Visualization for Spatial Comprehension

Gabriel Judkins
University of Nevada, Las Vegas, gabriel.judkins@unlv.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/btp_expo
Part of the Higher Education and Teaching Commons, and the Other Earth Sciences Commons

Recommended Citation
https://digitalscholarship.unlv.edu/btp_expo/8

This Book is brought to you for free and open access by the Faculty Affairs at Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Best Teaching Practices Expo by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Visualization for Spatial Comprehension

Spatial Instruction Challenge
Mapping and understanding spatial data are fundamental necessities for geographers, yet challenging for many students (Rapp et al. 2007).

Spatial is a separate category of mental ability (Ishikawa and Kastens 2005)
I. Representational correspondence (Ability to find locations on a map)
II. Configurational correspondence (Ability to ID relationships among objects on a map and the real world)
III. Directional Correspondence (Ability to align a map with directionality in the real world)

Augmented Reality Sandbox
I developed an innovative augmented reality sandbox to help students connect form with representation on an enhanced and interactive sand surface
- Manipulated by students (hands-on)
- Vivid projection of colorful topographic map on sand surface in real-time
- Computer-run simulation software, Xbox 360 Kinect and projector

Graduate Assistant Response
"Every student showed enthusiasm... This made teaching the lab a much better experience... answering questions and watching them enjoy geography."

Student Response
What was the most difficult part?
- "...stopping playing with the sandbox."
- "Nothing. We enjoyed the exercise."
- "It was easy to use."

Making it engaging and employing 3D representation is known to assist with spatial instruction and learning (Rapp et al. 2007)

Incorporating Visualization in Instruction Across Disciplines
- Use existing visualization techniques
 - Google Earth
 https://www.google.com/earth/
 - ArcGIS Explorer
 http://www.esri.com/software/arcgis/explorer
 - Data graphing programs, iterations illustrating change over space and time
- Construct your own use-specific tool
 - Physical materials like images, objects or models
 - Other digital programming

Social-science example (poverty):
https://www.one.org/us/2014/05/20/12-data-visualizations-that-illustrate-povertys-biggest-challenges/

BYO AR Sandbox
UC Davis KeckCAVES
https://arsandbox.ucdavis.edu/
v/SARndbox/Instructions.html

Bringing Visualization Techniques to the Students
Consider where the students might benefit from an interactive and hands-on experience with visualization for learning.

Types of Applications for an Augmented Reality Sandbox
- Recruitment and promotion of sciences
- Enhancement of student engagement
- Topography education (contour lines)
- Landform studies
- Mass wasting events
- Rainfall and runoff simulations
- Stream flow simulations
- Watersheds and catchment areas

Broader Applications of General Visualization Techniques
Use of visualization techniques, particularly the interactive technologies of augmented and virtual realities opens new educational opportunities to address curricular deficiencies and enhance engagement.
- Addresses separate spatial abilities
- More natural and "easy" interaction
- Disruptive pedagogy and engaging