Document Type
Annual Report
Publication Date
2008
Publisher
University of Nevada, Las Vegas
Publisher Location
Las Vegas (Nev.)
First page number:
40
Last page number:
41
Abstract
Advanced nuclear processes and facilities (e.g., transmutation of nuclear waste, fast reactors, and spallation neutron sources) impose special demands on materials, which must withstand high temperatures, high radiation fields, and chemical corrosion. Proposed schemes for transmuting nuclear waste require a nonmoderating coolant such as lead-bismuth eutectic (LBE) or liquid sodium. While LBE corrodes most steels, small amounts of oxygen in the LBE greatly reduces the corrosion rate, and could ideally re-grow a damaged oxide layer in situ. The protective oxide layer would thus be self-healing. However, a fundamental understanding of the role of oxygen and passivating oxide layers is presently incomplete.
During the past year, gas-phase experiments were conducted in which steel samples were oxidized in glass capsules at elevated temperatures in a tube furnace. Corroded steel samples were analyzed from a variety of sources, including the Delta loop at LANL and samples corroded at UNLV in the gas phase experiments.
Keywords
Corrosion and anti-corrosives; Eutectic alloys; Lead-bismuth alloys; Metallurgical laboratories – Design and construction; Metals—Cold working; Nuclear reactors — Materials — Testing; Steel — Corrosion
Controlled Subject
Corrosion and anti-corrosives--Testing; Eutectic alloys; Nuclear reactors--Materials--Testing
Disciplines
Materials Science and Engineering | Metallurgy | Nuclear Engineering | Oil, Gas, and Energy
File Format
File Size
405 KB
Language
English
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/
Repository Citation
Farley, J.,
Johnson, A. L.
(2008).
Fundamental and Applied Experimental Investigations of Corrosion of Steel by LBE under Controlled Conditions: Kinetics, Chemistry Morphology, and Surface Preparation.
40-41.
Available at:
https://digitalscholarship.unlv.edu/hrc_trp_sciences_materials/127