A two-stage fuzzy logic controller for traffic signals

Mohamed Trabia, University of Nevada, Las Vegas
Mohamed S. Kaseko, University of Nevada, Las Vegas
Murali Ande, University of Nevada, Las Vegas


This paper presents the design and evaluation of a fuzzy logic traffic signal controller for an isolated intersection. The controller is designed to be responsive to real-time traffic demands. The fuzzy controller uses vehicle loop detectors, placed upstream of the intersection on each approach, to measure approach flows and estimate queues. These data are used to decide, at regular time intervals, whether to extend or terminate the current signal phase. These decisions are made using a two-stage fuzzy logic procedure. In the first stage, observed approach traffic flows are used to estimate relative traffic intensities in the competing approaches. These traffic intensities are then used in the second stage to determine whether the current signal phase should be extended or terminated. The performance of this controller is compared to that of a traffic-actuated controller for different traffic conditions on a simulated four-approach intersection.