3D 360° Surface Morphometric Analysis of Pounding Stone Tools used by Hadza Foragers of Tanzania: A New Methodological Approach for Studying Percussive Stone Artefacts

Document Type


Publication Date


Publication Title

Journal of Archaeological Science: Reports



First page number:


Last page number:



Surface morphometry comprises a relevant set of techniques that provide objective tools to identify, map, and understand use wear patterns in stone tools. Thus far, these techniques have been applied mainly to 2D or 2.5D data, but their application to 3D 360° data is promising and still underdeveloped. Here, we apply new 3D techniques to calculate morphometric variables and to analyse surficial features and changes in pounding stone tools used for baobab processing among Hadza foragers of Tanzania. Baobab pounding stones were collected after use by Hadza foragers for processing the plant food and then 3D point clouds were acquired from laser scanners and SfM photogrammetry. Morphometry was conducted directly on 3D point clouds to avoid time-consuming and surface modifications related to more complex 3D data, such as meshing. Several morphometric variables were computed for the complete pieces (360° sphere) providing fast and accurate data to identify the detailed morphometric features of the artefacts. Additionally, stone surface changes due to baobab processing were measured by comparing the stone surface before and after use, thus enabling calculation of spatial abrasion patterns. Data were interpreted using multivariate exploratory statistical analysis. Differences in the effect of processing on surface morphology are likely explained by variations in raw source material and use. Results suggest that the traces produced by baobab processing on stone tools should be detectable in the archaeological record.


3D surface morphometry; Pounding stone tools; Use wear; Baobab processing; Multivariate exploratory statistics


Archaeological Anthropology



UNLV article access

Search your library