UNIVERSITY LIBRARIES

Math 365 Class Projects

Mathematical Sciences

2018

Estimating Population Growth of Las Vegas

Ryan Desacola University of Nevada, Las Vegas, desacr1@unlv.nevada.edu

Jacob Valadez University of Nevada, Las Vegas, valadj1@unlv.nevada.edu

Ryan S. Tan University of Nevada, Las Vegas, tanr4@unlv.nevada.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/math_365

Part of the Demography, Population, and Ecology Commons, and the Urban, Community and Regional Planning Commons

Repository Citation

Desacola, R., Valadez, J., Tan, R. S. (2018). Estimating Population Growth of Las Vegas. Available at: https://digitalscholarship.unlv.edu/math_365/7

This Project is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Project in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself.

This Project has been accepted for inclusion in Math 365 Class Projects by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

Estimating Population Growth of Las Vegas By: Ryan Desacola, Jacob Valadez, Ryan S. Tan (Group 5)

Introduction

An issue we have identified is Las Vegas' population growth. To those that live in Las Vegas, many know that Las Vegas is one of the fastest-growing cities in the United States of America; due to its rampant growth, projecting future population growth is of utmost importance in order to prepare public utilities, housing developments, and other such services for the inevitable increase. Consequently, for our project, we are attempting to extrapolate upon existing population growth trends (identified by censuses of years past) and utilize the method of least squares to turn our extrapolation into a mathematical prediction.

Method

We used the method of least squares to find the equation of the line representing Las Vegas' population growth: p = 14,460x - 28481000. Using this equation, we have calculated a reasonable estimate for the future populations of Las Vegas. After finding these estimates, we plotted these points on a line (shown in orange) over the top of our original census data to extrapolate on future population count.

<u>References:</u> Data from United States Census Bureau; Pictures courtesy of Creative Commons License

Results

Using the equation we found for the estimate, we calculated the values representing the mathematical prediction for a Las Vegas population in the future of 2017 - 2020. Note that this is an extension of our method of least squares equation, expanded for years past 2016.

This graph illustrates the last census of Las Vegas followed by our extrapolations for the years 2017 - 2020.

Conclusion

Looking at our hard census data juxtaposed with our predictive data from our method of least squares equation, it appears that our estimations are quite reasonable and relatively likely to occur. If these current population trends continue as we have expected, Las Vegas will have sustainable population growth, and planning for this growth will help us ease into preparing public utilities, housing developments, and other such services for the inevitable increase.

If current trends continue over the next four years (2017 - 2020), Las Vegas should expect to have <u>94,498</u> new citizens.

- United States Census Bureau.
- years 2017 2020.

T	7 - 2020.
	Years
	1990
	1991
	1992
	1993
	1994
	1995
	1996
	1997
	1998
	1999
	2000
	2001
	2002
	2003
	2004
	2005
	2006
	2007
	2008
	2009
	2010
	2011
	2012
	2013
	2014
	2015
	2016
	2017
	2018
	2019
	2020

Discovery

Census vs Predictions Chart

• The Years column (shown in red) represents the years for which we obtained data. • The Census column (shown in blue) represents the data collected officially from the

• The available data only goes to the year 2016.

• The Predictions column (shown in green) represents our calculated populations for the

Census	Prediction
260561	293622
284931	308081
297326	322541
312634	337000
336380	351460
354559	365920
372849	380379
391074	394839
405245	409299
418658	423758
484487	438218
498638	452677
507219	467137
516723	481597
534168	496056
544806	510516
552855	524975
559892	539435
562849	553895
567641	568354
584862	582814
588263	597274
595848	611733
602749	626193
612531	640652
622448	655112
632912	669572
	684031
	698491
	712951
	727410