
UNLV Theses, Dissertations, Professional Papers, and Capstones

8-1-2016

Design and Implementation of Benes/Clos On-Chip Design and Implementation of Benes/Clos On-Chip

Interconnection Networks Interconnection Networks

Yikun Jiang
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Repository Citation Repository Citation
Jiang, Yikun, "Design and Implementation of Benes/Clos On-Chip Interconnection Networks" (2016).
UNLV Theses, Dissertations, Professional Papers, and Capstones. 2785.
http://dx.doi.org/10.34917/9302942

This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital
Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that
is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to
obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons
license in the record and/or on the work itself.

This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and
Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2785&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/9302942
mailto:digitalscholarship@unlv.edu

DESIGN AND IMPLEMENTATION OF BENES/CLOS ON-CHIP

INTERCONNECTION NETWORKS

By

Yikun Jiang

Bachelor of Computer Science
Qingdao Univerty

2005

Master of Computer Science
Harbin Institute of Technology

2007

A dissertation submitted in partial fulfillment
of the requirements for the

Doctor of Philosophy – Electrical Engineering

Department of Electrical and Computer Engineering
Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas
August 2016

ii

Dissertation Approval

The Graduate College

The University of Nevada, Las Vegas

July 15, 2016

This dissertation prepared by

Yikun Jiang

entitled

Design and Implementation of Benes/Clos On-Chip Interconnection Networks

is approved in partial fulfillment of the requirements for the degree of

Doctor of Philosophy – Electrical Engineering

Department of Electrical and Computer Engineering

Mel Yang, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Interim Dean

Robert A. Schill Jr, Ph.D.
Examination Committee Member

Brendan Morris, Ph.D.
Examination Committee Member

Yingtao Jiang, Ph.D.
Examination Committee Member

Laxmi Gewali, Ph.D.
Graduate College Faculty Representative

iii

ABSTRACT

Networks-on-Chip (NoCs) have emerged as the key on-chip communication architecture

for multiprocessor systems-on-chip and chip multiprocessors. Single-hop non-blocking networks

have the advantage of providing uniform latency and throughput, which is important for cache-

coherent NoC systems. Existing work shows that Benes networks have much lower transistor

count and smaller circuit area but longer delay than crossbars. To reduce the delay, we propose

to design the Clos network built with larger size switches. Using less than half number of stages

than the Benes network, the Clos network with 4x4 switches can significantly reduce the delay.

This dissertation focuses on designing high performance Benes/Clos on-chip interconnection

networks and implementing the switch setting circuits for these networks. The major

contributions are summarized below:

 The circuit designs of both Benes and Clos networks in different sizes are conducted

considering two types of implementation of the configurable switch: with NMOS

transistors only and full transmission gates (TGs). The layout and simulation results

under 45nm technology show that TG-based Benes networks have much better delay and

power performance than their NMOS-based counterparts, though more transistor

resources are needed in TG-based designs. Clos networks achieve average 60% lower

delay than Benes networks with even smaller area and power consumption.

 The Lee’s switch setting algorithm is fully implemented in RTL and synthesized. We

have refined the algorithm in data structure and initialization/updating of relation values

to make it suitable for hardware implementation. The simulation and synthesis results of

the switching setting circuits for 4x4 to 64x64 Benes networks under 65nm technology

confirm that the trend of delay and area results of the circuit is consistent with that of the

iv

Lee’s algorithm. To the best of our knowledge, this is the first complete hardware

implementation of the parallel switch setting algorithm which can handle all types of

permutations including partial ones.

The results in this dissertation confirm that the Benes/Clos networks are promising

solution to implement on-chip interconnection network.

v

TABLE OF CONTENTS

ABSTRACT ... iii

TABLE OF CONTENTS .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER 1 INTRODUCTION ... 1

1.1 Background .. 1

1.2 Circuit Design of Benes/Clos Networks .. 3

1.3 Switch Setting Algorithms ... 3

1.4 Contributions .. 4

1.5 Organization ... 5

CHAPTER 2 RELATED WORK ... 7

2.1 Circuit Design of Single-Hop Networks .. 7

2.1.1 Crossbar .. 7

2.1.2 Benes/Clos Networks .. 9

2.2 Parallel Switch Setting Algorithms .. 10

vi

CHAPTER 3 CIRCUIT DESIGN OF BENES AND CLOS NETWORKS 13

3.1 Non-Blocking Networks .. 13

3.1.1 Crossbar .. 13

3.1.2 Benes Network .. 14

3.1.3 Clos Network .. 16

3.1.4 Comparison of Clos and Networks ... 18

3.2 Design Flow ... 20

3.3 Design of Logic Unit .. 22

3.4 Schematic and layout Designs .. 23

3.5 Experimental Results.. 25

3.5.1 Delay ... 26

3.5.2 Area ... 27

3.5.3 Power Consumption .. 30

3.6 Summary .. 32

CHAPTER 4 HARDWARE DESIGN OF PARALLEL SWITCH SETTING ALGORITHM

FOR BENES NETWORKS .. 33

4.1 Benes Network and Routing Constraints ... 33

4.2 Lee’s Parallel Routing Algorithm .. 36

4.2.1 Initialization .. 36

4.2.2 Searching... 39

vii

4.2.3 Merging ... 40

4.2.4 Permutation for subnetwork .. 41

4.3 Hardware Design of lee’s algorithm .. 43

4.3.1 Design Flow .. 43

4.3.2 Finite State Machine ... 47

4.3.3 Setting State Values of Input/Output Switching Nodes 57

4.3.4 Permutation configuration for sub Benes network 58

4.3.5 Special case ... 60

4.4 Experiment Results .. 62

4.5 Summary .. 66

CHAPTER 5 CONCLUSION AND FUTRURE WORK ... 66

APPENDIX ... 68

REFERENCE .. 73

CURRICULUM VITAE ... 80

viii

LIST OF TABLES

Table 1 Networks .. 19

Table 2 Number of Stages for Benes and Clos networks .. 19

Table 3 Delay (ns) of Benes and Clos networks ... 26

Table 4 Transistor Count used in Benes and Clos networks .. 28

Table 5 Area of Benes and Clos networks .. 28

Table 6 Power consumption (uW) of Benes and Clos networks 30

Table 7 Routing Bit Values vs. State Values .. 35

Table 8 Definition of Variables .. 46

Table 9 Delay result .. 62

Table 10 Cell number and Area .. 63

Table 11 Power Consumption (uW) .. 64

ix

LIST OF FIGURES

Figure 1 Traffic analysis of mesh- and crossbar-based NoC [14] 2

Figure 2 8x8 Crossbar ... 14

Figure 3 Benes network .. 15

Figure 4 Clos Network .. 18

Figure 5 2x2 and 4x4 crossbar switches ... 20

Figure 6 Design Flow.. 21

Figure 7 NMOS-based 2x2 crossbar ... 22

Figure 8 TG-Based 2x2 Crossbar ... 23

Figure 9 Circuit of 64x64 Benes network ... 24

Figure 10 Circuit of 64x64 Clos network ... 25

Figure 11 Delay of Benes and Clos networks ... 27

Figure 12 Transistor Count ... 29

Figure 13 Area of Benes and Clos Networks ... 30

Figure 14 Power consumption ሺuWሻ of Benes and Clos Networks 31

Figure 15 8 ൈ 8 Benes Network ... 34

Figure 16 Switching Node State ... 35

Figure 17 Initialization .. 37

Figure 18 Searching .. 40

Figure 19 Merging .. 40

Figure 20 Settings of input/output switching nodes ... 41

Figure 21 Permutation for Subnetwork ... 42

Figure 22 Design Flow.. 43

x

Figure 23 Circuit Architecture .. 44

Figure 24 State Diagram ... 48

Figure 25 Initialization .. 52

Figure 26 State Value Setting ... 52

Figure 27 SEARCH .. 53

Figure 28 MERGE .. 55

Figure 29 Searching after Merging ... 57

Figure 30 Timing Diagram ... 60

Figure 31 4x4 Benes Network ... 61

Figure 32 Delay Result .. 63

Figure 33 Number of Cells .. 64

Figure 34 Power Consumption .. 65

1

CHAPTER 1 INTRODUCTION

1.1 Background

Networks-on-Chip (NoCs) have emerged as the key on-chip communication architecture

for multiprocessor systems-on-chip and chip multiprocessors [1]. Achieving scaling performance

for future many-core systems will require high-performance, yet energy-efficient on-chip

interconnection networks [2]. Existing NoC topologies can be classified into two categories: (1)

Multi-hop interconnection networks, like mesh [3], torus, concentrated mesh [4], etc., and (2)

Single-hop non-blocking indirect networks, like crossbar , Benes, Clos, etc.

NoC systems, such as the Tilera Tile64 0, utilize a distributed mesh-based network to

avoid the scaling issues of long wires. However, this improved scalability comes at the expense

of nonuniform cache access (NUCA) latencies [15] and high variability in memory access

latencies [6], as well as increased design complexity to guarantee correctness and fairness. The

study in [14] shows that mesh network’s accepted throughput at any given node is highly

dependent on the location of the destination node, as shown in Figure 1. A number of solutions

have been developed to solve the problem but at the cost of more complexity routing algorithms

and adoption of additional buffers at each router. These buffers consume significant power and

area. According to Intel’s projections, the interconnection network itself consumes more than 30%

of total chip power [16][30].

2

Figure 1 Traffic analysis of mesh- and crossbar-based NoC [14]

Contrastingly, single-hop non-blocking networks eliminate the need of intermediate

buffers, and thus can provide uniform latency and throughput, which are very important for

cache-coherent many-core systems [14]. Additionally, due to their high bisection bandwidth,

non-blocking networks can potentially provide lower complexity solutions with quality-of-

service guarantees than multi-hop networks [16][26]. The crossbar-based swizzle-switch network

(SSN) achieves significant performance improvement in throughput (21%), cache miss latency

(3.0x), and energy savings (25%) than the mesh-based network [14].

Our study is focused on high performance circuit designs of on-chip non-blocking

networks, including single-stage networks (i.e., crossbar) and multi-stage networks (Benes and

Clos networks). The scalability of crossbar designs is limited by the quadratically increased

circuit complexity. Both Benes and Clos networks are rearrangeably non-blocking multi-stage

interconnection networks. Benes network is a special case of Clos network which has ܰ ൌ 2௡

inputs and outputs. The Benes network is constructed with 2 ൈ 2 switching nodes recursively.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Nonuniform Uniform

 Mesh

SNN

A
ve
ra
ge
 a
cc
p
et
ed

 t
h
ro
u
gh
p
u
t
 (
fl
it
s/
n
o
d
e/
s)

0

5

10

15

20

25

30

35

40

45

Nonuniform Uniform

Mesh

SNN

U
n
fa
ri
n
es
s

3

Due to their non-blocking property and relative smaller number of crosspoints, Benes/Clos

networks have received much attention in both academia and industry. Benes/Clos networks have

been used in many areas, such as interconnection network in parallel computers, multiprocessors

system [31], and networks-on-chip [32][33][34][45][46].

1.2 Circuit Design of Benes/Clos Networks

Compared with direct networks [35][36], Benes/Clos networks can provide uniform

latency and throughput, which are very important for cache-coherent many-core systems [37].

As an alternative to crossbars, Benes networks have much lower transistor count and

smaller circuit area but longer delay than crossbars [17]. In [20], 3D folded designs of Benes

networks and Clos networks built with 2x2 switches are presented. But there is no exploration of

Clos networks with larger size switches. In addition, the aforementioned designs are conducted

under 130nm or older technology. There is a need to evaluate these network designs under current

newer technology.

To reduce the delay, we propose to design the Clos network built with larger size

switches. Using less than half number of stages than the Benes network, the Clos network with

4x4 switches can significantly reduce the delay. The circuit designs of both Benes and Clos

networks in different sizes are conducted considering two types of implementation of the

configurable switch: with NMOS transistors only and full transmission gates (TGs). The layout

and simulation results under 45nm technology show that Clos networks achieve average

significant lower delay than Benes networks with even smaller area and power consumption.

1.3 Switch Setting Algorithms

In packet switching systems, the switch fabric must be able to provide internally conflict-

free paths for the requesting packets in each time slot [38]. This is implemented by setting the

4

states of all switches in the network. It is clear that the routing assignment (i.e., switch setting)

scheme in Benes/Clos networks has a strong impact to the efficiency of the Bene/Clos networks.

A number of switch setting algorithms have been developed in the past few decades,

including sequential algorithms and parallel algorithms. Sequential algorithms such as looping

algorithms [39] are designed for circuit switching systems where the switching configuration can

be rearranged at relatively low speed. In [39], a switch setting algorithm with a time complexity

of ܱሺ݈ܰܰ݃݋ሻ is proposed based on Waksman’s proof. As a matter of fact, using sequential

algorithm, the N×N Benes network cannot be set up in less than ܱሺ݈ܰܰ݃݋ሻ time complexity,

because there are ܱሺ݈ܰܰ݃݋ሻ switches. The set-up time is much longer than the latency in Benes

networks, which is ܱሺ݈ܰ݃݋ሻ for N×N network. In order to obtain a switch setting algorithm that

has complexity comparable to the network latency, parallel algorithms are needed.

1.4 Contributions

This dissertation is focused on designing high performance Benes/Clos networks and

implementing the switch setting circuits for these networks. Specifically, the circuit designs of

Benes/Clos networks are completed with two types of implementation of the configurable

switch: NMOS transistors only and full transmission gates (TGs). NMOS transistors only and

full transmission gates (TGs). The best parallel switch setting algorithm, Lee’s algorithm, is

implemented in hardware. The switch setting circuit can be integrated with Benes network circuit

to be used in high-performance network-on-chip systems.

The following contributions are made in this dissertation:

1. Transmission gates are used to design Benes/Clos networks. The layout and simulation

results under 45nm technology show that the TG-based Benes networks have much better

5

timing and power performance than their NMOS-based counterparts, though more transistor

resources are needed in TG-based designs.

2. Simulation results confirm that Benes/Clos networks are promising alternatives to crossbars.

Clos networks achieve average 60% lower delay than Benes networks with even smaller area

and power consumption.

3. The Lee’s switch setting algorithm is fully implemented in RTL and synthesized. We have

refined the algorithm in data structure and initialization/updating of relation values to make it

suitable for hardware implementation.

4. The simulation and synthesis results of the switching setting circuits for 4x4 to 64x64 Benes

networks under 65nm technology confirm that the trend of timing and area results of the

circuit is consistent with that of the Lee’s algorithm. To the best of our knowledge, this is the

first complete hardware implementation of the parallel switch setting algorithm which can

handle all types of permutations including partial ones.

1.5 Organization

This dissertation is organized as follows. Chapter 2 summarizes the related work done for

single-hop networks including Crossbar, Bene/Clos networks. Also, existing parallel switch

setting algorithms are reviewed.

Chapter 3 is focused on the circuit design of Benes/Clos networks with two types of

implementation of the configurable switch: NMOS transistors only and full transmission gates

(TGs). The layout and simulation results of the network circuits under 45nm technology are

presented and analyzed.

6

In Chapter 4, the RTL implementation of Lee’s parallel switch setting algorithm is

described. The simulation and synthesis results of the switching setting circuits under 65nm

technology are presented.

Chapter 5 concludes the dissertation and suggests the future work.

7

CHAPTER 2 RELATED WORK

In this chapter, the existing research on NoC will be reviewed, including the following

topics: circuit design of single-hop networks and parallel switch setting algorithms.

2.1 Circuit Design of Single-Hop Networks

2.1.1 Crossbar

To provide better bandwidth, Crossbars are used to replace bus-based interconnect fabrics

in early multi-core systems, like in the Niagrara2 [7] and IBM BlueGene [13]. Crossbar-based

architectures not only can provide the uniform memory access latency that is unachievable in

multi-stage NoC systems, but also can potentially provide higher bisection bandwidth and lower

complexity solutions for quality-of-service guarantees than NoC designs. Despite these

advantages, large crossbars are generally considered infeasible because the area and power of

traditional matrix-style crossbars grow quadratically with crossbar radix [8]. Therefore, it is

commonly believed that they become overly expensive for radixes above 32 or 64 [9]. In some

work, the crosspoint queueing (CQ) was adopted to replace the traditional input queueing (IQ) to

simplify complexity and improve the performance of crossbar scheduling [10]. However,

crosspoint queueing was found expensive due to the high partitioning of the switch memory;

since there is one memory per crosspoint, the total number of memories grows as ܱሺܰଶሻ, which

is costly for flow and congestion control algorithms [11][12]. Furthermore, the work in [20]

proposed the hierarchically-queued crossbar (HQ) as an organization that lowers memory

partitioning. In this organization, an ܰ ൈ ܰ crossbar is partitioned in ሺܰ/݇ሻଶ	݇ ൈ ݇ sub-

crossbars and memories are placed only at the inputs and outputs of the sub-crossbars. Hence,

the total number of memories is reduced from ܱሺܰଶሻ to ܱሺܰଶ/݇ሻ . Unfortunately, this

organization has a major disadvantage: although partitioning is lowered, it remains unacceptably

8

high, especially when ܰ is large. The reason is that each sub-crossbar has to be relatively small

in order to be efficiently scheduled, which, in turn, implies a small ݇ and a quick growth rate of

total number of memories.

Existing crossbar circuits mainly adopt MUX-based designs and matrix-based designs

[17]. For MUX-based crossbar designs, the latency experienced by a signal depends on crossbar

size. For data paths constructed using 2-to-1 multiplexers, doubling the number of inputs results

in an additional multiplexer on each line [17]. Pipelined crossbars are proposed to speed up

MUX-based designs. Both IBM C64 [18] crossbar and 128x128 crossbar [22] are pipelined

MUX-based designs. The IBM Cyclops64 is a 96x96 96-bit-wide crossbar implemented in a

90nm technology, running at 533MHz, and occupying 27mmଶ , including the circuits for

queueing, arbitration, and flow control [18]. In [22], a 128x128 32-bit-wide crossbar switch is

implemented in 90nm CMOS standard-cell ASIC technology. The crossbar operates at 750MHz

and provides a port capacity above 20Gb/s, while fitting in a silicon area as small as 6.6mmଶ by

filling it at 90% level (control not included). Though the throughput is dramatically improved

with pipelined crossbar designs, the port-to-port latency is kept undesirable.

The complex wire interleaving in traditional MUX-based crossbars causes the layout

challenge at high bus widths [14]. Most recent crossbars use matrix-style structures. The results

in [17] show that for the same size crossbar, compared with the MUX-based design, the matrix-

based design reduces the transistor count by 90% and latency up to 50%. Conventional matrix-

based crossbars consist of the switching fabric and a separate arbiter that configures the crossbar.

This decoupled approach imposes the routing challenge and complexity in arbiter design when

the radix of the crossbar increases. Passa’s work proposed a novel microarchitecture that inverts

the locality of wires by orthogonally interleaving the input with the output arbiters, thus reducing

9

the routing area from OሺNସሻ to OሺNଶlogଶNሻ. However, the prohibitive overhead of the arbiter

(consuming 60% of total crossbar area) still limits the design to scale when implementing high-

radix crossbar.

2.1.2 Benes/Clos Networks

Though matrix-based crossbars overbeat MUX-based designs in both area and delay [17],

their scalability is still limited by the quadratically increased circuit complexity. As an alternative

to crossbars, Benes networks have much lower transistor count and smaller circuit area but

longer delay than crossbars [17]. The circuit design of 2D Benes network shows that the Benes

network significantly reduces the transistor count and power consumption compared with the

same size matrix-based crossbar design. While the latency result of the Benes network is worse

than that of the matrix-based crossbar counterpart [17]. In [20], 3D folded designs of Benes

networks and Clos networks built with 2x2 switches are presented. The numerical analysis shows

that 3D folded design can help improving the latency result. But this work only provides the 3D

folded design in theoretical aspect, there is no actual layout. As a matter of fact, the TSVs cannot

satisfy the density requirement of high-radix crossbar connection because each TSV needs a

large pad area to guarantee the quality. Besides, in this work there is no exploration of Clos

networks with larger size switches.

Clos networks have been adopted to interconnect multi/many cores [16][19] in 2D and

3D structures. However, to the best of our knowledge, there is no work on using the Clos

network as a replacement of crossbars.

In the literature, the studies on circuit design of crossbar and Benes/Clos networks are

limited. Due to the lack of appropriate wire models, it’s very inaccurate to conduct circuit level

simulation for designs, which completely neglects any effect physical routing might have on

10

circuit performance. The transistor level simulation might yield important information about the

behavior of the actual physical circuits. However, there seems to be few studies based on

transistor level simulation of these network circuits although delay boundaries in terms of

number of switches and path length have been established.

In [17], the transistor level circuit designs of matrix/MUX-based crossbars and Benes

network are accomplished. But from the layout view presented by the author, the following

problems are observed: 1) the transistor level layout design is not optimized enough; 2) the

maximum size of the design is limited to 16x16, which cannot provide enough results to justify

the trend for larger size crossbars. In addition, their aforementioned designs are conducted under

130nm or older technology. There is a need to conduct transistor level circuit designs of these

networks under current newer technology.

2.2 Parallel Switch Setting Algorithms

In [42], Nassimi and Sahni developed a parallel switch setting algorithm which runs

significantly faster than the sequential algorithm based on Waksman’s proof [41]. The

complexity of this algorithm depends on the parallel computer model and the number of

processing elements available. Four SIMD models with different topologies are studied as

follows:

1. Completely Interconnected Computer (CIC): In a CIC model, every pair of processing

elements is connected directly. The time complexity is ܱሺ݈݃݋ଶܰሻ.

2. Mesh-Connected Computer (MCC): In this model, the processing elements are logically

arranged as in a k-dimensional array. The time complexity is ܱሺ√ܰ	݈݃݋ଶܰሻ.

3. Cube Connected Computers (CCC): In this model, all processing elements are connected

like a cube. The time complexity is ܱሺ݈݃݋ସܰሻ.

11

4. Perfect Shuffle Computer (PSC): This model employs the shuffle connection of Stone’s

work [47]. The time complexity is ܱሺ݈݃݋ସܰሻ.

We can see that the time complexity of topologies other than CIC is fairly high. However,

CIC is simply too complex to be realized. In addition, this parallel algorithm [42] cannot handle

the partial permutations. Implementing the algorithm in SIMD systems is not efficient enough

comparing to its complexity. The authors also proposed a self-routing algorithm for Benes

network [42] to route through the network using destination tags. However, this algorithm cannot

route all permutations [50]. In [48], a fast parallel algorithm is proposed with pipelining which

achieves UሺlogNሻ speedup than Nassimi and Sahni's algorithm for unicast assignments on both

CIC and extended shuffle-exchange network. Lu and Zheng propose a fast parallel algorithm

which can route K connections in OሺlogNlogKሻ for rearrangeable non-blocking networks based

on edge-colorings of bipartite graphs [49]. A list of parallel routing algorithms is surveyed in

[50].

In [44][49], Lee and Liew present a parallel routing algorithm for Benes Networks. It has

time complexity OሺlogଶNሻ	 which is same as CIC but using only N/2 processing elements [42].

This algorithm was developed based on the previous work in [41] and [42], but can handle the

partial permutation problem. In addition, the algorithm can be extended and applied to Clos

networks with two’s power number of central modules. In the literature, there is nearly no

hardware implementation of this parallel algorithm. In [39], a simple hardware design based on

Lee’s algorithm for 16 ൈ 16 Benes network in FPGA is presented. However, no detailed design

and simulation results are shown in that paper. Another problem about [39] is that, the work is

only limited to the switch setting unit for the first stage of 16 ൈ 16 Benes network. Without the

12

design of the switch setting circuit for different size networks, there is no way to tell the trend of

how the hardware cost would increase correspondingly when the network size grows.

In this dissertation, we will focus on designing high performance Benes/Clos on-chip

interconnection networks and implementing the switch setting circuits for these networks.

13

CHAPTER 3 CIRCUIT DESIGN OF BENES AND CLOS NETWORKS

3.1 Non-Blocking Networks

The major performance metrics of the circuit designs of non-blocking networks include

delay, area, and power consumption. The number of stages of a network is the key factor

determining the delay of the network. Generally, for networks built with the same type of logic

units, more stages means longer delay. The determining factor of area and power consumption is

the transistor count. In this section, we describe the properties of three types of non-blocking

networks that are the determining factors of their performance.

3.1.1 Crossbar

The crossbar is a strictly non-blocking network, i.e., any permutation of inputs and

outputs can be realized without confliction. As shown in Figure 2, each input port is connected to

each output port through a dedicated logic unit, which is composed of one configurable switch,

the basic component used in our circuit design. The number of logic units needed for an NxN

crossbar is Nଶ.

The number of stages traversed from one input output to one output port is only one.

However, the circuit complexity of crossbars increases quadratically with the crossbar’s size.

The resulted high power consumption and die area limits the use of crossbars for large-scale

NoCs.

14

Figure 2 8x8 Crossbar

3.1.2 Benes Network

An NxN Benes network basically is built with two symmetrical NxN butterfly networks.

Larger size Benes networks can be built with smaller Benes Networks recursively. The basic

logic unit is a 2x2 crossbar switch. As shown in Figure 3.

15

Figure 3 Benes network

Base on this recursive nature, the number of logic units used in NxN Benes network can

be derived as:

൜
݂ሺܰሻ ൌ ܰ ൅ 2݂ሺܰ/2ሻ;	
݂ሺ2ሻ 	ൌ 1;																								

ൌ൐	

݂ሺܰሻ ൌ ଶ݃݋݈ܰ
ே െ

ܰ
2
																																																															ሺ1ሻ

Equation(1) shows the amount of logic units used in a Benes network is significantly

reduced compared to the amount of logic units used in the same size crossbar.

In Benes networks, the number of stages traversed from an input port to an output port

increases as the network size increases. The relation between the number of stages of a Benes

network and the network size is derived below.

16

sሺNሻ ൌ 2logଶ
୒ െ 1																																																																ሺ2ሻ

Though Oሺlogଶ
୒ሻ is a slow increasing function of N, it is desirable to reduce the number

of stages.

3.1.3 Clos Network

To reduce the number of stages for the same size Benes network, we consider Clos

networks [22]. A Clos network is composed of three stages of crossbar switches: the input stage,

middle stage and the output stage. Each stage is made of a number of same size crossbar

switches. A Clos network is defined with a triplet (m, n, r), where m represents the number of

switches at the middle stage, n represents the number of input (resp. output) ports of each switch

at the input (resp. output) stage, and r is the number of switches at input/output stages. Each

input stage crossbar switch has m outputs, each connecting to one of the middle stage switches.

Based on the definition of the Clos network, Figure 4 shows the semi-recursive Clos

networks built with 4x4 and 2x2 crossbar switches. Figure 5 (a) and (b) show the structures of

the two size switches made by crossbar. The number of logic units (i.e., 2x2/4x4 switches) used

in such Clos network is derived as:

ቐ݂
ሺܰሻ ൌ

ܰ
2
൅ 4݂ ൬

ܰ
4
൰ ;	

݂ሺ2ሻ 	ൌ 1, ݂ሺ4ሻ ൌ 1;	
ൌ൐

݂ሺܰሻ ൌ ൞

ܰ
2
ሺ݈݃݋ସ

ேሻ െ
ܰ
4
; 		ܰ ൌ 4௞, ,ܫ	߳	݇ ݇ ൒ 1

ܰ
2
ሺ݈݃݋ସ

ଶேሻ	; 					݁ݏ݅ݓݎ݄݁ݐܱ																				
																									ሺ3ሻ

Equation (3) shows the number of logic units needed for Clos networks is much smaller

than the number of logic units needed by Benes networks. Notice that in (3), when logସ
୒ is not

17

integer, like N ൌ 8, 32	128,…	, the most middle stage is composed of 2x2 switches. Fig. 4(b) and

(d) show this type of Clos network.

The relation between the number of stages of a Clos network and the network size is

shown in Equation (4).

ܵሺܰሻ ൌ ቊ
2ሺ݈݃݋ସ

ேሻ െ 1; 				ܰ ൌ 4௞, ,ܫ	߳	݇ ݇ ൒ 1								
2ሺ݈݃݋ସ

ଶேሻ െ 1	; 															݁ݏ݅ݓݎ݄݁ݐܱ										
																				ሺ4ሻ

As we can see from Equation (4), for the m ൌ 4, the number of stages increase 2 every

time when the radix of Clos network break through the line of 4୧, and i is an integer. For the

example shown in Figure 4, for (a) and (b) with radix 8x8 and 16x16 respectively, then they have

3 stages for going through the whole Clos network. Once the radix break s through 16 which is

4ଶ, as shown in (c), then the Clos has 5 stages.

18

Figure 4 Clos Network

3.1.4 Comparison of Clos and Networks

Comparing Eqns. (1) and (3), the number of logic units of Clos networks is about half of

the number of logic units used in Benes networks. Notice that the logic unit represents different

size crossbar switches in these two networks. As shown in Figure 5 (a) and (b), the 2x2 crossbar

19

is made of 4 configurable switches, while the 4x4 crossbar is made of 16 configurable switches.

Table 1 lists the number of logic units and configurable switches for different sized Benes and

Clos networks.

Table 1 Networks

Size

Clos Benes

Num of logic
units

Num of
configurable

switches

Num of logic
units

Num of
configurable

switches

4×4 1 16 6 24

8×8 8 80 20 80

16×16 12 192 56 224

32×32 48 576 144 576

64×64 80 1280 352 1408

128×128 256 3328 832 3328

256×256 448 7168 1920 7680

Table 2 Number of Stages for Benes and Clos networks

Size Clos Benes

4×4 1 3

8×8 3 7

16×16 3 9

32×32 5 11

64×64 5 13

128×128 7 15

256×256 7 17

20

Eqns. (2) and (4) show the number of stages needed is reduced from Oሺlogଶ
୒ሻ in Benes

networks to Oሺlogସ
୒ሻ	in Clos networks, when N gets larger, this difference is more significant as

shown in Table 2.

Figure 5 2x2 and 4x4 crossbar switches

As we know, the number of stages traversed by a signal is the determining factor of the

delay. For both 2x2 and 4x4 crossbar switches, as shown in Figure 5, only one logic unit will be

passed through from an input to an output. The delay for the two crossbar switches should be

similar. As such, the total delay experienced from an input port to an output port in Clos shall be

much smaller than that in the same size Benes network.

3.2 Design Flow

The Benes and Clos networks of different sizes are designed and simulated through the

Cadence design flow, provided by their IC design tools. Circuit level layout and simulations are

conducted using Cadence Virtuoso under TSMC 45nm technology. The performance metrics to

be compared include critical path delay, area, and power consumption.

21

Figure 6 illustrates the design flow, which consists of three major steps: schematic design,

circuit layout, and simulation. For each specific size Benes/Clos network, the schematic circuit is

designed first. After the functional verification for schematic circuit is passed, the layout for each

network circuit is drawn based on the schematic circuit. During the layout design period, the

DRC checking need be done repeatedly in order to avoid any DRC rule violation.

After the layout is completed without any DRC violation, the netlist with parasitic

parameters is extracted from layout. The LVS checking is to ensure the exact matching of the

netlist generated match the schematic circuit and the layout circuit.

Figure 6 Design Flow

The final step is to simulate the circuits. First the simulation platform need be built using

“config” view in Virtuoso. Then the tools embedded in Virtuoso are used to simulate the circuit

and generate the delay and power consumption.

22

3.3 Design of Logic Unit

As described in Section 2, the logic unit of a Benes/Clos network is made of 4 or 16

configurable switches. We consider two alternative designs for the basic configurable switch: 1)

single NMOS transistor and 2) full transmission gate which uses two transistors (one NMOS and

one PMOS).

Figure 7 NMOS-based 2x2 crossbar

 Figure 7 (a) and Figure 8 (a) show the schematic diagrams of the two designs of the logic

unit of 2x2 crossbar. The number of transistors needed by the first design and the second design

is 6 and 16 respectively. But the NMOS transistor has its intrinsic defect known as the “weak 1”

problem. The signal passes through the NMOS transistor cannot reach the VDD voltage without

the help of a buffer. The transmission gate design uses the complementary manner to control the

two transistors turn on or off as shown in Figure 8.

23

Both transistors are either on or off at the same time to pass or block the signal. When the

input signal is ‘1’ (‘0’), the PMOS transistor will compensate the weak ‘1’ (‘0’) from the NMOS

transistor.

Figure 8 TG-Based 2x2 Crossbar

Our experiment shows that under the TSMC 45nm technology, after the signal passes

through the first NMOS transistor stage, the strength of the signal can only reach 75% of the

original voltage VDD. In order to solve this problem, buffers are added between every two

adjacent stages so that the signal strength of all inputs for next stage is kept at VDD, as shown in

Figure 7 (a) and (b). The buffers combined with slow rising of signal coming out from the

NMOS transistor introduce significant delay for the signal path.

3.4 Schematic and layout Designs

Based on the logic unit design, the schematic circuits of Benes networks are built

recursively from 4x4 to 64x64 following Figure 2. Both schematic and layout circuits are laid out

manually. In this work, we have completed the layout of NMOS-based Benes networks to 32x32

24

and TG-based Benes networks to 64x64. The simulation results on delay and power consumption

are generated.

Figure 9 Circuit of 64x64 Benes network

Figure 9 Circuit of 64x64 Benes networkFigure 9 shows layout view of TG-based 64x64

Benes network as an example. When the network size is doubled, the Benes network is

duplicated and added with two more stages of crossbar switches. As shown in Figure 9, the

64x64 Benes network includes two 32x32 Benes networks and two input/output stages composed

of thirty-two 2x2 crossbar switches.

25

In the similar way, layout circuits of 4x4 to 64x64 TG-based Clos networks are laid out

manually as shown in Figure 10.

Figure 10 Circuit of 64x64 Clos network

3.5 Experimental Results

In this section, we present the simulation results of all Benes and Clos networks obtained

from Cadence Virtuoso simulation tools. The performance metrics including delay, area and

power consumption are reported and analyzed. For delay and power consumption metrics, the

results are obtained with wire delay model (i.e., RC model).

26

3.5.1 Delay

Table 3 and Figure 11 show the delay results of NMOS-based and TG-based Benes

networks as well as TG-based Clos networks. The delay result shown is the average of the rising-

transition and falling-transition delays.

Table 3 Delay (ns) of Benes and Clos networks

Size

(N×N)
Benes (NMOS) Benes (TG) Clos (TG)

4x4 1.622 0.101 0.013

8x8 3.131 0.331 0.192

16x16 4.578 0.625 0.241

32x32 7.034 1.232 0.832

64x64 N/A 1.584 0.920

The wire delay has a significant impact to the delay. And the impact is bigger for larger

size designs. This trend is attributed to factors of longer wires for interconnecting the inner and

outer stages and increased wire load. As shown in the first two columns, for the same size Benes

network, the delay of NMOS-based Benes network is about 10 times of the delay with its TG-

based counterpart. The basic reason has been mentioned in Section 4. The rising delay of NMOS

transistors along the signal path contributes the most to total path delay. In the design with TGs,

the rising delay problem is eliminated, thus the path delay plummets.

27

Figure 11 Delay of Benes and Clos networks

The difference of delays between Benes and Clos networks is mostly attributed to the

difference between the numbers of stages of these two networks. Table 2 shows the number of

stages used for specific size networks, 8x8 and 16x16 Clos networks have as the same number of

stages as 4x4 Benes networks. As shown in Figure 11, the delay of 16x16 Clos is larger than that

of 8x8 Clos, and both delays are higher than the delay of 4x4 Benes network. The reason is that

though the number of stages is the major factor determining delay, the output load also plays an

important role in it. The output load of 16x16 Clos is larger than 8x8 Clos, and both are much

larger than 4x4 Benes network. This explains the trend of delay results.

3.5.2 Area

Table 4 and Table 5 show the transistor number and area of Benes and Clos networks.

The first two columns show that the area of NMOS-based Benes network is much smaller than

0

1

2

3

4

5

6

7

8

4x4 8x8 16x16 32x32 64x64

Benes (NMOS)

Benes (TG)

Clos (TG)

28

that of the corresponding TG-based Benes network. Each TG contains four transistors, which is 4

times of NMOS, as explained in Section 4.

Table 4 Transistor Count used in Benes and Clos networks

Size

(N×N)
Benes (NMOS) Benes (TG) Clos (TG)

4x4 40 96 64

8x8 176 320 320

16x16 540 896 768

32x32 1464 2304 2304

64x64 3696 5632 5120

Table 5 Area of Benes and Clos networks ሺ࢛࢓૛ሻ

Size

(N×N)

Benes
(NMOS)

Benes (TG) Clos (TG)

4x4 40.97 75.81 42.56

8x8 154.10 263.05 227.25

16x16 474.42 764.71 624.03

32x32 684.13 1239.2 1125.7

64x64 N/A 3662.8 2954.1

While NMOS-based Benes networks also need adding the inverters (as buffers) between

two neighboring stages to reshape the defect signals caused by weak ‘1’ problem. As such, the

transistor account of a TG-based Benes network is slightly more than 2 times of its NMOS-based

counterpart. The actual area ration between TG- and NMOS-based Benes networks is less than

2:1.

29

Figure 12 Transistor Count

Figure 12 shows the trend described in Table 4, as we can see, the TG-based Benes and

Clos consume similar amount of transistors, which is higher than NMOS-based network. As

shown in Figure 13, consistent with the trend of transistor count, the area of NMOS-based Benes

network is the smallest among the three designs. The TG-based Clos network has smaller area

than TG-based Benes network for all network sizes and the difference is more significant for

larger size N. The smaller layout area of Clos networks is attributed to the fact that by using 4x4

crossbars as major building blocks, less interconnects are used and the circuit is more compacted

compared with that of Benes networks.

0

1000

2000

3000

4000

5000

6000

4x4 8x8 16x16 32x32 64x64

Benes (NMOS)

Benes (TG)

Clos (TG)

30

Figure 13 Area of Benes and Clos Networks (݉ݑଶ)

3.5.3 Power Consumption

Table 6 shows the power consumption for these networks. The results with RC model are

much higher than without RC model.

Table 6 Power consumption (uW) of Benes and Clos networks

Size

(N×N)
Benes (NMOS) Benes (TG) Clos (TG)

4x4 1.149 0.928 0.275

8x8 4.162 2.491 2.084

16x16 8.064 7.954 3.282

32x32 16.23 10.45 8.415

64x64 N/A 32.85 25.7

0

500

1000

1500

2000

2500

3000

3500

4000

4x4 8x8 16x16 32x32 64x64

Benes (NMOS)

Benes (TG)

Clos (TG)

31

Similar to delay results, the impact of wire delay is getting bigger with the network size

increasing. The power consumption of NMOS-based Benes network is higher than the

corresponding TG-based Benes network, because the inverters between two neighboring stages

consume significant power to compensate the defect signals caused by NMOS transistor’s weak

‘1’ problem.

Figure 14 Power consumption ሺ࢛ࢃሻ of Benes and Clos Networks

Figure 14 shows that comparing TG-based Benes and Clos networks, the Benes networks

consume more power. On one hand, the data signals go through more stages in Benes network

than in Clos network, on the other hand, the signals in Clos network have larger output load

considering the larger size logic unit. The combined effect is that Clos networks have lower

power consumption than Benes networks. The improvement (over 20%) is more significant for

larger size N as shown in Table 6.

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

3.00E+01

3.50E+01

4x4 8x8 16x16 32x32 64x64

Benes (NMOS)

Benes (TG)

Clos (TG)

32

3.6 Summary

This chapter was focused on the circuit designs of different sized Benes and Clos

networks considering two types of implementations: NMOS transistor only and full transmission

gates. All designs are laid out manually and simulated with using Cadence tools. The

experimental results showed that the TG-based Benes networks have much better delay and

power performance than their NMOS-based counterparts, though more transistor resources are

needed in TG-based designs. Clos networks have 60% delay delay reduction than Benes

networks with even smaller area and power consumption. This result confirms that Clos network

is a better alternative to Benes networks to replace crossbars in large scale networks.

33

CHAPTER 4 HARDWARE DESIGN OF PARALLEL SWITCH SETTING ALGORITHM

FOR BENES NETWORKS

4.1 Benes Network and Routing Constraints

The Benes network is a special instance of Clos network. An N ൈ N Benes network

basically is built with two symmetrical butterfly networks. A Benes network can be considered

as a cascaded combination of Omega network and a reverse Omega network overlapped with the

middle stage. As such, the Benes network is a symmetric topological structure among the link

patterns in the network from center stage. Besides, Benes network is inherently recursive. An

N ൈ N Benes network can be built from two
୒

ଶ
ൈ ୒

ଶ
	 Benes networks recursively, S୳୮ and Sୢ୭୵୬	,

which represent the up and down Benes subnetwork, respectively. As shown in Figure 15, the

8 ൈ 8 Benes network can be divided into two 4 ൈ 4 Benes networks and two extra stages each

composed of four 2 ൈ 2 switching nodes at input side and output side, respectively.

A complete path of Benes network can be decomposed into the forward sub-path and

backward sub-path routed in the Omega network and the reverse Omega network, respectively.

The two subpaths must meet at one of the switches in the middle stage. Therefore, between any

pair of input and output ports of an	N ൈ N	Benes network, there exist N routing paths.

34

Figure 15 8 ൈ 8 Benes Network

The non-blocking routing in Benes networks is achieved if the following constraints are

satisfied:

Symmetric Routing Constraint: To route from input s to output d, either S୳୮ or Sୢ୭୵୬

subnetwork must be assigned to the subpaths on the Omega network and reserve Omega network

simultaneously. This constraint must be held for each inner stage, recursively. As such, when the

output state of the switching node at the forward stage in the Omega network is determined, then

the input state of the switching node at the symmetric backward stage in the reverse Omega

network is also determined.

35

Figure 16 Switching Node State

Internally Conflict-Free Constraint: To avoid confliction between connection requests,

the two input ports (resp. output ports) of each input switching node (resp. output switching node)

cannot be assigned to the same output port (resp. input port).

Each switching node has two states: ‘0’ (i.e., straight) and ‘1’ (i.e., cross), as shown in

Figure 16. Combined with Figure 15, we can see that, any input port of a switching node must

connect to the ′0′ output port to reach S୳୮ , or connect to the ′1′ output port to reach

Sୢ୭୵୬. The output states at each stage can be represented as a binary bit (namely, routing bit).

The routing bits (′0′ or ′1′), as shown in Figure 16, at all stages compose the path in the

Benes network.

Table 7 Routing Bit Values vs. State Values

State of switching node 0 1

Routing bit of port 2i 0 1

Routing bit of port 2i+1 1 0

Table 7 shows the relation between the switch state and the routing bit corresponding to

its input ports. The state of a switching node determines the routing bit value of a port, and vice

versa. Following the internal conflict-free constraint, the routing bits of the two input ports of a

switching node have to be distinct.

36

4.2 Lee’s Parallel Routing Algorithm

Lee’s parallel algorithm can be decomposed into four major steps: initialization,

searching, merging and calculating the permutation for subnetworks. Denote the set of input and

output ports as I and O, respectively, i.e., I ൌ O ൌ ሼ0, 1, … , N െ 1ሽ, and π:	Iെ൐ O be an input-

output permutation indicating connection requests. We use ሺi, jሻ to indicate the ith input port is

going to connect to the jth output port in the permutation. In this part, we will use an example

permutation to elaborate the main concept of this algorithm. In the below permutation, ′X′

means this input port has no output request.

π ൌ ൬
0
0
				
1
3
				
2
2
					
3
6
				
4
4
				
5
7
				
6
5
				
7
X
൰

Because of the symmetric routing constraint, the algorithm only need to find out the

routing bits of the stages in one Omega subnetwork, then the routing bits of the counterpart

stages in the other Omega network will be determined. In Lee’s algorithm, the output side switch

setting is determined first, and then the input side switch setting is derived.

4.2.1 Initialization

The first step of Lee’s algorithm is to build the connections between output switching

nodes using relation values. The connection between output switching nodes are built on the

internally conflict-free constraint, to avoid this internal conflict, the algorithm need to group

switching nodes with the same relation together, and assign the switch state values to them

consistently.

37

a0

a1

a2

a3

b0

b1

b2

b3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

b0 b1 b3 b2

Equal to

Not equal to

4x4
S_down

4x4
S_up

Routing Bit 1

Routing Bit 0

Figure 17 Initialization

Here, we adopt the same notation of [38]. We use ܑ܉ and ܑ܊ to denote the switch state

value of input/output switching node ܑ܉ and ܑ܊ , respectively. Let ࢻ: ࡵ → ሼ૙, ૚ሽ	ࢊ࢔ࢇ	ࡻ:ࢼ →

ሼ૙, ૚ሽ, where	ࢻሺ࢑ሻ is the routing bit of ܓth input, and ࢼሺ࢑ሻ is the routing bit from ࢑th output.

From [38], the symmetric self-routing constraint requires that

ሺ݇ሻߙ ൌ ሺ݇ሻሻ k=0, 1, …, N-1 (5)ߨሺߚ

The internal conflict-free constraint requires that

ሺ݇ሻߙ ൌ ሺ݇ߙ ൅ 1ሻ, ߚሺ݇ሻ ൌ ሺ݇ߚ ൅ 1ሻ k=0, 1, …, N-2 (6)

The combination of (1) and (2) gives

ሺ݇ሻ൯ߨ൫ߚ ൌ ሺ݇ሻߙ	 ൌ ሺ݇ߙ ൅ 1ሻ ൌ ሺ݇ߨሺߚ ൅ 1ሻሻ k=0, 1, …, N-2 (7)

Then we have

38

௜ߙ ൌ ቐ
ܽೖ
మ
݇													݊݁ݒ݁	ݏ݅	݇			,	 ൌ 2݅

ܽೖషభ
మ
	
݇						݀݀݋	ݏ݅	݇			,	 ൌ 2݅ ൅ 1

														 (8)

௜ߚ ൌ ቐ
ܾೖ
మ
݇												݊݁ݒ݁	ݏ݅	݇			,	 ൌ 2݅

ܾೖషభ
మ
	
݇							݀݀݋	ݏ݅	݇			,	 ൌ 2݅ ൅ 1

														 	 (9)	

For the given permutation, we have:

ߨ ൌ ൬
0
0
				
1
3
				
2
2
					
3
6
				
4
4
				
5
7
				
6
5
				
7
ܺ
൰ ൌ൐

ቆ
ܽ଴
ܾ଴
				
ܽ଴
ܾଵ
				
ܽଵ
ܾଵ
					
ܽଵ
ܾଷ
				
ܽଶ
ܾଶ
				
ܽଶ
ܾଷ
				
ܽଷ
ܾଶ
				
ܽଷ
ܺ
ቇ	

For the ݅th input switching node, we refer to the output port pair ሺ݇, ݈ሻ corresponding to

the input port pair ሺ2݅, 2݅ ൅ 1ሻ as a connection pair. Then we obtain:

൬
2݅
݇
				
2݅ ൅ 1
݈

				൰ ൌ൐ ቆ
ܽ௜
ሺ݇ሻߚ

				
ܽ௜
ሺ݈ሻߚ

				ቇ																																			ሺ10ሻ

Based on Eqn. (11), we have:

ሺ݇ሻߚ ൌ 																																ሺ݈ሻߚ (11)

Consider the given permutation, taking ሺ૚	, ૜ሻ as example. As shown in Figure 17, in

order to have the same routing bits (′૙′ or ′૚′) for input port ૚ and output port ૜, the

corresponding input switching node must set the state value base on the corresponding output

switching node, i.e., for input/output permutation ൫૚૜൯, we have ࢻሺ૚ሻ ൌ ሺ૜ሻࢼ ,૙ࢇ ൌ ૚࢈ , since

ሺ૚ሻࢻ ൌ ૙܉ ሺ૜ሻ, then we can getࢼ ൌ ૚ࢇ	 ,૚. Similarly, for ൫૜૟൯, we derive܊ 	ൌ ૜. Together, we࢈	

obtain

ܽ଴ 	ൌ 	 ܾ଴				,				ܽ଴ 	ൌ 	 ܾଵ

ܽଵ 	ൌ 	 ܾଵ				,				ܽଵ 	ൌ 	 ܾଷ

39

ܽଶ 	ൌ 	 ܾଶ				,				ܽଶ 	ൌ 	 ܾଷ

ܽଷ 	ൌ 	ܾଶ				,				ܽଷ 	ൌ 		ܺ

After eliminating all ܉ from above equations, we can obtain a set of ࡺ/૛ initializing

equations as follows:

૚࢈ 	ൌ ૜࢈				,૙࢈	 ൌ ૜࢈				,૚࢈	 ൌ ૛࢈				,૛࢈	 ൌ ࢄ

These equations about ܊ can help us to build the relation connections between output

switching nodes as shown in Figure 17. All output switching nodes are connected like a linked

list, where the index of the state variable is taken as the node address. Each initializing equation

is used to establish a pointer, in which the state variable with larger index points to the other with

smaller index.

After initialization step, all output switching nodes can be grouped into equivalent classes.

For switching nodes in the same class, the state value of any switching node is relevant to the

state value of others. The representative node of each class is the switching node with the

smallest index number. For the above example, as shown in Figure 17, all output switching

nodes are in the same class. The representative node of the group is ࢈૙. Regardless of the Benes

network radix, the initialization step is processed at all PEs at the same time with time

complexity ࡻሺ૚ሻ.

4.2.2 Searching

As shown in Figure 17, there are two pointer types, Type 0 Pointer indicating the two

state variables are equal, and Type 1 Pointer indicating the two state variables are not equal. All

switching nodes except the representative node in the group will go through the searching step to

point to the representative node. The time complexity of searching step is ࡻሺࡺࢍ࢕࢒ሻ.

Figure 18 shows the searching result for Figure 17.

40

Figure 18 Searching

4.2.3 Merging

Usually, among the nodes belonging to the same class, there should be only one endpoint

which is the representative node of the class. If there are two endpoints in one class, then the

merging step is needed to eliminate one of them. The time complexity of this merging step is

 ૜, which means the܊ ૛ are pointed by܊ ૙ and܊ ሺ૚ሻ. Figure 18 shows that the two endpoints۽

value of ܊૜ will be determined by the values of ܊૙ and ܊૛, causing confliction. As shown in

Figure 19, after the merging step, the direct connection between two endpoints ܊૙ and ܊૛ is

found.

Figure 19 Merging

41

After all switching nodes point to the representative of the class, the state values of all

switching nodes can be determined by assigning the state value of the representative as 0 or 1.

One of the assignments of the above example is derived as by letting ܊૙ ൌ ૙:

,૙܊ሺ	܍ܜ܉ܜ܁ ,૚܊ ,૛܊ ૜ሻ܊ ൌ ሺ૙, ૙, ૚, ૚ሻ

By applying the symmetric routing constraint, the state values of input switching nodes

should be setup as:

,૙܉ሺ	܍ܜ܉ܜ܁ ,૚܉ ,૛܉ ૜ሻ܉ ൌ ሺ૙, ૙, ૚, ૙ሻ

Figure 20 shows the settings of input/output switching nodes for permutation

൬
૙
૙
		
૚
૜
		
૛
૛
			
૜
૟
		
૝
૝
		
૞
ૠ
		
૟
૞
		
ૠ
܆
൰

Figure 20 Settings of input/output switching nodes

4.2.4 Permutation for subnetwork

After the state values of input/output switching nodes are determined, the switch settings

of two inner
ࡺ

૛
ൈ ࡺ

૛
	 subnetworks can be determined recursively. The permutations of the two

inner subnetworks can be derived by tracing the routing paths from both input and output sides.

42

Then Lee’s algorithm is applied to derive the state values of the input/output switching nodes of

the two subnetworks. The time complexity to calculate those permutations for subnetworks is

 ሺ૚ሻ. In a recursive manner, the state values of all stages will be computed by the Lee’s parallelࡻ

routing algorithm.

Figure 21 Permutation for Subnetwork

Figure 21 shows the connections of the two inner subnetworks and the derived two

permutations ߨ଴ for ܵ௨௣ and ߨଵ for ܵௗ௢௪௡	for two inner subnetworks, respectively.

଴ߨ ൌ ൬
0
0
				
1
1
				
2
3
					
3
2
	൰

ଵߨ ൌ ൬
0
1
				
1
3
				
2
2
					
3
ݔ
	൰	

Continue this process until the state values of switching nodes in the middle stage are

determined.

As we can see from the description in above section, the searching step is the only

procedure which is relevant to the radix of Benes network. All the other procedures could be

finished in ܱሺ1ሻ. The time complexity for each round is determined by the searching procedure

which is ܱሺ݈ܰ݃݋ሻ.

43

4.3 Hardware Design of lee’s algorithm

4.3.1 Design Flow

As shown in Figure 22, the hardware design of Lee’s algorithm follows the common RTL

design flow which consists of four steps: 1) Specification, 2) RTL design, 3) simulation of the

RTL code, 4) synthesis of the RTL design. In the second step, we use Verilog HDL to implement

the RTL design of Lee’s parallel algorithm.

Figure 22 Design Flow

44

Control Logic

Shared Memory

PE0

PE1

PE(N/2-1)

Main Frame

nodeValue0/1[(N*logN)/2-1:0]

nodeS0/1[N/2-1:0]

Data
Collection

Sub
Permutation

State Map
out=>in

Port[0]

Port[1]

Port[2]

Port[3]

Port[N-2]
Port[N-1]

Switch
Setting

Sub-Network
Permutation

Figure 23 Circuit Architecture

As shown in Figure 23, for the switch setting circuit of ܰ ൈ ܰ Benes network, there are

ܰ/2	processing elements (PE), each representing an output switching node, are connected by the

main frame. Each PE୧ holds several variables. In the main frame, two major parts are the control

logic and shared memory. Table 8 lists the variables used in our design. For ܰ ൈ ܰ Benes

network, each variable storing port index has ݊ ൌ ଶ݃݋݈
ே bits. The global variables are shared

among all processing elements.

As each output switching node (represented by one processing element) has two ports, 0

and 1, we adopt a two-register structure for each output switching node to store the pointers

associated with port 0/1. In the searching step of Lee’s algorithm, each PE may need search in

two directions. The two-register structure allows each PE keeps searching in two directions until

they reach the representative nodes. Here four variables are used for storing the index of the node

ሺnodeValue0/1ሻ pointed by the port 0/1 pointer and corresponding relation value ሺnodeS0/1ሻ,

respectively. The size of these shared registers is determined by the radix of Benes network. For

45

ܰ ൈ ܰ Benes network, the size of nodeValue0/1 is ሺܰ/2ሻ ∗ bits as there are ܰ/2 output ܰ݃݋݈

switching nodes and logN bits are needed to represent the index of each port. The size of

nodeS0/1 is ܰ/2 as one bit is needed to represent the relation value between two connected

switching nodes, ‘0’ represents not equal, ‘1’ represents equal

46

Table 8 Definition of Variables

Global Variable Meaning
Size

(bits)

port[N] Store the output port index of the permutation. NlogN

nodeValue0/1[N/2]

Store the index of the port which is pointed by the
port 0/1 pointer of each output switching node. For
example, nodeValue0/1ሾiሿ ൌ j ,0 ൏ൌ j ൏ i ൏ൌ N/2 ,
means node i points to node j, i.e., there is a relation
connection between node i and node j.

NlogN
2

nodeS0/1
Store the relation value for the connection from the
port 0/1 pointer of each output switching node.

N/2

inNodeStateValue[N/2] Store the state value of input switching nodes. N/2

outNodeStateValue[N/2] Store the state value of output switching nodes. N/2

sub0/1_port[N/2] Store the permutations for two inner subnetworks. logN/2

Local Variable Meaning
Size

(bit)

port0/1
Store the output port index of the connection pair
corresponding to input port pair ሺ2i, 2i ൅ 1ሻ. logN

preNodeValue0/1
Store the nodeValueL0/1 before each searching
procedure.

logN

nodeType
Two-bit value, ‘00’ means the node doesn’t point to
any other node; ‘01’ if the node points to only one
other node, ‘11’ if it points to two other nodes.

2

The control logic is responsible for the following functions:

1. Maintaining and updating the registers’ data and status respectively, according to

the newest information received from processing elements.

2. Calculating the setting value for switching nodes on the inputs/outputs stage.

3. Calculating the input/output permutation for the subnetworks.

Every clock cycle, the control logic gathers the updated values of nodeValue0/1and

NodeS0/1 from all processing elements. All processing elements have the full access (write and

read) to all bits of both nodeValue0/1	and NodeS0/1 so that each processing element can

47

modify any bit of these registers at any time. As such, the design must guarantee there are no

more than one processing elements writing the same bit of these registers in the same clock

cycle. The Lee’s algorithm ensures that when there is no confliction in permutation, each

element of nodeValue0/1 and nodeS0/1 will only be updated by one processing element in

each step. The instinct exclusive property can guarantee that, for each bit of nodeValue0/1	and

NodeS0/1, in each clock cycle, there will be only one processing element modifying it and no

conflict would happen.

The second task of the control logic is to calculate the state values for the input/output

switching nodes. The state values of output switching nodes can be obtained from NodeS0/1.

The state values for the input switching nodes are based on the symmetric routing constraint.

The last task of the control logic is calculating the input/output permutation for the

subnetworks. The Lee’s algorithm calculates the switch setting values recursively from the

outmost stages to the most inner stages. Take 16 ൈ 16 Benes network as an example, according

to the state values of the input/output switching nodes, the control logic will derive the

permutation for two inner 8 ൈ 8 Benes networks. This part will be discussed in details in the

following subsections

4.3.2 Finite State Machine

In this part, the RTL design of Lee’s parallel algorithm is presented. Following the

process of Lee’s parallel routing algorithm, we derive the finite state machine of each processing

element as shown in Figure 24 which encloses five steps.

1. IDLE

2. INIT

3. SEARCH

48

4. MERGE

5. DONE

Figure 24 State Diagram

Each step could be divided into several states to complete the function that this step is

supposed to do. Those states named with ‘WAIT’ as appendix are used to synchronize

processing elements. All the processing elements need to wait one clock cycle so that the register

values updated by other processing elements become valid in all processing elements. In the

following part of this section, we will describe these five main steps.

49

IDLE	

At the starting point, all processing elements are in the IDLE state to wait for the new

permutation between input and output ports. When the new permutation arrives by setting input

ports of all input switching nodes, all processing elements will enter the INIT state to conduct

initialization functions. Before the processing element enters the INIT state, the control unit

needs one clock cycle to synchronize with all other processing elements.

In the IDLE state, all register values are reset to default values, where ݊0/1݁ݑ݈ܸܽ݁݀݋

and 0/1݁ݑ݈ܸܽ݁݀݋ܰ݁ݎ݌ are set to the current node index and ݊0/1ܵ݁݀݋ are all reset to 0.

INIT	

In Lee’s parallel routing algorithm, the first step is to initialize the pointers and relation

values between output switching nodes. This initialization process is determined by the

permutation between inputs and outputs of Benes network. Consider the following permutation

for a 16 ൈ 16 Benes network:

ߨ ൌ ሺ
0
10
				
1
14
				
2
9
					
3
2
				
4
8
				
5
13
				
6
12
				
7
15
	

8
1
				
9
ൈ
				
10
7
				
11
11
				
12
5
				
13
0
				
14
4
				
15
6
	ሻ

As discussed in Section 3, there are two types of relation between two output switching

nodes that have connection, equal or not equal, represented as ′0′	or	′1′ respectively. In Lee’s

parallel routing algorithm, in order to find out the relation between these two output switching

nodes, the equations between routing bits of input/output switching nodes need be derived first.

In our design, the relation between two output switching nodes can be derived directly from the

parity of two output port indexes corresponding to the two input ports of each PE.

50

Given the connection pair ሺ݇, ݈ሻ for an input port pair ሺ2݅, 2݅ ൅ 1ሻ (i.e., 0ݐݎ݋݌ and 1ݐݎ݋݌

in our design), according to Eqns. (8), (9) and (11), we derive the four possibilities of the above

equation:

Case 1: ݇ is even and ݈ is even, we have

ܾೖ
మ
ൌ ܾ೗

మ
;

Case 2: ݇ is even and ݈ is odd, we have

ܾೖ
మ
ൌ ܾ೗

మ
	 ܾೖ

మ
ൌ 	ܾ೗

మ
;

Case 3: ݇ is odd and ݈ is even, we have

ܾೖ
మ
ൌ ܾ೗

మ
	 ܾೖ

మ
ൌ 	ܾ೗

మ
;

Case 4: ݇ is odd and ݈ is odd, we have

ܾೖ
మ
ൌ 	ܾ೗

మ
	 ܾೖ

మ
ൌ ܾ೗

మ

As we can see from above options, when ݇ and ݈ have the opposite odd-even property,

then their corresponding output switching nodes will have the same state value, or, they have the

opposite state value. The relation between two output switching nodes can be set according to

odd-even property of ݇ and ݈ by checking 0ݐݎ݋݌ሾ0ሿ and 1ݐݎ݋݌ሾ0ሿ as shown in Eqn. (12).

0/1ܵ݁݀݋ܰ ൌ ~ሺ0ݐݎ݋݌ሾ0ሿ	ܱܴܺ	1ݐݎ݋݌ሾ0ሿሻ																																								

																				ൌ ൜
		݈ܽݑݍܧ								0
 (12) 																														݈ܽݑݍܧ	ݐ݋ܰ		1

At each processing element	 ௜ܲ , the following code is used to set ݊0/1݁ݑ݈ܸܽ݁݀݋ and

݊ where ,0/1ܵ݁݀݋ܰ ൌ ଶ݃݋݈
ே.

// pNode is the temporal variable to hold the larger node index

0ሾ݊ݐݎ݋݌ሺ	ࢌ࢏ െ 1: 1ሿ ൏ 1ሾ݊ݐݎ݋݌ െ 1: 1ሿሻ		ሼ

51

݁݀݋ܰ݌ ൌ 1ሾ݊ݐݎ݋݌ െ 1: 1ሿ;

 ሼ	1ሾ0ሿሻݐݎ݋݌ሺ	ࢌ࢏

ሿ݁݀݋ܰ݌1ሾ݁ݑ݈ܸܽ݁݀݋݊ ൌ 0ሾ݊ݐݎ݋݌ െ 1: 0ሿ;	

ሿ݁݀݋ܰ݌1ሾܵ݁݀݋݊ ൌ ሺ0ݐݎ݋݌ሾ0ሿ ൌൌ ?1ሾ0ሿሻݐݎ݋݌

 	1ᇱܾ1 ∶ 1ᇱܾ0;

 ሽ

 ሼ	ࢋ࢙࢒ࢋ

ሿሿ݁݀݋ܰ݌0ሾ݁ݑ݈ܸܽ݁݀݋݊ ൌ 0ሾ݊ݐݎ݋݌ െ 1: 0ሿ;	

ሿ݁݀݋ܰ݌0ሾܵ݁݀݋݊ ൌ ሺ0ݐݎ݋݌ሾ0ሿ ൌൌ ?1ሾ0ሿሻݐݎ݋݌

 	1ᇱܾ1 ∶ 1ᇱܾ0;

 ሽ

ሽ

1ሾ݊ݐݎ݋݌ሺ	ࢌ࢏	ࢋ࢙࢒ࢋ െ 1: 1ሿ ൏ 0ሾ݊ݐݎ݋݌ െ 1: 1ሻ	ሼ

݁݀݋ܰ݌ ൌ 0ሾ݊ݐݎ݋݌ െ 1: 1ሿ;

 ሼ	0ሾ0ሿሻݐݎ݋݌ሺ	ࢌ࢏

ሿ݁݀݋ܰ݌1ሾ݁ݑ݈ܸܽ݁݀݋݊ ൌ 1ሾ݊ݐݎ݋݌ െ 1: 0ሿ;	

ሿ݁݀݋ܰ݌1ሾܵ݁݀݋݊ ൌ ሺ0ݐݎ݋݌ሾ0ሿ ൌൌ ?1ሾ0ሿሻݐݎ݋݌

 	1ᇱܾ1 ∶ 1ᇱܾ0;

 ሽ

 ሼ	ࢋ࢙࢒ࢋ

ሿሿ݁݀݋ܰ݌0ሾ݁ݑ݈ܸܽ݁݀݋݊ ൌ 1ሾ݊ݐݎ݋݌ െ 1: 0ሿ;	

ሿ݁݀݋ܰ݌0ሾܵ݁݀݋݊ ൌ ሺ0ݐݎ݋݌ሾ0ሿ ൌൌ ?1ሾ0ሿሻݐݎ݋݌

 	1ᇱܾ1 ∶ 1ᇱܾ0;

52

 ሽ

ሽ

 ࢋ࢙࢒ࢋ

 ;݈݈ݑ݊

Note that each port register has width of ݈݃݋ଶ
ே bits with the top ሺ݈݃݋ଶ

ே െ 1ሻ bits

representing the output switching node number and the least significant bit representing the port

number (0 or 1) of the output switching node as well as the parity of the output port index.

Figure 25 Initialization

After the initialization step, all output switching nodes will be divided into one or more

classes depending on the permutation of inputs/outputs as shown in Figure 25. All output

switching nodes in the same class are bounded together such that once the state value of any

switching node is determined, then the state values of all the other switching nodes will be

determined. For the example shown above, if the switch setting value of ܾ0 is 0, then the state

values of the whole class are shown in Figure 26.

Figure 26 State Value Setting

SEARCH	

As discussed in last section, in the searching step, all processing elements parallelly

search and update the node pointer till reaching the representative node of the class, i.e., the

53

switching node with the smallest index number in the class. The number of searching steps is

bounded by
୒

ଶ
 . As shown in Figure 24, right after the state machine runs into the SEARCH state,

each processing element P୧ updates nodeValue0/1ሾiሿ and relation values nodeS0/1ሾiሿ stored

locally till the pointer’s values do not change in the current searching iteration. To detect the

ending condition of searching step, before searching in SEARCH state, the node pointer’s

current value nodeValue0/1 will be stored in preNodeValue0/1.

Figure 27 shows that after searching all processing elements point to one endpoint except

the one representing ܾ7, which reaches two endpoints ܾ1	ሺ݊݁݀݋ሾ1ሿሻ and ܾ0	ሺ݊݁݀݋ሾ0ሿሻ. In each

class, there is only one representative node. In order to solve this problem, we must merge these

two end nodes pointed by the same processing element, as shown in Figure 19, this process will

be done in the MERGE state.

Figure 27 SEARCH

The following two conditions need be satisfied before transferring to the MERGE state.

54

 After one searching step, the value contained in register preNodeValue doesn’t

change.

 The switching node has type value "݊݁݌ݕܶ݁݀݋ ൌൌ 2′ܾ11", which means the

switching node points to two endpoints.

At each processing element P୧, the following code is used to determine if transiting to the

MERGE state.

0݁ݑ݈ܸܽ݁݀݋ܰ݁ݎ݌ሺሺ	ࢌ࢏ ൌ 	and	0ሻ݁ݑ݈ܸܽ݁݀݋݊

 ሺ1݁ݑ݈ܸܽ݁݀݋ܰ݁ݎ݌ ൌൌ (1ሻ݁ݑ݈ܸܽ݁݀݋݊

:ሾ1݁݌ݕܶ݁݀݋ሺ݊	ࢌ࢏ 0ሿ ൌൌ 2ᇱܾ11ሻ		

0݁ݑ݈ܸܽ݁݀݋ሺ݊	ࢌ࢏ ൌൌ // Both registers // in the current node point		1ሻ݁ݑ݈ܸܽ݁݀݋݊

to the same endpoint

݁ݐܽݐݏ ൌ MERGE_SN	;

݁ݐܽݐݏ	ࢋ࢙࢒ࢋ ൌ MERGE;

݁ݐܽݐݏ	ࢋ࢙࢒ࢋ ൌ 	DONE;

	݁ݐܽݐݏ	ࢋ࢙࢒ࢋ ൌ 	;ܪܥܴܣܧܵ	

If the two pointers of the switching node point to the same endpoint, then FSM transits to

MERGE_SN state, in which one of two pointers of the switching node will be reset to its initial

value; otherwise, the FSM transits to the MERGE state.

MERGE	

When the processing element reaches the endpoints in both direction and the two

endpoints are different, the merging step will be conducted. As in the initialization step, the node

pointer with larger node index is updated with smaller node index number. As shown in Figure

55

28, the processing element merges the endpoints of b7 overwriting the nodeValue register

storing b1 to b0. We can also see that, after the merging process, the switching nodes previously

pointing to node b1 need be updated to pointing to b0. For the example in Figure 28, after the

merging step, nodes b6 and b4 need go through searching step again to update their pointers to

the representative node b0.

Figure 28 MERGE

For	each	processing	element	P୧,	the	following	code	is	used	to	update	pointers.	

0ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋ሺ݊	ࢌ࢏ ൏ 	1ሾ݅ሿሻ݁ݑ݈ܸܽ݁݀݋݊

 }	1ሾ݅ሿሾ0ሿሻ݁ݑ݈ܸܽ݁݀݋ሺ݊	ࢌ࢏

1ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋1ሾ݊݁ݑ݈ܸܽ݁݀݋݊ ൌ ;0ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋݊

1ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋1ሾ݊ܵ݁݀݋݊ ൌ

 ;1ሾ݅ሿܵ݁݀݋݊	ܴܱܺ	0ሾ݅ሿܵ݁݀݋݊

 }

 ሼ	ࢋ࢙࢒ࢋ

56

1ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋0ሾ݊݁ݑ݈ܸܽ݁݀݋݊ ൌ ;0ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋݊

1ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋0ሾ݊ܵ݁݀݋݊ ൌ

 ;1ሾ݅ሿܵ݁݀݋݊	ܴܱܺ	0ሾ݅ሿܵ݁݀݋݊

}

0ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋ሺ݊ࢌ࢏	ࢋ࢙࢒ࢋ ൐ ሼ	1ሾ݅ሿሻ݁ݑ݈ܸܽ݁݀݋݊

 ሼ	0ሾ݅ሿሾ0ሿሻ݁ݑ݈ܸܽ݁݀݋ሺ݊	ࢌ࢏		

0ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋1ሾ݊݁ݑ݈ܸܽ݁݀݋݊ ൌ ;1ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋݊

0ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋1ሾ݊ܵ݁݀݋݊ ൌ

 ;1ሾ݅ሿܵ݁݀݋݊	ܴܱܺ	0ሾ݅ሿܵ݁݀݋݊

 ሽ

 ሼ	ࢋ࢙࢒ࢋ

0ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋0ሾ݊݁ݑ݈ܸܽ݁݀݋݊ ൌ ;1ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋݊

0ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋0ሾ݊ܵ݁݀݋݊ ൌ

 ;1ሾ݅ሿܵ݁݀݋݊	ܴܱܺ	0ሾ݅ሿܵ݁݀݋݊

 	ሽ	

ሽ

 ࢋ࢙࢒ࢋ

 ;݈݈ݑ݊

After the merging step, the processing element will notify the other processing elements

so that all the other processing elements will transit to the SEARCH state. As shown in Figure

29, after the searching step, all the switching nodes point to the representative node of this class.

The initial state value for the representative node ‘b0’ of this class is ‘0’, then the state value of

57

all other switching nodes can be determined by the relation value ܁܍܌ܗܖ in parallel. And the

switch state values shown in Figure 29 is exactly the same as those values shown in Figure 26.

In our design, after all processing elements are in DONE state, the mainframe will set the

state values of output and input switching nodes.

b0 b2 b3 b5 b7 b6 b4 b1

b0 b2 b3 b5 b7 b6 b4 b1

Searching Step

b0 b2 b3 b5 b7 b6 b4 b1

0 0 1 0 1 1 1 1

Figure 29 Searching after Merging

4.3.3 Setting State Values of Input/Output Switching Nodes

The state values for output switching nodes outNodeStateValue ቂ୒
ଶ
െ 1: 0ቃ can be

obtained directly from the relation value nodeS0 ቂ୒
ଶ
െ 1: 0ቃ or nodeS1 ቂ୒

ଶ
െ 1: 0ቃ	as follows.

ሾ݆ሿ݁ݑ݈ܸܽ݁ݐܽݐܵ݁݀݋ܰݐݑ݋ ൌ 1ሾ݆ሿ; (13)ܵ݁݀݋ܰ	|	0ሾ݆ሿܵ݁݀݋ܰ

58

After the state values of output switching nodes are determined, the state values of input

switching nodes are determined too. According to the symmetric routing constraint, the state

value of an input switching node is equal to or opposite to the state value of its corresponding

output switching node which depends on the relation of the input/output port index number.

Given permutation pair ሺk, lሻ, where k is the input port number, and l is the output port

number, due to the symmetric self-routing constraint, i.e., Eqn. (13) and (14) in Section 3.1, we

have:

inNodeStateValue	 ቂ୩
ଶ
ቃ ൌ ቐ

outNodeStateValue ቂ୪
ଶ
ቃ 					if	k, l		are	same	parity

~outNodeStateValue ቂ୪
ଶ
ቃ 		if	k, l	are	opposite	parity

	 (14)

where k/2	and l/2 give the corresponding input/output switching node index. As we can see,

either portሾ2iሿ or portሾ2i ൅ 1ሿ can be used to determine the relation between state values of

input switching node and its corresponding output switching node. Here we use portሾ2iሿ to do

the calculation. And portሾ2iሿሾ0ሿ gives the parity of the output port.

// For i=0, 1, …, N/2

݂݅	ሺݐݎ݋݌ሾ2݅ሿሾ0ሿሻ	

݁ݑ݈ܸܽ݁ݐܽݐܵ݁݀݋ܰݐݑ݋~	=ሾ݅ሿ݁ݑ݈ܸܽ݁ݐܽݐܵ݁݀݋ܰ݊݅ ቂ௣௢௥௧
ሾଶ௜ሿ

ଶ
ቃ ;

 	݁ݏ݈݁

݁ݑ݈ܸܽ݁ݐܽݐܵ݁݀݋ܰݐݑ݋	=ሾ݅ሿ݁ݑ݈ܸܽ݁ݐܽݐܵ݁݀݋ܰ݊݅ ቂ௣௢௥௧
ሾଶ௜ሿ

ଶ
ቃ ;

4.3.4 Permutation configuration for sub Benes network

After the state values of input/output switching nodes are set, the permutation for

subnetworks will be determined. Given state values in outNodeStateValue ቂ୒
ଶ
െ 1: 0ቃ , the

permutation for two subnetworks sub0 and sub1 can be calculated by the control unit as below:

59

	࢘࢕ࢌ ൬݅ ൌ 0; ݅ ൏
ܰ
2
; ݅ ൅ ൅൰	ሼ	

		ሼ	ሾ݅ሿሻ݁ݑ݈ܸܽ݁ݐܽݐܵ݁݀݋ሺ݅݊ܰ	ࢌ࢏				

ሾ݅ሿሾ݊ݐݎ݋݌_0ܾݑݏ								 െ 2: 0ሿ ൌ ሾ2݅ݐݎ݋݌ ൅ 1ሿሾ݊ െ 1: 1ሿ;		

ሾ݅ሿሾ݊ݐݎ݋݌_1ܾݑݏ								 െ 2: 0ሿ ൌ ሾ2݅ሿሾ݊ݐݎ݋݌ െ 1: 1ሿ;	

				ሽ	

	ሼ	ࢋ࢙࢒ࢋ				

ሾ݅ሿሾ݊ݐݎ݋݌_0ܾݑݏ								 െ 2: 0ሿ ൌ ሾ2݅ሿሾ݊ݐݎ݋݌ െ 1: 1ሿ;		

ሾ݅ሿሾ݊ݐݎ݋݌_1ܾݑݏ								 െ 2: 0ሿ ൌ ሾ2݅ݐݎ݋݌ ൅ 1ሿሾ݊ െ 1: 1ሿ;	

				ሽ	

ሽ	

Figure 30 shows the timing diagram for the whole process of the example permutation. In

this example, there are three searching steps, two consecutive ones and one after the merging

step which is consistent with the Lee’s algorithm. Each step needs two clock cycles to finish,

because each step needs one more clock cycle to update data in the shared memory. After the

state values of input/output switching nodes are determined, one more clock is needed to

calculate the permutation for two subnetworks. Totally, 17 clock cycles are used to finish the

whole process. Consistent with Lee’s algorithm, during the whole process, only the number of

searching steps is relevant to the radix of Benes network. And all other steps are in constant.

The pseudocode of the implemented parallel switch setting algorithm for N ൈ N Benes

network (N ൐ 4) is listed in Appendix A.

60

Figure 30 Timing Diagram

4.3.5 Special case

Because of the simplicity of 4 ൈ 4 Benes network, there is no need to run the whole

process. As shown in Figure 31, there are Pସ
ସ ൌ 24 permutations between input and output ports

which fall into two cases: 1) either these two output switching nodes are in the same class, 2)

they are in the two separated classes. For both cases, there is no need to do the searching and

merging procedure thus significantly reducing the logic complexity of each processing element.

61

Figure 31 4x4 Benes Network

Consider the permutation of the 4x4 Benes network shown in Figure 17, we can derive

below:

൬
0
i
				
1
j
				
2
k
					
3
l
	൰ ൌ൐ ቆ

a଴
βሺiሻ

				
a଴
βሺjሻ

				
aଵ
βሺkሻ

					
aଵ
βሺlሻ

	ቇ

Consider the connection pair ሺi	, jሻ, there are two cases:

Case 1: both i and j belong to the same output switching node, then k and l must belong

to the other switching node. There is no connection between two output switching nodes, i.e.,

they belong to two separated classes. The state value of each output switching node can be

assigned independently.

Case 2: i and j belong to two output switching nodes, respectively. Then there exists a

connection between two output switching nodes, i.e., they belong to the same class. The state

value will be assigned correlately.

Each processing element has two registers port0ሾ1: 0ሿ and port1ሾ1: 0ሿ holding the two

output port index number, where port0ሾ1ሿ and port1ሾ1ሿ can be used to determine which output

switching node the port belongs to and port0ሾ0ሿ and port1ሾ0ሿ can be used to determine the

relation value between these two output switching nodes if there is connection between them.

The following logic code is designed.

	݄݊݁ݐ	1ሾ1ሿሻݐݎ݋݌	ܴܱܺ	0ሾ1ሿݐݎ݋݌ሺ	ࢌ࢏

 	݄݊݁ݐ	1ሾ0ሿሻݐݎ݋݌	ܴܱܺ	0ݐݎ݋݌ሺ	ࢌ࢏

62

0ሾ1ሿܵ݁݀݋݊ ൌ 1ᇱܾ0;

 ݄݊݁ݐ	ࢋ࢙࢒ࢋ 	

0ሾ1ሿܵ݁݀݋݊ ൌ 1ᇱܾ1;

 ࢊ࢔ࢋ

 ࢊ࢔ࢋ

4.4 Experiment Results

We have implemented the Lee’s algorithm for finding the switch settings for input/output

stages of 4x4 to 64x64 Benes networks in Verilog, simulated and synthesized the designs using

Cadence tools. The RTL code is written in parameterized way so that it is easy to expand to

larger sizes. In the simulation process, ModelSim is adopted as the simulation tool. For each

design, five categories of permutations are used for validation including bit reversal, perfect

shuffle, butterfly, matrix transpose, and random permutations. Under each category, one or more

different permutations have been tested. The worst case permutation would cause all output

switch nodes in the same group and connected in order with all pointers in same directions.

Under the worst case, the algorithm needs the most steps to search representative node which has

complexity OሺlogNሻ, there is only one worst case in each size network. In the synthesis process,

Cadence Encounter RTL-Compiler is used with TSMC 65nm technology library. All size

designs are synthesized under the same settings. The synthesized results of delay, area in number

of cells, and power consumption are presented below.

Table 9 Delay result

63

Benes Size 4x4 8x8 16x16 32x32 64x64

Delay (ns) 0.1 0.8 2.3 3.7 5.6

Time Complexity ۽ሺ܏ܗܔ૛ۼሻ 4 9 16 25 36

The delay is mainly decided by the time complexity of the algorithm. While the size of

the processing element will not affect the delay as much as that does to area and power

consumption as shown in Table 9 and Figure 32.

Figure 32 Delay Result

As discussed in last section 4.2, the time complexity of algorithm is determined by the

number of searching steps. The simulation results show that the number of searching steps

follows OሺlogNሻ. Except the 4x4 network, the synthesized delay result has about the same trend

as that of the time complexity of Lee’s algorithm. For 4x4 Benes, there is no searching step in

the switch setting algorithm. That’s why the delay is much lower than that of 8x8 Benes.

Table 10 Cell number and Area

0

1

2

3

4

5

6

4x4 8x8 16x16 32x32 64x64

Delay (ns)

64

Benes Size 4x4 8x8 16x16 32x32 64x64

Number of Cells 1.0E+01 1.81E+03 8.11E+03 3.62E+04 1.32E+05

Figure 33 Number of Cells

Table 10 and Figure 33 show the area result in terms of number of cells, the basic design

unit used to measure the logic complexity. When the network size is doubled, the number of cells

increases by about 4 times except for the 4x4 network. It is clear that in Lee’s algorithm, when

the network size is doubled, the number of processing elements needed in each stage is doubled.

For example, the	8 ൈ 8 Benes has 4 processing elements and the 16 ൈ 16 Benes network has 8

processing elements. Besides, the logic complexity of the processing element nearly doubles

when the network size is doubled. Overall, the logic complexity of the processing element should

be increased by four times when the network size is doubled. This explains the trend of number

of cells in Table 10.

Table 11 Power Consumption (uW)

0.00E+00

2.00E+04

4.00E+04

6.00E+04

8.00E+04

1.00E+05

1.20E+05

1.40E+05

4x4 8x8 16x16 32x32 64x64

Cells

65

Size

Power Type

4x4 8x8 16x16 32x32 64x64

Leakage 0.75 92.4 386 1,760 7,070

Internal 1.23 84.6 385 1,690 7,280

Net 0.18 29.8 142 604 2,280

Switching 1.41 114 528 2,290 9,560

Figure 34 Power Consumption

Table 11 shows the power consumption of the design in terms of static (internal) power,

dynamic (mainly switching), net and leakage power. Each portion of power increases

significantly as the radix of Benes network increases. The power consumption increasing trend is

consistent with the increasing trend of number of cells. As shown in Figure 34, the switching

power is the most significant portion, followed by internal (Static) and leakage power which

0

5000

10000

15000

20000

25000

30000

4x4 8x8 16x16 32x32 64x64

Switching

Net

Internal

Leakage

66

occupies 36%, 28% and 27% of total power, respectively. Together the three portions of power

dominate the power consumption at more than 90%.

4.5 Summary

This chapter presents the RTL design of a parallel switch setting algorithm in Benes

Networks. We have refined the algorithm in data structure and initialization/updating of relation

values to make it suitable for hardware implementation. The RTL code is written in

parameterized way so that it is easy to expand to larger sizes. The RTL design of the switch

setting circuit for 4x4 to 64x64 Benes networks are simulated and synthesized using Cadence

tools. The simulation and synthesis results confirm that the trend of delay and area results of the

circuit is consistent with that of the Lee’s algorithm.

CHAPTER 5 CONCLUSION AND FUTRURE WORK

In Chapter 3, the result confirms that Clos network is a better alternative than Benes

networks to replace crossbars in large scale networks-on-chip systems. Though the Clos network

67

is the extension of Benes network, the Clos network provides way more flexibility than the

Benes network. As shown in the definition of Clos network, and demonstrated by our CMOS

circuit design, the larger size of switching logic unit can reduce the number of stages to traverse.

Furthermore, by using transmission gates in our circuit design, both the delay and power

consumption results are improved significantly.

The parallel switch setting algorithm is the key to satisfy the requirements of high

performance switching networks. We implemented the fastest parallel switch setting algorithm,

Lee’s parallel routing algorithm, in hardware. The RTL design of Lee’s algorithm has been fully

implemented by Verilog. During the RTL design, we have refined Lee’s routing algorithm in a

few ways to make it suitable for hardware implementation. The RTL design of the switch setting

circuit for 4x4 to 64x64 Benes networks are simulated and synthesized using Cadence tools. The

simulation and synthesis results of the switching setting circuits for 4x4 to 64x64 Benes

networks confirm that the trend of delay and area results of the circuit is consistent with that of

the Lee’s algorithm.

The future work includes: 1) integration of the switch setting circuit with the Benes

network circuit; 2) evaluation of the network performance of Benes/Clos-based NoCs under both

synthetic and real life benchmarks.

68

APPENDIX A

The pseudocode of the implemented parallel switch setting algorithm for N ൈ N Benes

network (N ൐ 4) is listed below. All variables are defined in Table 8.

Parallel Switch Setting Algorithm

Inputs: port[N] - Permutation for input ports  output ports

Outputs: inNodeStateValue[N/2] - Switch setting values for input switching nodes

 outNodeStateValue[N/2] - Switch setting values for output switching nodes

 sub0/1_port[N/2]: Permutations for subnetworks

Function: Calculate the switch settings for input and output switching nodes

	ሼ	ሺሻ	࢔࢏ࢇࡹ

	ݏ݈ܾ݁ܽ݅ݎܽݒ	݈ܾܽ݋݈݃	݁ݖ݈݅ܽ݅ݐ݅݊݅//				

ሺ݅	࢘࢕ࢌ				 ൌ 0; 	݅	 ൏ 	ܰ/2; 	݅ ൌ ݅ ൅ 1ሻ	ሼ	

0ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋݊								 	ൌ 	݅;	

1ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋݊								 	ൌ 	݅;	

0/1ሾ݅ሿܵ݁݀݋݊								 		ൌ 	0;	

				ሽ	

	;݁ݎݑ݀݁ܿ݋ݎ݌	݊݋݅ݐܽݖ݈݅ܽ݅ݐ݅݊݅	݈݈ܽܥ				

	;݁ݎݑ݀݁ܿ݋ݎ݌	݄݃݊݅ܿݎܽ݁ݏ	݈݈ܽܥ				

 ;݁ݎݑ݀݁ܿ݋ݎ݌	݃݊݅݃ݎ݁݉	݈݈ܽܥ				

,ݐݑ݌݊݅	݁ݐ݈ܽݑ݈ܿܽܿ//			 ݏ݁ݑ݈ܽݒ	݁ݐܽݐݏ	݁݀݋݊	݄݃݊݅ܿݐ݅ݓݏ	ݐݑ݌ݐݑ݋

ሾ݅ሿ݁ݑ݈ܸܽ݁ݐܽݐܵ݁݀݋ܰݐݑ݋ 		ൌ 		;1ሾ݅ሿܵ݁݀݋݊	ܴܱ	0ሾ݅ሿܵ݁݀݋݊	

ሺ݅	࢘࢕ࢌ ൌ 0; 	݅	 ൏ 	ܰ/2; 	݅ ൌ ݅ ൅ 1ሻ	ሼ	

	ሼ	ሻ݊݁ݒ݁	ݏ݅	ሾ2݅ሿݐݎ݋݌ሺ	ࢌ࢏

69

ሾ݅ሿ݁ݑ݈ܸܽ݁ݐܽݐܵ݁݀݋ܰ݊݅ ൌ	 ݁ݑ݈ܸܽ݁ݐܽݐܵ݁݀݋ܰݐݑ݋ሾݐݎ݋݌ሾ2݅ሿ/2ሿ	;	

 ሽ		

	ሼ	ࢋ࢙࢒ࢋ

ሾ݅ሿ݁ݑ݈ܸܽ݁ݐܽݐܵ݁݀݋ܰ݊݅				 ൌ	 ~݁ݑ݈ܸܽ݁ݐܽݐܵ݁݀݋ܰݐݑ݋ሾݐݎ݋݌ሾ2݅ሿ/2ሿ;	

 				ሽ

 ሽ	

	ݏ݇ݎ݋ݓݐܾ݁݊ݑݏ	ݎ݋݂	݊݋݅ݐܽݐݑ݉ݎ݁݌	݃݊݅ݐ݈ܽݑ݈ܿܽܥ	//				

ሺ݅	࢘࢕ࢌ				 ൌ 0; 	݅	 ൏ 	ܰ/2; 	݅ ൌ ݅ ൅ 1ሻ	ሼ	

	ሼ	ሾ݅ሿሻ݁ݑ݈ܸܽ݁ݐܽݐܵ݁݀݋ሺ݅݊ܰ	ࢌ࢏								

ሾ݅ሿݐݎ݋݌_0ܾݑݏ												 	ൌ ሾ2݅ݐݎ݋݌	 ൅ 1ሿ/2;	

ሾ݅ሿݐݎ݋݌_1ܾݑݏ												 	ൌ 	;ሾ2݅ሿ/2ݐݎ݋݌	

								ሽ		

	ሼ	ࢋ࢙࢒ࢋ								

ሾ݅ሿݐݎ݋݌_0ܾݑݏ												 	ൌ 	;ሾ2݅ሿ/2ݐݎ݋݌	

ሾ݅ሿݐݎ݋݌_1ܾݑݏ												 	ൌ ሾ2݅ݐݎ݋݌	 ൅ 1ሿ/2;	

								ሽ	

				ሽ	

ሽ	//	݀݊ܧ	݂݋	݉ܽ݅݊

	݁ݎݑ݀݁ܿ݋ݎ݌	݊݋݅ݐܽݖ݈݅ܽ݅ݐ݅݊ܫ	//

	element	processing	each	࢘࢕ࢌ ௜ܲ	in	parallel	doሼ		

	0ݐݎ݋݌				 ൌ ሾ2ݐݎ݋݌	 ∗ ݅ሿ;	

70

	1ݐݎ݋݌				 ൌ ሾ2ݐݎ݋݌	 ∗ ݅ ൅ 1ሿ;	

	ݔ݁݀݊݅	ݎ݁݃ݎ݈ܽ	݄ݐ݅ݓ	݁݀݋݊	݄݁ݐ	݂݀݊݅	//					

0ሾ݊ݐݎ݋݌ሺ	ࢌ࢏				 െ 1: 1ሿ 	൐ 1ሾ݊ݐݎ݋݌	 െ 1: 1ሿሻ	ሼ		

 ݎ݁ݐ݊݅݋݌	0	ݐݎ݋݌	݄݁ݐ	ݐ݁ݏ// 	

 0ሾ݊ݐݎ݋݌0ሾ݁ݑ݈ܸܽ݁݀݋݊ െ 1: 1ሿሿ 	ൌ 1ሾ݊ݐݎ݋݌	 െ 1: 1ሿ;		

 	ݎ݁ݐ݊݅݋݌	0	ݐݎ݋݌	݂݋	݁ݑ݈ܽݒ	݊݋݅ݐ݈ܽ݁ݎ	݄݁ݐ	ݐ݁ݏ//

 0ሾ݊ݐݎ݋݌0ሾܵ݁݀݋݊ െ 1: 1ሿሿ 	ൌ 	~ሺ0ݐݎ݋݌ሾ0ሿ	ܱܴܺ	1ݐݎ݋݌ሾ0ሿሻ;			

				ሽ	

1ሾ݊ݐݎ݋݌ሺ	ࢌ࢏	ࢋ࢙࢒ࢋ				 െ 1: 1ሿ 	൐ 0ሾ݊ݐݎ݋݌	 െ 1: 1ሿሻ	ሼ	

 1ሾ݊ݐݎ݋݌1ሾ݁ݑ݈ܸܽ݁݀݋݊ െ 1: 1ሿሿ 	ൌ 0ሾ݊ݐݎ݋݌	 െ 1: 1ሿ;	

 1ሾ݊ݐݎ݋݌1ሾܵ݁݀݋݊ െ 1: 1ሿሿ 	ൌ 	~ሺ0ݐݎ݋݌ሾ0ሿ	ܱܴܺ	1ݐݎ݋݌ሾ0ሿሻ;	

				ሽ

 ࢋ࢙࢒ࢋ				

 	;݈݈ݑ݊

ሽ			//	݀݊ܧ	݂݋	݊݋݅ݐܽݖ݈݅ܽ݅ݐ݅݊ܫ 	

	݁ݎݑ݀݁ܿ݋ݎ݌	݄݃݊݅ܿݎܽ݁ܵ	//

	element	processing	each	࢘࢕ࢌ ௜ܲ	in	parallel	doሼ		

				ݎ݁ݐ݂ܽ	݁ݑ݈ܽݒ	݁݉ܽݏ	݄݁ݐ	ݏ݌݁݁݇	0/1݁ݑ݈ܸܽ݁݀݋݊	݄݁ݐ	݂݅	//

,݄݃݊݅ܿݎܽ݁ݏ		//	 	݌݋ݐݏ	݄݊݁ݐ

	0݁ݑ݈ܸܽ݁݀݋ܰ݁ݎ݌				 ൌ 	;0ሾ݅ሿ/2݁ݑ݈ܸܽ݁݀݋݊	

	1݁ݑ݈ܸܽ݁݀݋ܰ݁ݎ݌				 ൌ 	;1ሾ݅ሿ/2݁ݑ݈ܸܽ݁݀݋݊	

71

0ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋0ሾ݊݁ݑ݈ܸܽ݁݀݋ሺ݊ࢌ࢏				 ൏ 																					ሼ	0ሾ݅ሿ/2ሿሻ݁ݑ݈ܸܽ݁݀݋1ሾ݊݁ݑ݈ܸܽ݁݀݋݊

 0ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋݊ 	ൌ 	;0ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋0ሾ݊݁ݑ݈ܸܽ݁݀݋݊	

0ሾ݅ሿܵ݁݀݋݊ ൌ	 ݊0ܵ݁݀݋ሾ݅ሿ	ܱܴܺ	݊0ܵ݁݀݋ሾ݊0݁ݑ݈ܸܽ݁݀݋ሾ݅ሿ/2ሿ;	

				ሽ	

	ሼ	ࢋ࢙࢒ࢋ				

 0ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋݊ 	ൌ 	;0ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋1ሾ݊݁ݑ݈ܸܽ݁݀݋݊	

0ሾ݅ሿܵ݁݀݋݊ ൌ	 ݊0ܵ݁݀݋ሾ݅ሿ	ܱܴܺ	݊1ܵ݁݀݋ሾ݊0݁ݑ݈ܸܽ݁݀݋ሾ݅ሿ/2ሿ;	

				ሽ	

1ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋0ሾ݊݁ݑ݈ܸܽ݁݀݋ሺ݊ࢌ࢏				 ൏ ሼ	1ሾ݅ሿ/2ሿሻ݁ݑ݈ܸܽ݁݀݋1ሾ݊݁ݑ݈ܸܽ݁݀݋݊

 1ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋݊ 	ൌ 	;1ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋0ሾ݊݁ݑ݈ܸܽ݁݀݋݊	

1ሾ݅ሿܵ݁݀݋݊ ൌ	 ݊1ܵ݁݀݋ሾ݅ሿ	ܱܴܺ	݊0ܵ݁݀݋ሾ݊1݁ݑ݈ܸܽ݁݀݋ሾ݅ሿ/2ሿ;	

				ሽ	

	ሼ	ࢋ࢙࢒ࢋ				

1ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋݊ 	ൌ 	;1ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋1ሾ݊݁ݑ݈ܸܽ݁݀݋݊	

1ሾ݅ሿܵ݁݀݋݊	 ൌ	 ݊1ܵ݁݀݋ሾ݅ሿ	ܱܴܺ	݊1ܵ݁݀݋ሾ݊1݁ݑ݈ܸܽ݁݀݋ሾ݅ሿ/2ሿ;	

				ሽ	

ሽ࢝ࢋ࢒࢏ࢎሺሺ0݁ݑ݈ܸܽ݁݀݋ܰ݁ݎ݌	 ് 	0ሾ݅ሿሻ݁ݑ݈ܸܽ݁݀݋݊	

ܽ݊݀	ሺ1݁ݑ݈ܸܽ݁݀݋ܰ݁ݎ݌ ് ;1ሾ݅ሿሻሻ݁ݑ݈ܸܽ݁݀݋݊

	݁ݎݑ݀݁ܿ݋ݎ݌	݃݊݅݃ݎ݁ܯ	//

	element	processing	each	࢘࢕ࢌ ௜ܲ	in	parallel	doሼ	

 0ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋ሺ݊	ࢌ࢏ ൏ 	1ሾ݅ሿሻ݁ݑ݈ܸܽ݁݀݋݊

	 	 ݂݅	ሺ݊1݁ݑ݈ܸܽ݁݀݋ሾ݅ሿሾ0ሿሻ	ሼ	

72

 1ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋1ሾ݊݁ݑ݈ܸܽ݁݀݋݊ ൌ 0ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋݊

 1ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋1ሾ݊ܵ݁݀݋݊ ൌ ;1ሾ݅ሿܵ݁݀݋݊	ܴܱܺ	0ሾ݅ሿܵ݁݀݋݊

 ሽ

 ሼ	ࢋ࢙࢒ࢋ

 1ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋0ሾ݊݁ݑ݈ܸܽ݁݀݋݊ ൌ ;0ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋݊

 1ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋0ሾ݊ܵ݁݀݋݊ ൌ ;1ሾ݅ሿܵ݁݀݋݊	ܴܱܺ	0ሾ݅ሿܵ݁݀݋݊

 ሽ

 ሽ	

 0ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋ሺ݊ࢌ࢏	ࢋ࢙࢒ࢋ ൐ ሼ	1ሾ݅ሿሻ݁ݑ݈ܸܽ݁݀݋݊

 ݂݅	ሺ݊0݁ݑ݈ܸܽ݁݀݋ሾ݅ሿሾ0ሿሻ	ሼ

 0ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋1ሾ݊݁ݑ݈ܸܽ݁݀݋݊ ൌ ;1ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋݊

 0ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋1ሾ݊ܵ݁݀݋݊ ൌ ;1ሾ݅ሿܵ݁݀݋݊	ܴܱܺ	0ሾ݅ሿܵ݁݀݋݊

 ሽ

 ሼ	ࢋ࢙࢒ࢋ

 0ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋0ሾ݊݁ݑ݈ܸܽ݁݀݋݊ ൌ ;1ሾ݅ሿ݁ݑ݈ܸܽ݁݀݋݊

 0ሾ݅ሿ/2ሿ݁ݑ݈ܸܽ݁݀݋0ሾ݊ܵ݁݀݋݊ ൌ ;1ሾ݅ሿܵ݁݀݋݊	ܴܱܺ	0ሾ݅ሿܵ݁݀݋݊

 ሽ	

 ሽ

 ࢋ࢙࢒ࢋ

 ;݈݈ݑ݊	

ሽ

73

REFERENCE

[1] P. Kundu, "On-die interconnects for next generation CMPs," in Proc. Workshop On- and

Off-Chip Interconnection Networks for Multicore Systems (OCIN), 2006.

[2] C. O. Chen, S. Park, T. Krishna, L. Peh, "A low-swing crossbar and link generator for low-

power network-on-chi," in Proc. IEEE/ACM Int’l Conf. Computer-Aided Design (ICCAD),

2011, pp. 779-786.

[3] R. Das, S. Eachempati, A. K. Mishra, V. Narayanan, and C. R. Das, "Design and evaluation

of a hierachical on-chip interconnect for next-generation CMPs," in Proc. IEEE 15th Symp.

HPCA, 2009, pp. 175-186.

[4] X. Wang, M. Yang, Y. Jiang, and P. Liu, "A power-aware mapping approach to map IP

cores onto NoCs under bandwidth and latency constraints," ACM Trans. Architecture and

Code Optimization, vol. 7, no. 1, Apr. 2010.

[5] D.Wentzlaff and P. Griffin, "On-chip interconnection architecture of the tile processor,"

IEEE Micro, vol. 27, no. 5, pp. 15-31, 2007.

[6] C. Kim, D. Burger, S. W. Keckler, "Nonuniform cache architectures for wire delay

dominated on-chip caches," IEEE Micro, vol. 23, no. 6, pp. 99-107, Nov.-Dec. 2003.

[7] T. Johnson and U. Nawathe, "An 8-core, 64-thread, 64-bit power efficient SPARC SOC

(niagara2)," in Proc. IEEE Int'l Solid-State Circuits Conf., 2007, pp. 108–590.

74

[8] L. Mhamdi, K. Goossens, I.V. Senin., "Buffered crossbar fabrics based on networks on

chip," in Proc. Communication Networks and Services Research Conf. (CNSR), 2010, pp.74-

79.

[9] G. Passas, M. Katevenis, D. Pnevmatikatos, "A 128 x 128 x 24Gb/s crossbar interconnecting

128 tiles in a single hop and occupying 6% of their area," in Proc. 4th ACM/IEEE Int'l Symp.,

Networks-on-Chip (NOCS), 2010, pp. 87-95.

[10] J. Kim, J. Dally, B. Towles, A. K. Gupta, "Microarchitecture of a high-radix router," in Proc.

32nd Int't Sym. Computer Architecture, 2005, pp. 420-431

[11] J. Duato, I. Johnson, J. Flich, F. Naven, P. Garcia, and T. Nachiondo, "A new scalable and

cost-effective congestion management strategy for lossless multistage interconnection

networks," in Proc. Int’l Symp. HPCA, 2005, pp. 108-119

[12] G. Mora, J. Flich, J. Duato, P. L´opez, E. Baydal, and O. Lysne, "Towards an efficient

switch architecture for high radix switches," in Proc. ACM/IEEE ANCS, 2006, pp. 11-20

[13] IBM Blue Gene team, "The IBM blue gene/q computer chip," IBM Journal of Research and

Development, vol. 57, no. 1/2, pp. 1:1-1:13, Jan.-March 2013.

[14] K. Sewell, R.G. Dreslinski, T. Manville, S. Satpathy, N. Pinckney, G. Blake, M. Cieslak.,

"Swizzle-switch networks for many-core systems," IEEE J. Emerging and Selected Topics in

Circuits and Systems, vol. 2, no. 2, pp. 278-294, Jun. 2012,

[15] C. Kim, D. Burger, and S. W. Keckler, "An adaptive, non-uniform cache structure for wire-

75

delay dominated on-chip caches," in Proc. 10th Int'l Conf. Architectural Support Programm.

Languages Operat. Syst., 2002, pp. 211-222.

[16] A. Zia, S. Kannan, G. Rose and H. J. Chao, "Highly-scalable 3D Clos NoC for many-core

CMPs," in Proc. IEEE 8th Int’l NEWCAS Conf. (NEWCAS), 2010, pp. 229-232.

[17] E. Coen-Alfaro, "Crossbar architectures for VLSI systems: a comparative study," Master

Thesis, University of Idaho, Apr. 2004.

[18] Y. Zhang, J. Taikyeong, F. Chen, H. Wu, and N. R. Gao, "A study of the on-chip

interconnection network for the IBM Cyclops64 multi-core architecture," in Proc. Parallel

and Distributed Processing Symp. (IPDPS), 2006, pp. 25-29.

[19] Y. Kao, M. Yang, N.S. Artan, and H. J. Chao, "CNoC: High-radix Clos network-on-chip," in

IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 1, pp.

1897-1910, Nov. 2011.

[20] D. L. Lewis, S. Yalamanchili, and H. S. lee, "High performance non-blocking switch design

in 3D die-stacking technology," in Proc. IEEE Computer Society Annual Symp. VLSI, 2009,

pp. 25-30

[21] C. Clos, "A study of non-blocking switching networks," Bell System Technical Journal, vol.

32, no. 2, pp. 406-424, Mar. 1952.

[22] G. Passas, M. Katevenis, D. Pnevmatikatos, "VLSI micro-architectures for high-radix

crossbar schedulers," in Proc. 5th IEEE/ACM Int. Symp. Networks Chip, 2011, pp. 217-224.

76

[23] C. Kim, D. Burger, S. Keckler, "An Adaptive, Non-uniform cache structure for wire-delay

dominated on-chip caches," in Proc. 10th Int'l Conf. ASPLOS, 2002, pp. 211-222.

[24] S. Satpathy, Z. Foo, B. Giridhar, R. Dreslinski, D. Sylvester, T. Mudge, D. Blaauw, "A

1.07Tbit/s 128×128 swizzle network for SIMD processors," in Proc. IEEE Symp. VLSI

Circuits, 2010, pp. 16-18.

[25] S. Satpathy, K. Sewell, T. Manville, Y. Chen, R. Dreslinski, D. Sylvester, T. Mudge, D.

Blaauw, "A 4.5Tb/s 3.4Tb/s/W 64×64 switch fabric with self-updating least-recently-granted

priority and quality-of-service arbitration in 45nm CMOS," in Proc. IEEE ISSCC, 2012, pp.

478-480.

[26] H. Moussa, O. Muller, A. Baghdadi, M. Jezequel, "Butterfly and Benes-based on-chip

communication networks for multiprocessor turbo decoding," in Proc. Design, Automation

& Test in Europe Conference & Exhibition (DATE), 2007, pp. 1-6.

[27] A. Abbas, M. Ali, A. Fayyaz, A. Ghosh, A. Kalra, S. U. Khan, "A survey on envergy-

efficient methodologies and architectures of network-on-chip," in Computers & Electrical

Engineering, 2014, pp. 333-347.

[28] H. Liu, L. Xie, J. Liu and L. Ding, "Application of butterfly Clos-network in network-on-

chip," Scientific World Journal, vol. 2014, pp. 1-11, Jan. 2014

[29] H. Richer, "Real-time interconnection network for single-chip many-core computers," in

Proc. Design & Test Symposium, 2013, pp. 1-4.

77

[30] Y. Kao and H. J. Chao, "Design of a bufferless photonic Clos network-on-chip architecture,"

IEEE Transactions on Computers, vol. 63, no. 3, pp. 764-776, Mar. 2014.

[31] K. N. Levitt, M. W. Green, and J. Goldberg, "A study of the data commutation problems in a

self-repairable mutiprocessor," in Proc. Spring Joint Computer Conf., 1968, pp. 515-527

[32] Y. Kao, M. Yang, N. S. Artan, and H. J. Chao, "CNoC: high-radix Clos network-on-chip,"

IEEE Trans. Computer-Aided Design of Intergrated Circuits and Systems, vol. 30, no. 12,

pp.1897-1910, Dec. 2011.

[33] H. Liu, L. Xie, J. Liu and L. Ding, "Application of butterfly Clos-network in network-on-

chip," The Scientific World Journal, vol. 2014, pp.1-11, Jan. 2014.

[34] A. Joshi, C. Batten, Y. Kwon, S. Beamer, I. Shamim, K. Asanovic and V. Stojanovic,

"Silicon-photonic Clos networks for global on-chip communication," in Proc. 3rd

ACM/IEEE Int’l Symp. Networks-on-Chip (NoCS), 2009, pp.124-133.

[35] J. H. Bahn, S. E. Lee and N. Bagherzadeh, "Design of a router for network-on-chip," Int'l J.

High Performance Systems Architecture, vol. 1, no.2, pp.98-105, Oct. 2007.

[36] P. Liu, Y. Liu, B. Xia, C. Xiang, and X. Wang, "A networks-on-chip emulation/verification

framework," Int'l J. High Performance systems Architecture, vol. 3, no. 1, pp.2-11, 2012.

[37] K. Sewell, R. G. Dreslinski, S. Satpathy, G. Blake and M. Cieslak, "Swizzle-switch networks

for many-core systems," IEEE J. Emerging and Selected Topics in Circuits and Systems, vol.

2, no. 2, pp. 278-294, Jun. 2012.

78

[38] T. T. Lee and S. Y. Liew, "Parallel routing algorithms in Benes-Clos networks," in Proc.

15th Annual Joint Conf. IEEE Computer Societies. Networking the Next Generation

(INFOCOM), 1996, vol.1, pp. 279-286.

[39] Y. Hamada, K. Kai, Y. Miao and H. Obara, "Design of partially-asynchronous parallel

processing elements for setting up Benes networks in O(log2N) time," in Proc. Int’l Conf.

Photonics in Switching, 2009, pp.1-2.

[40] Y. Yeh and T. Feng, "On a class of rearrangeable networks," IEEE Trans. Computers, vol.

41, no. 11, pp.1361-1397, Nov. 1992.

[41] A. Waksman, "A permutation network," J. Ass. Comput. Mach., vol. 15, no. 1, pp.159-163,

Jan. 1968.

[42] D. Nassimi and S. Sahni, "Parallel algorithms to set up the Benes permuation network,"

IEEE Trans. Computer, vol. c-31, no. 2, pp.148-154, Feb. 1982.

[43] K. N. Levitt, M. W. Green and J. Goldberg, "A study of the data commutation problems in a

self-repairable multiprocessor," in Proc. Spring Joint Computer Conf., 1968, pp. 515-527,

1968.

[44] T. T. Lee and S. Y. Liew, "Parallel routing algorithms in Benes-Clos networks," IEEE Trans.

Communications, vol. 50, no. 11, pp.1841-1847, Nov. 2002.

[45] H. Richter, "Real-time interconnection network for single-chip many-core computers,"

in Proc. Design & Test Symp., 2013, pp. 27-30.

79

[46] H. Moussa, O. Muller, A. Baghdadi and M. Jezequel "Butterfly and Benes-based on-chip

communication networks for multiprocessor turbo decoding," in Proc. Design, Automation

& Test in Europe Conference & Exhibition (DATE), 2007, pp.1-6.

[47] H. S. Stone, "Parallel processing with the perfect shuffle," IEEE Trans. Comput., vol. C-20,

no. 2, pp.153-161, Feb. 1971.

[48] C. Y. Lee and A. Y. Qruc "Fast parallel algorithms for routing one-to-one assignments in

Benes networks," IEEE Trans. Parallel Distrib. Syst., vol. 6, no. 3, pp.329-334, Mar. 1995.

[49] E. Lu and S. Q. Zheng, "Parallel routing algorithms for non-blocking electronic and photonic

switching networks," IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 8, pp. 702-713, Aug.

2005.

[50] A. B. Rathod, S. M. Gulhane and A. R. M. Khan, "Parallel routing algorithms in Benes and

Clos networks: a survey," Int'l J. Advance Foundation and Research in Computer, vol. 2, no.

1, pp. 21-31, Jan. 2015.

80

CURRICULUM VITAE

Yikun Jiang, Ph.D.

4500 S. Maryland Pkw.

Department of Electrical and Computer Engineering

University of Nevada, Las Vegas

Las Vegas, NV, 89119

Cell Phone: (702)748-4515

E-mail address: jiangy3@unlv.nevada.edu

Education

Qingdao University, Qingdao, China

Bachelor, Computer Science, 2005

Harbin Institute of Technology, Harbin, China

Master, Computer Science, 2007

	Design and Implementation of Benes/Clos On-Chip Interconnection Networks
	Repository Citation

	Microsoft Word - Thesis v4_final.docx

