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Abstract

     in this article, we propose an iterative procedure for clustering sparse high 
dimensional transaction datasets, specifically two casino player tracking 
datasets.  a common problem in clustering sparse datasets with very large 
dimensions is that in addition to classical techniques of clustering being 
unable to provide useful results, latent variable methods used for clustering 
often do not lead to sufficient data reduction to yield useful and informative 
results either.  initially, we propose a straightforward resorting of the full 
dataset and then define an information based sparsity index to subset the 
sorted data.  this new dimension reduced dataset is less sparse, and thus, more 
likely to produce meaningful results using established techniques for 
clustering.  Using this technique enables the clustering of two secondary 
datasets from two Las Vegas repeater market casino properties, which consist 
of the amount of money casino patrons gambled, termed coin-in,  on a variety 
of slot machines.   
Key Words and Phrases: cluster analysis; transaction Data; Binary Entropy; 
Sparse Matrices; casino Player tracking.   

1.  Introduction

     the volume of customer information collected by businesses is increasing 
at an astronomical pace.  in 1992 the retail store giant Walmart started with a 
database of one terabyte for its 3, 600 U.S.  stores.  this database grew to four 
petabytes by 2007 as the number of stores increased to a little over 6, 000.  
the casino industry has not lagged in this area.  Harrah’s started the first 
nationwide player loyalty program named total gold in 1997, which 
transformed into the tiered loyalty program total rewards in 2000.  among 
many of the goals for the loyalty program data is to build customer profiles 
based,  for example,  on what games casino patrons are likely to play,  how 
much they play or even their gaming ability (Berman,  2006).   
     currently, large retail store chains employ sophisticated forecasting and 
planning systems based on the clustering, or grouping, of their stores.  
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Similarly, large casinos with customer loyalty programs also use customer 
transaction data for the segmentation of customers in order to improve 
marketing strategies and increase membership.  the groupings of stores, or 
customer segments, are quite often formed by simplistic methods, such as 
clustering stores, or customers,  in a geographic location by zip code or ranked 
sales.  typically, these approaches ignore a large amount of the data collected 
by the business.  a better alternative is to use statistical cluster analysis, a data 
mining tool that uses the correlation between different variables in a database 
to form store,  or customer,  clusters.  Forecasting, or planning systems,  that 
use this added information obtained from statistical clustering will lead to an 
increased potential for growth.   
     customer transaction data is multivariate in nature, with the columns, or 
variables,  that might for example represent the products in the store purchased 
by a customer.  the size of the dataset to be segmented is typically very large,  
often hundreds of thousands of observations made on hundreds of variables 
and regularly,  the dataset is very sparse,  sometimes with over 90% zero 
entries.  With sparse datasets of large dimensions, performing a cluster 
analysis and obtaining meaningful and interpretable results may not be 
feasible.  in addition, latent variable methods for clustering, such as Principal 
component analysis (Pca) or Factor analysis, may not work for such 
datasets as the amount of data reduction is often minimal.  in order to use 
traditional methods for cluster analysis our method first rearranges the full 
dataset so that there is a less sparse upper left principal matrix i.e., the upper 
left part of the data matrix does not have a large number of zero entries.  to 
this end, we introduce a sparsity index based on binary entropy to extract a 
significantly dimensioned reduced, and less sparse, data matrix more suitable 
for using an appropriate and established clustering technique.  Binary entropy 
is a measure of the variability, or randomness, in a sequence of 0’s and 1’s.  
Moreover, since it is to be expected that the column dimensions will still be 
large, it is likely that it will be necessary to use latent variable methods to 
characterize, and visualize, the key differences between groups, which are 
now more likely to provide reasonable results.  this procedure can then be 
iterated by successively removing the extracted row observations in each 
principal matrix from the original dataset and repeating the method on this 
new dataset.   
     our method is motivated by the need to cluster casino patrons to find 
groups of players that are similar, or dissimilar, in the type and frequency of 
the machines that they play.  that is, our goal is to perform a cluster analysis 
on two extremely sparse casino player tracking datasets,  where the rows 
correspond to customers and the columns to slot machines.  Specifically, the 
first dataset consists of � � 200� 000 players � � 500 slot machines, and 
the second approximately � � �0� 000� � �� � 50,  where the observations are 
the percentage of coin-in per player for each machine.  Since there are nearly 
� � 500 and 50 machines,  or columns,  the datasets naturally consist mostly 
of zero entries; there are 96.6% zero entries for the first dataset analyzed in 
Section 4 and 81.25% for the second dataset studied in Section 5.   
     of note, since the datasets are the propriety of the casinos they have been 
altered to maintain the structure, which is of importance to this article, yet hide 
the interpretable business information, which is imperative to the casino.  this 
is accomplished by simply randomizing the order of the column labels, 
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withholding the specific type of slot machine,  and randomly interchanging the 
customer row labels.   
     there has been a significant amount of research on how to cluster large 
categorical datasets.  in a recent article on this topic Yan, chen, Liu & Yi 
(2010) proposed the ScaLE technique,  which provides a measure of the 
quality of the clustering results and importantly,  does not require the manual 
setting of the number of clusters.  an example of the type of categorical 
transactional datasets considered is  and 

,  which are a three-item and two-item transaction,  
respectively.  Yan et al. (2010)  note that,  although generic categorical 
clustering algorithms (andritsos,  tsaparas,   Miller,  & Sevcik,  2004;  chen 
& Liu,  2005; Barbara,  Li,  & cuoto,  2002; gibson,  Kleinberg,  & 
raghavan,  1998; ganti,  gehrke,  & ramakrishnan,  1999; guha,  rastogi,  &  
Shim,  1999; Huang,  1998;  Li,  Ma,  & ogihara,  2004) can be applied by 
transforming the data into a Boolean dataset,  the two key features of high 
dimensionality and large volume make the existing algorithms inefficient to 
process the transformed data.  note that our focus here is not on large 
categorical datasets that we can transform to Boolean data,  but rather on 
quantitative data of very large dimension; the dimensions of the casino 
datasets used in our examples are significantly larger than those used in Yan et 
al. (2010).  Most importantly, unlike these methods, we do not develop a new 
clustering procedure to segment the original dataset directly, rather we extract 
dimension-reduced datasets from the original data that can be mined using the 
numerous techniques for identifying clusters that have been developed in the 
literature.   
     this article is organized as follows: the method developed to find a subset 
of sparse datasets more suitable for clustering is described in Section 2; the 
source of the two casino player tracking datasets is discussed in Section 3; 
analysis of the two casino datasets are presented in Sections 4 and 5,  
respectively; a general discussion follows in Section 6; and finally,  a brief 
appendix explaining certain steps of the clustering method are given in 
appendix 7.   

2.  Methodology

in this section we detail our method to subset sparse datasets of high 
dimension.  in Section 1 we describe a simple resorting of the original dataset.  
in Section 2 an algorithm based on information theory is described for finding 
a non-sparse, or less sparse, subset of the sorted dataset more suitable for 
performing a cluster analysis.   

2.1  Sorting algorithm 

Let  be any data matrix, with entries denoted ,  and let  be the 
corresponding indicator matrix of ’s and ’s for each nonzero and zero entry 
of ,  respectively.  that is,  each entry  of ,  is assigned a value of 
if the corresponding entry ,  and  otherwise,  for 

.  also, assume that  and  are both large and that most entries of 
are zero, i.e., assume that  is a sparse matrix.  First, consider the rows of 
that have the most nonzero entries and sort the rows of the matrix such that 
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these particular rows are listed first.  next, sort the columns in an analogous 
manner by sorting the rows of the transpose of the previously row sorted 
matrix.  the resulting sorted indicator matrix, denoted �����,  has a least 
sparse principal matrix in an upper left quadrant of dimension �� � ��.
Finally, this matrix is used to index the original sorted data matrix,  denoted 
����.  a method for determining the row and column dimensions ���� ��� of 
this matrix is given next Section 2.  a simple illustrative example of the sort 
algorithm is given in Section 1 of the appendix.   
     note that in the analysis of the casino player tracking datasets in Sections 4 
and 5 we do not take into account the actual value of the entries of the data 
matrix �.  We could do so easily by placing some sort of rank on the each data 
value.  the most basic would be to assign each entry its actual ranked value 
and then proceed as discussed above; this is demonstrated in Section 7.1 of the 
appendix.  However, for large sparse datasets this may not be optimal in that a 
sparse row may contain only a few large values, which would cause this sparse 
row to be collected among the very first; an undesirable result.  this would 
also likely be true for summing over the actual observed data values.  thus, 
the resulting matrix would not have the most dense upper left quadrant, as is 
the goal here.  note that after iterating our method these rows could eventually 
be collected with similarly typed observations.  in the analysis of the casino 
player tracking datasets, each entry is given a weight of  as initially 
described.  this seems appropriate for the datasets considered in this work, 
since the observations are the percentage of coin in per player on each 
machine; see Section 3 for a description of the datasets.   

2.2 Sparsity index 

to reduce the dimension of the data matrix both in the number of rows and 
columns, that is,  to find a suitably non sparse dataset more appropriate for 
applying established clustering methods,  we develop a procedure based on 
information theory.  Specifically, we base our method on the well known 
Shannon binary entropy measure for a Bernoulli random variable � with 
success probability �,

���� � ���
�

���
��� � ���log���� � ��
� ����� � �� log��� � ��
� ���log������ � � ��� ���

(1) 

where log� is the base 2 logarithmic function and log���� � �������� is a 
nonnegative function that is maximum,  with a value ���� � �,  when 
� � ���,  and minimum,  with ���� � �,  when � � � or . ���� can 
essentially be thought of as the ability to predict the event of a  or .  For 
example, suppose that a fair coin is tossed and a head is denoted as a  and a 
tail as ,  then when � � ���,  the ability to predict the outcome on each toss is 
minimal and so the entropy is maximum.  However,  if � � �,  then a  is 
certain and the entropy is .  For more details see,  for example,  Hyvärinen,  
Karhunen,  & oja (2001),  or  Stone  (2004).  For our purposes we treat any 
sequence ���� of  and ’s of length � as a vector of observed realizations of 
a bernoulli random variable with estimated success probability �̂ � ∑ ������ /
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�; obviously this is not true for the observations in the datasets,  but is not 
relevant for our method.  We then define the binary entropy measure of any 
vector,  � say,  consisting only of 1’s or ’s,  as ���� � ��	�� � �̂�	log��� ��̂� �	 �̂	log���̂��.   
     Extending this idea to matrices,  consider any matrix ����,  where each 
entry ��� � �	o�	�,  and denote any �� � �� principal matrix as �������,
�� � ���� � ��, �� � ��� � � �.  next,  write the entries of �� as a vector and 
calculate the binary entropy measure of �� as  

����� � ��	�� � �̂�	log��� � �̂�
�	 �̂	log���̂��� ����� �̂
��� ���

����

��

���

��

���
.

(2) 

note that,  if �� � ������ � ������,  then ����� � �,  and thus,  values of 
����� near  implies that �� is predominately composed of either ’s or ’s,
but not both.  conversely,  values of ����� near  imply that �� has nearly an 
equal number of ’s and ’s.  therefore,  in general the index ����� can be 
used as a measure of the sparsity of the matrix ��.
     next,  we consider all possible divisions of the sorted indicator matrix 
����
����  into four primary matrices,  denoted ���� � � ���� � ��,  and calculate the 

matrix entropy values ����� for each.  the matrices containing all possible 
entropy measures,  corresponding to every possible division,  are denoted ��.
given the row and column dimensions,  �� and ��,  this can be diagrammed as 
follows,   

����� � ��
���������������� � ��� ����������������� � ���
����������������� � ��� ����������������� � ���

�
���

→	

��� � ������ �� � ������
�� � ������ �� � ����������.

Here the notation �����������������  refers to the matrix determined by the first ��
rows and �� columns,  �����������������  specifies the matrix determined by the first 
�� rows and �� to � columns,  etc..  thus,  ������ ���, ������ ���,������ ���,  and ������ ��� are the matrices with each entry corresponding to 
the sparsity measure of a corresponding principal matrix determined by �� and 
��, �� � ���� � ��, �� � ��� � � ��.  the notation ������ ��� is used here to 
emphasize that the size of the matrices depend on the values of �� and ��.
note that,  ����� �� � ����� �� � ����� �� � ����� �� � ��������,  or the 
total sparsity measure of the matrix �����; the shaded region in the far left 
panel of Figure 1 represents the matrix that would have corresponding entropy 
measure ����� �� (or ����� ��).  to determine a non sparse upper left matrix 
for analysis, indexed by ���,  we find estimates of the row and column cutoffs 
�� and �� in two steps.  in the first step the estimated number of rows ��� is 
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taken to be ��� � �������� | ������ �� � ��|,  where 0 � �� � �.  this is 
equivalent to defining ��� to be the value of �� such that ������ �� � ��.  note 
that it is not necessary to fix �� � �,  but we have done so because the value 
of �� can be chosen correspondingly for any fixed ��.  For example, consider 
the left panel of Figure 1,  the shaded region of a sorted matrix shows a 
possible matrix for which a value of ������ �� can be calculated using ���.
Further,  ignoring the ellipses extending the matrix,  if �� is near 1,  then 
|������ �� � ��| would be close to  for this value of ��,  since there is 
roughly an equal number of ’s and ’s.  the rationale being that the sorted 
����� matrix should consist of mostly ’s in an upper most left quadrant and 
transition to mostly ’s in the other three quadrants.  in this case, if �� is 
increased,  more ’s are added,  and the entropy of the corresponding new 
shaded matrix will approach ,  but not 1.  alternatively, if �� � 0 then the 
resulting estimate of the number of rows would approach ��� � �.  this is 
because there is only one nonzero entry in the last column, thus, as more zero 
row entries are added ������ �� → 0,  or |������ �� � ��| → 0,  (up to a 
point),  which implies that ��� would get closer to �.  So in effect,  as the value 
of �� is increased the number of rows determined by �� decreases.   
     next, with the number of rows fixed, we estimate the number of columns 
as ��� � �������� |������� ��� � ��|,  where 0 � �� � �.  continuing the 
example,  once more ignoring the ellipses,  the right panel of Figure 1 shows a 
possible shaded matrix where |������� ��� � ��| would be near  for a value of 
�� near .  again, as �� becomes closer to  then more columns would be 
added, with ��� near � if �� � �.    

Figure 1.  Explanatory example.  Left panel: ������ �� and Right panel: 
������ ��� Section 2.
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Succinctly, for a sorted indicator matrix ����
����  we introduce the sparsity index,   

�������� ��, ���� |��|������, 1� � ���, ��|� ��|.
(3) 

   
in practice,  for 0 � ��, �� � 1,  the estimated row and column dimensions ���
and ��� are the solutions of  

����, ���� � ������
��,��

� ������� ��, ��
� ������

��
| ������������

|�����, 1�
� ��|�, ��� � ��|,	

(4) 

where ��� is determined first,  substituted for ��,  and then the outer 
minimization determines ���.  note that successive minimization is not 
necessary,  but worked well for the analyzed datasets and also reduces 
computation time,  since with �� fixed �� is determined from a smaller 
dimensioned indicator matrix.  this reduced dimensioned dataset is then 
clustered.  Finally, these observations are removed from the original dataset 
and the steps repeated until the entire dataset has been clustered.   

the algorithm is now shown below pictorially for one iteration for an 
arbitrary sorted indicator matrix �����.  Moreover, this is purely illustrative in 
that no specific values of �� and ��,  and hence,  ��� and ���,  are specified.  in 
the first step the estimated number of rows ��� is the value of �� such that 
|�����, 1� � ��| � 0,  or �����, 1� � ��,  for example,   

�
�
�
�
�
�
�
�
�1 1 1 1 1 0 ⋯ 0 0
1 1 1 1 1 0 ⋯ 0 1
1 1 1 1 0 0 ⋯ 0 0
1 1 1 1 0 0 ⋯ 0 0
1 1 1 0 1 0 ⋯ 0 00 0 0 1 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 0 0
0 0 1 0 0 0 ⋯ 0 0
0 0 0 0 1 0 ⋯ 0 0�

�
�
�
�
�
�
�
�

���

��� → 		

�
�
�
�
�
�
�
�
�

�
�
�
1 1 1 1 1 0 ⋯ 0 0
1 1 1 1 1 0 ⋯ 0 1
1 1 1 1 0 0 ⋯ 0 0
1 1 1 1 0 0 ⋯ 0 0
1 1 1 0 1 0 ⋯ 0 0�

�
�

�����0 0 0 1 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 0 0
0 0 1 0 0 0 ⋯ 0 0
0 0 0 0 1 0 ⋯ 0 0						 �

�
�
�
�
�
�
�
�

���.

next, the estimated number of rows ��� subsets �����,  and the number of 
columns is found in similar fashion as above in that ��� is the value of �� such 
that ������, ��� � ��; for example,   
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��
��
�1 1 1 1 1 0 ⋯ 0 0
1 1 1 1 1 0 ⋯ 0 1
1 1 1 1 0 0 ⋯ 0 0
1 1 1 1 0 0 ⋯ 0 0
1 1 1 0 1 0 ⋯ 0 0�

��
��

�����

	���

→ 		
�
�
�
�
�

�
�
�
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 1 1 0
1 1 1 0 1�

�
�

�������

0 ⋯ 0 0
0 ⋯ 0 1
0 ⋯ 0 0
0 ⋯ 0 0
0 ⋯ 0 0�

�
�
�
�

�����.

Finally,  the actual data indexed by the parenthesis in the far right bracketed 
matrix of the original sorted data matrix ���� is used for clustering; again we 
denote this matrix as �� .  For example, assuming the matrix indexes the same 
sorted data values in the example used to describe the sorting algorithm in 
appendix Section 7.1, the data matrix for clustering is  

��
��
�1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 1 1 0
1 1 1 0 1�

��
��

�������

	→		

�� �
��
��
�200.03 111.12 160.21 21.56 105.65
400.56 140.65 191.25 241.28 90.65
20.17 12.65 170.26 222.87 0
333.65 137 180.64 124.34 0
50.54 155.26 205.64 0 100.26�

��
��

.

     naturally, other sparsity indexes involving the �� matrices can be 
constructed to find appropriate row and column cutoff values, which illustrates 
the usefulness of this technique.  as previously discussed, using the sparsity 
index (3), values of �� and �� closer to  result in the smallest number of rows 
and largest number of columns being selected.  For the casino datasets there 
are an extremely large amount of rows, or customers, so �� closer to 1 results 
in a larger reduction in the number of customers.  However, the columns have 
less dimension and are composed of the slot machines, which are of strong 
interest, so including more columns seems reasonable.  these values of �� and 
�� generate datasets that produce distinctive clusters for the datasets studied 
below.  in practice, and dependent on the particular dataset being analyzed, 
different values can be used to create various sizes of dimension reduced 
datasets.   
     note that, we are assuming the original data matrices are of high 
dimension, for example the size of the first casino dataset analyzed in Section 
4 is on the order of � � 200� 000 � � � 500.  in addition to sorting such a 
large dataset, we also need to calculate the �� matrices for the sparsity index, 
which is computationally intensive assuming the given high dimensional 
scenario.  to this end, efficient codes have been developed in MatLaB for 
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all calculations.   

3.  Data source

a Las Vegas hotel casino corporation provided secondary data from two of 
their repeater market properties.  as is the case with almost all Las Vegas 
repeater market properties, this casino’s primary revenue is generated by slot 
machines.  in order to protect the confidentiality of the data source, the name 
of the property and the exact dimensionality of the datasets are not reported.   
     Both of the datasets consist of coin-in from �	different slot machines for �
carded customers, i.e.,  from players who use their reward cards.  the datasets 
consist of � rows of carded customers, and � columns of slot machines.  Both 
datasets were first normalized by converting the coin-in values to the 
percentage of coin-in per player.  the dimension of the first dataset analyzed 
in Section 4 is on the order of � � ���, ��� � � � ���.  the second dataset 
was smaller, with dimensions around � � ��, ��� � � � ��.

4.  Casino player dataset 1

compounding the large dimensions in this dataset is that most of the � carded 
players play at most only a few slot machines, thus, the percentage of  entries 
is 96.6%.  the method detailed in Section 2 is used to find non-sparse datasets 
more appropriate for clustering in Section 4.1.  in Section 4.2 a cluster 
analysis is performed and the final results discussed in Section 4.3.   

4.1 Dimension reduced datasets 

to reduce the dimension of the dataset to find interpretable and informative 
clusters of casino players and the machines they play, the number of rows and 
columns ����, ���� of the resorted dataset is obtained using the method 
described in Section 2.2 for various values of the pair ���, ���.  Specifically, 
the following values are used: ���, ��� � ���, �.9��� ��.99, �.96��
��.9�, �.9���.  in particular, for this dataset the non-sparsity, or density of 
nonzero values, was dispersed across all the � � ��� columns.  thus, the 
transition to a large amount of zero entries in the upper right quadrant of the 
sorted data matrix is more gradual.  this in turn also resulted in a larger 
number of rows being included that showed this trend across increasing 
columns.  So, choosing a value of �� very close to 1 seemed the most probable 
value to produce a significantly row reduced dataset likely to provide 
meaningful results when clustered.  now, choosing �� close to  has the effect 
of including a large amount of columns, or machines, which is naturally 
deemed important.  that is, we want to exclude only the machines that had the 
most minimal amount of play, and thus, likely to have a negative effect on the 
clustering results.   
     these particular values of the parameters ���, ��� yielded the following 
estimated row and column values: 
����, ���� � �����, ��6�� �6��, ��6�� ����, �6���.  that is, these values create 
dimension reduced data matrices,  ��	,	 of size �� � ���, � � ��6�, �� �
6��, � � ��6�,  and �� � ���, � � �6��.  in addition, the values ����, ���� �������, ����� ������, ����� ������, ����� were also included in the 
analysis for comparison.  these row and column values are chosen to exceed 
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the maximum of the estimated values in order to compare the results in 
analyzing the reduced dimensioned datasets to ones remotely comparable to 
the full dataset.  note that the last dataset is roughly one quarter the size of the 
original data matrix.  in subsequent discussion of the analysis, each of these 
datasets are denoted ���� � � ��� � � �� in order of introduction, i.e.  ��� is of 
dimension ��� � ���, ���	of dimension ��� � ���,  and so on.   

4.2 Cluster analysis 

For each of the six dimension reduced datasets of Section 4.1 a �-means 
cluster analysis,  � � ��� � �,  is performed.  For each dataset the standard 
deviations of all of the � variables were similar, and thus,  the cluster analysis 
was performed on the raw data values.  Specifically, the dissimilarities 
between each group are calculated using the centroid method.  the squared 
Euclidean distance between the centroids of each group,  or the L� distance,  
often termed the “city block" distance,  is used in the �-means procedure 
implemented in MatLaB.  the centroid method was chosen since,  like the 
“nearest neighbor" and “group average" methods,  this leads to “spherical" 
clusters exhibiting high internal affinity,  Krzanowski (2001).  this method is 
also suggested by MacQueen (1967),  with a full description found in the 
classic multivariate text by Johnson & Wichern (2002).   
     Letting � represent the matrix of within-cluster variation, and � the matrix 
of between-cluster variation, a reasonable method to decide between the most 
appropriate number of clusters is to choose the one such that the between-
cluster variability relative to the within-cluster variability is maximum.  a 
relevant measure of this ratio of variability is the trace of � � ����� �
����������� � ����.  table 1 gives the values of this sample trace for each 
of the six datasets and each of the � � ��� � � clusters.   

Table 1.   Value of the trace (�) - Example 4 

     For ��� and ��� the trace is maximum when � � �,  and excluding ���,
second largest for the remaining datasets.  therefore,  we conclude for the first 

 datasets that either a  or  cluster analysis is the most optimal,  and a 
clusters analysis for the last dataset may be best.   
     However, for any dataset ��� there are � � � variables, and thus, no direct 
way to visualize the differences between the groups.  in order to view the 
clusters, and draw inferences visually, we must project them into a subspace of 
dimension less than .  that is, we need to try and approximate the grouped �-
dimensional points in a lower dimension, if possible.  to do this, since we 
have more reasonably dimensioned datasets, we perform a canonical Variate 
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analysis (cVa), obtained from a Multivariate analysis of Variance 
(ManoVa),  on the scatter matrix ����.  the 1�� eigen-vector �� of ����
projects the data into a one-dimensional subspace such that the between-group 
variability is maximum relative to within-group variability.  More simply, the 
data is projected into a one-dimensional subspace that maximizes the 
separation between groups.  the projections, or linear combinations, of the �-
dimensional data points are termed the canonical variates hereafter.  the 
associated eigen-value,  ��,  gives the measure of the ratio of the between-
group and within group variance.  analogous to Pca, the eigenvectors 
��, ��, � ��, � � �����, �� project the data into subspaces such that the 
between-group variability is the 2��, 3��, � , ��� greatest relative to within-
group variability.  Mathematical details are summarized in Section 2 of the 
appendix; comprehensive details can be found in Krzanowski (2001).   

4.3 Results 

Scatter plots of the 1�� versus the 2�� canonical variates for all datasets 
indicated that tight and distinctive groupings occur when � � 3 or ; scatter 
plots for three clusters are given in Figure 2.  Based on this observation, and 
that the maximum values of the traces in Section 4.2 usually occur at or near 
� � 3,  the results for three clusters are discussed hereafter.   
     the upper most left panel of Figure 2 indicates that the most separated, or 
strongest, clustering occurs for ���.  the plots in the next two upper panels 
corresponding to ��� and ��� show that the clusters become less separated as 
the number of rows are increased and the number of columns decreased.  in 
fact, as the number of rows increases the projected clusters become less 
discernible from each other, which indicates that only a subset of this dataset 
can be grouped into strong distinct clusters; or that only these clusters of �
dimensional points can be approximated in two dimensions.  in addition, the 
separation between the groups for each of the datasets is along both the 1�� (�)
and 2�� (�) canonical axes.   
     Figure 3 gives the histogram plots of the coefficients of the eigenvectors, or 
loadings,  corresponding to the 1�� canonical variates for all datasets.  Most 
coefficient values are near zero with the exception of a few.  thus, especially 
for the first two datasets,  ��� and ���,  only a few select machines explain the 
greatest between group variation.  For example,  in the histogram plots of the 
loadings for dataset ��� in the top left panel of Figure 3 the six largest values 
greater than 100 correspond to machines(loading); �������������,
�������������, �������������, ������������,  and ������������,
������������, �����������,  and ��������������.  thus, the 1�� canonical variate is a 
contrast between the slot machines ����, ����, ����, ��� and 
����, ����, ���, ����,  with the strongest contrast between ���� and 
����, ���, ����.  For example,  the 1�� canonical variate might distinguish 
players of wide area progressive machines from non-players,  that is,  wide 
area progressive players and non-players are the most distinguishable.  the 
2�� canonical variate results are: �����������, �����������, ����������,
����������� and ������������, ������������, ������������,  again,  analogous to 
the 1�� canonical variate,  is largely a contrast between just a few slot 
machines.   
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     although the actual machines that are given a certain weight is important to 
the casino,  for the purpose of illustrating our method this is less relevant.  
this example shows the usefulness of our technique in determining a dataset 
more suitable for clustering.  Performing a cVa is necessary since the 
dimensions are high, and allows us to make inferences as to what are the 
characteristics,  or types of machines,  that separate casino slot players the 
most.  also, further iterations of our method did not yield strong results and 
thus have been omitted for brevity.   

Figure 2.  vs.  canonical variate plots for  clusters - Casino 
data Example 4
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Figure 3. ��� canonical coefficients (loadings) for � � � clusters - Casino 
data Example 4

5.  Casino Player Dataset 2

in this dataset,  10% of the carded players played only one slot machine, so 
these players were put in one cluster that we will refer to as "loyal customers" 
and then removed from the dataset.  the steps used to analyze the previous 
casino player tracking dataset are then repeated on the dataset consisting of the 
remaining players.   

5.1 Dimension reduced dataset 

For the same reasons discussed in the previous example the following 
sequence of values to subset the dataset are used: 
���� ��� � ��1� 0����� �0���� 0����� �0���� 0�����.  these values create 
dimension reduced datasets,  �� ,  of size �� � 10���� � � ���, �� �
1�0��� � � ���,  and �� � 1����� � � 1��.  in addition, the values 
����� ���� � ���000� ���� ��000� ���� were also included in the analysis for 
comparison.  these row and column values are chosen to exceed the 
maximum number of columns and the minimum number of players in order to 
contrast the analysis results from the dimension reduced datasets.  in 
subsequent discussion each of the datasets are denoted ���� � � �1�� � �� in the 
order of introduction.   

5.2 Cluster analysis 

For each of the five datasets,  ���,  a �-means cluster analysis,  � � ��� � �,  is 
performed.  For each dataset the standard deviations of all of the � variables 
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were similar, and thus, the cluster analysis was performed on theraw data 
values.  as before, differences between groups are calculated using the 
centroid method implementing the “city block" distance.  once more, to aid in 
deciding the most appropriate numbers of clusters, table 2 gives the values of 
the sample trace of � � �1��� � �������1��� � 1��� for each of the five 
datasets and � � 2,� , 6 clusters.  For ��� the trace is maximum when � � �,
while � � 2 produces the largest trace for the remaining datasets.   

Table 2.   Value of the trace (�) - Example 5 

5.3 Results 

again, in order to draw inferences from the �-means cluster analysis we 
perform a cVa on ���� obtained from a ManoVa on each dataset.  For all 
datasets plots of the 1�� versus the 2�� canonical variates indicated that the 
tightest and most distinct groupings occur for � � 2 and  clusters.  the 
scatter plots for two and three clusters are given Figures 4 and 6, respectively.  
recalling that the maximum value of the traces in Section 5.2 occur almost 
exclusively when � � 2,  the results for two and three clusters are discussed 
hereafter.   
     For � � 2 histogram plots of the loadings associated with the 1�� canonical 
variates for all datasets are given in Figure 5 and show that two groups are 
separated along the 1�� canonical (�) axis,  but not the2�� (�) axis.  the most 
interesting groupings occur for datasets ��� and ���,  where the loadings of the 
coefficients contrast half of the � � �� machines.  that is, looking at the 
middle and right upper panels of Figure 5 we see that positive and negative 
loadings are close in value and nearly evenly dispersed across the slot 
machines.  thus, the two clusters of casino players for this dataset are most 
separated by whether they play a machine associated with a negative or 
positive loading in the 1�� coefficient vector.  this grouping of positive and 
negative weights that separate the two groups also seems to apply to the 
dimension reduced dataset ���,  with the exception that many of the machines 
are given weights near zero.  note that,  ��� consists of � � �� machines, 
while ��� and ��� are comprised of � � �� and 16 machines, respectively.   
     For � � � clusters a similar result to that of the � � 2 clusters for ���
occurs for datasets ���,	 ��� and ���.  the canonical variate plots are given in 
Figure 6 and the loadings of the 1�� canonical variates in Figure 7.  the top 
upper panel of Figure 7 corresponding to the first 3 reduced datasets shows 
that there are three groups of machines that separate the three clusters the 
most; machines with a large negative weight,  machines with a large positive 
weight,  and those weighted less (close to zero).   
     to complete the clustering of the this casino Player tracking data, the 
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observations in the six dimension reduced datasets are again removed from the 
original data and the above steps carried out on the resulting dataset; the 
results did not show any strong groupings and thus, have been omitted for 
brevity.   
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Figure 4.  vs.  canonical variate plots for  clusters - Casino 
data Example 5
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Figure 5.  canonical coefficients (loadings) for  clusters - Casino 
data Example 5
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Figure 6.  vs.  canonical variate plots for  clusters - Casino 
data Example 5

Figure 7.  canonical coefficients (loadings) for  clusters - Casino 
data Example 5

6.  Discussion

in this article, we introduce a technique for clustering large and sparse casino 
player tracking datasets.  one common problem in clustering such datasets is 
that data reduction methods on the full dataset, for example Pca, typically do 
not result in a noticeable dimension reduction and hence,  in interpretable 
clusters.  However, our clustering method for such datasets finds subsets of the 
original data with a large percentage of non-zero entries which are more 
suitable for the implementation of standard clustering techniques.  that is, our 
method extracts dimension reduced datasets from the original dataset so that 
appropriate clustering techniques can be selected from the vast amount already 
contained in the literature.   
     Both casino datasets were of substantially different dimensions, but for 
each, our method was able to extract non-sparse subsets of the data of suitable 
dimensions to be clustered.  to subset both datasets we used values of 
so that a larger proportion of slot machines (columns) would be selected at 
each iteration.  the initial reduced datasets produced under this 
parameterization for the first casino transaction data example enabled the 
classical -means clustering procedure to recover three strong clusters.  a 
canonical Variate analysis was then able to identify a contrast of a few slot 
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contained in the literature.   
     Both casino datasets were of substantially different dimensions, but for 
each, our method was able to extract non-sparse subsets of the data of suitable 
dimensions to be clustered.  to subset both datasets we used values of 
so that a larger proportion of slot machines (columns) would be selected at 
each iteration.  the initial reduced datasets produced under this 
parameterization for the first casino transaction data example enabled the 
classical -means clustering procedure to recover three strong clusters.  a 
canonical Variate analysis was then able to identify a contrast of a few slot 
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machines that maximized the separation between these groups.  the second 
less sparse casino dataset produced somewhat less distinct clusters, but 
segmented a larger number of customers.  in contrast to the first dataset, the 
cVa analysis determined that a contrast involving most of the machines 
separated the groups.   
     although the main goal was to segment casino player transaction datasets,  
the procedure is adaptable to sparse datasets of different types with large 
dimension that need to be segmented using classical clustering techniques that 
might otherwise be inappropriate.  our sparsity index is also flexible in that it 
can be parameterized to select more or less columns, or rows,  dependent on 
the problem.  thus, these reasons, and the intuitive nature of our method,  
makes our procedure for clustering sparse high dimensional datasets attractive 
to general practitioners and gaming operators.  For example,  this approach 
can be used to cluster slot machine games based upon features such as free 
spin and bonus games,  slot denomination,  maximum number of lines,  scatter 
and wild symbols,  with a view to determine what features are associated with 
high coin-in values.  Most of the above features are binary in nature, and 
therefore a large dataset of coin-in values of various slot games with a binary 
column for each of the above features would be a sparse data matrix.  the 
clustering of slot games based on such a dataset would identify the features of 
popular slot machines.   

Thus, these 
reasons, and 
the intuitive 

nature of our 
method, makes 
our procedure 
for clustering 

sparse high 
dimensional 

datasets 
attractive 
to general 

practitioners 
and gaming 

operators. For 
example, this 

approach can be 
used to cluster 

slot machine 
games based 

upon features 
such as free 

spin and bonus 
games, slot 

denomination, 
maximum 

number of lines, 
scatter and 
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with a view to 
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Appendix A

Data matrix sort example 

a simple example of the algorithm for the sort described in Section 2.1 is 
illustrated for a small dimensioned,  non-sparse,  data matrix.  the less sparse 
example is used for ease in exposition and highlights more clearly the results 
of the sort.  row and column interchanges are recorded in parenthesis to the 
far right.   

First,  create the indicator matrix ���� of the data matrix �,

� �
��
��
�200.03 105.65 111.12 160.21 21.56
20.17 0 12.65 170.26 222.87
333.65 0 137 180.64 124.34
400.56 90.65 140.65 191.25 241.28
50.54 100.26 155.26 205.64 0 ��

��
�

→		

	
																																																																																					

���� �
��
��
�1 1 1 1 1
1 0 1 1 1
1 0 1 1 1
1 1 1 1 1
1 1 1 1 0�

��
��

�
�
�
row	1
row	2
row	3
row	4
row	5�

�
�

then,  counting cumulatively by column the nonzero entries in each row,  and 
sorting by the final column (in bold),  yields 

��
��
�1 2 3 4 �
1 1 2 3 �
1 1 2 3 �
1 2 3 4 �
1 2 3 4 ��

��
��

			→ 				
��
��
�1 2 3 4 �
1 2 3 4 �
1 1 2 3 �
1 1 2 3 �
1 2 3 4 ��

��
�� 			→ 				

��
��
�1 1 1 1 1
1 1 1 1 1
1 0 1 1 1
1 0 1 1 1
1 1 1 1 0�

��
��		
�
�
�
row	1
row	4
row	2
row	3
row	5�

�
�

.

	

So far,  row 4 has been moved to row position 2,  with the remaining rows 
following in chronological order.  next,  we repeat the above sort based on the 
columns using the transpose of the resultant row sorted indicator matrix above 
(far right matrix) 

��
��
�1 1 1 1 1
1 1 0 0 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0�

��
�� 		→ 		

��
��
�1 2 3 4 �
1 2 3 4 �
1 2 3 4 �
1 2 3 4 �
1 2 2 2 ��

��
�� 		→ 		

��
��
�1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 0 0 1�

��
�� 		
�
�
�
col	1
col	3
col	4
col	5
col	2�

�
�

.
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Here,  column (row) 2 is moved to the last position,  and column (row) 5 to the 
next to last position; the remaining columns follow in chronological order in 
the top three positions.  transposing and translating back to the original values 
of the data matrix gives the final sorted data matrix ����,

����� �
��
��
�1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 1 1 0
1 1 1 0 1�

��
��

		� 		���� �
��
��
�200.03 111.12 160.21 21.56 105.65
400.56 140.65 191.25 241.28 90.65
20.17 12.65 170.26 222.87 0
333.65 137 180.64 124.34 0
50.54 155.26 205.64 0 100.26�

��
��

.
note that,  we are not taking into account the actual value of the entries of the 
data matrix D.  We could however do so easily by placing some sort of rank 
on each value.  the most basic of which would be to assign each entry its 
actual ranked value.  that is,  for D above we could write ���� as,

D=

��
��
�200.03 105.65 111.12 160.21 21.56
20.17 0 12.65 170.26 222.87
333.65 0 137 180.64 124.34
400.56 90.65 140.65 191.25 241.28
50.54 100.26 155.26 205.64 0 ��

��
�
		� 		���� �

��
��
�17 7 8 13 3
2 0 1 14 18
21 0 10 15 9
22 5 11 16 20
4 6 12 18 0 �

��
��,	

and proceed as before by summing over the rows and sorting by the last 
column. 
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Appendix B 

Canonical Variate Analysis (CVA) 

the following is a summary of cVa on grouped,  or clustered data,  described 
in Krzanowski [13].  Suppose ���� � � 1�� � �� denotes a sample from the 
random vector � � ����� � ����.  Let � denote the number of groups within 
the sample and ��� � � �1�� � ���� the number of observations in each group.  
the within group covariance matrix �,  the multivariate analogue of the 
univariate within sum of squares divided by the degrees of freedom,  and 
similarly,  the between group covariance matrix � are defined as  

� � 1
�� � �����

��

���

�

���
��� � �̄����� � �̄��������

� 1
�� � 1����

�

���
��̄� � �̄���̄ � �̄��.

Maximizing � � ���������,  with respect to the vector ����,  is after 
differentiation,  equivalent to solving for the vector � such that �� � ��� �
0.  this is equivalent to solving the following,  �� � ���� � 0, ����� �
���� � 0,  or ������� � ��.  that is,  ��� � � �� are an eigen-pair for the 
matrix ����.  Since � measures the ratio between group and within variation,  
larger values correspond to a larger separation between clusters.  Hence,  after 
the appropriate change in interpretation,  this is directly comparable to 
performing Pca on ���� instead of the covariance matrix.   
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