Award Date

8-1-2016

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Teaching and Learning

First Committee Member

MaryKay Orgill

Second Committee Member

PG Schrader

Third Committee Member

Kent Crippen

Fourth Committee Member

Sajjad Ahmad

Number of Pages

348

Abstract

Americans, in general, do not behave in environmentally sustainable ways. We drive cars and fly in planes that emit planet-warming carbon. We purchase food in nearly indestructible packaging that is not recycled or repurposed. We do not consider the environmental impact of the “stuff” stuffed into our grocery and department stores, most of which is made of materials that had to be dug out of the ground, leaving rivers and skies full of pollution in its place. Citizens have a responsibility to understand complex global and local environmental problems. A person’s ability to think about the way that an environmental problem they are tasked with understanding changes over time and space can better prepare them to make sustainable decisions in the face of this complexity. Spatial thinking serves the learner’s ability to understand the impact of environmental actions and should be given a consistent place in environmental education.

Teaching practices and pedagogies that focus on spatial thinking are necessary to learners’ success. In order to know if these strategies are successful, educators need an assessment tool that targets the spatial thinking skills necessary to understanding environmental problems. This dissertation project used a models and modeling theoretical framework to develop and test an assessment of students’ spatial thinking abilities related to the environmental problem of enhanced greenhouse effect.

This assessment was developed from a review of existing spatial thinking literature, research on existing assessments of spatial thinking abilities, and existing assessment of enhanced greenhouse effect. In addition, I interviewed and surveyed experts in science, math, and environmental education to elicit their perspectives on the spatial thinking skills necessary for learners to understand enhanced greenhouse effect. All of this information was synthesized into 14 Central Concepts of spatial thinking for enhanced greenhouse effect. The assessment was developed for students to express their mental models related to these 14 Central Concepts.

The assessment was reviewed and tested by experts related to the project’s content, as well as students from the target population for assessment delivery. It was revised based on feedback and data collect from these groups.

Here I describe my findings, that students are more proficient at modeling simple spatial relationships, one at a time, than modeling more complex relationships; that students understand human-scale spatial relationships related to enhanced greenhouse effect better than very small or very large ones; and that students can associate and correlate spatially distributed features and phenomena to describe enhanced greenhouse effect.

Finally, I describe the ways in which student and expert feedback has informed not only revisions of this assessment specifically, but also to the assessment development process, for better assessment design, when spatial thinking assessments related to other environmental problems are developed in the future.

Keywords

assessment; enhanced greenhouse effect; environmental issues; models and modeling; spatial thinking

Disciplines

Environmental Sciences | Science and Mathematics Education

Language

English


Share

COinS