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ABSTRACT 

Design engineers use a variety of tools to perform calculations and to aid in the design 

process. For example, engineers designing gas turbines, specifically the aerodynamicists, use a 

combination of hand calculations, experimental data, and complex numerical codes to simulate 

air flow around each blade. Aerodynamicists designing gas turbines must predict the locations of 

the shocks to locate inefficiencies in the flow. In this thesis, three methods of calculating the 

shock angles are compared: analytical, experimental, and computational.  Three different airfoil 

shapes are tested: a rectangular flat plate, a supersonic diamond, and a turbine airfoil. Cascade 

tests of the airfoil shapes were also performed. Hand calculations using the compressible flow 

theory with shock analysis are performed on simplified single airfoil cases. The experimental rig 

used is a water table apparatus that simulates compressible flow. The different airfoils and 

configurations were tested in the water table and photographs were taken. ANSYS Fluent, a 

commercial Computational Fluid Dynamics (CFD) code, is run on each case. Due to the complex 

nature of the flow, hand calculations, experimental data, and CFD results are only compared for 

the flat plate and supersonic diamond single airfoil cases. The results from each method are 

compared and the percent error is taken to determine the accuracy of each method. All three 

methods produced results that were in an acceptable range of error for the flat plate. The 

analytical and computational for the supersonic diamond cases matched up within acceptable 

error, but the experimental results were off by a maximum of about 40%.  
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INTRODUCTION 

Gas turbines are used for a variety of purposes. They are used in industrial applications to 

generate power as well as in aviation as jet engines to provide thrust to propel an aircraft in 

flight. A gas turbine is an axial flow turbomachine consisting of a compressor, combustor, and a 

turbine. The compressor sucks in air from the atmosphere and compresses it through multiple 

stages. General Electric’s 7FA turbine engine uses a 14 stage compressor. The air enters the 

compressor and is compressed. The compressed air enters a combustion chamber where it is 

injected with fuel and ignited. The hot air is then accelerated through a turbine which extracts the 

usable energy from the flow as it rotates. The flow then rushes through the exhaust nozzle and 

propels the aircraft forward. Figure 1 shows a transparent model of an industrial gas turbine 

(Martin, Forry, Maier, & Hans, 2012). The different components are easily seen.  

 
Figure 1 - General Electric's 7FA Engine (Martin, Forry, Maier & Hans, 2012) 

 The velocity of the air in the turbine often times exceeds the speed of sound, or Mach 1. 

When the flow is above Mach 1, shocks form. Predicting the location of shocks in supersonic 

flow is important because shocks are major disruptions in the flow which restrict the flow 

making the gas turbine less efficient.  
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The purpose of this thesis was to analyze the shock location in a supersonic turbine cascade 

by comparing the results of the analytical, experimental, and numerical solutions. It is important 

to validate these three methods because they are used by engineers to design gas turbines that 

will generate power in power plants or provide vital thrust on a jet airplane.  A supersonic 

turbine cascade experiences flows above Mach 1. Supersonic flow is studied because there are 

advantages to increasing the velocity and temperature of the flow to achieve higher performance 

in gas turbines. This project analyzed the shock angles produced from different airfoil geometries 

in various cascade configurations in two-dimensional supersonic flow.  

This thesis was divided into three separate approaches to finding the shock angles: 1) 

analytical, 2) experimental, and 3) computational. The results from each section were compared 

using the analytical as a control. The analytical serves as the theoretical baseline. Background 

information on the three methods for analyzing shock angles is described below. 

 

Analytical Approach 

Hand calculations were performed using the compressible flow theory to solve for shocks 

around the airfoil. In compressible flow, the density of the fluid is not uniform. This means that 

the molecules of the fluid are able to compact very close together in some areas and not 

necessarily have the same compactness in other areas. There are regions in the fluid where the 

density is different than other regions. For this reason, shocks, or discontinuities in the flow, 

occur where the flow is accelerated very quickly. 

Shock waves are areas in the flow where the static pressure and temperature increase 

instantaneously. Shock waves occur in fluid moving faster than M=1. At speeds this fast, the 

flow does not have time to adjust for objects in its path. The object in the flow path causes a 
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disturbance within the flow. In supersonic flow, the molecules around the object do not have 

enough time to collide with each other and communicate with molecules upstream that there is 

an object in the way. The flow is moving too fast for molecular disturbances to level out, so the 

molecules begin to pile up and the fluid compresses forming a shock wave around the object 

(Anderson, 2007). 

 Three different types of compressible flow phenomena occur in flow over airfoils: 

normal shocks, oblique shocks, and expansion fans. Normal shocks occur perpendicular (90°) to 

the upstream flow. They generally form as bow waves in front of blunt objects. An oblique shock 

forms an oblique (less than 90°) angle. They form where the flow is suddenly directed around a 

concave corner.  The total pressure increases discontinuously across a shock wave causing a 

buildup of pressure where the shock occurs (Anderson, 2007). Expansion fans are also 

discontinuities in the flow where pressure decreases rapidly. Expansion fans generally occur at 

an oblique angle to the flow and form around convex corners, or away from the flow (Anderson, 

2007). Figure 2 shows a diagram of an oblique shock and expansion fan. 

 
Figure 2 –Normal Shock, Oblique Shock, Expansion Fan. The black lines and arrows represent 

the fluid flow direction, and the angle, θ, represents the deflection angle of the surface. 

(Anderson, 2007) 
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Experimental Approach 

Compressible flow is highly dependent upon the Mach number of the flow, defined as the 

ratio of the flow velocity to the speed of sound. There is a strong analogy between shocks and 

shock angles in compressible flow and hydraulic jumps in surface flows in water. Hydraulic 

jumps are apparent as abrupt changes in water depth, such as bow waves formed from objects 

moving through water. The angle of hydraulic jumps is a strong function of Froude number, 

defined as the ratio of flow velocity to gravitational velocity, Fr = V/√gy. This analogy allows us 

to use water tables to generate hydraulic jumps around objects. The bow waves formed at a 

specific Froude number has the same angle as a bow shock formed when M = Fr.  

A water table was used to test the different airfoil geometries and configurations in a 

water fluid domain that simulates compressible flow in air.  The water table, shown in Figure 3, 

is a subsonic test apparatus that is used for testing how fluid (water) reacts to different geometric 

shapes when they are placed within a flow region.  

 
Figure 3 – UNLV Water Table Apparatus 
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The water table is a subsonic alternative to testing supersonic airflow in an expensive 

pressurized wind tunnel. If the hydraulic jump analogy to compressible flow is assumed, the 

water table provides an accurate visual representation of shock locations.   

Hydraulic jump is a phenomenon that occurs in open channel flow when fluid of high 

velocity and low velocity meet. These fluids are moving at a subsonic rate. Since the mass flow 

rate and momentum are the same in the fluid, the high velocity fluid must slow down abruptly to 

match the low velocity fluid. To compensate, the high velocity fluid will convert some of its 

kinetic energy to potential energy seen as a change in height of the fluid. Figure 4 shows a 

picture of hydraulic jump from a faucet (Bush & Aristoff, 2008). The high velocity of the water 

coming out of the faucet hits the bottom of the sink and spreads. The water that gets farther away 

from the faucet slows down creating a region of fluid with low velocity. The height difference is 

clearly seen where the fluid of high velocity from the faucet meets the region of low velocity. 

This height difference can be measured and the Froude number, a dimensionless quantity 

describing the flow, can be calculated.  

 
Figure 4 - Hydraulic Jump Forming Around a Faucet (Bush & Aristoff, 2008) 

http://www.google.com/url?sa=i&rct=j&q=hydraulic+jump+ocean&source=images&cd=&cad=rja&docid=X0kI6bMfUpK3LM&tbnid=h10q8Kzjn6Kf7M:&ved=0CAUQjRw&url=http://www.redorbit.com/images/pic/32888/&ei=OUJeUcK4DYGBiwKg7oGIAw&psig=AFQjCNGyXIatalQ4g-FFjeL-caTzqepBGw&ust=1365218176883579


8 
 

Computational Approach 

 Since the flow inside a gas turbine is very complex to solve by hand, engineers use a 

numerical simulation to predict the flow. CFD is used to predict the locations of the shocks. The 

Navier-Stokes equations that govern flow in a continuum are the basis for CFD solvers. Since the 

equations contain multiple unknowns, non-linear terms, and second-order partial differential 

equations for complicated flow problems, hand calculations are impossible (Pritchard, 2011). 

CFD uses numerical methods to simultaneously solve for the unknowns and complicated terms 

for each element in the mesh.  

The commercial software used in this numerical calculation is ANSYS Fluent. This 

solver uses the finite volume method to solve the flow properties in a finite volume around each 

node in the mesh. An iterative solver was used to solve each cell in the grid in this study. The 

solver continues to iterate until the error of each variable in the governing equations has reached 

the selected convergence value. 

In this study, the shock angles about several airfoil shapes will be compared using results 

from analytical calculations using compressible flow theory and from the computational fluid  

dynamics package, FLUENT. The results will also be compared to photographs obtained from a  

water table that exploits that analogy between compressible flow and hydraulic jumps when the  

Froude numbers and Mach numbers are matched. 
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LITERATURE REVIEW 

For the different approaches to find the shock angles in this thesis (analytical, 

experimental, and computational), important guidelines found in past research were used. 

    

Analytical Approach 

In order to use the compressible flow theory, certain assumptions about the fluid flow 

were made. The flow is assumed to be steady. The Reynolds number, a ratio of inertial forces to 

viscous forces, was calculated to be 4.09 x 10
6
 which is considered to be infinite. This means that 

the inertial forces outweigh the viscous forces in the fluid. Because of this, the flow is assumed 

to be an inviscid (dynamic viscosity should approach to 0). The flow is considered adiabatic with 

no body forces, such as gravity. The fluid, being air, is considered an ideal gas, or calorically 

perfect (Anderson, 2007).  Also, the flat plate was assumed to be infinitely thin.  

 

Experimental Approach 

The Froude number is a dimensionless quantity. It is a ratio of the fluid velocity to the 

gravitational wave velocity. It is calculated by measuring the bow wave from an object and 

plugging it into Equation (1) It can also be calculated by measuring the height of the fluid before 

the jump and after the jump and plugging them into Equation (2).  

   
 

       
       (1) 

  

  
 

(√        )

 
 (2) 

In the hydraulic jump analogy, the Froude number is analogous to the Mach number in 

compressible flow (Fr = M), so a bow wave in the water table will have the same wave angle as a 

shock in compressible flow (Culbreth, 2012). The locations of the hydraulic jumps that occur 

(1) 
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around each of the airfoil geometries in the water table are where the shocks are predicted to 

form in supersonic compressible flow. The hydraulic jump will be seen in distinct lines coming 

from the airfoil geometry. The angle of these lines is measurable and can be compared with the 

angles from the analytical calculations.  

A water table apparatus is a useful apparatus to test two-dimensional flow problems. The 

diagram below in Figure 5 shows the main components of the water table. The reservoir is filled 

to the desired level with water from a hose. The pump is turned on and the flow gate is opened. 

The flow of the water through the pump is controlled by a turn knob. Water is flooded over the 

test section and spills into the spill tank. The water circulates back through the pump and into the 

reservoir to provide a continuous flow over the test section. The test section of the water table 

allows for a good visual representation of the reaction of the flow across a two-dimensional 

cross-section of an airfoil. Since a cross-section of an airfoil is used, the flow across the whole 

wing is assumed to be the same at each span. 

 
Figure 5 - Water Table Basic Components (not to scale) 
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Computational Approach 

Creating the geometry of the airfoil and the fluid domain is the first step in setting up the 

CFD simulation. Standard practices dictate the dimensions of the fluid domain should be two 

times the chord length before the airfoil and five times the chord length after the airfoil with a 

width of ten times the airfoil chord length. A diagram is shown below in Figure 6 for a better 

visual representation.  

 
Figure 6 – Fluid Domain Standard Dimensions (not to scale) 

Meshing the fluid domain is the next step in solving CFD problems. In this thesis, a 

structured mesh was used. The flow field was first meshed with a finite number of elements. The 

number and size of these elements are important considerations in mesh quality. The number of 

elements should be fine enough to capture important geometry, but not too fine as to crash the 

memory of the computer (Tu, Yeoh & Liu, 2008). Another important mesh factor to consider is 

the aspect ratio of the cells. Aspect ratio is the height of the cell divided by the width. An aspect 

ratio between 0.2 and 5 is acceptable (Tu, Yeoh & Liu, 2008). If the aspect ratio is too large or 

too small, the solution will be inaccurate and the job will have a difficult time in converging. 

Another mesh guideline is the skewedness (orthogonal quality) of the elements. For example, a 

perfect square will have a skewedness angle of 90°. Anything less than or greater than that angle 



12 
 

distorts the square into a parallelogram. Typical allowable skewedness angles range from 45° to 

135° (Tu, Yeoh & Liu, 2008). Figure 7 is an example of a good structured mesh that meets all 

the above criteria (Gallardo, 2010). 

 
Figure 7 – Example of a Good Mesh (Gallardo, 2010) 

Setting up the flow conditions and solution criteria is the final step before the simulation 

is run. For complicated programs such as ANSYS Fluent, it helps to have a reference off of 

which to base future cases. An example of a supersonic flow over a wedge was found on an 

internet Fluent tutorial that has similar flow conditions to the cases in this thesis (Gallardo, 

2010). The flow physics and solution criteria in this thesis were modeled after this example. The 

same density-based solver was used to model compressible flow. The rest of the flow properties 

used from this example can be found in Appendix A.  
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METHODOLOGY 

Geometry Selection 

The different airfoil geometries for this thesis were chosen to provide a broad understanding 

of how shocks form around different shapes.  The geometries that were analyzed are listed 

below: 

1) Flat Plate 

2) Supersonic Diamond 

3) Turbine Blade 

The dimensions of the different airfoils are seen in the CAD drawings in Figure 8. These 

dimensions were chosen because they best fit in the test section of the water table.  

 
Figure 8 – CAD (SolidWorks) drawings of the three airfoil geometries used in this project (not 

to scale) 

 

 This project will examine the flow around the following configurations of the geometries 

listed above. The diagram in Figure 9 shows the configurations for the cases analyzed in this 

project. The cases are numbered in Table 1 below.  
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Table 1 - Cases Considered  

Case # Configuration  Geometry AOA (°) 

1 Single Airfoil Flat Plate 0 

2 Single Airfoil Flat Plate 4 

3 Single Airfoil Supersonic Diamond 0 

4 Single Airfoil Supersonic Diamond 4 

5 Cascade Flat Plate 0 

4 Cascade Flat Plate 4 

6 Cascade Supersonic Diamond 0 

8 Cascade Supersonic Diamond 4 

9 Single Airfoil Turbine Blade 0 

10 Cascade Turbine Blade 0 

 

 
Figure 9 – Configurations Studied (not to scale): The flow moves from left to right. The 

numbers correspond to the case numbers in Table YY1a.  

 

Water Table Set-Up Procedure 

The water table must be plugged in to an electrical outlet to run the pump. A hose was 

placed in the reservoir and is turned on. The water will flood into the pump and will start filling 

up the spill tank. Once the water in the spill tank has reached the height of the reservoir (water 
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will start accumulating in the reservoir), the hose is turned off and taken out of the reservoir. The 

water table is now ready to operate.  

 

Froude Number/Mach Number Calculation 

 The water table was used to find the Mach number from the Froude number. This Mach 

number was used in the hand calculations, experiment, and CFD.  

 The water table was turned on. The flow gate was adjusted to an approximated 3 mm 

opening. The flow was adjusted by the control knob, so the water flowing across the test section 

will yield a Froude number of about 1.5. Since there was no way of determining what flow rate 

the pump was producing, the experimenter must “guess and check” by turning the knob and 

calculating the Froude number.  

The Froude number was calculated in two ways. The first method of calculating the 

Froude number was by measuring the angle of the bow shock. A flat plate was placed parallel to 

the flow (shown in Figure 10). The plate was adjusted so that the angles of the hydraulic jumps 

(θ1 and θ2) are symmetric. The hydraulic jump angles were measured, and the average was 

taken.  Table 2 shows the two measured values and its average.  
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Figure 10 - Bow Shock Method for Calculating Hydraulic Jump: θ1 and θ2 are the angles of the 

hydraulic jump. Because of flow symmetry, θ1 ≈ θ2. 

 

Table 2 - Measured Values of Hydraulic Jump Angle 

θ1 41° 

θ2 40° 

θAverage 40.5° 

  

The Froude number was found from the following equation. Using the average value of 

θ, the measured Froude number was calculated. The equation to calculate the Froude number is 

found below. 

        (
 

 
) 

        

The second method uses the height difference in the fluid and is called the conjugate 

depth method. A flat plate was placed perpendicular to the flow shown in the photograph in 

Figure 11. The plate was placed perpendicular to the flow so that a large bow wave was formed 

where the water jumps, and the measurements were easily taken. The heights are measured with 

a caliper at three different points before and after the hydraulic jump.  
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Figure 11 – Airfoil Set-Up for the Conjugate Depth Method: The fluid is moving from left to 

right. The red line shows the location of the hydraulic jump bow wave. Points 1-3 (white) are 

measured for the value of h1, and Points 4-6 (black) are measured for the value of h2.  

 

The points were averaged to get a single value of h1 and h2. Table 3 shows the measured values 

and their averages.  

Table 3 - Measured Values for the Conjugate Depth Method. The measured depth before the 

jump is h1, and the measured depth after the jump is h2. 

 h1 (mm) h2 (mm) 

Point 1 10.14 Point 4 18.72 

Point 2 10.52 Point 5 17.84 

Point 3 9.99 Point 6 18.49 

Average                                   10.21                18.35 

 

The Froude number was calculated using the average values of the two depths. The depths were 

plugged into the equation below. 
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√        

 
 

         

 The two values of the Froude number found in the conjugate depth method and the bow 

shock method are averaged to get a final Froude number of 

        

This Froude number was used for all the experiments performed on the water table. Because of 

the hydraulic jump analogy to compressible flow, the value of the Froude number equals the 

value of Mach number.  

       

This Mach number was used as the inlet Mach number for the analytical hand calculations and in 

the CFD simulations.  

 

Analytical Method 

An airfoil is a complicated shape, so a simplified model is chosen to predict the location 

of shocks. As the case number increases, the more complex the geometry, and hand calculations 

become more difficult. Because of time constraints and increased complexity of each case, hand 

calculations were only performed on Cases 1-4.  

The incoming flow conditions were the same for all cases. M1 and P1 were the incoming 

Mach number and pressure respectively. These values are given below and are the same for all 

cases. In Figures 12-15, the incoming flow is horizontal and is represented by the arrow. The 

Mach number calculated from the Froude number is found below. 
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Case 1-Flat Plate, Single Airfoil, at 0° AOA 

Case 1 is shown in Figure 12 below. The incoming flow is represented by the arrow. The 

Mach number is given below. The lines coming from the flat plate are the anticipated shock 

lines. The shock lines divide the flow up into two regions. Since the flat plate has a 0° angle of 

attack, the flow is symmetric, so the region underneath region 2 will have the same properties. 

The following calculation assumes that the flat plate is infinitely thin for simplicity. 

 
Figure 12-Flat Plate at 0° Angle of Attack (not to scale): The red line represents the 

predicted location of the oblique shock. 

 

The shock angle, β1, was found from the Theta-Beta-Mach diagram, a standard diagram 

found in Appendix C. The Theta-Beta-Mach diagram gives the relation of the deflection angle, 

theta, the shock angle, beta, and the Mach number. Since the incoming flow is at a 0° angle of 

attack and the surface of the plate is parallel to the incoming flow, the deflection angle is 0°.  

Case 2- Flat Plate, Single Airfoil, at 4° AOA 

The diagram for this case is shown in Figure 13. The flow was divided into three separate 

regions.  
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Figure 13-Flat Plate at 4° AOA (not to scale): The red line represents the predicted location of 

the oblique shock. The expansion fan is represented by the green and black line above the 

oblique shock. The green line in the expansion fan is the forward Mach line. 

Region 1 to 3, where the oblique shock is located, was analyzed. The deflection angle, θ, 

is the same as the AOA, α, since the flat surface of the plate is angled down at a 4° angle. Since 

the incoming Mach number (M=1.56) and the deflection angle (θ=4°) are known, the Theta-

Beta-Mach diagram (Anderson, 2007) was used to find the angle of the oblique shock, β1.  

Next, Region 1-2 was analyzed. Using the incoming Mach number, the angle of the 

forward Mach line of the expansion fan was calculated with the following equation. 

        (
 

  
)  (3) 

 

Case 3 – Supersonic Diamond, Single Airfoil, at 0° AOA 

Figure 14 is a diagram of Case 3. Since the flow is symmetric, the flow can divided into 

four regions. Region 4 is neglected because it has no effect on the airfoil. However, the bow 

shock separating Region 1 and 4 was the only shock phenomenon that was analyzed for this 

case. This is because the angles expansion fans (Region 2 to 3) were not able to be measured in 
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the experiment or the CFD; however, the angles can be calculated by knowing the Mach number 

of Region 2 and using Equation (3) to find the angle of the forward Mach line.  

 
Figure 14- Supersonic Diamond, Single Airfoil, at 0° AOA: Shocks are represented by the black 

lines. The Expansion fan is represented by the green line. The deflection angle, θ, is equal to 15°. 

 

It was discovered that the deflection angle, θ = 15°, is greater than the maximum 

allowable angle, so the shock for this case is detached. Since detached shock calculations are 

fairly complex to do by hand, the Mach number was increased to 2.2. Increasing the Mach 

number allows for a larger deflection angle. 

After the Mach number was increased to M=2.2, the same principles that were used to 

solve Cases 1 and 2 were implemented in analyzing this case. The values that were obtained are 

found in Table 5 in the Results section.   

 

Case 4 – Supersonic Diamond, Single Airfoil, at 4° AOA 

Figure 15 shows a diagram of Case 4. Since the flow is not symmetric around the airfoil, 

it is divided up into six regions. Region 4 is neglected since it has no effect on the airfoil.  
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Figure 15 - Supersonic Diamond, Single Airfoil, at 4° AOA: The black lines represent the 

shocks, and the green lines represent the expansion fan. With an angle of attack of 4°, the upper 

deflection angle, θ1, is equal to 11°, and the lower deflection angle, θ2, is equal to 19°. 

 

The Mach number for this case was also increased to M=2.2 to get rid of the detached shock. The 

following values were found by using the same shock and expansion fan principles used in Cases 

1-3. The values that were obtained are found in the Results section.   

 

Airfoil Construction 

The airfoils were constructed in the UNLV Engineering machine shop with available 

shop materials. Table 4 below lists the material used and the machining method to create each 

part. Aluminum was chosen because it is easy to machine, and it is heavy enough to not float 

away when put in the water table.  

Table 4 - Material/Machining Method of Airfoil Shapes 

Airfoil Shape Material Machining Method 

Flat Plate 0.5 in x 1.0 in Aluminum 

Rectangle Stock 

Vertical Band Saw 

Supersonic Diamond 0.75 in Aluminum Plate Vertical Band Saw 

Turbine Blade 0.75 in Aluminum Plate CNC Mill 
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Figure 16 shows the final machined airfoil geometries to be tested in the water table.  

 
Figure 16 – Aluminum Airfoil Geometries to Be Tested in the Water Table 

 

 

Experimental Method 

To experimentally test the compressible flow theory without a supersonic wind tunnel, a 

water table was used assuming the hydraulic jump analogy. The dimensions of the water table 

are shown in the photograph in Figure 17. 

 
Figure 17 – Dimensions of the test section of the water table 
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The flow of the water table was adjusted to a Froude number of 1.56 (calculated above). 

The flow of the water was adjusted by a knob on the control box, but there was no display 

showing at what flow rate the water is flowing. The user must do trial and error to arrive at the 

correct Froude number by the conjugate depths method or the bow shock method.  

Cases 1-10 were tested in the water table. The airfoils were placed in the center of the 

water table, so that the effects of the hydraulic jumps interacting with the boundaries of the test 

section are minimized. Photographs were taken with a digital camera 2 to 3 feet directly above 

the test specimens. The angle of attack of the airfoils was measured by a protractor placed under 

the clear bottom. The airfoils were placed at a 0° and 4° angle of attack to match the 

configurations shown in Figure 3. The photographs are found in the Results section.  

 After realizing that the shock was detached for Cases 3 and 4 for a Froude number of 

1.56, the water table experiment was repeated at a Froude number of 2.2.  

 

 Computational Procedure 

 ANSYS Fluent was the CFD software that was used to predict the shock locations for 

Cases 1-10. ANSYS Fluent has different steps to go through when a project is first created. The 

steps are listed below. A more detailed procedure is found in Appendix A. 

1) Geometry: The geometry of the airfoil and the fluid domain were created in the ANSYS 

geometry editor.  
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2) Mesh: The mesh is created using the settings found in Appendix A. The mesh is refined 

around the airfoil to properly capture the boundary layer.  The meshes for Case 1, 5, and 

9 can be found in Figures 18-20 below.  

 
Figure 18 – Case 1: Flat Plate Mesh 

 

 
Figure 19 – Case 3: Supersonic Diamond Mesh 
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Figure 20 – Case 9: Turbine Blade Mesh 

3) Set-Up: In this section, the physics of the problem are specified. This includes the 

boundary and flow conditions. The details of the set-up can be found in Appendix A.  

4) Solution: This section is where the details of the solver are specified. The solution is 

initialized, and additional solving parameters are specified.  

After realizing that the shock was detached for Cases 3 and 4 for a Mach number of 1.56, the 

CFD was repeated at a Mach number of 2.2 for these cases. 
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RESULTS 

 The results of the experimental and CFD are shown below in Figures 21-30. The 

photograph of the experiment in the water table is shown on the left (a), and a contour plot of the 

static pressure is shown on the right (b).  

 The bow shock angles of the analytical results were calculated using the compressible 

flow theory. These results are found in Table 5.This project refers to the shock or expansion fan 

that is created at the beginning of the airfoil as “bow shock.”  

 The angles of the bow shock were measured from the photograph of the experiment. 

Lines were drawn on the hydraulic jump line shown in Figure 21 (a). For the flat plate, the bow 

shock cannot be drawn as a straight line from the tip of the leading edge away from the airfoil. 

This is because there is a strong normal shock on the front surface of the leading edge. The angle 

of a normal shock is 90°, so the shock needs to have enough space to curve around the flat plate. 

A line was drawn from the outermost region of the shock to the centerline of the flat plate. After 

the lines were drawn, the photographs were printed out, and the angle was physically measured 

with respect to the incoming flow with a protractor. 

The angles of the computational results were found by selecting two points in Fluent that 

were located on the shock. Since the shock is a rapid increase in pressure, the location of the 

shock is easily seen on the contour plot of static pressure. By finding the vertical and horizontal 

distance between the two points and doing an arctangent relation, the angle of the shock was 

found.   

The angles found from the three methods were compared, and the percent error was 

calculated. The percent error is found in Table 6. 



28 
 

  
(a) Water table photograph: Lines were drawn 

to show shock locations with respect to the 

horizontal incoming flow. 

(b) CFD result showing static pressure 

Figure 21 – Case 3: Flat plate at 0° Angle of Attack, M=1.56 

 

 

 

 

 
(a) Water table photograph (b) CFD result showing static pressure 

Figure 22– Case 2: Flat plate at 4° Angle of Attack, M=1.56 
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(c) Water table photograph (d) CFD result showing static pressure 

Figure 23 – Case 3: Supersonic diamond at 0° Angle of Attack, M=2.2 

 

  
(a) Water table photograph (b) CFD result showing static pressure 

Figure 24 – Case 4: Supersonic diamond at 4° Angle of Attack, M=2.2 
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(a) Water table photograph (b) CFD result showing static pressure 

Figure 25– Case 5: Flat plate cascade at 0° Angle of Attack, M=1.56 

 

 
 

(a) Water table photograph (b) CFD result showing static pressure 

Figure 26 – Case 6: Flat plate cascade at 4° Angle of Attack, M=1.56 
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(a) Water table photograph (b) CFD result showing static pressure 

Figure 27 – Case 7: Supersonic diamond cascade at 0° Angle of Attack, M=1.56 

 

 

 
(a) Water table photograph (b) CFD result showing static pressure 

Figure 28 – Case 8: Supersonic diamond cascade at 4° Angle of Attack, M=1.56 
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(a) Water table photograph (b) CFD result showing static pressure 

Figure 29 – Case 9: Turbine blade 0° Angle of Attack, M=1.56 

 

 
 

(a) Water table photograph (b) CFD result showing static pressure 

Figure 30– Case 10: Turbine blade cascade at 0° Angle of Attack, M=1.56 
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Table 5 -Angles of the Bow Shocks of the Three Methods: Top refers to the bow shock that 

forms above the airfoil, and Bottom refers to the bow shock that forms below the airfoil. 

 
 

 

 

 

 

 

 

Table 6 - Percent Error of the Three Methods: Error greater than ±10% is high-lighted yellow. 

 
  

Case # Description
 Shock

Location
Analytical Experimental Computational

Top 40.5 41 42.90

Bottom 40.5 41 43.34

Top 38.87 40 43.71

Bottom 44.5 45 45.00

Top 41 31 41.46

Bottom 41 33 41.11

Top 37 26 37.39

Bottom 46.5 35.5 46.03

1

2

3

4

Flat Plate

0° AOA

Flat Plate

4° AOA

Diamond

0° AOA, M=2.2

Diamond

4° AOA, M=2.2

Angle Measurments (°)

Case # Description
 Shock

Location

Analytical

vs

Experimental

Analytical 

vs

Computational

Experimental

vs

Computational

Top 1.2% 5.9% 4.6%

Bottom 1.2% 7.0% 5.7%

Top 2.9% 12.5% 9.3%

Bottom 1.1% 1.1% 0.0%

Top -24.4% 1.1% 33.7%

Bottom -19.5% 0.3% 24.6%

Top -29.7% 1.1% 43.8%

Bottom -23.7% -1.0% 29.7%

1

2

3

4

% Error

Flat Plate

0° AOA

Flat Plate

4° AOA

Diamond

0° AOA, M=2.2

Diamond

4° AOA, M=2.2



34 
 

DISCUSSION 

To get a good sense of what value of error is acceptable, an uncertainty calculation is 

performed to find the fractional error. 

The equation to find the Mach number from the water table experiment is shown below. 

  
 

    
  (4) 

The formula for uncertainty is seen below. 

   √(
  

  
  )

 

 (5) 

After taking the partial derivative of Equation (4), the uncertainty equation for the Mach 

number is derived. 

   
    

     
             (6) 

The uncertainty of measuring the shock angle in the experiment is shown below. The 

shock angle found analytically for the flat plat is used in this calculation. 

              

The uncertainty is calculated. The Mach number can be rewritten including the 

uncertainty. 

          

              

With the uncertainty of the Mach number calculated, the fractional error of the Mach 

number can also be found. The number below was used as a guideline for acceptable angles. 

                 
  

 
     

Using the fractional error as a guideline for determining the acceptable error, most of the 

experimental and computational results match the analytical results for the flat plate cases within 
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the required 10%. The only discrepancy was on the top bow shock for Case 2 where the 

analytical and the computational had a positive error of 12.5% (shown in Table 6) which exceeds 

the allowable fractional error by 2.5%. This error could be due to CFD errors, like measuring the 

location of the shock in CFD. 

With the current results, it is difficult to pinpoint the exact location of the shock. As seen 

in Figure 31, the shock locations are blurry and not easily defined. Shocks are abrupt 

discontinuities in the flow. In nature, this exists as an infinitesimally thin line. It is very difficult 

to capture a shock line that accurately represents nature in this way. 

 
Figure 31 – Shock lines are not clearly defined 

 

To capture the shock location clearly, the mesh in the shock region needs to be refined. A 

study was conducted at UNLV to determine the proper mesh for a shock line. Figure 32 below 

shows the results from the study (De Bues, Chen & Pepper, 2001). The shock line is blurry in the 

top picture. With mesh refinement, the shock location appears to be more precise. A mesh 



36 
 

refinement exhibited by the study conducted should be applied to future work in this area to get a 

more accurate result. 

 

Figure 32 - Effects of Mesh Refinement at Shock Location (De Bues, Chen & Pepper, 2001) 

Another source of error could come from the fact that the flat plate cases did not reach 

the convergence criteria of 1e-6 (Appendix B). The cases were stopped early due to time 

constraints. The angles were measured in CFD and were relatively close to the analytical value. 

Running the cases for longer time will smooth out some regions where the flow is not perfectly 

symmetric. However, it probably will not make much of a difference to the angle of the bow 

shock. More time is needed to run the cases to convergence. This should be done in future work. 

Examining Table 6 again, shows very high error for Cases 3 and 4 (supersonic diamonds) in the 

analytical and experimental and the experimental and computational comparisons. However, 

there is very small error in the analytical and computational comparison. This result suggests that 

the experimental results are inconsistent with the theoretical calculations as well as the computer 

modeling of the flow physics. Convergence issues are ruled out since both cases met the 

convergence criteria of 1e-6 (Appendix B). The fact that the error is within a range of about 20% 

to 40% and the signs are all consistent in each category suggests a systematic error. This 

systematic error could be due to the assumptions made in the water table experiment. It was 
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assumed that the shock lines shown in the experiment represent the oblique shock lines. The 

formula to calculate the angles of these shocks that was used in this experiment gives the angle 

of the Mach wave. 

A Mach wave is similar to an oblique shock, but it is an infinitesimally weak oblique 

shock. That is why it is the limiting case for an oblique shock wave (Anderson, 2007). It is 

calculated by the formula below. 

        

 
 (7) 

This formula is the same as the equation used to calculate the Froude number for a bow 

shock. This formula only applies to a shock at 0° deflection angle. This is when a weak oblique 

shock becomes a Mach wave (Pritchard, 2011). Using this formula implies that the shock formed 

in the experiment is a Mach wave instead of an oblique shock represented in the analytical and 

computational calculations. The water table analogy seems to break down for complicated flow 

scenarios. 

The water table can be used as a general guideline for simple flow problems, such as the 

flat plate cases. Case 2 of the flat plate cases where the angle of attack is 4° should show the 

same type of problem as the supersonic diamond since it has a deflection angle of 4°. Since it is 

such a small deflection angle, there is not much discrepancy in the measured angle. The error is 

more prominent in the supersonic diamond cases because the deflection angle is quite large, up 

to 19°. 

The cascade and turbine configurations (Cases 5-10) were tested in the water table and 

run in CFD, but they are not fully converged. Since they have not reached convergence, the 

results from these cases cannot be trusted as concrete results. However, they can be used as 

guidelines to how the flow is starting to form around each configuration. Figures 25-30 in the 
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Results section compare the water table results and the CFD results side by side. The water table 

results and the CFD results show similar trends. 

Figures 25 and 26 show the flat plat cascades. Both the water table and the CFD show the 

shock diamonds that form after the airfoils. These figures also show that the shocks between the 

airfoils are reflected. However, the angles of the reflections and how many reflections occur are 

different. The shocks in the CFD are faint and difficult to locate. The CFD also predicts that a 

huge bow shock forms over all three of the airfoils. The CFD views the three airfoils as one 

object. The high pressure experienced at the leading edges of the airfoils blocks flow from 

entering in between the airfoils. This is why the shocks appear to be faint. The water table shows 

the reflected shocks more clearly than the CFD. Applying a denser mesh in front of the airfoils 

may smooth out the flow. Also a denser mesh between the airfoils where the reflected shocks 

occur will help shock lines become more apparent and easily measured. This should be done in 

the future. 

Similar trends appear in Figures 27 and 28 with the supersonic diamond cascades. A huge 

bow shock forms before the three airfoils. As in the flat plate cascade cases, a denser mesh in 

front and between the airfoils is needed to smooth the flow. It should also be noted that more 

time is needed to converge these cases fully. Even with major errors, the water table and the 

CFD still show similar trends. Editing the mesh and running the CFD cases for a longer time 

should be done in future work. 

The turbine blade cases in Figures 29 and 30 are interesting. The CFD for these cases is 

not fully converged. More time is needed to run these cases to convergence. Even with the 

convergence issue, the water table and the CFD also show similar trends. In Figure 29, the CFD 

shows the flow hitting the leading edge of the airfoil creating a detached bow shock. After the 
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shock, there is a small low pressure region on the lower surface of the airfoil where the flow is 

accelerated along the curved surface of the airfoil and creates a strong shock. This shock creates 

a region of high pressure represented by the red area long the bottom surface of the airfoil. This 

high pressure build up chokes the flow and makes the turbine less efficient. A higher total 

pressure ratio of the turbine means that the flow is more efficient, so more work can be extracted 

from it. 

In the turbine cascade in Figure 30, the same characteristics appear in the cascade as in 

the single airfoil. The shock is seen to reflect off the surface of the airfoil. In a better turbine 

cascade design, the shock should be further downstream. This shock occurs too soon in the flow 

path creating a buildup of pressure that decreases the usefulness of the flow. 

The water table results for Case 9 and 10 appear to be similar to the CFD results. The 

water table shows the bow shock on the single airfoil as well as the pressure buildup that occurs 

on the lower surface of the airfoil. The reflected shock is also seen in Figure 30a that corresponds 

to the buildup in the CFD result in Figure 30b. However, the CFD does not capture the wake 

behind the airfoil seen in both the single turbine blade as well as the cascade. This wake forms in 

the water table and is clearly seen by the hydraulic jump lines that form off the trailing edge. The 

inconsistent results could be due to the fact that turbulence was turned off in the CFD.  Turning 

turbulence on in the CFD may allow wakes to form. Also, more time is needed to run the CFD 

cases. This will give more trusting results. Also more investigations into the usefulness of the 

water table are needed to finish the analysis. This should be done in the future studies. 
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CONCLUSION 

 This study shows that the shock angles from the analytical method and the computational 

method using CFD are fairly consistent for both the flat plate and the supersonic diamond cases. 

Experimental results differ slightly for the flat plate cases. This could be from the error that is 

associated with the shock location in the CFD not being clearly defined. The future work should 

refine the mesh in the shock locations. The experimental results for the supersonic diamond 

cases differed greatly from the analytical and CFD. This could be due to convergence issues, but 

mainly due to an error in assumptions for the oblique shock equations. Although the water table 

analogy breaks down for complex flows, it is still able to provide qualitative results that can be 

compared with the results from the CFD. Further investigation into possible discrepancies in the 

hydraulic jump analogy is required for the future work.  

 This thesis is able to prove that CFD and analytical results are consistent when the cases 

are allowed to run their full length to convergence. However, due to the scope of this project, 

some cases did not fully converge. More time is required to converge the cases in future analyses 

of this work.  
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APPENDIX A 

Fluent Settings 

The following steps were performed to model each case tested in this thesis. The case 

shown below is an example case that uses the same set up, but it has different geometry.  

Workbench Instructions 

1. Drag over Fluid Flow (Fluent) from the toolbox to the workspace. 
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Geometry 

1. Open the geometry tab. 

2. Make sure the units are in millimeters.  

 

3. Create geometry of the fluid domain and airfoil. Specify the dimensions here. 
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4. In the overhead menu, click on “Concept” and then “Surface from Sketches.” Select the 

outer edges of the fluid domain geometry using the edge tool. Click apply.  
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5. In the tree outline, open “Surface Body.” Go down to “Details of Surface” and change 

“Fluid/Solid” to “Fluid.” 

 

6. Save Project 
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Meshing 

1. Open up the mesh creator from the workbench.  

2. In the tree outline, right click on “Mesh.” Click on “Insert” and then “Sizing.” 
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3. Select the face tool and click on the fluid domain. Change the element size to the required 

dimension and click “Apply.” 
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4. In the tree outline, right click on “Mesh.” Click on “Insert” and then “Refinement.”  
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5. Select the edges of the airfoil geometry. Set the “Refinement Level” to 1 and click 

“Apply.”

 

6. Click on “Generate.” 
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7. Select outer boundaries of the fluid domain using the edge too. Right click and select 

“Create Named Selection.” Rename selection to “Farfield.” 
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8. Select outer boundaries of the airfoil using the edge too. Right click and select “Create 

Named Selection.” Rename selection to “Walls.” 

 

9. Click on “Update Project.” 
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Set-Up 

1. From the Workbench, click on “Set-Up” to open it.  

2. The Fluent Launcher opens. Make sure the “Dimension” is in 2D. Match the rest of the 

options to the following picture.  
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3. Under “General,” the following figure shows the settings used.  
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4. Under “Models,” make sure “Energy” is “On” and “Viscous” is set to “Inviscid.” 

 

5. Under “Materials,” click to edit “Air.” Change the “Density” to “ideal-gas” in the pull-

down menu. The rest of the values should change to match the following figure.  
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6. Under “Boundary Conditions,” change “Farfield” to have “Type” of “Pressure far-field.” 

In the “Pressure Far-Field,” window, change the “Gauge Pressure” and “Mach Number” 

to match the following figure.  

 

7. Still under the “Boundary Conditions” tab, click on “Operating Conditions.” Change the 

“Operating Pressure” to 0.  
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8. Under “Reference Values,” change “Compute from” to “Farfield.”  
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Solution 

1. Click “Solution Methods” and match the options to the following figure.  
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2. Under “Solution Controls,” change the “Courant Number” to 0.3. 

 

3. Under “Monitors,” change all the residuals to 1e-6. 

 



59 
 

4. Initialize the solution by computing from “Farfield” in the “Solution Initialization.” 
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5. Under “Run Calculation,” change the number of iterations to the desired amount (around 

5000 to start).  

 

9. Click on “Calculate” to start the solution.  
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APPENDIX B 

Mesh and Solution Data 

 This table shows the requirements for a good mesh mentioned in the Computational 

section in the Literature Review. The minimum orthogonal quality ranges from 0 to 1. Values 

closer to 1 are considered good. The maximum aspect ratio of 5 was met for all cases except 

Case 10. Case 10 needs to be re-meshed.  Only two cases (Case 3 and 4) met the requirement of 

convergence (<1e-6). Due to time constraints of this project, the cases were not run to full 

convergence. It is recommended in future work to run the cases the appropriate amount of time.  

 

 
  

Lowest Highest

1 144450 1307 8.78E-03 1.20E-02 0.7559 3.463

2 174087 18156 6.54E-03 3.60E-02 0.743 3.21

3 14787 5530 7.34E-07 1.00E-06 0.776 3.52 Yes

4 14753 4180 5.90E-11 9.98E-11 0.786 3.03 Yes

6 91839 1327 1.67E-03 2.78E-03 0.746 2.66

7 92167 1536 3.24E-03 5.20E-03 0.754 3.595

8 92607 2159 2.52E-02 4.45E-02 0.758 3.6

9 92662 411 1.47E-02 6.67E-02 0.701 3.47

10 102958 1451 6.87E-02 1.64E-01 0.63 5.36

# 

ElementsCase

Fully 

Converged

Residuals Min Orthogonal

 Quality

Max Aspect 

Ratio

# 

Iterations
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APPENDIX C 

 

Theta-Beta-Mach Diagram 
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