𝑃$'" = 𝑃" and 𝑃) = 𝑃$.

We assume the asynchronous message passing model of computation. Each message takes

at most one unit of time to reach its destination. However, we will also assume that no message

is lost, and if 𝑃% receives several consecutive messages from 𝑃%&" while it is idle, 𝑃% will act on them

in the order they are received.

For the algorithm given in this document, we assume that no node knows the size of the

ring. We also assume that each node P has an ID, P.id, which need not be distinct. Comparison

is the only operation permitted on IDs. Henceforth, when we say ring network, or simply the ring,

we mean a network which satisfies the above conditions. Let R be the class of all such networks.

ALGORITHM

When we say algorithm, we mean a uniform distributed algorithm, meaning, a distributed

algorithm such that every node has the same code. We will also assume that every computation

of an algorithm begins at a configuration where every node is at a designated initial state.

12

ID

An ID used to identify nodes. An ID may or may not be unique within the ring. In case of a

unique ID, we refer to it as a UID.

n

Size of the ring in terms of number of nodes.

k

Maximum number of times an ID occurs within the ring. For instance, consider a ring comprised

of nodes carrying IDs 1, 2, 2, 5, 5, 5. Then k would be 3 as 5 repeats 3-times. In the case k = 1 all

nodes carry unique IDs.

STEP

Since messages cannot pass each other in the ring, every computation in our model can be

emulated by a synchronous computation. We define the steps accordingly. If a node P executes

an action which takes place at time t in the synchronous emulation, we say that P executes that

action at Step t. Since our model is asynchronous, nodes in different parts of the ring may execute

the same step at different times.

13

ROUND

A round consists of n consecutive steps. Again, since our model is asynchronous, nodes at different

parts of the ring may complete a given round at different times.

CLASSES OF RINGS

A class of rings is a collection of rings with different combinations of IDs which share a set of

common properties. The following table lists and explains the classes of rings which we refer to

throughout this document.

Table 1: Classes of ring networks.

Class of Rings Description
R All unidirectional ring networks.
(𝐴 ⊂ 𝑅) Asymmetric rings.
(𝑈 ⊂ 𝐴) Rings with unique IDs.
𝑈∗ (𝑈∗ ⊂ 𝑈) Rings where at least one ID in the ring is unique.

𝐾2 (𝐾2 ⊂ 𝐴) No ID occurs more than k times where k ≥ 1 is a given integer.
Note: 𝐾" = 𝑈.

𝑈2∗ 𝑈2∗ = 𝑈∗ ∩ 	𝐾2

3.2 LEADER ELECTION PROBLEM

In distributed computing, usually all the nodes in the network are identical except for the IDs

they may possess. Leader election is the process of electing a single node as the ‘leader’ in the

14

network so that it can be distinguished from all the other nodes in the ring [13]. Usually, the

node’s ID is used for identifying the leader. It is not necessary for all the nodes in the network to

have UIDs to solve leader election, but there must be at least one UID, and always a node with a

UID will be elected as the leader.

Before the leader election algorithm has begun, all nodes including the eventual leader are

unaware of the node which will serve as the leader. Once the algorithm has finished execution,

the leader must know it is the leader, all the other nodes must know they are not the leader, and

they must also know the UID of the leader. For instance, one common practice is to compare

UIDs of nodes and elect one among them that fits some criteria such as the largest or the smallest

UID in the network.

3.2.1 Formal Definition of Leader Election Problem

An algorithm solves the leader election problem if: [14]

• States of nodes are divided into elected and not elected states. Once elected, it remains as

elected.

• In every execution, exactly one node becomes elected and the rest determine that they are

not elected.

A valid leader election algorithm must meet the following conditions: [15]

• Termination: the algorithm should finish eventually within a finite time once the leader

is selected.

• Uniqueness: there is exactly one node that considers itself as leader.

15

• Agreement: all other nodes know who the leader is.

3.3 LEADER ELECTION IN RING NETWORKS

The leader election in ring networks refers to the process of electing a leader in a network of ring

topology. Any given node is connected to exactly two nodes, referred to as its clockwise neighbor

and counter-clockwise neighbor. A ring can be one of two types: unidirectional and bidirectional.

In unidirectional rings, messages can be transmitted in only one direction: either clockwise or

counter-clockwise. In bidirectional rings, messages may be transmitted in either direction. The

Distributed Algorithm Simulator can simulate both types of algorithms, but we have implemented

only unidirectional algorithms.

3.4 DISTRIBUTED LEADER ELECTION ALGORITHMS IN RING NETWORKS

3.4.1 LCR Algorithm

The LCR algorithm, proposed by Le Lann, Chang, and Roberts, is a leader election algorithm in

a ring network [16]. It uses only unidirectional communication and does not required the

knowledge of the size of the ring. The LCR algorithm requires all nodes in the ring have UIDs,

and at the end of the execution elects the node with the highest UID.

3.4.1.1 Informal Description

In the first step, each node sends its UID to the clockwise neighbor. When a node receives a

message, it compares the UID in the incoming message to its own. If the incoming UID is greater

16

than its own, it keeps passing the UID; if it is less than its own, it discards the incoming UID; if

it is equal to its own, the node declares itself the leader. Afterwards, the leader sends its own UID

in a special message to inform other nodes of the elected leader. Once the leader receives this

special message back, the algorithm terminates.

3.4.1.2 Formal Description

Each node P has the following variables.

• P.uid, integer type, non-negative. It is the UID of the node and does not change.

• P.init, Boolean, initially TRUE. Becomes FALSE at the first step.

• P.active, Boolean, which indicates that P is active. If !P.active, we say P is passive.

Initially all nodes are active, and when the algorithm is finished all but the leader becomes

passive. Once a node becomes passive it never becomes active.

• P.leader, integer type, initially ⊥ (undefined). When the algorithm is finished, P.leader

= L.uid for each P, where L is the leader.

• P.is_leader, Boolean, initially FALSE. For L, P.is_leader becomes TRUE during the

execution and remains so for the remainder of the execution. For all 𝑃	 ≠ 𝐿, P.is_leader

remains FALSE for the entirety of the execution.

• P.leader_elected, Boolean, initially FALSE. Eventually P.leader_elected becomes

TRUE for all nodes.

17

The LCR algorithm uses a message of the form <u, sp> where,

• u – Integer, UIDs sent by nodes.

• sp – Boolean, indicates whether it’s the special message. If sp = TRUE, it is the special

message and u is the elected leader; otherwise, a regular message.

Following is an action table which formally describes the LCR algorithm. In the Distributed

Algorithm Simulator, this is used as the base for the coding of the algorithm. Letters T and F are

used to represent the Boolean values TRUE and FALSE respectively.

18

Table 2: Action table of LCR algorithm.

Action Number Action Name Condition Action
A1 Start P.init Send <P.uid, F>

P.init ← F
A2 Deactivate P.active

Read <u, F>
u > P.uid

Send <u, F>
P.active ← F

A3 Terminate
Message

P.active
Read <u, F>
u < P.uid

(nothing)

A4 Elect
Leader

P.active
Read <u, F>
u = P.uid

Send <P.uid, T>
P.is_leader ← T
P.leader_elected ← T
P.leader ← P.uid

A5 Passive
Forward

! P.active
Read <u, F>

Send <u, F>

A6 Acknowledge
Leader

! P.active
Read <u, T>

Send <u, T>
P.leader_elected ← T
P.leader ← u

A7 Finish P.active
Read <u, T>
u = P.uid

(nothing)

3.4.2 UNIQUE_k Algorithm

The UNIQUE_k algorithm [17] is a distributed algorithm designed to solve the leader election

problem in unidirectional ring networks. The ring must contain at least one node with a UID, and

it may or may not contain nodes with repeating IDs. The algorithm elects the node which has the

maximum UID as the leader.

19

3.4.2.1 Informal Description

The fundamental idea of UNIQUE_k is that a node becomes passive if it reads a message which

proves that its own ID is not unique. Eventually, all nodes with non-unique IDs become passive.

This paradigm is implemented by tokens, each of which carries the ID of the node which

initialized it. Each time a message is forwarded by a node which has the same ID as that of the

message, the message’s counter is incremented by one. Thus, the counter in a message is a rough

estimate of the frequency of its ID in the ring. Whenever a node can determine that its ID is not

unique, it becomes passive. In order for the leader to be uniquely defined, the IDs of the nodes are

used as a tie-breaker. If an active node P forwards a token with a larger ID which has the same

counter value, and that value is at least 1, then P knows that it is not the leader, and thus

becomes passive.

3.4.2.2 Formal Description

Each node P has the following variables.

• P.id, of unspecified label type, which does not change. Labels can be compared.

• P.init, Boolean, initially TRUE, which becomes FALSE at the first step.

• P.active, Boolean, which indicates that P is active. If !P.active, we say P is passive.

Initially all nodes are active, and when the UNIQUE_k is done the leader is the only active

node. A passive node never becomes active.

• P.count, an integer in the range 0… k+1. Initially, P.count = 0.

20

• P.leader, of label type, initially P.id. When UNIQUE_k is done, P.leader = L.uid for

each P, where L is the leader.

• P.is_leader, Boolean, initially FALSE for all P. Eventually, P.is_leader becomes TRUE

and remains TRUE. P.is_leader remains FALSE for the entirety of the execution if 𝑃	 ≠

𝐿.

• P.leader_elected, Boolean, initially FALSE for all P. Eventually P.leader_elected =

TRUE for all P. P.leader_elected means that P knows a leader has been elected; once

TRUE it never becomes false.

UNIQUE_k algorithm uses only one kind of message of the form <x, c> where,

• x – ID of the original node which generated the message.

• c – An integer counter in the range 0… k+1. Incremented each time the message is

forwarded by a node whose ID is equal to P.id.

Following is an action table which formally describes the UNIQUE_k algorithm. In the

Distributed Algorithm Simulator, this is used as the base for the coding of the algorithm.

21

Table 3: Action table of UNIQUE_k algorithm.

Action
Number

Action
Name

Condition Action

A1 Start
P.init Send <P.id, 0>

P.init ← FALSE

A2 Passive
Forward

! P.active
Read <x, c>
x ≠ P.id
c ≤ k

Send <x, c>

A3 Active
Forward

P.active
Read <x, c>
x ≠ P.id
P.count = 0 or c > P.count

Send <x, c>

A4 Deactivate

P.active
Read <x, c>
x ≠ P.id
c < P.count

Send <x, c>
P.active ← FALSE

A5
Forward
Inferior

P.active
Read <x, c>
x < P.id
c = P.count ≥ 1

Send <x, c>

A6
Forward
Superior

P.active
Read <x, c>
x > P.id
c = P.count ≥ 1

Send <x, c>
P.active ← FALSE

A7
Terminate
Message

! P.active
Read <x, c>
x = P.id

(nothing)

A8
Increment
Message

P.active
Read <x, c>
x = P.id
c = P.count ≤ k-1

Send <x, c+1>
P.count ← c+1

A9
Elect
Leader

P.active
Read <x, k>
x = P.id
P.count = k

Send <x, k+1>
P.is_leader ← TRUE
P.leader_elected ← TRUE
P.count ← k+1

A10
Acknowledge
Leader

! P.active
Read <x, k+1>

Send <x, k+1>
P.leader ← x
P.leader_elected ← TRUE

A11 Finish

P.active
Read <x, k+1>
x = P.id
P.count = k+1

(nothing)

22

Chapter 4

 Simulator Application – Design

In this chapter we introduce and explain the main components of the Distributed Algorithm

Simulator. Then, using class diagrams we describe the structure of the application, and then we

use sequence diagrams to explain the core processes of the application.

4.1 INTRODUCTION

The Distributed Algorithm Simulator is a desktop application that simulates the execution of

distributed leader election algorithms in ring networks. It consists of two main components,

namely, the Visual Simulator and the Textual Simulator. The application is developed using

Microsoft .NET Framework 4.5, and as such can only be run on Microsoft Windows platforms.

4.1.1 Visual Simulator

The Visual Simulator, as the name suggests, simulates the execution of the algorithm visually.

The Visual Simulator can simulate the execution on networks containing up to 18 nodes. The

restriction is purely due to limitations imposed by the screen size. If the number of nodes is greater

than 18, the application will prompt the user with the option of running the Textual Simulator

23

instead. At the end of the execution the results can be saved to a text file. Following is a screen

capture of an intermediate stage of the execution of UNIQUE_k algorithm described previously.

Figure 1: Execution of UNIQUE_k algorithm in the Visual Simulator.

The application lets the user either manually input the IDs of the nodes in the ring into a textbox,

or read them from a CSV (Comma Separated Values) file. In either case the IDs must be in a

clockwise orientation. Then the user can choose the algorithm to be run and execute it.

24

This opens up the window shown in the above figure, which prompts the user for more

actions. The nodes in the ring are represented by circles. The node IDs are displayed on top of

the circles. The nodes are displayed in a clockwise orientation. The Visual Simulator can display

the status of the variables used in the algorithm as well as the messages being passed in each step,

and the user has the freedom to choose which variables to be displayed. The user can also choose

the speed with which the algorithm is executed, the default value of which is 1 second. The

[Play/Pause] toggle button begins the execution of the algorithm, which also lets the user pause

the execution. [Reset] stops the algorithm and returns to the initial status so a new execution can

be started. [Next] and [Previous] lets the user execute the algorithm forward or backward, one

step at a time, while [First] and [Last] buttons let the user navigate to the first and last steps of

the execution respectively. During the execution, if a node is active and is still in candidacy to be

the leader, it is displayed in a blue color. If a node becomes inactive and no longer a candidate to

be the leader, it turns red. If a node is elected as the leader, it turns green.

4.1.2 Textual Simulator

The Textual Simulator can execute the algorithm on networks containing any number of nodes.

However, due to the time it may take, it is advisable to limit the size of the network to a reasonably

small n.

Once the IDs of nodes are either entered by the user or read from a file, the user can check

the [Textual] radio button to run the Textual Simulator. The textual simulation is displayed on

a new window that opens up. It displays the contents of all the variables in the algorithm, at each

25

step. The [Run/Pause] toggle button lets the user run and pause the simulation. The simulation

can be reset at any stage during the execution using the [Reset] button. Following is a screen

capture of an intermediate stage of the execution of LCR algorithm described previously.

Figure 2: Execution of LCR algorithm in the Textual Simulator.

26

4.2 SYSTEM REQUIREMENTS

The Distributed Algorithm Simulator has been tested on the following operating systems and

works correctly.

• Microsoft Windows 8.0

• Microsoft Windows 8.1

• Microsoft Windows 10.0

It has been tested on the following frameworks and works correctly.

• Microsoft .NET 4.5 framework

• Microsoft .NET 4.0 framework

4.3 DESIGN

The program adopts a modular design which keeps different components independent of each

other. The Distributed Algorithm Simulator is comprised of 3 namespaces which are listed below.

4.3.1 Namespaces

4.3.1.1 DistributedAlgorithmSimulator Namespace

This is the ‘main’ namespace of the application. All the System.Windows.Forms form classes that

describe the Distributed Algorithm Simulator application windows, and the supplementary classes

which are required for their functionality are categorized under this namespace. This includes the

Distributed Algorithm Simulator main window, the Visual Simulator, and the Textual Simulator

windows.

27

Classes in this namespace are unaware of the detailed implementation of the actual

distributed leader election algorithms found in the DistributedAlgorithms namespace. This

modularity gives both the applications and the algorithms a high degree of independence, so the

application can be changed with minimal changes to the algorithms and vise versa. The modularity

is achieved by making use of the WrapperClasses namespace which acts as a template for the

classes in DistributedAlgorithms namespace.

4.3.1.2 WrapperClasses Namespace

This contains abstract classes that are inherited by the classes in DistributedAlgorithms

namespace. The DistributedAlgorithmSimulator namespace uses these classes to send and receive

messages, execute the algorithms, and get the current status of the execution of the algorithms.

These classes dictate the common elements and the rules to which coded algorithms in the

DistributedAlgorithms namespace must adhere.

4.3.1.3 DistributedAlgorithms Namespace

Classes in this namespace describe the actual leader election algorithms. It inherits the classes in

the WrapperClasses namespace, and then defines each algorithm’s unique behavior.

4.3.2 Code Map

The following Code Map illustrates the relationship between namespaces and classes within them.

28

Figure 3: Code Map of Distributed Algorithm Simulator

A pink arrow denotes a namespace/class calling another namespace/class, with the origin of the

arrow denoting the calling party and the arrowhead the called party. A green arrow denotes

inheritance with origin of the arrow representing the sub class and arrowhead the super class.

29

The DistributedAlgorithmSimulator class inside the like named namespace calls upon

VisualSimulator and the TextualSimulator classes, while making use of other classes. Those 3

classes together call both WrapperClasses and the DistributedAlgorithms namespace, and in turn,

classes within them.

4.4 UML DIAGRAMS

4.4.1 Class Diagrams

4.4.1.1 System Overview

The following class diagram represents the system as a whole.

30

Figure 4: Class diagram of the entire system.

DistributedAlgorithmSimulator, VisualSimulator, and TextualSimulator classes are the three

main classes of the application program, each of which is a form window. They make use of

ExtensionMethods and FileOperations classes.

31

Node, Utility, and Message abstract classes and their derived classes offer the functionality

of the actual algorithms. The three main classes mentioned above create instances of these classes

during the execution of the algorithm.

4.4.1.2 DistributedAlgorithmSimulator Class

Following is the DistributedAlgorithmSimulator class, which is a derived class of the .NET Forms

class. It represents the Distributed Algorithm Simulator main window.

Figure 5: Class diagram of DistributedAlgorithmSimulator class.

32

4.4.1.3 ExtensionMethods Class

The ExtensionMethods class encompasses the supplementary methods used by the Distributed

Application Simulator.

Figure 6: Class diagram of ExtensionMethods class.

4.4.1.4 FileOperations Class

The FileOperations class contains methods for file read/write operations.

Figure 7: Class diagram of FileOperations class.

33

4.4.1.5 VisualSimulator Class

The Visual Simulator window class, which is a derived class of the .NET Forms class.

Figure 8: Class diagram of VisualSimulator class.

34

4.4.1.6 Textual Simulator Class

The Textual Simulator window class is a derived class of the .NET Forms class.

Figure 9: Class diagram of TextualSimulator class.

35

4.4.1.7 Node Classes

The abstract Node class and its derived classes.

Figure 10: Class diagram of Node class and its derived classes.

36

4.4.1.8 Utility Classes

The abstract Utility class and its derived classes.

Figure 11: Class diagram of Utility class and its derived classes.

37

4.4.1.9 Message Classes

The abstract Message class and its derived classes.

Figure 12: Class diagram of Message class and its derived classes.

4.4.2 Sequence Diagrams

4.4.2.1 Launching Simulator

The following illustrates the launching sequence of Visual Simulator and Textual Simulator.

Depending on user choices the application selects the appropriate algorithm and launches the

simulation.

38

Figure 13: Sequence diagram of simulation launch process.

39

4.4.2.2 Initializing Visual Simulation

The following sequence diagram illustrates the initiating sequence of the Visual Simulator.

Figure 14: Sequence diagram of the initialize process of Visual Simulator.

40

4.4.2.3 Initializing Textual Simulation

The following sequence diagram illustrates the initiating sequence of the Textual Simulator.

Figure 15: Sequence diagram of the initialize process of Textual Simulator.

4.4.2.4 TimerCallback

The following diagram illustrates the TimerCallback() method sequence. It is the method executed

at each time-step of the algorithm.

41

Figure 16: Sequence diagram of TimerCallback process.

42

Chapter 5

 Simulator Application – Implementation

In this chapter we describe in detail the implementation of Distributed Algorithm Simulator. We

present documentation of all the namespaces, classes, methods, and properties used in

implementing the system. Then, we focus on core components of the system and give a detailed

description using illustrations and code samples.

5.1 SOURCE CODE DOCUMENTATION

In this section, we present a list of namespaces, classes, methods, and fields – along with

descriptions – used in the Distributed Algorithm Simulator.

5.1.1 DistributedAlgorithmSimulator Namespace

Description: This namespace includes classes used for development of the application.

43

Table 4: Classes of DistributedAlgorithmSimulator namespace.

 Class Description

 Common Contains common fields.

 DistributedAlgorithmSimulator Main Windows of the Distributed Algorithm
Simulator application.

 ExtensionMethods Extension methods used for various tasks.

 FileOperations Static class offering file read/write operations
tailored to Distributed Algorithm Simulator.

 History Keeps a record of state of all the variables of the
algorithm. One History object refers to one step in
the execution of the algorithm.

 NodeControl A control that represents a node in the Visual
Simulator. Consists of a circular shaped graphic
that represents a node and text on it that represents
node IDs.

 NodeInfoControl A control that represents variables to be displayed
alongside each node control.

 TextualSimulator Textual Simulator window.

 VisualSimulator Visual Simulation window.

Table 5: Enumerations of DistributedAlgorithmSimulator namespace.

 Enumeration Description

 Algorithm Algorithm Type

44

5.1.1.1 Algorithm Enumeration

Description: Denotes algorithm type.

Table 6: Algorithm enumeration syntax.

C# Syntax

public enum Algorithm

Table 7: Members of Algorithm enumeration.

 Member name Value Description

 LCR 0 LCR Algorithm

 UniqueK 1 UniqueK Algorithm

5.1.1.2 Common Class

Description: Contains common fields.

Table 8: Common class syntax.

C# Syntax

public static class Common

45

Table 9: Fields of Common class.

 Name Description

CAPTION_ERROR Caption: ERROR! Used as general error message

MessageBox caption.

CAPTION_FILE_ERROR Caption: FILE ERROR. Used as file error message

MessabeBox caption.

CAPTION_FILE_WRITE Caption: FILE WRITE. Used as file write error message

MessageBox caption.

CAPTION_INVALID_ID Caption: INVALID ID ERROR. Used as caption for

invalid ID error messages MessageBox.

CAPTION_TEXT_SIM Caption: TEXTUAL SIMULATION. Used as caption for

prompt for textual simulation MessageBox.

ERR_MSG_SUCCESS Success message.

STR_ALG Sting: Algorithm

STR_ALG_LCR String: LCR

STR_ALG_UNIQUE_K String: UniqueK

STR_DEFAULT_SAVE_FILE String: SimulationResults (Default output file name

without extension)

STR_DIR_CCW String: Counter Clockwise

STR_DIR_CW String: Clockwise

STR_FINISHED String: Finished!

STR_TEXT_SIM_TITLE String: Textual Simulation

STR_VISUAL_SIM_TITLE String: Visual Simulation

46

5.1.1.3 DistributedAlgorithmSimulator Class

Description: The main windows of the Distributed Algorithm Simulator application.

Table 10: DistributedAlgorithmSimulator class syntax.

C# Syntax

public class DistributedAlgorithmSimulator : Form

Table 11: DistributedAlgorithmSimulator class constructor.

 Name Description

 DistributedAlgorithmSimulator Initializes a new instance of the
DistributedAlgorithmSimulator class.

47

Table 12: DistributedAlgorithmSimulator class methods.

 Name Description

 btnExit_Click Exits the application.

 btnOpenFile_Click Launches a FileOpen dialog which lets the user select
the input file.

 btnRead_Click Reads the node IDs and creates a list of IDs. Depending
on the user's selection, reads either from a user selected
file or takes input from a text box.

 btnRun_Click Executes the simulation depending on user preference of
Visual or Textual simulation. If the number of nodes is
greater than 18, prompts the user to launch a Textual
Simulation.

 CreateNetwork Creates a ring network which can pass messages in
either clockwise or counter-clockwise directions Nodes
are linked to their CW and CCW neighbors using a
private id called LinkID (which isn't a part of the
algorithm)

 Initializations Performs initializations such as setting initial values of
controls.

 InitializeComponent Required method for Designer support - do not modify
the contents of this method with the code editor.

 LaunchSimulation Launches either a Visual Simulation or a Textual
Simulation of an algorithm of user's choice.

 LoadAlgorithms Loads available algorithms into "Algorithm Type"
combo box.

 rbInputIDs_CheckedChanged Specifies user preference of reading input from a
textbox.

 rbReadFromFile_CheckedChanged Specifies user preference of reading input from a file.

 SimulatorMain_Load Form load event of the main window.

48

5.1.1.4 ExtensionMethods Class

Description: Extension methods used for various tasks.

Table 13: ExtensionMethods class syntax.

C# Syntax

public static class ExtensionMethods

Table 14: ExtensionMethods class methods.

 Name Description

 DeepClone(T) Makes a new copy of an object without keeping a reference.

 DrawCircle Draws a circle using given parameters on a Graphics object.

 SetHighQuality Sets high quality parameters to a Graphics object.

5.1.1.5 FileOperations Class

Description: Static class offering file read/write operations tailored to Distributed Algorithm

Simulator.

49

Table 15: FileOperations class syntax.

C# Syntax

public static class FileOperations

Table 16: FileOperations class methods.

 Name Description

 ReadCSVFile Reads a CSV file and store values in a list of integers.

 SaveToFile Opens a SaveFileDialog to allow user to save the file.

5.1.1.6 History Class

Description: Keeps a record of states of all the variables of the algorithm. One History object

refers to one step in the execution of the algorithm.

Table 17: History class syntax.

C# Syntax

public class History

Table 18: History class constructor.

 Name Description

 History Initializes an instance of the History class.

50

Table 19: History class properties.

 Name Description

 RoundNum Round number in the execution.

 RoundSteps Step number in the current round of execution.

 StateList List of NodeState objects representing the current step.

 TotalSteps Step number in the overall execution.

5.1.1.7 NodeControl Class

Description: A control that represents a node in the Visual Simulator. Consists of a circular

shaped graphic that represents a node and text on it that represents node IDs.

Table 20: NodeControl class syntax.

C# Syntax

public class NodeControl : Control

Table 21: NodeControl class constructor.

 Name Description

 NodeControl Initializes an instance of a NodeControl class.

51

Table 22: NodeControl class methods.

 Name Description

 SetNodeColor Sets the node color.

 SetTextColor Sets the node ID text color.

5.1.1.8 NodeInfoControl Class

Description: A control that represents variables to be displayed alongside each node control.

Table 23: NodeInfoControl class syntax.

C# Syntax

public class NodeInfoControl : Control

Table 24: NodeInfoControl class constructor.

 Name Description

 NodeInfoControl Initializes an instance of a NodeInfoControl class.

52

5.1.1.9 TextualSimulator Class

Description: The Textual Simulator window.

Table 25: TextualSimulator class syntax.

C# Syntax

public class TextualSimulator : Form

Table 26: TextualSimulator class constructor.

 Name Description

 TextualSimulator Initializes an instance of the TextualSimulator class.

Table 27: TextualSimulator class methods.

 Name Description

 btnExit_Click Exits the Textual Simulation window.

 btnResetTextSim_Click Resets the execution.

 btnRunTextSim_Click Runs the execution.

 btnSaveTextSim_Click Saves execution results to a file.

 InitializeComponent Required method for Designer support - do not modify
the contents of this method with the code editor.

 numUpDownSpeed_ValueChanged Change the execution speed based on NumericUpDown
control value.

 Reset Resets all variables to initial state.

 TimerCallback Performs one step of the execution of the algorithm.
Called from the Timer, at each time tick.

 ToggleRunPause Toggles Run/Pause button.

53

5.1.1.10 VisualSimulator Class

Description: The Visual Simulation window.

Table 28: VisualSimulator class syntax.

C# Syntax

public class VisualSimulator : Form

Table 29: VisualSimulator class constructor.

 Name Description

 VisualSimulator Initializes an instance of the VisualSimulator class.

54

Table 30: VisualSimulator class methods.

 Name Description

 btnExit_Click Exits the Visual Simulator window.

 btnFirst_Clicked Jumps to the first step of the execution.

 btnLast_Clicked Jumps to the last step of the execution.

 btnNext_Clicked Advances one step forward through the history.

 btnPlayPause_Clicked Play/Pause button click. Runs/Stops the execution.

 btnPrev_Clicked Advances one step backward through the history.

 btnReset_Clicked Resets all variables and counters.

 btnSaveToFile_Clicked Saves the result of the execution to a file.

 CalculateRingProperties Calculates the XY-coordinates and the radius of the
ring.

 chkBox_CheckedChanged Update the list of variables to be displayed based on
check status of check boxes.

 CreateDynamicControls Dynamically creates controls.

 DrawNodes Draws nodes in the ring.

 FillInfoList Gets the variables associated with the algorithm.

 gbSimulation_Paint Draws the circle representing the ring.

 InitializeComponent Required method for Designer support - do not modify
the contents of this method with the code editor.

 numUpDownSpeed_ValueChanged Updates the execution speed depending on the user
selected value.

 RefreshSimulator Resets all variables to initial state.

 SaveData Saves the result of the execution to a file.

 SetCheckStatus Sets the checked status of check boxes.

 SetCouners Sets the values of TotalSteps, RoundNumber, and Steps
in the Round counters.

 SetStatusOfPlaybackButtons Sets the enabled statues of playback buttons.

 TimerCallback Performs one step of the execution of the algorithm.
Called from the Timer, at each time tick.

 UpdateInfoList Updates the list of variables to be displayed depending
on check status of check boxes.

55

5.1.2 WrapperClasses Namespace

Description: Wrapper classes that facilitate a template API for distributed algorithms

implemented in the DistributedAlgorithms namespace.

Table 31: Classes of WrapperClasses namespace.

 Class Description

 Message MESSAGE super class. Used in the SimulatorMain. Each algorithm will derive
from this to define its own message.

 Node Node super class. Used in the SimulatorMain. Each algorithm's libraries will
derive from this to implement the node.

 NodeState Represents a state of variables of a node during the execution of the algorithm.

 Utility Common Utility class. Classes of different algorithms must override these and
perform appropriate changes.

Table 32: Structures of WrapperClasses namespace.

 Structure Description

 NodeState.Item Represents a variable of a node.

5.1.2.1 Message Class

Description: Message super class. Used in the SimulatorMain. Each algorithm will derive from

this to define its own message.

56

Table 33: Message class syntax.

C# Syntax

[SerializableAttribute]
public abstract class Message

5.1.2.2 Node Class

Description: Node super class. Used in the SimulatorMain. Each algorithm's libraries will derive

from this to implement the node.

Table 34: Node class syntax.

C# Syntax

[SerializableAttribute]
public abstract class Node

Table 35: Node class properties.

 Name Description

 CcwNeighbor LinkID of the counter-clockwise neighbor.

 CwNeighbor LinkID of the clockwise neighbor.

 LinkId The ID used to create the network. Different from node IDs.

 RcvdMsg Received message at each step.

 SentMsg Sent message at the end of each step.

 UID Node IDs of nodes.

57

Table 36: Node class methods.

 Name Description

 TimeTick Actions performed at each time step. This is the coded Actions Table.

5.1.2.3 NodeState Class

Description: Represents a state of variables of a node during the execution of the algorithm.

Table 37: NodeState class syntax.

C# Syntax

[SerializableAttribute]
public class NodeState

Table 38: NodeState class constructor.

 Name Description

 NodeState Initializes a new instance of NodeState class.

58

Table 39: NodeState class properties.

 Name Description

 CcwId LinkID of the counter-clockwise neighbor.

 CwId LinkID of the clockwise neighbor.

 ItemList List of variables.

 LinkId The ID used to create the network. Different from node IDs.

Table 40: NodeState class methods.

 Name Description

 AddItem Adds an item to the Item List.

5.1.2.4 NodeState.Item Structure

Description: Represents a variable of a node.

Table 41: NoteState.Item structure syntax.

C# Syntax

public struct Item

Table 42: NodeState.Item structure properties.

 Name Description

 ItemName Variable name.

 ItemValue Variable value. Converted to object type.

59

5.1.2.5 Utility Class

Description: Common Utility class. Classes of different algorithms must override these and

perform appropriate changes.

Table 43: Utility class syntax.

C# Syntax

public abstract class Utility

Table 44: Utility class methods.

 Name Description

 ErrorChecks Checks for errors.

 GetStatus Returns (as a reference) the state of all the nodes as a NodeState list.

 GetVariables Gets a list of variables that the algorithm uses.

 Initialize Performs required initializations.

 IsFinished Checks whether the algorithm execution is finished.

 PrintList Prints the ring orientation in clockwise order.

 PrintStep Returns (as a reference) the state of all the nodes as a single string.

Table 45: Utility class fields.

 Name Description

 ERR_MSG_SUCCESS Successful operation.

60

5.1.3 DistributedAlgorithms Namespace

Description: This namespace includes the coded distributed leader election algorithms in ring

networks that are used in this simulator. Namely, LCR algorithm and UNIQUE_k algorithm.

Table 46: Classes of DistributedAlgorithms namespace.

 Class Description

 LCRMsg Message prototype for messages used in LCR algorithm.

 LCRNode Contains LCR Algorithm actions.

 LCRUtility A utility class that performs actions such as initializations and error checks.
It acts as an interface to the main application which obtains the status of
the algorithm at each step.

 UniqueKMsg Message prototype for messages used in UNIQUE_k algorithm.

 UniqueKNode Contains UniqueK Algorithm actions.

 UniqueKUtility A utility class that performs actions such as initializations and error checks.
It acts as an interface to the main application which obtains the status of
the algorithm at each step.

5.1.3.1 LCRMsg Class

Description: Message prototype for messages used in LCR algorithm.

Table 47: LCRMsg class syntax.

C# Syntax

[SerializableAttribute]
public class LCRMsg : Message

61

Table 48: LCRMsg class constructor.

 Name Description

 LCRMsg Initializes message values.

Table 49: LCRMsg class properties.

 Name Description

 SP Indicates whether a message is a special message or not. True: special message, False:
regular message.

 UID Unique IDs of nodes. Non-negative values.

5.1.3.2 LCRNode Class

Description: Contains LCR Algorithm actions.

Table 50: LCRNode class syntax.

C# Syntax

[SerializableAttribute]
public class LCRNode : Node

Table 51: LCRNode class constructor.

 Name Description

 LCRNode Initializes a new instance of the LCRNode class.

62

Table 52: LCRNode class properties.

 Name Description

 Active Represents whether the node is active or not.

 CcwNeighbor LinkID of the counter-clockwise neighbor. (Inherited from Node.)

 CwNeighbor LinkID of the clockwise neighbor. (Inherited from Node.)

 Init Represents whether algorithm is initialized or not.

 IsLeader True: if the node is the leader. False: otherwise.

 Leader Elected leader's ID

 LeaderElected True: the nodes know that a leader has been elected by the algorithm.
False: otherwise.

 LinkId The ID used to create the network. Different from node IDs. (Inherited
from Node.)

NOMESSAGE An LCR algorithm message containing NOMESSAGE as its X value

represents a non-message. i.e., the same as no message being sent through
the channel.

 RcvdMsg Received message at each step. (Inherited from Node.)

 SentMsg Sent message at the end of each step. (Inherited from Node.)

 UID Node IDs of nodes. (Inherited from Node.)

Table 53: LCRNode class methods.

 Name Description

 TimeTick Actions performed at each time step. This is the coded Actions Table. (Overrides
Node.TimeTick(List(Message), List(Message)).)

5.1.3.3 LCRUtility Class

Description: A utility class that performs actions such as initializations and error checks. It acts

as an interface to the main application which obtains the status of the algorithm at each step.

63

Table 54: LCRUtility class syntax.

C# Syntax

public class LCRUtility : Utility

Table 55: LCRUtility class constructor.

 Name Description

 LCRUtility Initializes a new instance of the LCRUtility class

Table 56: LCRUtility class methods.

 Name Description

 ErrorChecks Checks for errors. (Overrides Utility.ErrorChecks(Int32, List(Int32), String).)

FindK Finds the maximum number of repeating IDs in a list of integers

 GetStatus Returns (as a reference) the state of all the nodes as a NodeState list.
(Overrides Utility.GetStatus(Int32, List(Node), List(NodeState)).)

 GetVariables Returns a list of variables used in the algorithm. (Overrides
Utility.GetVariables().)

 Initialize Performs required initializations (Overrides Utility.Initialize(Int32,
List(Node), List(Message), String).)

 IsFinished Checks whether the algorithm execution is finished. (Overrides
Utility.IsFinished(Int32, List(Node)).)

 PrintList Prints the ring orientation in clockwise order. (Overrides
Utility.PrintList(Int32, List(Node), String, String).)

 PrintStep Returns (as a reference) the state of all the nodes as a single string.
(Overrides Utility.PrintStep(Int32, Int32, List(Node), String, String).)

64

5.1.3.4 UniqueKMsg Class

Description: Message prototype for messages used in UniqueK algorithm.

Table 57: UniqueKMsg class syntax.

C# Syntax

[SerializableAttribute]
public class UniqueKMsg : Message

Table 58: UniqueKMsg class constructor.

 Name Description

 UniqueKMsg Initializes message values.

Table 59: UniqueKMsg class properties.

 Name Description

 C Counter.

 X IDs of the originating node.

65

5.1.3.5 UniqueKNode Class

Description: Contains UniqueK Algorithm actions.

Table 60: UniqueKNode class syntax.

C# Syntax

[SerializableAttribute]
public class UniqueKNode : Node

Table 61: UniqueKNode class constructor.

 Name Description

 UniqueKNode Initializes a new instance of the UniqueKNode class.

66

Table 62: UniqueKNode class properties.

 Name Description

 Active Represents whether the node is active or not.

 CcwNeighbor LinkID of the counter-clockwise neighbor. (Inherited from Node.)

 Count P.count variable.

 CwNeighbor LinkID of the clockwise neighbor. (Inherited from Node.)

 Init Represents whether algorithm is initialized or not.

 IsLeader True: if the node is the leader. False: otherwise.

 K K, the maximum number of times a node ID is repeated in the ring.

 Leader Elected leader's ID.

 LeaderElected True: the nodes know that a leader has been elected by the algorithm.
False: otherwise.

 LinkId The ID used to create the network. Different from node IDs. (Inherited
from Node.)

NOCOUNT An undefined count state.

NOMESSAGE An LCR algorithm message containing NOMESSAGE as its X value

represents a non-message. i.e., the same as no message being sent through
the channel.

 RcvdMsg Received message at each step. (Inherited from Node.)

 SentMsg Sent message at the end of each step. (Inherited from Node.)

 UID Node IDs of nodes. (Inherited from Node.)

UNDEFINED Denotes an undefined state.

Table 63: UniqueKNode class methods.

 Name Description

 TimeTick Actions performed at each time step. This is the coded Actions Table. (Overrides
Node.TimeTick(List(Message), List(Message)).)

67

5.1.3.6 UniqueKUtility Class

Description: A utility class that performs actions such as initializations and error checks. It acts

as an interface to the main application which obtains the status of the algorithm at each step.

Table 64: UniqueKUtility class syntax.

C# Syntax

public class UniqueKUtility : Utility

Table 65: UniqueKUtility class constructor.

 Name Description

 UniqueKUtility Initializes a new instance of the UniqueKUtility class.

68

Table 66: UniqueKUtility class methods.

 Name Description

 ErrorChecks Checks for errors. (Overrides Utility.ErrorChecks(Int32, List(Int32),
String).)

FindK(List(Int32)) Finds the maximum number of repeating IDs in a list of integers.

FindK(List(Node)) Finds the maximum number of repeating IDs in a list of nodes.

 GetStatus Returns (as a reference) the state of all the nodes as a NodeState list.
(Overrides Utility.GetStatus(Int32, List(Node), List(NodeState)).)

 GetVariables Returns a list of variables used in the algorithm. (Overrides
Utility.GetVariables().)

 Initialize Performs required initializations (Overrides Utility.Initialize(Int32,
List(Node), List(Message), String).)

 IsFinished Checks whether the algorithm execution is finished. (Overrides
Utility.IsFinished(Int32, List(Node)).)

 PrintList Prints the ring orientation in clockwise order. (Overrides
Utility.PrintList(Int32, List(Node), String, String).)

 PrintStep Returns (as a reference) the state of all the nodes as a single string.
(Overrides Utility.PrintStep(Int32, Int32, List(Node), String, String).)

5.2 EXPLANATION OF CRUCIAL COMPONENTS

In this section, we describe in detail the implementation of some of the crucial core components

of the Distributed Algorithm Simulator.

69

5.2.1 Source Code Organization

Inside the Visual Studio IDE, the source code is arranged under the ‘Source’ folder according to

the following structure.

Figure 17: Source code organization in Visual Studio IDE.

70

The relationship between namespaces and folders are as follows.

Table 67: Organization of folders according to namespaces.

Namespace Folder(s)
DistributedAlgorithms Algorithm_LCR

Algorithm_UniqueK
DistributedAlgorithmSimulator ApplicationMain

Common
TextualSimulator
VisualSimulator

WrapperClasses WrapperClasses

5.2.2 Creating the Network

The Distributed Algorithm Simulator simulates the execution of algorithms in a ring network. As

such we need a way to denote nodes arranged in a ring orientation, and their relationship to other

nodes.

In a ring network, any given node has only two neighbors which we call the clockwise

neighbor and the counter-clockwise neighbor, as shown in the following illustration.

71

Figure 18: Organization of nodes in a ring network.

This is implemented by using a list (.NET class: System.Collections.Generic.List) of Node class

objects which we have defined in the WrapperClasses namespace. In the Node class, we have

defined 3 integer type variables for the purpose of implementing the network as follows.

• LinkId – A positive non-zero integer assigned at the network creation time, and is used to

identify each node’s position relative to other nodes in the network. This is different from

node IDs used in the algorithms.

• CwNeighbor – LinkID of the current Node object’s clockwise neighbor.

• CcwNeighbor – LinkID of the current Node object’s counter-clockwise neighbor.

72

For example, let us consider a network with 6 nodes. Let us also assume the arbitrary node IDs

of the nodes are 11, 22, 33, 44, 55, and 66. We assign LinkID = 1 and ID = 11 to the first node,

LinkID = 2 and ID = 22 to the second node, so on and so forth. Following figure illustrates the

state of variables of each node after the network is created.

Figure 19: Relationships between neighboring nodes in a ring network.

73

In the CreateNetwork() method, we create a list of Node objects using a for-loop that runs from

1 to n, n being the size of the network. Each Node object is assigned a LinkID such that the first

node gets the LinkID = 1, the second node gets the LinkID = 2, so on and so forth. At the same

time, each Node object’s CwNeighbor and CcwNeighbor values are calculated and assigned. For

first and last nodes in the list, when calculating CcwNeighbor and CwNeighbor respectively, we

wrap around. At the same time, we also assign actual node IDs (either read from a file or taken

from user input) to each node, in the order they are listed in the file or the user input.

Below is the CreateNetwork() method with error handling sections removed to better focus

on the core of the method.

74

Figure 20: CreateNetwork() method.

Once the CreateNetwork() function finishes execution, we have a list of Node objects that

represents the network. Each node is aware of its own position in the network and that of the two

75

neighbors on either side of it. We use this knowledge when the algorithms are being executed as

explained in the next section.

5.2.3 Executing Algorithm Steps

We use a timer (.NET class: System.Threading.Timer) object and a callback method to execute

the algorithms step-by-step. The callback method is called at every time-tick of the timer and

represents the execution of one time-step in the algorithm. Let us take a look at this callback

method, once again error handling sections removed.

76

Figure 21: TimerCallback() method.

The Node class contains a TimeTick() method which executes the actions of the algorithms which

are performed at each step. In the TimerCallback() method, we traverse through each Node object

in the list of Node objects created in the CreateNetwork() method and execute the TimeTick()

method. This is equivalent to each node executing one step in a real distributed system.

77

The Utility class contains the method IsFinished() which checks if all the nodes in the

network satisfy the conditions for termination. Therefore, if IsFinished() returns true at any given

time during the execution, that implies the algorithm has finished its work. In which case the

TimerCallback() method disposes the timer object and finishes the execution.

5.2.4 Message Communication

The distributed algorithms described in this document use message passing as the mode of

communication. In a real distributed system this would be done by some sort of message passing

protocol such as MPI. In this application, we use a message buffer to simulate the node.

To describe the process, let us consider a ring network consisting of 6 nodes, and let us

assume that the nodes are represented by a list of Node class objects as described in the ‘Creating

the Network’ section above. The following figure illustrate the configuration, with labels inside

the list items indicating each node’s LinkId, and the labels below the list items indicating each

node’s zero-based index in the list.

Figure 22: Representation of list of nodes and their LinkIDs.

78

To hold the messages, we use a message buffer which is a list of Message class objects. Each

algorithm (such as the LCR algorithm or the UNIQUE_k algorithm) has its own message class

which is a derived class of the Message class, and thus defines message types according to that

particular algorithm’s requirements. The crucial connection here is that in the list of Message class

objects, each item corresponds to the like index item of the Node list. The Message Buffer can be

thought of as set of mail boxes assigned to each node in the node list; receiving mail must be

retrieved from your own mailbox, and sending mail must be put inside intended receiver’s mailbox.

Figure 23: Relationship between node list and message buffer.

Consider the case where the node with LinkId = 3 (index = 2) receiving and sending messages.

As described in the ‘Creating the Network’ section above, its clockwise and counter-clockwise

neighbors are LinkId = 4 and LinkId = 2 respectively, and thus the corresponding indices are 3

and 1. Now if we assume the algorithm passes messages in the clockwise direction, it would mean

79

that a node receives messages from the counter-clockwise neighbor, and it sends messages to the

clockwise neighbor.

When LinkId = 3 node wants to receive a message, it grabs the message from the item

corresponding to its own index in the message buffer. That is, it copies the message from index 2

of message buffer, as illustrated below. As such, regardless of whether the algorithm operates

clockwise or counter-clockwise, receiving messages are always retrieved from the index

corresponding to the receiver’s own index.

Figure 24: Receiving a message from the counter-clockwise neighbor.

Conversely, when sending a message, the LinkId = 3 node copies the message it wants to send to

the item corresponding to the index of its clockwise neighbor in the message buffer. In other words,

LinkId = 3 node copies a message to the index 3 of message buffer. If the algorithm was operating

in the counter-clockwise direction, conversely, sending message must be copied to the index 1 of

the message buffer.

80

Figure 25: Sending a message to the clockwise neighbor.

5.2.5 Visual Simulator – Drawing Nodes

The colored circles that represent nodes and the information displayed next to them are displayed

using two class objects, namely, NodeControl and NodeInfoControl, which are derived classes of

Microsoft .NET Control class.

Figure 26: An instance of a NodeControl control.

Figure 27: An instance of a NodeInfoControl control.

81

5.2.5.1 NodeControl Class

The NodeControl class which is derived from the .NET Control class contains two major

components:

• A fill circle – Represents a node. Drawn using Graphics.FillEllipse() .NET method.

• A string of text – Represents a node ID. Drawn using Graphics.DrawString() .NET

method.

The NodeControl class contains two methods, DrawNode() and DrawID(), which are called from

the overridden OnPaint() method of the class, which draws the circle representing the node and

the text representing the node ID, respectively [18].

82

Figure 28: Code sample of the NodeControl class.

83

5.2.5.2 NodeInfoControl Class

The NodeControl is also derived from the .NET Control class, and it contains a number of label

controls matching the variables of the algorithm that must be displayed. For instance, the LCR

algorithm contains four variables that can be displayed, namely, Active, IsLeader, LeaderElected,

and Leader.

We pass a list of strings which contains the names of the variables to be displayed, and a

NodeState object which contains the values of those variables, to the constructor. The

DrawLables() method iterates through the list and draws two labels for each variable that must

be shown; one to display the name of the variable and the other to display the value.

84

Figure 29: Code Sample of the NodeInfoControl Class.

85

Chapter 6
 User Guide

This chapter is organized as a user guide to the end-user of the Distributed Algorithm Simulator.

We provide step-by-step guides for installation, basic overview of the system, and the usage of the

Visual Simulator and the Textual Simulator.

6.1 DOWNLOAD

The Distributed Algorithm Simulator setup file can be downloaded from the following BitBucket

repository. In addition, the entire repository can also be obtained at the same link.

• https://bitbucket.org/sachintha81/distributedalgorithmsimulator-public/downloads

6.2 INSTALLATION

Following steps will guide you through the installation process.

• Download the DistributedAlgorithmSimulatorSetup.zip file and extract it.

• Double-click the DistributedAlgorithmSimulatorSetup.exe file on the extracted folder.

• [Preparing to Install…] screen will be displayed. Wait for the next screen.

86

Figure 30: [Preparing to Install] screen.

• Click [Next >] at the Distributed Algorithm Simulator splash screen.

Figure 31: Distributed Algorithm Simulator splash screen.

87

• Click [Next >] at the [Welcome] screen.

Figure 32: [Welcome] screen.

• The [Destination Folder] screen lets the user select the install directory. Either leave the

default directory, or click [Change…] to select a different directory. Click [Next >]

88

Figure 33: [Destination Folder] screen.

• Click [Install] at the [Ready to Install the Program] screen.

Figure 34: [Ready to Install the Program] screen.

89

• Wait until the installation is complete.

Figure 35: [Installing Distributed Algorithm Simulator] screen.

• Click [Finish] at the [InstallShield Wizard Complete] screen. If [Launch the program] check

box is checked, it will launch the installed Distributed Algorithm Simulator program.

90

Figure 36: [InstallShield Wizard Complete] screen.

6.3 DISTRIBUTED ALGORITHM SIMULATOR MAIN WINDOW

Launching the application opens the following Distributed Algorithm Simulator main window.

91

Figure 37: Distributed Algorithm Simulator main window.

• [Input IDs] and [Read from File] radio buttons let user input the node IDs to the [Input

IDs] textbox, or read them from a file.

• By default, [Input IDs] radio button is checked.

• [Node IDs] textbox displays the node IDs, in clockwise orientation, once read.

92

• [Visual] and [Textual] radio buttons let the user select the type of simulation to run: The

Visual Simulation or the Textual Simulation.

• [Algorithm Type] drop down list lets the user select the algorithm to run.

• The [RUN SIMULATION] button is deactivated by default. It becomes activated once the

node IDs are read.

• The [EXIT] button lets the user terminate the Distributed Algorithm Simulator.

6.3.1 Input IDs into a Textbox.

• Select the [Input IDs] radio button. [Input IDs] textbox will be enabled.

93

Figure 38: Selecting [Input IDs] radio button.

• Type into the [Input IDs] textbox. Input IDs must be non-negative integers, separated by

commas. There is no limit on the number of IDs that can be entered.

94

Figure 39: Entering node IDs.

6.3.2 Select an input File

• Select the [Read from File] radio button. [Select File] textbox will be enabled. By default,

the textbox will contain the string “Input.csv”. If there is a file by the same name in the

95

same directory in which the application executable resides, it can be read in. The input

file type must be a Comma Separated Values (CSV) file.

Figure 40: Selecting [Read from File] radio button.

• To select a different file, click the [Select] button. It will open up the [Open] file open

dialog box. Select a .CSV file and click the [Open] button.

96

Figure 41: File open dialog box.

• The file path will be displayed in the [Select File] textbox.

97

Figure 42: File path of the selected file.

6.3.3 Read Data

• Once either node IDs are typed into the [Input IDs] textbox, or a .CSV file containing the

IDs selected, click the [Read] button. The IDs will be read and displayed in the [Node IDs]

98

textbox, in clockwise orientation, as shown below. The [RUN SIMULATION] button will

be enabled at this time.

Figure 43: Reading data from the input source.

Note: Once the [Read] button is clicked and ID’s are displayed, if a modification needs to be

done, it must be done either in the [Input IDs] textbox or changes should be made to the .CSV

99

file, and then read once again using the [Read] button. Editing the displayed IDs in the [Node

IDs] textbox will not effect the already read IDs.

6.3.4 Running the Simulation

• Read in the node IDs as described in the previous step.

• Select the algorithm from the [Algorithm Type] drop down list.

100

Figure 44: Selecting an algorithm to simulate.

• To run the Visual Simulation, select the [Visual] radio button.

101

Figure 45: Selecting the Visual Simulation type.

• To run the Textual Simulation, select the [Textual] radio button.

102

Figure 46: Selecting the Textual Simulation type.

• Click the [RUN SIMULATION] button. It will launch either the Visual Simulation or the

Textual Simulation depending on the user choice.

Note: The maximum number of nodes allowed for the Visual Simulation is 18. If the number of

nodes in the network is more than that, and the user selected [Visual] radio button, upon clicking

103

the [RUN SIMULATION] button, user will be prompted to either cancel the simulation or run

the Textual Simulation instead.

Figure 47: Prompting user to run a Textual Simulation.

• [Yes] – Runs the Textual Simulation.

• [No] – Cancels the simulation and returns to the main window.

6.4 VISUAL SIMULATOR

Following is the Visual Simulator with the selected algorithm being LCR and the nodes with node

IDs 1, 2, 3, and 4 in clockwise orientation, at the initial state. The four navigation icons (Previous,

Next, First, and Last) are disabled at first. Navigating through the algorithm can only be done

when the simulation is run to the completion at least once, at which point they becomes enabled.

Figure 48: Visual Simulator initial state.

104

Following legend explains the button icons and their functionality.

Table 68: Visual Simulator button icons and their functionality.

Icon Meaning Functionality

 Play Executes the simulation.
 Pause Pauses the simulation.
 Next Advances the simulation by one step in forward direction.
 Previous Advances the simulation by one step in backward direction.

 Last Proceeds to the final step of the simulation.
 First Proceeds to the first step of the simulation.
 Reset Resets the simulation.

105

The four labels at the top left corner of the simulation window displays the round and step

numbers. Their meanings are as follows.

Table 69: Descriptions of counters used in Visual Simulator.

Counter Meaning
N Number of nodes in the network.
Round The round number. One round is equivalent to N-steps.
Steps The number of steps elapsed in the current round.
Total Steps The number of steps elapsed in the whole execution.

6.4.1 Selecting Variables for Display

The variables to be displayed can be selected using the check boxes in the [Select Variables to

Display] group box. Following is an intermediate stage of the execution, with only [Active] and

[Leader] variables selected for display.

106

Figure 49: Displaying only selected variables.

6.4.2 Simulation Speed

The [Speed] numeric up down control lets the user set the speed of the execution. The default

value is 1000ms, the minimum allowed is 500ms and the maximum allowed is 5000ms.

107

6.4.3 Play / Pause

To start the simulation, click the [Play] button. The simulation starts running, and the [Play]

button image changes to a [Pause] icon.

Figure 50: Executing the simulation.

Clicking the button again pauses the simulation, and the button icon changes to a [Play] icon.

Clicking a third time resumes the simulation

108

6.4.4 Reset

During the execution, or once the execution is finished, clicking the [Reset] button resets the

simulation to its initial state.

6.4.5 Navigation Buttons

The four navigation buttons become enabled once the simulation finishes.

Figure 51: Enabled navigation buttons.

109

The buttons can be used to navigate through the simulation forward and backward, one step at

a time. The status of the variables changes accordingly.

Clicking [Next] or [Last] buttons while at the last step of the simulation generates the

following notification.

Figure 52: [End of the Simulation] message.

Clicking [Previous] or [First] buttons while at the first step of the simulation generates the

following notification.

Figure 53: [Beginning of the Simulation] message.

110

6.4.6 Saving Results to a File

Once the simulation is finished, the results can be saved to a file. Clicking the [Save to File] button

opens up the [Save to File] dialog box.

Figure 54: [Save to File] dialog box.

Results can be saved as one of two types of files; .txt or .log. The [Save as type:] drop down lets

the user select a type.

111

Figure 55: Save as a text file.

Figure 56: Save as a log file.

112

6.5 TEXTUAL SIMULATOR

Following is the Visual Simulator with the selected algorithm being LCR and the nodes with node

IDs 1, 2, 3, and 4 in clockwise orientation, at the initial state. The topmost textbox displays N,

the number of nodes in the network, and the node IDs in clockwise orientation.

Figure 57: Textual Simulator initial state.

113

6.5.1 Run / Pause

Clicking the [Run] button starts the simulation and changes the button text to [Pause]. Clicking

it again pauses the simulation and changes the button text to [Run]. Clicking a third time resumes

the simulation.

Figure 58: Running the Textual Simulator.

114

Once the simulation finishes the execution, the word “FINISHED!” is displayed as the last time of

the text box. The [Run / Pause] button text returns to the original [Run] state.

Figure 59: Finished status of the Textual Simulation

115

6.5.2 Reset

During the execution, or once the execution is finished, clicking the [Reset] button resets the

simulation to its initial state.

6.5.3 Simulation Speed

The [Speed] numeric up down control lets the user set the speed of the execution. The default

value is 1000ms, the minimum allowed is 100ms and the maximum allowed is 5000ms.

6.5.4 Saving the Results

Once the simulation is finished, the results can be saved to a file by clicking the [Save to File]

button. Its functionality is identical to the [Save to File] button in the Visual Simulation.

6.5.5 Output Format of the Textual Simulation

The textual simulation takes the following format.

116

Figure 60: Output format of the Textual Simulation.

The state of each variable of each node is displayed as a group, under the corresponding step

number (total steps in the execution). At the end of each round, the string “End of Round {round

number}” is displayed.

117

6.6 ERROR MESSAGES

6.6.1 File Errors

If the specified file path or the file name cannot be found, the following error message is displayed.

Figure 61: [Could not Find the File] error message.

6.6.2 Input Errors

If the user input node IDs in the in the [Input IDs] textbox, or the node IDs listed in the input

file are not according to the constraints (must be non-negative integers, separated by commas, in

one line), the following message is displayed.

Figure 62: [Incorrect Input String Format] error message.

118

If the [Read] button is clicked when the [Input IDs] textbox is empty, the following message is

displayed.

Figure 63: [Node IDs not Entered] error message.

119

6.6.3 Node ID Errors

While less than 3 node IDs are entered, if the UNIQUE_k algorithm is chosen and [RUN

SIMULATION] button is pressed, the following error message is displayed.

Figure 64: [Insufficient number of Node IDs] error message for UNIQUE_k.

While less than 2 node IDs are entered, if the LCR algorithm is chosen and [RUN SIMULATION]

button is pressed, the following error message is displayed.

Figure 65: [Insufficient number of Nodes IDs] error message for LCR.

120

If the LCR algorithm is chosen and the node IDs contain one or more repeating IDs, the following

error message is displayed.

Figure 66: [Ring Contains Non-Unique IDs] error message.

If the UNIQUE_k algorithm is chosen and the node IDs contain no repeating IDs, the following

error message is displayed.

Figure 67: [Ring does not Contain Repeating IDs] error message.

121

If the UNIQUE_k algorithm is chosen and the node IDs does not contain at least one repeating

ID, the following error message is displayed.

Figure 68: [No Unique ID] error message.

122

Chapter 7

 Conclusion and Future Work

This chapter concludes the thesis and offers some suggestions for related future work.

7.1 CONCLUSION

The Distributed Algorithm Simulator is an application program designed to simulate, in a non-

distributed environment, the execution of distributed leader election algorithms. The distributed

nature of these algorithms sometimes makes it difficult to comprehend, especially when learning

them for the first time, and as such we believe this would be a useful tool in the classroom.

Particularly, the ability of the Visual Simulator to step through the execution of an

algorithm, not only forward but also backward, could be very useful when analyzing how the

algorithms work at each step. The ability to save the results for later analysis is another feature

that, we believe, would be a useful teaching tool.

7.2 FUTURE WORK

The Distributed Algorithm Simulator is developed using the Visual C# programming language

on the Microsoft .NET framework. As such, it can only be used on Microsoft Windows platforms

123

(unless a Virtual Machine is being used). It would be more useful if it could be implemented using

a platform independent language such as Java, as there are a large number of students and

teachers who use other operating systems such as Mac OS or Linux-based systems. It would be

even more useful if it can be converted into a web application and/or a mobile app, which would

increase its usability.

Finally, the Distributed Algorithm Simulator can only simulate leader election algorithms

in ring networks. If it could be extended to simulate leader election algorithms in other network

topologies, that would make this a more comprehensive learning tool.

124

Bibliography

[1] – Wikipedia contributors. Termite. Wikipedia, The Free Encyclopedia,

https://en.wikipedia.org/wiki/Termite, March 2016.

[2] – Hill, Michael. Distributed Computing: An Unstoppable Brute Force. SANS Institute, 2004.

[3] – Wikipedia contributors. Beowulf cluster. Wikipedia, The Free Encyclopedia,

https://en.wikipedia.org/wiki/Beowulf_cluster, January 2016.

[4] – Peleg, D. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial

and Applied Mathematics, 2000.

[5] – Wikipedia contributors. Einstein@Home. Wikipedia, The Free Encyclopedia,

https://en.wikipedia.org/wiki/Einstein@Home, March 2016.

[6] – "BOINC Stats – Albert@home". http://boincstats.com/en/stats/127/project/detail,

Retrieved 2012-02-17.

[7] – Wikipedia contributors. Big and Ugly Rendering Project. Wikipedia, The Free

Encyclopedia, https://en.wikipedia.org/wiki/Big_and_Ugly_Rendering_Project, March 2015.

[8] – Wikipedia contributors. Climateprediction.net. Wikipedia, The Free Encyclopedia,

https://en.wikipedia.org/wiki/Climateprediction.net, February 2016.

[9] – "Detailed user, host, team and country statistics with graphs for BOINC". boincstats.com.

http://boincstats.com/en/stats/2/project/detail, Retrieved 2010-12-13.

125

[10] – Wikipedia contributors. Folding@home. Wikipedia, The Free Encyclopedia,

https://en.wikipedia.org/wiki/Folding@home, February 2016.

[11] – Pande Lab (2015). "The Science: Protein Folding". Stanford University.

http://folding.stanford.edu/home/the-science, Retrieved October 9, 2015.

[12] – Wikipedia contributors. SETI@home. Wikipedia, The Free Encyclopedia,

https://en.wikipedia.org/wiki/SETI@home, March 2016.

[13] – Wikipedia contributors. Leader election. Wikipedia, The Free Encyclopedia,

https://en.wikipedia.org/wiki/Leader_election, March 2016.

[14] – Attiya, H. and Welch, J., Distributed Computing: Fundamentals, Simulations and

Advance Topics, John Wiley & Sons inc., 2004, Chapter 3.

[15] – Gupta, I., van Renesse, I., and Birman, K. P. A Probabilistically Correct Leader Election

Protocol for Large Groups, Technical Report, Cornell University, 2000.

[16] – Lynch, N. A. Distributed Algorithms. Morgan Kaufmann Publishers, Inc, 1996, Chapter 3.

[17] – Datta, A. K., Larmore, L. L. Leader Election in Unidirectional Rings. CS780 – Distributed

Algorithms class notes, Department of Computer Science, University of Nevada Las Vegas,

2015.

[18] – Jacot-Descombes, O., StackOverflow contributor. StackOverflow,

http://stackoverflow.com/, March 2016.

126

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Sugeeswara Gurudeniya

Degrees:

 Master of Science in Computer Science, 2016

 University of Nevada, Las Vegas

Thesis Title: A Simulator Application for Distributed Leader Election Algorithms

Thesis Examination Committee:

 Chairperson, Dr. Ajoy K. Datta, Ph.D.

 Committee Member, Dr. Yoohwan Kim, Ph.D.

 Committee Member, Dr. John Minor, Ph.D.

 Graduate Faculty Representative, Dr. Venkatesan Muthukumar, Ph.D.

	A Simulator Application for Distributed Leader Election Algorithms
	Repository Citation

	Microsoft Word - DistributedAlgorithmSimulator_Thesis-NEW.docx

