Sky Segmentation By Fusing Clustering with neural networks
Document Type
Conference Proceeding
Publication Date
7-29-2013
Publication Title
9th International Symposium on Advances in Visual Computing, ISVC 2013, July 29, 2013 - July 31
Publisher
Springer
Volume
8034
First page number:
663
Last page number:
672
Abstract
Sky segmentation is an important task for many applications related to obstacle detection and path planning for autonomous air and ground vehicles. In this paper, we present a method for the automated sky segmentation by fusing K-means clustering and Neural Network (NN) classifications. The performance of the method has been tested on images taken by two Hazcams (ie., Hazard Avoidance Cameras) on NASA’s Mars rover. Our experimental results show high accuracy in determining the sky area. The effect of various parameters is demonstrated using Receiver Operating Characteristic (ROC) curves.
Disciplines
Biomedical | Controls and Control Theory | Electrical and Computer Engineering | Electrical and Electronics | Electromagnetics and Photonics | Power and Energy | Signal Processing
Language
English
Permissions
Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.
Repository Citation
Yazdanpanah, A. P.,
Regentova, E.,
Mandava, A. K.,
Ahmad, T.,
Bebis, G.
(2013).
Sky Segmentation By Fusing Clustering with neural networks.
9th International Symposium on Advances in Visual Computing, ISVC 2013, July 29, 2013 - July 31, 8034
663-672.
Springer.