Title

Simulation of Heat, Mass, and Momentum Transfer Within Building Interiors

Document Type

Conference Proceeding

Abstract

An hp finite element-based model has been developed to calculate heat, mass, and momentum transfer within rooms and building interiors. The hp-adaptive methodology is based on both mesh enrichment (h-adaptation) and spectral order incensement (p-adaptation) in an effort to produce accurate results with the least computational cost. A Lagrangian Particle Transport (LPT) technique is coupled with the adaptive scheme to simulate mass transport. The model is particularly amenable for depicting the transport of contaminants associated with indoor air quality. The hp-adaptive algorithm is validated using natural convection in a square enclosure. The model is subsequently applied to the simulation of momentum, heat, and mass transport within building interiors: air and temperature distribution patterns are presented along with potential pathways of a powder dispersing within an office.

Disciplines

Fluid Dynamics | Heat Transfer, Combustion | Mechanical Engineering

Comments

ASME 2005 Summer Heat Transfer Conference, San Francisco, California, USA, July 17–22, 2005

Permissions

Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.