Document Type

Article

Publication Date

4-15-2020

Publication Title

Physical Review Materials

Publisher

American Physical Society

Volume

4

Issue

4

First page number:

1

Last page number:

7

Abstract

Molybdenum mononitrides (MoN) exhibit superior strength and hardness among the large class of transition-metal light-element compounds, but the underlying atomistic mechanisms for their outstanding mechanical properties and the variations of those properties among various MoN phases adopting different crystal structures remain largely unexplored and require further investigation. Here we report first-principles calculations that examine the stress-strain relations of these materials, and systematically compare results under pure and indentation shear deformations. In particular, we examine the distinct bonding structures and the associated mechanical properties in four different crystal phases of MoN that have been experimentally synthesized and stabilized under various physical conditions. Our results reveal evolution patterns of bonding configurations and the resulting structural deformation modes in these MoN phases, which produce diverse stress responses and unexpected strength variations. These findings elucidate the structural and bonding characters that are responsible for the rich and distinct mechanical properties in various MoN structures, providing insights for understanding the experimentally observed phenomena and further exploring advanced superhard materials among the promising transition-metal nitrides, borides, and carbides.

Disciplines

Mineral Physics

File Format

pdf

File Size

3.264 KB

Language

English

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

UNLV article access

Search your library

Share

COinS