Location

University of Nevada, Las Vegas

Start Date

3-8-2010 9:00 AM

End Date

3-8-2010 12:00 PM

Description

High pressure physics involves placing various substances under high pressure and observing changes in that substance. In this experiment this high amount of pressure is induced using a diamond anvil cell. A diamond anvil cell uses a metal gasket to hold the sample between two diamonds, which will press on the sample to reach high pressures. High pressures are reached with a moderate amount of force by exerting that force over a small area. Diamonds are used for the compression because of their hardness and ability to resist compression. The pressure being exerted on the sample using a diamond anvil cell is often measured using ruby fluorescence. The behavior of ruby under high pressure is well known so the pressure inside the diamond anvil cell can be determined by observing the ruby fluorescence. Ruby is placed inside the gasket along with the sample so that it is always at the same pressure as the sample. Potassium Chlorate is a chemical that is often used as an oxygen producer and as an explosive when mixed with other chemicals. It decomposes under heat to release oxygen gas, which is the reaction we are trying to induce by placing the chemical under pressure. When molecules heat up they begin to vibrate more rapidly and are more likely to collide with each other. When molecules undergo higher pressures they are also more likely to collide as atoms get closer together. The purpose of this experiment is to determine if pressure can induce the same reaction in Potassium Chlorate as heat.

Keywords

Decomposition (Chemistry); High pressure (Science); Potassium compounds

Disciplines

Astrophysics and Astronomy | Biological and Chemical Physics | Physical Sciences and Mathematics | Physics

Language

English

Comments

Poster research sponsored by NSF REU Physics


Share

COinS
 
Aug 3rd, 9:00 AM Aug 3rd, 12:00 PM

Potassium chlorate decomposition under high pressure

University of Nevada, Las Vegas

High pressure physics involves placing various substances under high pressure and observing changes in that substance. In this experiment this high amount of pressure is induced using a diamond anvil cell. A diamond anvil cell uses a metal gasket to hold the sample between two diamonds, which will press on the sample to reach high pressures. High pressures are reached with a moderate amount of force by exerting that force over a small area. Diamonds are used for the compression because of their hardness and ability to resist compression. The pressure being exerted on the sample using a diamond anvil cell is often measured using ruby fluorescence. The behavior of ruby under high pressure is well known so the pressure inside the diamond anvil cell can be determined by observing the ruby fluorescence. Ruby is placed inside the gasket along with the sample so that it is always at the same pressure as the sample. Potassium Chlorate is a chemical that is often used as an oxygen producer and as an explosive when mixed with other chemicals. It decomposes under heat to release oxygen gas, which is the reaction we are trying to induce by placing the chemical under pressure. When molecules heat up they begin to vibrate more rapidly and are more likely to collide with each other. When molecules undergo higher pressures they are also more likely to collide as atoms get closer together. The purpose of this experiment is to determine if pressure can induce the same reaction in Potassium Chlorate as heat.