Nonlinear Robust Output Feedback Control of Submersibles Via Modeling Error Compensation
Document Type
Article
Publication Date
2007
Publication Title
Systems Science
Volume
33
Issue
4
First page number:
27
Last page number:
35
Abstract
This paper treats the design of a nonlinear robust dive-plane control system for multivariable submersibles equipped with bow and stern hydroplanes. It is assumed that the vehicle's parameters and the hydrodynamic coefficients are not known, and that disturbance forces due to the sea wave are acting on the vehicle. For the design, the depth and pitch angle are chosen as output variables. Using nonlinear input-output (pitch angle and depth) map inversion, a robust nonlinear output feedback control law for the trajectory control of the pitch angle and depth is derived. For synthesizing the robust inverse control law, the unknown functions and unmeasurable variables are estimated using a high-gain observer. It is shown that in the closed-loop system, the asymptotic tracking of the depth and pitch angle trajectories is accomplished. Simulation results are presented which show precise dive-plane maneuvers in spite of uncertainty in the system parameters and disturbance forces due to the sea waves.
Keywords
Feedback control systems; Feedback linearization; High-gain observer; Hydroplanes; Nonlinear inversion; Robust output feedback control; Submarine control; Submarines (Ships) – Control systems; Submarines (Ships) — Hydrodynamics; Submersibles – Control systems
Permissions
Use Find in Your Library, contact the author, or use interlibrary loan to garner a copy of the article. Publisher copyright policy allows author to archive post-print (author’s final manuscript). When post-print is available or publisher policy changes, the article will be deposited
Repository Citation
Nambisan, P. R.,
Singh, S. N.
(2007).
Nonlinear Robust Output Feedback Control of Submersibles Via Modeling Error Compensation.
Systems Science, 33(4),
27-35.