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Abstract 

NANOMATERIALS FOR SOLAR DISTILLATION TECHNOLOGY 

By 

Jack Cheney 

 

Dr. Jaeyun Moon, Examination Committee Chair 

Professor of Mechanical Engineering 

University of Nevada, Las Vegas 

 

Water is the most important resource for mankind. Yet, 97% of the earth’s surface water is 

seawater in the oceans and only 3% is fresh water in ground water. Therefore, different kinds of 

water desalination and treatment technologies have been developed, and water distillation is a 

basic process of evaporating water in order to leave behind impurities such as minerals, pollutants, 

and other contaminants.  Although distillation is known as an effective water treatment process 

that removes many kinds of bacteria and inorganic chemicals and heavy metals, a large amount of 

conventional energy and non-renewable resources are consumed for this process.  The objective 

of this thesis is to develop water distillation technology that uses plentiful and free solar energy by 

utilizing different functional nanomaterials.  Double layered functional materials (exfoliated 

graphite and carbon foam) were used for sunlight absorption and heat localization which enable 

significantly improved water evaporation efficiency.  A test chamber was built for heat loss 

minimization through the side surfaces and an indoor cost-effective solar simulator was designed 

to generate similar incident lights of solar irradiation using FRED simulation to verify the results. 

This indoor solar simulator allowed to perform consistent and reliable tests.  The double layered 

materials were characterized using electron microscopes and various material analysis.  The 

performance of the developed system was examined by measuring the temperature profile of the 

bulk water and the mass of evaporated water. The purified water produced by the developed 

distillation system was examined using two different analysis methods.  The double layered 
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functional materials localize heat within top layer and it led to enhance the evaporation rate by a 

factor of five (5) under one (1) sun irradiation.  The heat localization was also demonstrated using 

a heat transfer simulation. Although a further water quality study needs to be carried out, it was 

demonstrated that the developed system can be promising in a next generation solar distillation 

process.  

Keywords: carbon, nanomaterials, solar distillation, solar simulation, steam generation, 

water collecting 
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Chapter 1: Introduction 

1.1 Motivation 

 Fresh water of sufficient quantity is critical for humanity and all life.  However, about 97% 

of the world’s water is seawater in oceans with the last 3% as fresh water and only 0.3% is available 

surface water (Cohen-Tanugi et Al, 2012).  The limited fresh water causes many problems 

including 900 million people not receiving water via cleaning facilities (Macedonio et al., 2012) 

and 3.3 million people who die from water shortage or contamination each year with continuous 

health problems in many regions.  A water distillation process is effective to produce high quality 

water, but the main drawback of the existing systems is the high capital costs and the large energy 

consumption; in particular the conventional energy sources including coals, oils and fossil fuel 

takes a heavy toll on the environment. 

 The sun is also an invaluable resources needed for sustainable life on earth.  It has existed 

and supplemented a cycle of life and death for this little blue planet for all forms of life be it small 

bacteria, human beings, or a given flora.  The amount of energy in one hour of sunlight is enough 

to sustain the energy needs of all people on earth for one year (Lewis, 2007).  It’s simply a matter 

of harnessing its great power. 

Mankind has learned to value these resources as the sun provides heat and light for the day 

while water provides nourishment in the form of hydration and food.  An ongoing investigation is 

finding a way to use solar energy to obtain clean water (Fath, 1998) (Sampathkumar, 2010).  A 

goal by the World Health Organization for 2005-2015 was to “halve…the proportion of people 

without sustainable access to safe drinking water and basic sanitation” (WHO, 2005).  As time 

goes on, more and more fresh water becomes harder to obtain naturally in the environment as 

climate change and civilization takes its toll on all ecosystems and so producing clean water from 
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polluted sources is key.  The WHO also discusses the use of solar disinfection as a point-of-use 

cleaning option using plastic bottles.  Ultraviolet germicidal irradiation is already a promising 

attempt to incorporate solar energy into cleaning water.  This is where solar distillation becomes a 

possible solution.  The act of distilling water is in of itself an effective method of reducing 

pollutants in water simply by boiling it and collecting the steam that is generated via evaporation 

and condensation (one of water’s invaluable cycles) (Tiwari, 2003).  Laboratories have used this 

method to obtain sterile water for various testing procedures and produce a safe source of drinking 

water thanks to killing off any pathogens from the boiling process and leaving heavy metals behind 

as the water turns into steam.  The research into this optimal process will be conducted because it 

is the best way to incorporate renewable energies into obtaining clean drinking water. 

1.2 Background 

 Solar distillation in its basic form involves the use of the sun’s energy and a means of water 

collecting.  The most basic form that has gained popularity is the solar still (Kalita et al., 2016).  

Figure 1 shows an example of the device that uses principles of the phase change cycle for water 

making use of evaporation and condensation.  It uses a simple absorbing surface such as glass to 

transfer solar energy towards a pool of water that is to be distilled (Al-Hayeka, 2004).  The glass 

is sloped such that when the water collects and condensates on the surface, gravity will drive it 

down towards a collecting trough at the bottom of the glass.  The box itself can be designed with 

different materials but the glass sloped surface is most important not only for its transparency but 

also for its thermal stability over time during exposure to the sun.  Water can be continuously fed 

into the box as the basin decreases in volume throughout the day.  A drainage pipe is used near the 

bottom of the still to allow water to drain into a cooler container.  Analysis of the thermodynamics 

and the condensation design has been investigated with prototypes generating up to 40 liters of 



3 

 

freshwater per square meter (Koning, 2005).  The life cycle of a well-designed solar still can be as 

long as 20 years with several applications based on the need.  The cost is based on financial cost 

and the cost of energy.  For a distillation system powered by conventional energy sources, it takes 

about 12.8 kilowatt-hours of energy to distill one gallon of water.  This value, when compared 

with the approximate value of 10 cents per kilowatt-hour, results in a cost of $1.28 per gallon of 

water distilled.  This may sound like a small number, but when compared to generating several 

gallons of distilled water, this cost can add up quickly.  Besides the financial cost, the energy cost 

cannot be made up as a non-renewable resource is used to produce water that, if the sun was used 

instead, could be obtained for free.  The investment needed for an inexpensive solar still pays itself 

off quickly thanks to readily available materials and ease of access to clean energy. 

 

Figure 1: A solar still schematic design (Kalita et al., 2016)  

 The design has many different configurations to improve evaporation rate and condensate 

generation.  This includes sponge cubes, still with integrated fins, flat plate collectors, mini solar 

ponds, wick type solar stills, and many others that go beyond the scope of this report.  A summary 

of investigated configurations are provided in Table 1.  The first design is based around the basic 

solar still discussed previously.  This is essentially what modified solar stills are compared to for 
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performance as the efficiency of evaporation and water collecting are easily comparable for 

different designs (Kalita et al., 2016).  The design varies across several sources reaching as low as 

25% efficiency and as high as 60% efficiency in collecting water through the distillation process.  

The next design explores a double sloped single basin which essentially means it allows for more 

water to drain down another slope (Morad et al., 2015).  Following after this is a design that 

incorporates phase change materials to store energy and prolong the distillation process (Ali, 

2014).  The efficiency is analyzed to be 57% when incorporating the PCM for thermal storage.   

Another configuration involved the use of vertical solar stills that allowed for condensate to 

cascade down either a single slope or double slope still in order to increase surface area (a 

consistent improvement goal for solar distillation design) (Sharon, 2015).  A still that incorporates 

tower-like surfaces for increasing the area of condensation is also investigated (Bhardwaj et al., 

2016).  Up to 40% efficiency is obtained from the improved surface area.  Another setup changed 

the shape of the glass into a round hemisphere design to see how the distillation process improved 

with and without flowing water spread over the cover glass (Arunkumar et al., 2012).  The 

efficiency isn’t too high though reaching 34% for the curved design.  Finally, a pyramid 

configuration of the solar still was developed for a three dimensional approach to improve surface 

area of distillation (Taamneh, 2012).  This produces a consistent 50% efficiency in collecting water 

from the extra surface area.  Several of these designs are examined for three factors: efficiency, 

difficulty design, and cost shown in Table 1.  Though the improvements suggested by the other 

research, the simple single slope seemed like a good control distiller for research purposes as the 

hope is to incorporate something new into a more basic design to see how it improves the overall 

distillation process.  This is where nanomaterials became of interest for research purposes.  
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 Nanomaterials, in particular nanoparticles, were already getting some early incorporation 

into solar distillation (Kabeel et al., 2014).  One early example was using nanoparticles such as 

cuprous and aluminum oxide were tested with the goal of improving evaporation rate due to higher 

thermal conductivity.  Cuprous oxide is recorded as having 76.5 W m-1 K-1 for a thermal 

conductivity while aluminum oxide has 46 W m-1 K-1 demonstrating how useful they can be for 

heating water with their high heat transfer coefficients.  The improvement compared to water alone 

is usually around 30% which a promising value.  Nanofluids have also been of interest as a floating 

absorber of solar energy (Elango et al., 2015).  Zinc Oxide and Tin Oxide were investigated to see 

how well they improve distillation production with each one producing 12.67% and 18.63% more 

production than a normal still without water.  They both have fairly close thermal conductivities 

of 0.6 W m-2 K-1.  The reason given that this improves distillation is the temperature difference 

between the glass cover and the nanofluid absorbing more radiation.  The reason these improve 

heat transfer and steam generation is the temperature difference that exists between the water 

surface and the bulk water volume.  Despite these improvements, the efficiencies could be better 

given better materials and setup and so the optimal materials are investigated. 
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Table 1: Researched water collectors for optimal design. 
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1.2 Technical Approaches 

Most recently, a group at MIT has been investigating the use of porous carbon materials in 

conjunction with this distillation process (Ghasemi et al., 2014).  This article was chosen as a 

ground basis for this thesis investigation because the results are the most promising from a 

functional material approach.  The sizable efficiency of 64% efficiency at just 1 sun for generating 

steam compared to other candidates generates a lot of promise in this particular material design.  

This article explores the use of sunlight as a means of heat localization by which the materials used 

are in a double layered structure (DLS) with one material on top of the other.  Figure 2 shows the 

structure of the material to be used.  The idea of absorbing and holding solar energy near the water 

surface is known as heat localization and is a study of interest for this project.  A series of materials 

were investigated that are outlined in Appendix A. Their major properties including thermal 

conductivity, density, hydrophilicity (in order to allow water to pass through it easily), and solar 

absorption helped develop the design for a nanocomposite. Candidates were investigated as either 

filters for removing volatile organic compounds (VOCs) or heat insulators and absorbers of solar 

energy with their properties recovered from various online sources.  As the goal is for these 

materials to possibly float on the surface of the water, a low density was very important and, if a 

material proved lacking in this property, it had to be discounted. 
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Figure 2: Schematic of double layered materials for solar distillation 

A similar equipment setup to the article was used to evaluate evaporation efficiency of 

double layered materials. Details of experiments will be described in Chapter 4. The efficiency 

was determined by a simple formula: 

𝜂𝑡ℎ =
�̇�ℎ𝐿𝑉

𝐶𝑜𝑝𝑡𝑞𝑖
   

where �̇� denotes the mass flux [kg m-2hr-1], hLV is total enthalpy of liquid-vapor phase change of 

water, Copt is the optical concentration and qi is the nominal solar irradiation 1 kWm-2.  Heat 

localization was to be investigated using a temperature gradient between the steaming surface and 

the underlying bulk water.  Figure 3 shows how the plan is to measure mass change and 

temperature distribution over time in order to understand the efficiency of the material addition. 
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Figure 3: A basic design schematic for testing the DLS 

The source of solar energy was simulated.  A simulation of solar using metal halide lamps 

was also developed for an indoor laboratory setting in order to allow for reliable and consistent 

testing conditions.  Due to the challenges of weather and time constraints, the cost-effective metal 

halide lamp became a primary source of providing power for the distillation process allowing for 

investigation as well into how reliable it is as a solar simulator. 

A standard single basin solar still designed to scale is to be tested that allows the collecting 

of this water. In order to minimize the challenge of saturation, the goal is to design a small enough 

container that will facilitate the water being moved into a cooler chamber for collection. 

1.3 Objectives 

 The objective of the solar distillation experiment is to determine the following: 

 Utilize double layered functional materials for improving solar distillation 

 Model solar energy using a simple, cost-effective simulator 

 Determine the mass change and temperature distribution during testing 
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 Examine the efficiencies of the various testing setups 

 Verify the purity of the water collected from this project 

These general parameters shaped the scope of this project and helped define meaningful 

progress as research and testing was implemented. 

1.4 Organization 

 In this thesis, sequential sections will outline the experimental process of this project.  

Chapter 2 will feature the properties and creation of the nanomaterials to be discussed and tested.  

Chapter 3 examines the FRED modeling of the project in order to see how the metal halide lamp 

works as a solar simulator for the experimental purposes.  Chapter 4 explains the project setup 

with the goal of examining the experimental protocol and the results of testing in the form of mass 

change and temperature recording.  Finally, the water testing is shown in chapter 5 with the 

Aqualog hardware being used for fluorescence excitation-emission testing as well as ultraviolet-

visible absorbance to see the final quality of the distilled water. 
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Chapter 2: Functional materials for Heat Localization 

 The discussion of the double layered materials involved will be broken up into two 

categories.  The first will be a discussion about the absorbing layer with exfoliated graphite.  The 

second portion will detail the insulating layer that is the treated carbon foam.  The materials will 

be evaluated for morphology based on for their ability to be hydrophilic for the purposes of this 

project. 

2.1 Exfoliated Graphite 

The requirements of the top absorbing layer of the DLS is 1) for high solar energy 

absorption across a broad wavelength spectrum of the sun and 2) hydrophilicity.  In this research, 

exfoliated graphite was utilized at the top layer.  This material incorporates properties that favor 

absorption of solar energy based on prior studies (Ghasemi et al., 2014).  Figure 4 shows the 

absorption spectrum recorded for this particular form of graphite.  The low reflectance of 

approximately 3% throughout indicates a high absorption of 97% within the desired solar 

spectrum.  It also can be made hydrophilic in order for water to pass through it as steam is 

generated.  Floating on the surface is also desirable but the insulating layer will help with this 

property which to be discussed later. 
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Figure 4: Reflectance results used to evaluate solar absorption of exfoliated graphite 

(Ghasemi et al., 2014) 

2.1.1 Fabrication 

 Synthesis of the exfoliated graphite followed a simple process of first combining 1 gram 

of potassium permanganate (KMnO4) with 0.5 grams of graphite flakes which were both purchased 

from Sigma-Aldrich.  After thorough mixing, 0.5 grams of nitric acid (HNO3, 68%) was added to 

the combined materials in a laboratory crucible and was briefly mixed.  Very quickly after mixing, 

another crucible would be added on top and the combination was microwaved in a standard 

microwave oven for 8 seconds and 12 seconds for comparison.  The chemical vaporization that 

occurs as a result of this process produces a drastically expanded volume as the flakes expand into 

a low density material (Ghasemi et al., 2014).  In addition, this produces a hydrophilic material 

due to oxidation.  This material is easily reproduced for the purposes of this experiment. 
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2.1.2 Material Characterization 

Characterization of the materials was done in two ways.  First, scanning electron 

microscope (SEM) images were taken of the exfoliated graphite with a collection of relevant 

resolutions displayed.  The second method was by contact angle of a drop of water on both types 

of exfoliated graphite (8 second and 12 second microwave exposure).   

 Figure 5 shows the SEM image for exfoliated graphite at 100 times resolution.  A scale is 

shown for 100 micrometers.  The expanded layers are along the “c” axis and were observed in this 

image.  This shows the rough, porous structure of the overall structure allowing for water to pass 

though it easily.  Figure 6 shows a much larger resolution of 10,000 times for exfoliated graphite.  

The image shows a layer of the graphene having been expanded in volume indicated by the 

streaking lines in the sample. 

 

Figure 5: SEM of exfoliated graphite at x100 resolution 
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Figure 6: SEM of exfoliated graphite at x10,000 resolution 

 

 In order to evaluate the hydrophilicity of the materials, contact angles were measured with 

the results provided in Figure 7.  It should be noted that the angle recorded is the largest one 

possible as with a short amount of time the water droplet saturates the material and disappears 

preventing continued analysis of the contact angle.  The recorded maximum angle for 8 second 

microwave exposure is 39.05 degrees which agrees with documented sources on this particular 

material (Ghasemi et al., 2014).  Figure 8 shows the maximum contact angle for the 12 second 

microwave exposed exfoliated graphite.  One aspect to be observed from this image is the 

increased overall contact angle to 49.45 degrees.  Though this material also behaves similarly with 

water absorbing easily into its structure, the contact angle is roughly 10 degrees larger which 

allows for the conclusion that the prolonged microwave emission time for the graphite produces a 

less hydrophilic portion in the material.  The extended thermal exfoliation and microwave 

exposure induce the deoxygenation of exfoliated graphite which results in less hydrophilic 

properties (Stankovich et al., 2007; Hu et al., 2012). 
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Figure 7: Contact angle for 8 second synthesis exfoliated graphite 

 

 

Figure 8: Contact angle for 12 second synthesis exfoliated graphite 

2.2 Treated Carbon Foam 

As light provides a given irradiance in W m-2 across a given spectrum, the exfoliated 

graphite absorbs it and transfers the heat to the bottom layer which is noted as the insulating layer.  

The insulating material has air pockets and closed pores which allow the material to float on the 

surface.  This material is characterized as hydrophilic upon treatment which allows water to pass 
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through the carbon foam via capillary action.  The requirements of the insulating layer are to be 1) 

low density to float near the surface for heat localization, 2) to be insulating in nature, and 3) to be 

hydrophilic for proper vapor transportation. 

2.2.1 Fabrication 

 The carbon foam has a simpler production in that the foam base is purchased before being 

modified (KRReynolds, 80 PPI).  4% molar nitric acid is produced in a beaker with a cut piece of 

the carbon foam matching the desired diameter of the test chamber (roughly 2.5 inches) added into 

the acid and stirred for 2 hours (Ghasemi, 2014).  The purpose of this treatment is to make the 

carbon hydrophilic like the exfoliated graphite. 

2.2.2 Material Characterization 

Figure 9 shows the treated carbon foam at a resolution that is only 50 times smaller.  This 

image has some interesting properties such as the repeating hexagonal structure and the generous 

amount of pores that make up its several layers.  The non-uniform layering represents the open 

and closed pores observed in previous research as a means of not only floating but allowing fluids 

to pass through the material. 

The reason carbon foam isn’t shown for contact angle is because the act of floating just 

below the surface demonstrates it has become hydrophilic in behavior with water able to pass 

through it (Ghasemi et al., 2014).   Figure 10 shows a comparison of the carbon foam before acid 

treatment (right) and after acid treatment (left).  Note the left treated carbon foam seems to sink 

more into the water.  This is as a result of open pores being generated from acid treatment while 

keeping some pores closed in the material (Tsyntsarski et al., 2012).  The compromise of porosity 

results in a beautiful combination of liquid penetration and floatation. 
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Figure 9: SEM of treated carbon foam at x50 resolution 

 

 

Figure 10: As purchased carbon foam (right) vs. acid treated carbon foam (left) 
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Chapter 3: Cost-Effective Solar Simulator 

 In order to perform solar distillation tests, an accurate light source is definitely required. 

Despite the availability of solar energy, natural sunlight proved a problem to test for this project 

due to the unpredictable nature of weather.  A Fresnel lens mount was constructed at one point 

with the intent of concentrated solar power but results were challenging due to inconsistent good 

weather and challenges of equipment working for measurement purposes.   

 Many solar simulators exist today commercially with a Xenon lamp being the most relevant 

example as it was used in the original DLS setup (Ghasemi et al., 2014).  Upon researched choices, 

metal halide lamps provided promising results for CSP applications (Codd et al., 2010).  The 

spectrum, while not perfectly matched to a typical solar spectrum, does show how the lamp can 

mimic the overall shape of irradiance enough for low wavelength applications.  Figure 11 also 

shows the experimental recordings compared to the shape of normal sunlight in a spectroscopy 

study.  Though they don’t match perfectly, the study is close enough for experimental purposes.  

The blue graph represents the data provided by the manufacturer of the lamp, PLT.  The red graph 

is the recorded data using spectroscopy measurements.  A typical solar spectrum provided by 

NREL is used for comparison with the metal halide data.  Codd et al. designed a high concentration 

halide lamp for many suns, but for the sake of this project, a simple setup with less construction 

needs was analyzed.  The goal of creating a 1 sun simulation was deemed satisfactory for analysis 

in order to correlate it with recorded data and add further results from there. 
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Figure 11: Modeled and recorded values for metal halide spectroscopy output compared to 

natural sunlight 

3.1 Design Specifications 

 When designing the solar simulator, several factors were involved to ensure proper results: 

 The setup must be able to reach at least one (1) sun intensity (equivalent to 1,000 W/m2 ) 

and maintain it consistently for an extended length of time 

 The setup must have as close to a solar spectrum as possible 

 The lamp and other equipment must be able to function for several hours at a time over 

several cycles with consistent output 

 The area of exposure to the solar simulator would be similar to normal sunlight as it hits a 

large area of the test chamber uniformly 

 The equipment used for the simulated solar must be able to handle extended exposure to 

said heat and light 

 The materials used for the metal halide solar simulator were chosen based on optimal 

reflectivity to maximize the amount of energy transferred to the testing surface.  A metal reflector 

designed with the 400 Watt bulbs were purchased to concentrate the light.  To further improve the 

path of the metal halide light, a tunnel was to be developed by which the test chamber could be 
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elevated for higher sun exposure.  This tunnel was designed with aluminum sheet metal coated 

with a sheet of aluminum Mylar (otherwise known as biaxially-oriented polyethylene 

terephthalate, or BoPET) in order to maximize the amount of light and heat reflected downward.  

The materials are both cheap and readily available making them great choices for a homemade 

solar simulator.  With these parameters in mind, a general setup for simulated solar was put 

together that functioned for testing purposes. 

3.2 FRED Simulation 

 The initial analysis before further experimental data was used involved simulating a 

general ray tracing model for how the light might behave using several assumptions to ease 

calculations.  FRED software is an effective optical software that allows for ray tracing of many 

different sources whether it’s solar or a lamp.  Using models generated on Autodesk Inventor, an 

analysis involving the metal halide source and a cylindrical tunnel was conducted. 

 Light and radiation can be characterized using vector-based math to understand the 

behavior they exhibit when coming in contact with a new medium or surface.  Properties like 

refraction, transmission, and absorption can all be described when understanding the electric field 

E and the intensity I as a function of the angle of attack and the initial value for each vector.  Light 

can become polarized such that light is either transmitted or blocked from exiting a material.  

Intensity is described as being directly proportional to the square of the cosine of the incident angle 

𝐼 ∝ cos2 𝜃 

  Figure 12 the model of the halide lamp recreated in Inventor and then uploaded onto FRED 

as a light source.  The ray tracing shown is up to 100,000 rays for the theoretical study.  Generally 

speaking, the more rays generated, the more accurate the model can be like in a finite element 
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analysis.  The interior of the bulb containing the filament is assumed to be pure air.  The enclosed 

bulb is modeled as a simple glass with 96% transmission and 4% reflection. 

 

Figure 12: The source lamp with 100,000 rays being emitted 

 Much of this analysis relates to the basic principles of Snell’s Law for light refraction: 

 

,where n stands for the index of refraction and θ is the angle of a ray of light as it travels from one 

medium to another.  λ is the wavelength of the incoming light with respect to the medium it is 

traveling through.  Using further radiometry analysis, the Fresnel Equations are used to describe 

optical propagation. 

𝑅 = (𝑛0 − 𝑛1)2 + 𝑘1
2)/(𝑛0 + 𝑛1)2 + 𝑘1

2) 

𝜑 = tan−1 (
2𝑛0𝑘1

𝑛0
2 − 𝑛1

2 + 𝑘1
2) 

For the variables, n and k describe imaginary and real parts of the complex reflective index �̂� with 

the connotation �̂� = n + jk, where j is the imaginary number √−1. 

 The reflectance for p-polarized and s-polarized light is defined by the following variables. 

𝑅𝑠 = |(𝑛1𝑐𝑜𝑠𝜃 − 𝑛2√1 − (
𝑛1

𝑛2
𝑠𝑖𝑛𝜃)

2

)/(𝑛1𝑐𝑜𝑠𝜃 + 𝑛2√1 − (
𝑛1

𝑛2
𝑠𝑖𝑛𝜃)

2

)| 
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𝑅𝑝 = |(𝑛1√1 − (
𝑛1

𝑛2
𝑠𝑖𝑛𝜃)

2

− 𝑛2𝑐𝑜𝑠𝜃)/(𝑛1√1 − (
𝑛1

𝑛2
𝑠𝑖𝑛𝜃)

2

+ 𝑛2𝑐𝑜𝑠𝜃)| 

 The measured reflectance is then taken as an average between the two values. 

𝑅 =
𝑅𝑠 + 𝑅𝑝

2
 

 With the calculations for the reflectivity assumed, a model using our cylindrical tunnel to 

direct the light can be simulated.  The choice of a basic cylindrical tunnel became an initial control 

design based on the ease of construction and predictable modeling.  The material properties are 

not determined yet so the model is based on 100% specular reflection for modeling purposes.  

Figure 13 shows the result of 50,000 rays being emitted by the metal halide source.  The resulting 

rays are reflected within the tunnel and dispersed around a target area. 

 

Figure 13: 50,000 Ray trace of first model for metal halide lamp with Mylar tunnel 

 With this simulation of ray tracing comes the benefit of modeling the physical setup before 

beginning construction.  Figure 14 shows the irradiance distribution as a function of position with 

the distance from the source being 26 inches.  The average output measured for the surface of the 

materials is 1,200 W/m2 which is larger than the targeted 1 sun of 1,000 W/m2.  Figure 15 shows 
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the surface at 30 inches offset from the source which has an average  recorded value of 1,100 

W/m2. 

 

 

Figure 14: Irradiance spread at 26 inches from source 
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Figure 15: Irradiance spread at 30 inches from source 

 

3.3 Experimental and Spectrometer Recordings 

 The metal halide lamp setup required an understanding of the wiring and the electrical 

properties of a ballast.  The ballast and capacitor act as a means to stabilize the output of light 

coming from the arc within the halide lamp.  Following a wiring diagram similar to Figure 16, we 

were able to purchase and connect the various components using wire nuts in parts to connect the 

ends of each cord together.  Wire strippers were used to expose the connections with electrical 

tape used to insulate where wire nuts didn’t work well.  The results of connection can be seen in 

Figure 17 with the metal halide lamp showing an emittance of light. 
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Figure 16: Ballast wiring diagram for metal halide lamp 

  

 

Figure 17: The physical working wiring for the HID setup 
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Figure 18: The metal halide simulated solar basic setup 

 

 Mylar was applied to the inner surface of the aluminum sheet metal that was shaped into a 

cylinder using duct tape for a secure hold.  The Mylar tunnel was attached to the reflector which 

hangs on the socket of the metal halide lamp.  Figure 19 shows a view of the Mylar as it hangs on 

the surface of the aluminum sheet metal. 
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Figure 19: Aluminum hollow cylinder with Mylar coating around inner surface 

 As the solar simulator was built to the desired structure, some features were noticed while 

measuring irradiance with a pyranometer.  The output of the metal halide lamp seemed to give 

more optimal numbers with a slight tilt in angle suggesting the model should be updated to reflect 

this.  Measuring the new angles in Figure 20 told us the tilt after correcting for the reflector and 

Mylar tunnel should be 12.94 degrees.  Figure 21 shows the resulting adjustment to the Inventor 

model. 

 

Figure 20: Measurement of angular offset for reflector and Mylar tunnel 
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Figure 21: 12.94 degree adjustment of bulb with reflector 

 

 The model was then simulated again for the more current setup in order to see what kind 

of numbers are obtained for the optimal position under the Mylar tunnel.  Figure 22 shows the ray 
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trace at 50,000 rays for a more time-consuming but accurate result before moving forward into 

testing. 

 

Figure 22: Ray trace of 50,000 rays of adjusted source 

 Figure 23 shows the new output for irradiance and the optimal position for maximum 

energy exposure at 26 inches from the source.  The optimal position along the x and y axis is also 

shown in Figure 24.  From the center, the coordinates of (0.3125, 5.9375) are where the most 

irradiance is being emitted. 
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Figure 23: Irradiance of adjusted source at 26 inches 

 

 

Figure 24: Maximum positioning for the irradiance model at 26 inches offset 
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 As the study continued, a more meaningful measure of the material properties was 

conducted using a spectrometer to measure intensity at the various wavelengths.  This not only 

would allow for a more accurate recording of reflectance but also for a proper reading of the metal 

halide’s spectrum.  The lamp was measured for several angles as well as for how the light measured 

when bounced off a reflective surface used in the setup.  Using an Ocean Optics spectrometer and 

special fiber optics, the metal halide lamp’s intensity was recorded and analyzed on Excel. 

 The final results after adjusting the model to match the most accurate version of the metal 

halide source is displayed in Figure 25.  The average irradiance is calculated as 1,373 W/m2.  This 

allows the conclusion that the testing surface is reaching one sun for testing purposes.  The area is 

also narrowed down to within the testing surface.  The final positioning for the peak concentration 

of irradiance is shown in Figure 26. 

 It is important to note that there are small peaks in the irradiance data approach 7,800 W/m2 

with other high values beyond one sun.  This is due to the smaller converging setup of light 

compared to the plane wave nature of natural sunlight.  The energy output provided is what’s 

important for this study with further analysis going beyond the scope of this project.  Previous 

studies have been done that have used metal halide lamps as a solar simulator despite its limitations 

and so that research justifies its use in terms of relative energy and the actual response of the 

experimental setup. 
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Figure 25: Final irradiance distribution of experimental metal halide source 

 

 

Figure 26: Final x and y coordinates from center of lamp for optimal metal halide exposure 
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Chapter 4: Water Evaporation Efficiency 

It’s important the DLS performs as reported in previous sources so the experimental setup 

is crucial to be close enough to see an improvement in overall evaporation rate.  The setup is 

essentially three main parts combined into a working process. 

The first component is the test chamber with a hollow center that has another chamber 

within that is hollow such that water can be placed inside for testing.  The outer hollow section of 

the chamber is filled with hydrophobic aerogel that provides thermal insulation.  The material that 

makes up the test chamber was purchased from Port Plastics and is classified as a Polyetherimide 

based polymer (also known commercially as Tecapei) that was chosen for its good thermal and 

physical stability under heated conditions.  The second component is the experimental equipment.  

This includes a mass balance (purchased from Adam Equipment), a National Instruments Data 

Acquisition device (DAQ) with thermocouples on the test chamber, the pyranometer and 

multimeter, and the laptop used with LabVIEW to measure the important values of the project 

which include mass change, temperature distribution, and the output irradiance of the lamp source.  

The mass balance and DAQ are connected via USB to the laptop providing a reliable connection 

for data acquisition.  The third component is the metal halide lamp with the aluminum reflector 

tunnel.  A basic wiring is set up to provide power to a metal halide lamp that consist of a ballast, 

a capacitor, a socket, and a basic outlet cable. 

 As mentioned in chapter 1, the thermal efficiency of the mass change caused by the DLS 

is calculated by using the following equation:  
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The ṁ represents mass change, hLV is the total enthalpy of the phase change for the liquid-vapor 

phase (2,257 kJ/kg), Copt represents the optical concentration (1 for 1 sun), and qi is the nominal 

input irradiance (1,000 W/m2). 

4.1 Design Specifications 

 For the design of the experimental setup, more important specifications were kept in mind: 

 The equipment must be able to communicate with computer software (specifically 

LabVIEW) 

 The data obtained for temperature must be obtained for varying depth in order to measure 

the difference in temperature between the surface and the bulk water 

 The mass balance must be able to record change in mass over extended periods of time 

 The setup must in some way to portable enough for shifting to different locations whether 

it’s outdoors for natural sunlight or indoors for simulated solar 

 The LabVIEW programming must be able to work independently and consistently to 

record values over time and output the results into readable files 

 The test chamber must be well insulated to prevent heat loss 

 The equipment must be able to handle recording many different setups throughout the time 

of the project 

Under these conditions, a basic design was made for obtaining the experimental results needed 

to determine the efficiency of the DLS distillation. 

4.4 Experimental Procedure 

 The development of the experimental setup started with acquiring the material for the test 

chamber.  The polyetherimide material (provided by Port Plastics) used for insulating the setup 

was bought as a large cylinder that was later cut using a machine shop in order to form two 
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concentric chambers that would be laid on top of one another.  The outer chamber measures at 100 

mm and holds the smaller 50 mm chamber along with hydrophobic aerogel particles (provided by 

Aerogel Technologies) being used as insulation between the gaps of the two chambers.  A lid was 

fashioned out of the remaining material and the entire chamber was sealed with duct tape with on 

the inner chamber exposed.  This would be the empty volume used for water testing. 

 The mass measuring equipment was a USB-compatible mass balance obtained from Adam 

Equipment.  The maximum weight was scaled to 3,000 grams with 0.1 gram incremental readings.  

The electronic balance can communicate with a computer to record values and allows for 

continuous readings.  The USB cord is connected to the mass balance and laptop followed by 

turning on the mass balance, adjusting the settings for a serial connection before the balance 

finishes starting up, saving the settings, and allowing the balance to finish calibrating.  In 

LabVIEW, the Measurement and Automation Explorer is used to make sure a secure connection 

has been established where the values being sent from the balance correspond with the settings on 

the computer for communication. 

 The temperature was measured using a National Instruments DAQ device.  By using an 

electric welder, T-type thermocouples were prepared by welding one end of the cords together 

after stripping the wire to expose the metals.  The other end was inserted into the DAQ at the 

appropriate channels (1 through 6) using a precision screwdriver to connect them to the hardware 

at the positive and negative inputs.  The thermocouples are then secured using scotch tape along 

the inside of the test chamber in increments of roughly 10 mm in order to see the change in 

temperature of the bulk water compared to the generated steam surface.  The DAQ is connected to 

a laptop via USB much like the mass balance. 
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 The multimeter used to measure Voltage was set to DC inputs for 100 mV readings on the 

front interface.  Two banana connectors were used to connect two wires to the multimeter’s 

positive and negative ends that lead to a pyranometer provided by Eko Instruments used to measure 

irradiance from the solar source.  Voltage can be converted to irradiance using a simple equation 

relationship between the output voltage and the sensitivity value for the pyranometer: 

𝐼 =
𝐸

𝑆
 

, where I is measured in Watts per meter squared, E is measured as microvolts, and sensitivity is 

measured as microvolts per Watt per meter squared.  The result is measured as mV so converting 

the output E value to microvolts by multiplying by 1,000 gives an accurate value for irradiance.  

For example, to obtain one sun recordings, 8.85 mV had to be read because the sensitivity value 

is defined as 8.85 for this particular pyranometer. 

 With the experimental equipment set up in such a way that the test chamber and mass 

balance are under the solar simulator with the thermocouple attached, testing can be conducted.  

200 mL of various quality of water have been measured and added to the test chamber before 

adding the prepared nanocomposite to the surface of the water (depending on the testing 

configuration).  The nanomaterials float in the water and the lamp is turned on allowing roughly 8 

minutes to start up before placing the pyranometer under the solar simulator to estimate the 

irradiance being generated.  The pyranometer is raised using a lab jack to get an exact height while 

being adjusted under the lamp for a 1 sun measurement of 8.85 mV on the multimeter.  Once an 

optimal position is confirmed, the test chamber is moved in place of the pyranometer under the 

lamp and raised up using lab jacks to begin testing.  The LabVIEW programs are run and a period 

of approximately 2 hours is used to allow the setup to record results. 
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Figure 27: The full experimental setup ready for testing 

4.2 LabVIEW Programming 

 The LabVIEW programming was broken into two VI’s: the first program records mass 

from the mass balance via USB with a VISA program and the second records temperature from 

the DAQ using the thermocouples as a recording instrument.  Both programs can work 

simultaneously and also record the time until the program is stopped and the text files are saved.  

Occasionally, due to errors on buffering, the mass program may fail but the file itself can still be 

saved with the time known when the program stopped.  The VIs were built using existing modules 

within LabVIEW that were modified to fit the desired need of the project for mass and temperature 

recording.  The exact design for the programs are shown in the Appendix section. 

4.3 Heat Transfer Modeling 

 In order to understand the heat loss associated with the proposed setup, an analysis on 

Autodesk’s Simulator Mechanical software was completed.  The goal was to associate all heat 

transfer with the material properties of this experimental setup.   
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 Table 2 shows the properties that were used in the heat transfer modeling.  The values 

reflect researched values that correlate with both with vendor material sheets and further 

researched values.  The measurement of thermal properties, while not incorporated directly in this 

analysis, was experimentally tested in a previous study in order to determine the conduction 

through the carbon foam and exfoliated graphite (Ghasemi et al., 2014).  This allowed for a 

simplified analysis as the materials are porous when evaluated in the study while the simulation 

for this project can be done using bulk materials. 

Table 2: Material properties for experimental setup 

 

Note: Data for material properties was gathered from Engineering Toolbox (2016), Aerogel 

Technologies (2016), KRReynolds (2016), Ghasemi (2014), Chugh (2002), and Celzard (2005). 

 

 The results are shown using Autodesk Simulation Mechanical for a basic heat transfer 

analysis.  A convective air boundary condition of 50 degrees C and a heat source across the 

material surface of the setup of 1,000 W/m2 (a 1 sun estimate on irradiance) was used for analysis.  

The simulation was run for steady state conditions in order to see optimally how setup responds 

Specific Heat Density
Thermal 

Conductivity

J/kg*K kg/m^3 W/m*K

Exfoliated 

Graphite
830 0.015 0.93

Carbon Foam 1260 0.0426 0.43

Tecapei 2 1270 0.216

Aerogel 0.84 180 0.12

Water 4186 1000 0.6

Material Property Reference Sheet

Material
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under an extensive amount of time under the sun.  The chamber is shown in with a clear 

temperature distribution.  The temperature peaks at the surface of the absorbing layer while the 

water temperature remains lower thanks to the insulating layer to generate a gradient.  The test 

chamber’s insulating properties make sure the heat loss is minimized over an extended period of 

time.  A peak temperature of 106.7 degrees Celsius is achieved near the top of the DLS while a 

lower temperature of approximately 69 degrees Celsius is maintained in the lower bulk water.  The 

values reflect the heat localization effect the DLS has on the water as the temperature gradient 

remains regardless of the amount of energy being applied to the nanomaterials. 

 

Figure 28: Autodesk Simulation Mechanical temperature distribution 

4.5 Results and Discussion 

 The results from the mass change recordings on LabVIEW are displayed in the following 

figures.  Figure 29 shows the mass change with a one sun measurement comparing water alone, 

exfoliated graphite in water, carbon foam in water, and most importantly the DLS in water.  The 

dramatic slope of the DLS graph demonstrates the improvement heat localization provides as the 



40 

 

water is steamed quickly due to the material’s properties.  It is worth noting that the small 

differentials in the data are a result of slight motion and vibrations of the setup.  The slope does 

maintain a consistent appearance despite these brief lapse in recording. 

 

Figure 29: Results for 1 sun testing 

Table 3 shows the tabulated results of the evaporation rates with the efficiency being calculated 

for each test setup.  Using the thermal efficiency equation, the results show that the nanomaterials 

individually seem to do worse than water alone.  This could be because the exfoliated graphite 

absorbs the heat from the solar simulator and transfers it directly to the bulk water which, due to 

water’s high heat capacity, distributes and doesn’t result in successful steam generation.  The 

carbon foam, insulating the heat in place, seems to do slightly better than the graphite but only due 

to the heat localization it provides.  The lack of further absorption provided by the DLS makes for 

a less efficient setup.  The DLS does much better than the rest of the tests demonstrating its very 

clear advantages with a 39.3% increase in efficiency based on calculations. 
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Table 3: 1 sun mass change recordings 

1 Sun Mass Change Efficiency Measurements 

Testing Setup Mass rate change (kg/m2*h) Efficiency 

Water 0.241 11.2% 

Water + Exfoliated Graphite 0.115 5.4% 

Water + Carbon Foam 0.163 7.6% 

Water + DLS 1.084 50.5% 

 

 An important aspect to the entire goal of heat localization with this project is a temperature 

differential.  If there is heat localization, then the heat flux generated from the solar simulator can 

generate steam that much quicker.  Each test situation was measured for temperature with first 

results shown with water alone in Figure 30.  Sometime the thermocouples may not work for the 

entire test due to how sensitive they are so some were either filtered down or are left as they are 

because the result is still clear.  For water alone, the temperature seems to be gathering towards a 

steady state temperature with little to no temperature difference.  This indicates that the entire 

volume of water is absorbing the lamp closely such that the heat is dispersed and water vapor is 

not easily generated. 
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Figure 30: Result for 1 sun water alone temperature distribution 

 Figure 31 shows the effect exfoliated graphite is having on the water.  Although there is a 

temperature gradient, the water seems to be increasing at the same rate and thus the heat transfer 

seems to stagnate as the graphite absorbs the solar energy at a fast rate but with little improvement.  

Some error measurements occur here that make interpreting the graphs challenging but the overall 

takeaway is the temperature difference is not very high.  As for Figure 32, the carbon foam alone 

doesn’t seem to improve the heat transfer process as the heat is both slowly absorbed and then 

slowly dissipated into the water over time.  The temperature gradient is there (despite the cutting 

of bad data for the first thermocouple), but it’s a very small difference.  The lack of heat flux the 

exfoliated graphite provides creates a consistent equilibrium on temperature between the water and 

the carbon foam. 
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Figure 31: Result for 1 sun exfoliated graphite temperature distribution 

 

Figure 32: Result for 1 sun carbon foam temperature distribution 
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Figure 33: Result for 1 sun DLS temperature distribution 

 Finally, we can see in Figure 33 the effect of both nanomaterials incorporated together as 

they help generate steam in tandem.  The temperature gradient is strongest in this setup with an 

approximate 6 degree difference that facilitates heat transfer better than any other setup.  As this 

is the best indicator of the DLS serving its purpose with the mass change, the theory of heat 

localization causing increased steam generation is reinforced. 

Chapter 5: Water Purification 

 In order to evaluate the suitability of the solar distillation process with heat localization 

suggested in this research, water quality verification was conducted. The quality of purified water 

from the solar distillation process with the DLS was evaluated.  Water distillation quality was 

evaluated using Horiba’s Aqualog measurement hardware.  The equipment uses fluorescence 

excitation-emission procedures to produce fluorescence spectra that are recorded to evaluate the 
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response as the instrument analyzes a water sample.  A UV-VIS spectroscopy study was also used.  

More details about the hardware and software will be discussed. 

5.1 Aqualog Hardware and Software 

 The setup for the Aqualog works as part of software that uses Matlab coding to analyze 

samples across a range of wavelengths.  It uses a xenon-arc light source to provide a means of UV-

absorption to see if colored dissolved organic matter (CDOM) exist within a sample. A quartz 

cuvette is filled with a water sample and is then placed into the machine where the fluorescence 

procedure takes place.  The first 3 samples are described as Raman samples.  These tests are to 

show where a color intensity and where a variation in chemical composition might exist.  The 

Raman samples are taken so as to be removed when looking at the final results as they correlate to 

pure water’s properties rather than the contaminants.  An EEM test is done that will produce a 

graph of varying intensity for excitation and emission that shows where contaminants exist in the 

water sample.  Removal of “inner filter effects” (IFEs) and Rayleigh scattering is also done to 

correct data generated during the analysis much like the Raman scattering.  A sample with a low 

intensity reading throughout the measured spectrum (a consistent dark blue hue) is deemed a clean 

sample for the purposes of this study.  In the context of this study, the original water sample would 

remain consistently clean of organic samples with no new excitation peaks occurring throughout 

the sample. 

5.2 Fluorescence and UV-VIS Spectroscopy 

 Two tests are conducted in order to characterize the extent of water purification.  These 

tests are known as fluorescence and UV-Vis absorbance.  Fluorescence is a means of looking at 

the excited state caused from the process that results in a photon being emitted to return to a stable 

ground state.  As discussed previously, the EEM results show the reaction a sample has from being 
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excited by fluorescence.  When UV-VIS spectroscopy is used, a material is exposed to 

electromagnetic energy and light is emitted by particles in that material that is a result of absorbing 

that energy.  This can be measured with a wavelength characterization that corresponds to different 

intensities.  Both tests are used to determine contaminants that are in the water samples collected.  

The science of this process is helpful for this project and will be examined for the distilled water 

that was successfully collected in this project.  A sample that had been contaminated with 

potassium permanganate, an inorganic, was tested as it easily dissolves in water with a distinct 

color.  Seeing how the water changes before and after treatment is of interest. 

5.3 Results and Discussion 

 Using a small-scale water collector like in Figure 34 to distill and collect water, results 

were analyzed using the stated fluorescence and absorbance tests.  The water collector is based on 

a single slope solar still but has been minimized in order to facilitate saturation on the glass surface.  

After the evaporation and condensation process has completed, the water was collected using a 

compressed air gun to gather any remaining water together that was on the glass surface and was 

placed in a vial for testing.  The results took approximately are shown in Figure 35 with 5 hours 

to collect which could be because of escaping vapor and the challenge of a high temperature 

surface on the glass. 
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Figure 34: Distilled water on water collector 

 

Figure 35: Contaminated potassium permanganate water (left) and final distilled water 

(right) 

Figure 36 shows the water sample before testing for fluorescence.  The water was very clean tap 

water spiked with potassium permaganate that would act as a good control to see if the water 

remains as clean.  As Figure 37 shows, this was not the case.  The water that resulted from this 

process seems to have gotten slightly contaminated the samples with a material in the 350 nm 

range on the spectrum with some smaller contaminants in the 250-300 nm range.  Due to the 

unstable nature of distillation, many possible candidates could have been easily picked up in water 

vapor as it evaporated and condensed.  Contaminants in the air, on the surface of the glass, within 

the solar basin, or from the carbon DLS itself could have easily been carried into the water sample.  



48 

 

Unfortunately, based on consultation of similar graphs and other peers, the results are uncertain as 

to what was carried into the water.  Despite careful setup to ensure as few contaminants as possible, 

there is potential the water was exposed in some way to outside contaminants.  It should be noted 

that similar results were obtained twice for these graphs when testing with just tap water.  A more 

professinally designed solar still that is well sealed and possibly vacuumed would avoid this 

problem. 

 

Figure 36: Initial EEM of potassium permanganate water in fluorescence  
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Figure 37: Result for EEM of distilled water from setup in fluorescence 
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Figure 38: Result for UV-VIS Spectroscopy of Potassium Permanganate distillation 

 From the UV-VIS spectrometer testing, Figure 38 shows the results of the cleaning of 

potassium permanganate.  The blue graph represents the inorganic material with some slight 

variation due to decomposition.  The orange graph plainly states that the distilled water is free of 

the potassium permanganate from the distillation process. 
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Chapter 6: Conclusions and Future Work 

6.1 Conclusions 

 The final results for the DLS nanomaterials combined with the metal halide solar simulator 

show positive correlations on the mass change and temperature recordings. 

 The exfoliated graphite and carbon foam nanomaterials fulfilled their purpose and 

demonstrated their desirable properties for heat transfer and allowing water to pass through their 

structures.  The easily obtainable materials have great application for solar distillation and show 

promising results both for steam generation and water purification. 

 The metal halide solar simulator proved fairly accurate both in model and experimental 

results for the project’s purposes and was very helpful for laboratory environment testing.  The 

relative low cost and simple design lend themselves to easy replication in order to complete further 

testing on not only this study but other studies involving solar power when weather can be an issue 

in specific regions. 

 The heat localization effect for solar distillation was demonstrated in terms of energy 

efficiency. The further investigation about evaporated water collection and purified water quality 

is required.  

6.2 Future Work 

 A possible idea for future analysis was the addition of other materials to the DLS to make 

a triple layered structure (or TLS).  Activated carbon has a lot of applications as a water cleaner 

and can be shown in Figure 39 and Figure 40 as an efficient cleaner for MFF wastewater.  These 

two figures were actual tests of the material by mixing the activated carbon for 24 hours with the 

partially treated waste water.  Distillation, however, was not explored and the idea of using that to 

improve the water cleaning capabilities of the DLS would be very useful research.  A possible 
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theory is that the carbon materials used in this process may act like activated carbon to absorb 

contaminants but a lack of further samples of wastewater prevented clarifying this theory.  Further 

study on this would be invaluable to understand how carbon distillation works. 

 

Figure 39: Initial MFF wastewater fluorescence absorbance 
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Figure 40: Final fluorescence of MFF after activated carbon exposure 

Another major application is a larger scale evaporation setup.  The recordings of mass 

change were measured in kilograms per meter squared.  The idea of this measurement is to be able 

to multiply this value to calculate either a new mass rate or a quantity of mass obtained from a 

similar setup.  Figure 41 shows an acrylic box that was developed for larger scale testing of water 

collection.  If a larger area of material was used for this box, more water should be obtained either 

for steam generation or distillation. 
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Figure 41: An example of an acrylic larger scale solar distiller 
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Appendix 

Appendix A: Material Candidates 

Table 4: Various research nanomaterials candidates for solar distillation application. 

 

 

 

 

 

 

 

 

Material

Thermal 

Conductivity 

(W/m*k)

Density 

(g/cm3)
Hydrophillic

Solar 

absorption

Top or bottom 

layer 

candidate

Cobalt Oxide (CoO) 2.3-3.5 6.44 Yes 200-1,000 nm Top

Titanium Oxide (TiO2) 4.8-11.8 4.05 Yes 200-700 nm Top

Aerogel 0.017 0.003 Yes (made hydrophilic) N/A Bottom

Mesoporous zeolites 1 0.8-2.4 Yes N/A Bottom

Polyethylene 0.06 0.91-0.96 Yes (made hydrophilic) N/A Bottom

Potential Nanomaterials and Properties
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Appendix B: LabVIEW Block Diagrams 

 

Figure 42: VI for mass change 

 

 

Figure 43: VI for temperature recording 
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Appendix C: Autodesk Inventor Drawings for Test Chamber 

 

Figure 44: The test chamber model used for analysis with water and DLS 
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Appendix D: PLT Metal Halide Lamp Datasheet 

 

Figure 45: Datasheet for metal halide lamp provided by PLT 
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Appendix E: Autodesk Inventor Drawings for Metal Halide Lamp Setup 

 

Figure 46: CAD model of the metal halide (ANSI: M59) light bulb 

 

 

Figure 47: The reflector combined with the metal halide bulb 
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Figure 48: CAD drawings with dimensions for lamp with reflector 
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Figure 49: CAD drawing of Mylar tunnel 
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Appendix F: Optical Setup 

 

 

Figure 50: Optical setup for the spectrometer readings
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