Document Type

Article

Publication Date

2005

Publication Title

Journal of Applied Physics

Volume

97

Issue

033518

First page number:

6

Abstract

The structural and electronic properties of Gd2(Ti1−yZry)2O7 (y=0–1) pyrochlores following a 2.0-MeV Au2+ ion-beam irradiation (~5.0 X 1014 Au2+/cm2) have been investigated by Ti 2p and O 1s near-edge x-ray absorption fine structure (NEXAFS). The irradiation of Gd2(Ti1−yZry)2O7 leads to the phase transformation from the ordered pyrochlore structure (Fd3m) to the defect fluorite structure (Fm3m) regardless of Zr concentration. Irradiated Gd2(Ti1−yZry)2O7 with y≤0.5 are amorphous, although significant short-range order is present. Contrasting to this behavior, compositions with y≥0.75 retain crystallinity in the defect fluorite structure following irradiation. The local structures of Zr4+ in the irradiated Gd2(Ti1−yZry)2O7 with y≥0.75 determined by NEXAFS are the same as in the cubic fluorite-structured yttria-stabilized zirconia (Y–ZrO2), thereby providing conclusive evidence for the phase transformation. The TiO6 octahedra present in Gd2(Ti1−yZry)2O7 are completely modified by ion-beam irradiation to TiOx polyhedra, and the Ti coordination is increased to eight with longer Ti–O bond distances. The similarity between cation sites and the degree of disorder in Gd2Zr2O7 facilitate the rearrangement and relaxation of Gd, Zr, and O ions/defects. This inhibits amorphization during the ion-beam-induced phase transition to the radiation-resistant defect fluorite structure, which is in contrast to the ordered Gd2Ti2O7.

Keywords

Atomic orbitals; Gadolinium; Titanium; X-ray Absorption Near Edge Structure; Zirconium

Disciplines

Analytical Chemistry | Atomic, Molecular and Optical Physics | Biological and Chemical Physics | Elementary Particles and Fields and String Theory | Physical Chemistry

Language

English

Permissions

Copyright American Institute of Physics, used with permission

UNLV article access

Search your library

Share

COinS