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PREFACE 

The research aspect of my project began long before enrolling in HON 498, the 

first semester of the honors thesis course. I have been interested in mechatronics and 

bionics for the better part of my childhood, mostly influenced by sci-fi movies and 

cartoons, but there was something much bigger that intrigued me. What intrigued me the 

most was a human being’s willingness and strength to push forward even in the event of 

losing a body part. Instead of claiming defeat, humans have looked for ways to keep 

somebody moving forward through the creation of prostheses. I had never had a course in 

anatomy or biomechanics when I chose this project but my drive to learn eventually led 

me to contact the CEO of Precision Orthotics and Prosthetics (POP’s), a local clinic. 

Something in my eyes must have indicated that I was willing to learn anything and 

everything about prostheses and I was immediately set up with a shadowing position. I 

became the new intern, a position created solely for me, where I was able to follow Kevin 

Bidwell, a certified prosthetist, as he measured newly amputated to matured patients’ 

limbs, uniquely crafted their prosthetic sockets, and adjusted their various prosthetic 

components to ensure proper gait. I spent a few days every week at the clinic, following 

Kevin during outside patient visits, scrambling with him to eat something during a 10 

minute break we found between patients, and getting to know the lives of the patients in 

front of us. My first-hand acquired knowledge enabled me to learn new vocabulary terms, 

such as unilateral/bilateral, transfemoral/transtibial, disarticulation, double-wall 

suspension, negative pressure, and so forth. Without this knowledge, searching through 

the hundreds of prosthesis articles in the UNLV database would have been quite an 

undertaking. 
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Once I had established my general area of interest, I was able to find an advisor 

who had a similar passion for learning more about prosthetic devices. Dr. Edward 

Neumann was willing to take me on as a student, even though he had just retired, to 

undertake a more sophisticated way of measuring forces and moments produced from a 

prosthetic device than what was currently being used. He directed me to several journals 

to begin learning more about load cells and the most current research being published on 

prosthetic devices. Two theses were instrumental in my background knowledge of load 

cells and analyzing data acquired with a load cell; they belonged to Dr. Neumann’s 

former graduate students who first began analyzing forces and moments with a load cell. 

Reading two master’s theses helped hone my own research strategies and helped me to 

identify the appropriate key words related to my scholarly work. I was also able to 

recognize the importance of proper formatting to clearly demonstrate the methodology 

and results section. Even though an undergraduate honors thesis has no specific 

formatting requirements and is mostly intended to be a scholarly learning process for the 

student, I wanted my work to parallel that of a master’s thesis. I intend to continue my 

research with Dr. Neumann and Kevin Bidwell to delve even deeper into the many 

capabilities of incorporating a load cell to measure forces and moments on amputees. I 

hope that my work can help establish clinical use for load cells to gather tangible data for 

clinicians to relay to insurance companies and prosthetic companies. 
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ABSTRACT 

By Maria De Lourdes Ramos Gonzalez, EI 

 The technology and design of lower limb prosthetics have evolved greatly since 

their introduction. The current study proposed to compare the effects of a conventional 

pin socket attachment and a vacuum socket attachment for a transtibial amputee. Whereas 

traditional measurements of gait utilize force plates and camera systems, this study made 

use of a small tri-axial load cell located at the base of the socket to measure the forces 

and moments exerted during a regular gait cycle. The hypothesis tested stated that a 

vacuum pump socket attachment, when compared to a non-vacuum (pin) socket, will 

have a significant effect on the forces and moments developed during gait.  

The forces and moments load the residual limb and it is generally believed that a 

vacuum socket will produce a more favorable loading than a conventional pin attachment 

socket. If changes in forces or moments can be measured, this may provide clinical 

evidence supporting the use of vacuum pumps on prostheses. The hypothesis was tested 

using a Student-t -test which compared the maximum resultant force and moments during 

heel strike and toe-off between the vacuum and pin systems. Two subjects, S1 and S2, 

were tested with both vacuum and pin attachment sockets. S1 exhibited a statistically 

significant effect on toe-off when wearing the vacuum socket. The rest of the variables 

showed no statistical significance due to the vacuum socket. S2 did not exhibit a 

statistical significance due to the vacuum socket during heel-strike or toe-off. 

The beneficial effects were not established by the results alone, but the literature 

review and subject assessment of a vacuum pump prosthesis offered support for the 

general conclusion that vacuum pump sockets produce beneficial gait outcomes.  
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Further analysis is needed to examine the effects on the forces and moments that 

occur on the sagittal, frontal, and transverse anatomical planes to determine whether use 

of a vacuum socket results in more or less force and moment when walking. Also needing 

further examination is whether a vacuum socket helps to stabilize the gait of a transtibial 

amputee. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

1.1 Purpose 

This study tested one hypothesis and examined a belief generally held by prosthetists. 

The hypothesis tested was whether a vacuum socket produces different forces and 

moments at the base of the socket than a pin socket.  The belief examined was that 

beneficial gait outcomes result from using a vacuum socket rather than a pin socket.  A 

tri-axial transducer (hereinafter referred to as a “load cell”) was used to measure the 

forces and moments acting on the base of a socket. The load cell was attached to the 

pylon of the prosthetic leg, directly below the socket, to measure the loads as close to the 

distal end of the residual limb as possible. Data acquisition was conducted in a clinical 

setting to determine the feasibility of clinician use. 

1.2 Background 

1.2.1 Growing Market 

The human body is an extraordinary architectural feat. It can withstand large 

forces, heal broken bones to withstand more impact, and in cases of trauma, calculate 

how much blood flow to route to the most essential organs. In cases of amputation, the 

human body can adapt to using prosthetic devices. Currently, the market for prosthetic 

devices is growing and becoming more sophisticated every year. In recent years, more 

advanced knee and foot prosthetics have been produced to improve range of motion and 

step propulsion. The main problem with the fast-changing market is a prosthetist’s 

inability to write a prescription knowing exactly what prosthesis will best benefit the 

patient before the patient has been fitted and tested with the prosthetic device. A patient 

can have either unilateral or bilateral transfemoral or transtibial amputations; he or she 
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could be missing a toe, half a foot, or not have an amputation at all but instead, a partially 

developed lower limb. It is only after the patient has been custom fitted with a prosthesis 

that gait analysis can be performed. The information gathered from a gait analysis can be 

relayed to prosthesis designers to better improve their products. The more information 

prosthesis designers have, the better a patient’s case is taken into account when designing 

the limbs and preventing future complications for patients. 

1.2.2 Force Plates 

Gait analysis is typically done in a gait lab setting which houses a force plate on 

the ground and usually also houses a state-of-the-art camera system to track a patient’s 

movements. Neither the gait lab or state-of-the-art camera system is practical to use in the 

typical clinic setting due to their cost, the expertise required to collect and interpret data, 

and space requirements. In the case of gathering data with a force plate, the patient is 

instructed to walk with the aim of striking the force plate with his or her left or right foot 

in order to read a measurement. This may produce an exaggerated gait or even a hesitant 

step before hitting the force plate. Force plates can usually record only one or two steps 

while the patient walks. This can cause data acquisition to be lengthy and for the patient 

to develop an awkward gait in order to make sure he or she strikes the force plate. The 

main disadvantage to gathering measurements with a force plate is its immobility. Force 

plates are usually set up in a gait laboratory, which can cause the patient unwanted travel 

time and be costly to reserve for experiments. Another disadvantage to using force plates 

is their positioning. Force plates cannot be used in varying environments as they are 

usually bolted flush with the floor. This diminishes the acquisition of force readings in 

any other type of walk than level walking. Unlike unnatural gait caused by aiming at a 
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force plate, the patient would walk normally, at a self-selected pace. The load cell would 

record data itself while the clinician can subjectively analyze the patient to ensure correct 

alignment and walking pattern. 

1.2.3 Inverse Dynamics 

Once data have been recorded from the force plate, it must be analyzed to provide 

useful information about different limbs and joints. Force plates only record ground 

reaction forces as the foot lands at heel-strike, rolls over, and leaves the plate at toe-off. 

In order to get useful data for the rest of the limbs, assumptions about the patient must be 

made. A mathematical model is used and the results are assumed to be close to precise. 

Whereas readings from a force plate use estimation to calculate different aspects of an 

amputee’s gait, a load cell attached to the prosthesis close to the site of interest may give 

more accurate force and moment readings without inserting force sensors inside the 

socket. 

1.3 Hypothesis 

Vacuum pump attachments are frequently used on a transtibial prosthesis socket 

to improve the fit between the socket and the residual limb, but their effect on gait has 

never been measured using a load cell directly attached to the prosthesis. The positioning 

of the load cell right below the socket may give an indication of the forces posed on the 

distal end of the residual limb. Unlike force plate readings which only read ground 

reaction forces, the load cell readings will not need additional assumptions and 

computations to estimate the forces at the end of the socket in terms of limb 

measurements or joint velocities. This study specifically analyzed a transtibial amputee’s 

gait by means of a load cell to determine how much the force and moment that can be 
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generated by an amputee during normal gait was influenced by a vacuum pump. The 

hypothesis was as follows:  

A vacuum pump socket attachment will cause a significantly different force and 

moment on the residual limb than a conventional pin attachment during a self-

selected walking pace. 

CHAPTER 2: LITERATURE REVIEW 

2.1 Causes and Types of Amputations 

 Amputations in the modern age are more common than they were in the war era 

of the early 1900’s. According to the Amputee Coalition, Limb Loss Resource Center 

statistics, there are nearly 2 million amputees in the United States. Every year, around 

185,000 amputations are performed in the United States (1). NetWellness, an online 

community service that gathers information from its partner university faculty, reports up 

to 90% of amputations are caused by vascular disease, which includes people with 

diabetes and non-diabetic smokers (2). The Amputee Coalition reports up to 55% of 

amputees with “diabetes who have a lower extremity amputation…will require 

amputation of the second leg within 2-3 years” and “nearly half of the individuals who 

have an amputation due to vascular disease will die within 5 years” (1).  

 There are various types of amputations, depending on which limb was amputated. 

Focusing on the lower half of the body, the various types of amputations include hip 

disarticulation, transfemoral amputation (also referred to as above knee), knee 

disarticulation, transtibial amputation (also referred to as below knee), ankle 

disarticulation (known as Syme’s amputation), and partial foot and toe amputations. A 

unilateral amputation refers to one amputation, whereas a bilateral amputation refers to 
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two amputations. May (1996) found in her case study of amputations and prosthetics that 

the “transtibial amputation is the most common level of extremity amputation 

necessitated by peripheral vascular disease” (3). The growing number of amputations is 

or high concern, not only to medical practitioners, but to prosthetists who must keep up 

with the high demand of patients. 

2.2 Pin and Vacuum Pump Prosthetic Attachments 

 Various methods of residual limb attachments exist for prosthetic legs. One of the 

most common is a pin attachment. With a pin socket, the patient wears a liner over the 

residual limb with a locking pin attached to the distal end. The pin tries to rotate in the 

socket as the patient walks but is corrected with a properly fitting socket. Richard Krosin 

(2005), a prosthetics resident at Hanger Prosthetics & Orthotics, summarized several 

advantages and disadvantages to using a pin lock as compared to a total surface weight 

bearing socket. The advantages of a pin system are listed as follows (4): 

1) Secure and simple 

2) No need for suspension sleeve 

3) Donning and doffing, putting on and taking off, the prosthesis is quick and easy 

4) The pin lock produces audible feedback when engaging the lock mechanism 
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Figure 2.2.1 Liner with Distal Locking Pin (12) 

Some of the disadvantages of the pin system are as follows (4): 

1) The distal tissue experiences a stretching, or “milking,” effect. This stretching can 

permanently elongate the distal tissue and can lead to pain and, in some cases, 

eventually cause a reopening of the suture line. 

2) Some patients have trouble aligning the pin with the plunger pin hole. This can 

cause some patients to repeatedly jam the end of the liner into the socket and 

could cause the pin to rip through the liner, injuring the residual limb. 

3) Locking pin liners usually contain a hard umbrella for attaching the pin. This hard 

umbrella can cause pain on the distal end of the residual limb and can also prevent 

the limb from completely contacting the socket. 

Although a locking pin mechanism may be more convenient to manufacture into a 

socket than a vacuum pump, a vacuum pump prosthesis ensures total contact of the 
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residual limb with the socket. Street (2007) defines vacuum suspension as “the removal 

of air molecules from the sealed air space in a valve suspension system” (5).  

 
Figure 2.2.2 Vacuum Suspension System (13) 

Krosin lists various advantages and disadvantages of a pump system. Some of the 

disadvantages of a vacuum system are as follows (4): 

1) Vacuum prosthesis sockets require the use of a suspension sleeve to keep the air 

from going into the socket. Suspension sleeves often bunch-up, inhibiting knee 

flexion, especially when sitting. 
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Figure 2.2.3 Suspension Sleeve on Prosthesis (14) 

2) Donning and doffing requires more time and effort because of additional sleeves 

or other methods. 

3) Prosthetist manufacturing can be time consuming, especially when trying to find a 

leak in the system. 

The advantages, though, far outweigh the disadvantages of a vacuum pump 

prosthesis. Street (2007) analyzed the effects of vacuum suspension on the limb. The 

residual limb fluctuates in volume daily as activities change. Various advantages of a 

vacuum system are examined as follows (5): 

1) Vacuum suspension prevents fluctuation of the residual limb, keeping it at a 

constant volume which improves residual limb health. 

2) The patient feels a more intimate connection with the prosthetic limb. This 

increases a patient’s spatial awareness as any movement of the residual limb is 

followed by an immediate following of the prosthetic leg. 

3) Many patients feel a vacuum limb to be lighter than a conventional pin attachment 

limb even though many are actually heavier than other prostheses.  
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Whereas the pin liner rotates as the patient walks, the vacuum socket is rigidly attached to 

the residual limb. A patient’s ability to maneuver more confidently increases in a vacuum 

prosthesis. The increased hydration of the residual limb keeps the patient’s overall health 

from diminishing as well. 

2.3 Financial Cost of Pin and Vacuum Prostheses 

 A financial analysis is also relevant for the patient and prosthetist in making the 

final decision of whether to choose a pin attachment socket or vacuum pump socket. The 

following information was produced with the help of Precision Orthotics and Prosthetics 

and the 2014 Medicare fee schedule: 

 Using a Flex Foot (standard K3 level foot) code for pricing included the $4758 

cost of the prosthetic foot in the financial analysis. A standard endoskeletal transtibial 

prosthesis with a silicone locking liner suspension costs $12,160, including the prosthetic 

foot. At Precision Orthotics and Prosthetics, this comes with a liner, an annual allotment 

of multi-ply socks, and three suspension sleeves. A double wall vacuum suspended 

socket costs $17,550, which includes the inner socket and vacuum pump. The sleeves for 

this type of system last an average of four months. A single wall vacuum suspended 

socket costs $16,920 and the patient will need an average of one new sleeve a month. 

Suspension sleeves cost a minimum of $118 and go up to an initial cost of $1,213 for a 

custom-fabricated liner (for either vacuum or pin sockets). A second liner produced from 

the custom liner will cost the patient $613 whereas an off-the-shelf locking liner will cost 

$736 liners. Medicare usually covers 80% of the cost and then the patient is liable for the 

rest unless they have secondary insurances that can help cover the remaining costs. 
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 There is about a $5000 difference in the initial cost of the pin and vacuum socket. 

Although the vacuum socket may be more expensive initially, the patient may improve 

the health of his or her residual limb while using a vacuum socket. Pin sockets may lead 

to deterioration of the residual limb which could increase a patient’s future medical costs.   

2.4 Load Cells 

 Previous clinical studies have included the use of a load cell to capture gait data. 

One such study was conducted by Neumann et al., (2012) in which the forces and 

moments on a transtibial residual limb were measured using a load cell. The study found 

varying load cell readings depending on the alignment of the prosthetic foot. Another 

study also found that the load cell, when attached to the distal end of the socket, provided 

a strong indication of pressures produced at the distal tibia (9). This study not only made 

use of a load cell for capturing gait data but also provided useful measurements of the 

pressures exerted on the residual limb during a gait cycle.  

 Another study conducted by Neumann et al., (2012) made use of a load cell to 

capture gait data and analyze the effects of alignment on foot roll-over kinetics. The 

study focused on measuring forces and moments on a transtibial amputee for various 

alignments. Analysis was conducted by plotting forces with moments in the sagittal 

plane, which according to the study is “the plane of most importance to forward 

progression” (10).  

 Use of a load cell has also been implemented in measuring forces and moments of 

a transfemoral amputee, such as in the study conducted by Frossard et al., (2013). The 

multi-axial transducer was mounted between the residuum and the prosthetic knee. Two 

different types of prosthetic knees were used to measure the intra-socket pressures 
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produced during activities of daily living (ADLs). This study also confirmed the varying 

intra-socket pressures produced from different prosthetic components (11). 

 Making use of a load cell to analyze the forces and moments produced during a 

gait cycle can give insight to the various pressures produced inside the socket without 

having to alter the socket or wedge force sensors inside to touch the residual limb. Load 

cells are not intrusive and do not require any more modification to attach than the pylon 

already used in the prosthetic leg. 
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CHAPTER 3: EXPERIMENTAL METHODOLOGY 

3.1 Subjects 

Subject recruitment was facilitated by Kevin Bidwell, a certified prosthetist at 

Precision Orthotics and Prosthetics. All patients were administered a letter of informed 

consent, as approved by the University of Nevada, Las Vegas Institutional Review Board. 

A facility authorization letter from Precision Orthotics and Prosthetics enabled the data 

collection to be acquired at the facility. The research protocol was submitted to the IRB 

on January 15, 2014 and approved February 21, 2014. Data collection began March 14, 

2014. The inclusion/exclusion criteria for patient selection were as follows: 

Inclusion Exclusion 

Adult unilateral transtibial amputee Bilateral amputee 

At least six months since amputation Less than six months since amputation 

Absence of balance or gait problems Unstable gait or apparent difficulty with 

balance 

Absence of open sores or infections on 

residual limb 

Infections or open sores on the residual 

limb 

Correct socket fit Poor or loose socket fit 

Sufficient pylon length to incorporate load 

cell 

Insufficient pylon length 

 Table 3.1.1 Subject inclusion/exclusion criteria  

Subject 1 and 2 information is tabulated in Table 3.1.2.  
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Subject 1 2 

Age of Patient 70 years 69 years 

Sex Male Male 

Date of Amputation 8/2013 6/ 2007 

Reason for 

Amputation 

Diabetes related Mrsa virus 

Self-reported Weight 

(lbs) 

198  209 

Scale Weight (lbs) 225 197 

Load Cell Weight (lbs) 223 192 

Height (ft) 6 6 

K Level
1
 K2 K3 

MPT to Floor (shoe 

off) (in) 

19 5/8 20 1/8 

Foot Size (cm) 28 25 

Tibial Length (in) 5 5/8 4 ¾ 

Shape of Residual 

Limb 

Fleshy but no 

redundant tissue. Not 

conical yet. Slightly 

bulbous but closer to 

cylindrical. 

Cylindrical 

Type of Liner or 

Suspension 

Pin: silicone 

Vacuum: low 

durometer silicone 

Vacuum: urethane 

Pin: silicone 

Type of Prosthetic 

Foot 

Össur 

K2 Sensation 

Freedom 

Innovations Sierra 

Miscellaneous Info 

 

 

Vacuum test socket 

(20 mmHg). Wearing 

silicone liner on the 

vacuum and 7 ply 

socks for pin. 

 

Table 3.1.2 Subject Information 

3.2 Load Cell Instrumentation 

The load cell used in this experiment was a JR3 35E15A4 load cell with external 

electronics. The specifications are listed in table 3.2.1.  

                                                           
1
 Refer to Appendix C for K Level definitions 
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Sensor Model: 

Mechanical Load Rating: 

35E15S4 

250 lb 

Diameter (in) 3.5 

Thickness (in) 1.50 

Material SS 15-5PH 

Weight (lb) 2.60 

Nominal Accuracy, all axes (% measuring range) ±0.25 

Operating Temp. Range, non-condensing (°F) -40 to + 150 

Fx, Fy  

Standard Measurement Range (lb) ±250 

Digital Resolution (lb) 0.031 

Stiffness (lb/in) 0.290e6 

Single-axis Overload (lb) 1450 

Multi-axis Overload Coefficient, a (lb) 1450 

Multi-axis Overload Coefficient, b (lb) 2700 

Fz  

Standard Measurement Range (lb) ±500 

Digital Resolution (lb) 0.063 

Stiffness (lb/in) 3.16e6 

Single-axis Overload (lb) 5780 

Multi-axis Overload Coefficient, c (lb) 5780 

Mx, My  

Standard Measurement Range (in-lb) ±875 

Digital Resolution (in-lb) 0.11 

Stiffness (in-lb/rad) 3.18e6 

Single-axis Overload (in-lb) 4100 

Multi-axis Overload Coefficient, d (in-lb) 4100 

Mz  

Standard Measurement Range (in-lb) ±875 

Digital Resolution (in-lb) 0.11 

Stiffness (in-lb/rad) 1.00e6 

Single-axis Overload (in-lb) 3520 

Multi-axis Overload Coefficient, e (in-lb) 3520 

Table 3.2.1 JR3 Multi-Axis Force-Torque Sensor Technical Specifications 
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Figure 3.2.1 JR3 Load Cell Model 35E15A4 

  
   Figure 3.2.2 Load Cell Robot View      Figure 3.2.3 Load Cell Tool View 

(Photos by M. Ramos, 2014) 

The load cell connects to a computer, along with its power supply, via cable. A 30 foot 

cable was used in the experiment to allow a 60 foot range maximum for the patient to 

produce around 10 steps with the prosthetic limb. Data were recorded wirelessly through 

the router and displayed on a remote desktop that is accessed by a laptop connected to the 

router. 
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Figure 3.2.4 Load Cell Controller, Wireless Router, 30 ft. Cable, and Computer 

(Photo by M. Ramos, 2014) 

3.3 Clinical Set-up 

The clinic hallway at Precision Orthotics and Prosthetics was used as the runway 

for the patients. The hallway measured about 35 feet in length with the patient being able 

to walk around 10 steps with his prosthetic limb. Both subjects’ pylons were modified to 

include the load cell right beneath the socket. Alignment and height were checked and 

verified by a certified prosthetist before the beginning of data collection. 
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Figure 3.3.1 Subject 1 Vacuum Socket with Suspension Sleeve and Load Cell  

(Photo by M. Ramos, 2014) 

Figure 3.3.1 shows the mounting orientation of the load cell. Both subjects were right 

transtibial amputees. The load cell was mounted with a positive X oriented forward, a 

positive Y oriented to the subject’s medial direction, and a positive Z pointing upwards. 

A positive Z pointing upwards helped distinguish positive values of Z when the patient 

was putting his weight on the prosthesis.  

   
Figure 3.3.2 Subject 1 Silicon Sleeve       Figure 3.3.3 Subject 1 Manual Pump 

(Photos by M. Ramos, 2014) 
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Subject 1 was fitted with a low durometer silicon sleeve to ensure suction of vacuum and 

total contact inside the socket. A suspension sleeve was put around the socket and the 

residual limb to prevent any loss of vacuum. Due to the limited time and budget of the 

project, subject 1 was fitted with a clear test socket. Final fabrication of a vacuum socket 

includes a constant source of vacuum suction facilitated by an electronic vacuum pump. 

The vacuum was pumped to -20 mmHg.  

 
Figure 3.3.4 Subject 2 Load Cell and Cable Setup 

(Photo by M. Ramos, 2014) 

Figure 3.3.4 shows Subject 2 instrumented for data collection. A 30 foot span was 

marked to record subject velocity for every trial. Subjects were instructed to walk at a 

self-selected comfortable speed (SSCS) and to pass the markings on the ground. They 

were also instructed to keep walking at their selected pace and not slow down too much 

when about to reach the finish line. This helped to prevent any awkward steps at the end 

of the data trial. 
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3.4 Data Recording 

The load cell computer was remotely connected by a router to a laptop. Before 

data collection began, the subjects’ prosthetic limb was suspended horizontally so as not 

to cause pressure readings in the Z direction. Calibration was completed when the display 

showed forces and moments near zero. 

 
Figure 3.4.1 Calibration of the Load Cell 

The subjects were instructed to walk at an SSCS. The load cell recorded the various 

pressure readings in all three axes. A stopwatch was used to measure the speed of the 

subject for a 30 foot distance during each trial. The subject began walking as soon as data 

recording began and ended once the end of the runway was reached. Five to six trials 

were recorded for each socket type and around ten steps were produced during each trial. 

SSCS and subject socket type were recorded as follows: 
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Subject 1 Subject 2 

 

Vacuum 

(m/s) 

Pin 

(m/s) 

Vacuum 

(m/s) 

Pin 

(m/s) 

Trial 1 0.621 0.728 0.904 0.878 

Trial 2 0.631 0.806 0.953 0.935 

Trial 3 0.653 0.863 0.950 0.941 

Trial 4 0.705 0.829 0.998 0.945 

Trial 5 0.795 0.833 0.947 0.982 

Trial 6 N/A 0.835 0.897 0.966 

Average 0.681 0.816 0.941 0.941 

Table 3.4.1 Subject Self-Selected Comfortable Speeds 

3.5 Data Processing 

A Graphical User Interface (GUI) was used for displaying and analyzing force 

and moment data collected from the load cell. The GUI can analyze up to ten steps. At 

least eight steps are needed for statistical analysis. All the acquired trials were analyzed 

with the GUI. A complete list of steps for processing the data with the GUI can be found 

in Appendix A. The GUI software divides each step into 50 discrete time intervals, each 

of which represents 2% of the gait cycle. The GUI was developed by Dr. Neumann’s 

former graduate student, Kartheek Yalamanchili. Reference to his thesis can be found in 

the bibliography for further explanation. 
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Figure 3.4.1 GUI Display and Step Selection for Force in Z-Direction 

Figure 3.4.1 represents a typical display of steps. The GUI allows for zooming into 

specific intervals of data to choose the appropriate start and end sections of each step. 

Once the step start and end intervals have been input into the columns, the GUI displays 

the selected steps in the GAIT CYCLES. The same start and end intervals are transferred 

to analyze the forces in the X and Y directions as well as the moments in the X, Y, and Z 

directions. Steps from the beginning of the trial and the end of the trial were excluded 

from analysis to avoid variation involving hesitant starts, rushed stops, and anything else 

that can occur when beginning to walk and stopping. 
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Figure 3.4.2 Example of GUI Display for Mean and SD of Force in Z-Direction 

Figure 3.4.2 represents the mean and standard deviation for the steps selected for 

analysis. The GUI calculates mean and SD for all forces and moments.  

 
Figure 3.4.3 Example of GUI Display for Force Resultant 
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Figure 3.4.4 Example of GUI Display for Moment Resultant 

Figures 3.4.3 and 3.4.4 are the final force and moment resultants for the load cell data in 

the X, Y, and Z directions. Once the GUI is done processing the data, three files are 

output labeled “Transducer Rawdata,” “Transducer Data in Newtons,” and “Gait Cycles.”  

3.6 Data Analysis 

 The “Gait Cycles” Excel file displayed the readings in Newtons for the forces in 

the X, Y and Z directions. The moments about the X, Y, and Z axes were displayed in 

Newton-meters. Each step is displayed at its 2% interval, producing 50 intervals per step. 

The data for each of the three forces and moments were displayed in six matrices of size 

50x10 cells. Each matrix contained 50 rows (intervals) and up to 10 columns of data for 

the recorded steps.  The mean and SD were also displayed for every interval. The load 

cell produces values on a full scale of 16384. All values must be converted to a 

percentage of full scale by dividing the number by 16384. The force in the X and Y 

directions were then multiplied by 250 to produce the values in pounds. The force in the 
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Z direction was multiplied by 500 to produce its value in pounds. The moments were 

output in Newton-decimeters. After multiplying all the values by 10, the values were 

divided by the full scale value of 16384 and multiplied by 875 to convert to inch-pounds. 

All values were then converted to their respective Newtons or Newton-meters.  

 A complete analysis was done for the fourth trial of the pin and vacuum sockets. 

Justification for choosing the fourth trial stemmed in having the patients adjust to 

walking at their SSCS and becoming familiarized with starting and stopping at the 

indicated locations. Five to six trials were recorded for each subject and respective 

socket, with the exception of Subject 1, producing only five trials with the vacuum 

socket. The last two trials were also excluded from complete analysis due to having the 

patients mentally aware that the trials were almost completed, possibly causing steps to 

be rushed or overcompensated from fatigue.  

 
Figure 3.6.1 Force Resultant Graph 
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 In order to visually analyze the data, the force resultant was plotted with the force 

in Newtons on the vertical axis and the normalized gait interval on the horizontal axis as 

shown in Figure 3.6.1 for S1. The percent of stance is equal to twice the interval minus 

one. Plotting the force resultant eliminates the orientation of the mounted load cell from 

causing any differences from socket to socket. Both socket types (pin and vacuum) were 

plotted on the same graph for the individual subjects to visually spot any differences.  

 

 
Figure 3.6.2 Moment Resultant Graph 

The moment resultant was plotted with the moment in Newton-meters on the 

vertical axis and the gait cycle percentage on the horizontal axis. Again, both socket types 

were plotted on the same graph to visually display any differences. Resultant moments 

for S1 are shown above. 
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Figure 3.6.3 Force vs. Moment Graph 

Finally, the force and moment curves for the vacuum and pin sockets were plotted 

for each individual subject as shown in Figure 3.6.3 for S1. The moment lies on the 

vertical axis in Newton-meters and the force lies on the horizontal axis in Newtons. The 

length of the moment arm is proportional to the slope of a line connecting the origin with 

a point. The two curves can be compared to determine which socket condition involves a 

longer moment arm. 

Statistical analysis was facilitated by an Excel Student-t test. The t-test displays 

the statistical probability that the compared samples came from the same two underlying 

populations. The first maximum in the force resultant, caused by the subject during heel 

strike or loading response, for the pin was compared with the first maximum in the force 

resultant for the vacuum socket. Likewise, the second maximum in the force resultant, 

caused during toe-off or propulsion, for the pin was compared with the second maximum 

in the force resultant for the vacuum socket. The moment resultant curve produced one 

maximum for each of the two force maximums, which was compared for the pin and 



35 
 

vacuum sockets. The maximum during loading response was less than the overall 

maximum, which occurred during propulsion.  
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CHAPTER 4: RESULTS 

 This chapter presents the results of the fourth trial for both the pin attachment and 

vacuum attachment sockets of each subject. Statistical analysis was conducted through an 

Excel t-test to determine the probability of the force resultant and moment resultant 

values coming from the same distribution for each subject.  

4.1 Forces 

 

 
Figure 4.1.1 Subject 1 Pin and Vacuum Socket Force Resultants 

 Figure 4.1.1 represents the force resultants of the gait cycle for subject 1. The pin 

and vacuum sockets produced two maxima at heel strike and at toe-off. Stance occurs 

between the two maxima. The first maximum for the pin socket occurred at the 11
th

 

interval of the gait cycle with a resultant force of 1052.02 Newtons. The second 

maximum occurred at the 30
th

 interval of the gait cycle with a resultant force of 963.34 

Newtons. The vacuum socket produced its first maximum at a later interval than the pin 

First 
Maximum 

Second 
Maximum 
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socket. The first maximum was produced at the 15
th

 interval with a resultant force of 

1017.55 Newtons and the second maximum occurred at the 28
th

 interval with a resultant 

force of 999.48 Newtons.  

 

 
Figure 4.1.2 Subject 2 Pin and Vacuum Socket Force Resultants 

 Figure 4.1.1 represents the force resultants of the gait cycle for subject 1. The first 

maximum for the pin socket occurred at the 12
th

 interval of the gait cycle with a resultant 

force of 881.64 Newtons. The second maximum occurred at the 34
th

 interval of the gait 

cycle with a resultant force of 836.47 Newtons. Unlike subject 1, the vacuum socket 

produced its first maximum at an earlier interval than the pin socket. The first maximum 

was produced at the 8
th

 interval with a resultant force of 903.86 Newtons and the second 

maximum occurred at the 33
rd

 interval with a resultant force of 855.91 Newtons.  

First 
Maximum 

Second 
Maximum 
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 The following table summarizes the findings of the force resultants for each 

subject: 

Subject Socket Interval First Max (N) Interval Second Max (N) 

1 Pin 11 1052.02 30 963.34 

1 Vacuum 15 1017.55 28 999.48 

2 Pin 12 881.64 34 836.47 

2 Vacuum 8 903.86 33 855.91 

Table 4.1.1 Force Resultant Maxima 

4.2 Moments 

 
Figure 4.2.1 Subject 1 Pin and Vacuum Socket Moment Resultants 

 Figure 4.2.1 represents the moment resultants of the gait cycle for subject 1. The 

pin and vacuum sockets produced one maximum. The maximum for the pin socket 

occurred at the 34
th

 interval of the gait cycle with a resultant moment of 78.07 Newton-

meters. The vacuum socket also produced its maximum at the 34
th

 interval with a 

resultant moment of 80.38 Newton-meters.  
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Figure 4.2.2 Subject 2 Pin and Vacuum Socket Moment Resultants 

 Figure 4.2.2 represents the moment resultants of the gait cycle for subject 2. The 

pin and vacuum sockets produced one maximum. The maximum for the pin socket 

occurred at the 36
th

 interval of the gait cycle with a resultant moment of 59.40 Newton-

meters. The vacuum socket also produced its maximum at the 36
th

 interval with a 

resultant moment of 62.50 Newton-meters.  

 The following table summarizes the findings of the moment resultants for each 

subject: 

Subject Socket Interval Max (N-m) 

1 Pin 34 78.07 

1 Vacuum 34 80.38 

2 Pin 36 59.4 

2 Vacuum 36 62.5 

Table 4.2.1 Moment Resultant Maxima 
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4.3 Force vs. Moment 

 In order to understand the relationship between the forces and moments produced 

during a gait cycle, the moment resultant was plotted on the vertical axis and the force 

resultant was plotted on the horizontal axis.  

 

Figure 4.3.1 Subject 1 Force vs. Moment Curves 

 Figure 4.3.1 represents the force and moment produced at various stages of the 

gait cycle for subject 1. Starting from the lower left-hand side of the graph and moving to 

the lower right-hand side, the subject begins the cycle by loading force on the heel. 

Maximum load on the heel occurs at the position labeled “heel loading.” Subject 1 heel 

loading occurs at different stages of the gait cycle for the pin and vacuum sockets. 

Maximum toe loading, or push-off, occurs around the same interval of the gait cycle for 

both the pin and vacuum sockets at the top right-hand side of the graph. The subject then 

Heel 
Loading 

Toe 
Loading 
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releases the load on the prosthetic limb and both forces and moments go back to zero at 

the lower left-hand side of the graph. 

 
Figure 4.3.2 Subject 2 Force vs. Moment Curves 

 Figure 4.3.2 represents the force and moment produced at various stages of the 

gait cycle for subject 2. Starting from the lower left-hand side of the graph and moving to 

the lower right-hand side, the subject begins the cycle by loading force on the heel. 

Maximum load on the heel occurs at the position labeled “heel loading.” Subject 2 heel 

loading occurs around the same interval of the gait cycle for the pin and vacuum sockets. 

Maximum toe loading, or push-off, also occurs around the same interval of the gait cycle 

for both the pin and vacuum sockets at the top right-hand side of the graph. The subject 

then releases the load on the prosthetic limb and both forces and moments go back to zero 

at the lower left-hand side of the graph. 

Heel 
Loading 

Toe 
Loading 
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4.4 Statistical Analysis 

 A two-tailed t-test statistical analysis with unequal variance was used to interpret 

the effect of the two sockets. An alpha value of 0.05 was used to determine the 

significance of the effects of the vacuum socket. A value larger than 0.05 indicated that 

the vacuum socket and pin attachment socket produced similar values in force or 

moment, suggesting there was no effect caused from using the vacuum socket. A value 

less than 0.05 indicated that the vacuum socket did produce a difference in the forces or 

moments being produced. The analysis was focused on the resultant forces and moments, 

reducing the chances of the load cell alignment to cause variability from socket to socket. 

The forces and moments in the X, Y, and Z-directions for every step were taken and 

converted to Newtons and Newton-meters, respectively. Statistical significance increases 

with the number of steps analyzed. The target was 10 steps but due to various 

circumstances, 9 or 8 good steps may have been produced for analysis. 

4.4.1 Subject 1 

The following statistical analysis was conducted for subject 1 at the maxima of 

the force and moment resultants. The two-tailed t-test was conducted with the respective 

maximum resultants of the pin and vacuum sockets. Tables containing the t-test data for 

S1 are displayed in Appendix C. 

 T-test analysis for the first maximum of the vacuum and pin socket resultant 

forces was 0.133.  T-test analysis for the second maximum of the vacuum and pin socket 

resultant forces was 0.00246.  Finally, t-test analysis for the maximum of the vacuum and 

pin socket resultant moments was 0.34701.   

 The following table summarizes the T-test values for the three maxima: 
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S1  

t-test 

probability 

Force Resultant 1st Max 0.133 

Force Resultant 2nd Max 0.00246 

Moment Resultant Max 0.347 

Table 4.4.1.1 Subject 1 Pin and Vacuum Resultant T-test Values 

4.4.2 Subject 2 

The following statistical analysis was conducted for subject 2 at the maxima of 

the force and moment resultants. The two-tailed T-test was conducted with the respective 

maximum resultants of the pin and vacuum sockets. Tables containing the t-test data for 

S2 are displayed in Appendix C. 

 T-test analysis for the first maximum of the vacuum and pin socket resultant 

forces was 0.341. T-test analysis for the second maximum of the vacuum and pin socket 

resultant forces was 0.169. T-test analysis for the maximum of the vacuum and pin socket 

resultant moments was 0.249.   

 The following table summarizes the T-test values for the three maxima: 

S2 

t-test 

probability 

Force Resultant 1st Max 0.341 

Force Resultant 2nd Max 0.169 

Moment Resultant Max 0.249 

Table 4.4.2.1 Subject 2 Pin and Vacuum Resultant T-test Values 
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CHAPTER 5: DISCUSSION 

Subject 1 and 2 SSCS from Table 3.4.1 indicate varying speeds depending on the 

type of socket worn. S1 walked with a higher average speed in the pin socket than in the 

vacuum socket whereas S1 walked with the same average speed with both sockets. S1 

started with a slower speed in the vacuum socket and ended with a higher speed. The 

trend is similar for the pin socket. S1 also began with a slower speed in both the pin and 

vacuum sockets but increased his SSCS near the end of the trials, only slowing down for 

the final trial. 

Subject 1 and 2 force, moment, and statistical results were different for both the 

pin and vacuum sockets. The force resultant graph for Subject 1 shown in Figure 4.1.1 

depicts a two-humped bimodal curve. The first maximum represents the full weight of the 

subject at heel strike. As the foot makes full contact with the ground, the force on the 

socket lessens and rises again as the foot pushes off the ground. The second maximum 

occurs because the body is accelerated upward as one walks and must be pushed to 

propel the body forward. In the case of a non-amputee, the second hump is usually higher 

to propel the body forward.  

The data for Subject 1 in the pin socket produced a heel strike maximum of 

1052.02 Newtons and push-off maximum of 963.34 Newtons resulting in a difference of 

88.68 Newtons from heel strike to push-off. The lower force caused during push-off may 

signify that the socket was not comfortable, but other explanations may account for this. 

A consideration for subject 1 is the relatively short time since amputation and K2 

ambulation level. The vacuum socket exhibited less of a difference between heel strike 

and push-off with a difference of 18.07 Newtons resulting from a heel strike maximum of 
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1017.55 Newtons and push-off maximum of 999.48 Newtons. Heel strike values differed 

for the pin and vacuum sockets. The pin socket was associated with a higher force during 

heel strike than the vacuum socket, with a difference of 34.47 Newtons. The vacuum 

socket was associated with a higher force during propulsion than the pin socket, with a 

difference of 36.14 Newtons. Subject 1 was able to absorb more force and push off with 

more force with the vacuum socket during the gait cycle. Although the patient did not 

have time to adapt to the vacuum socket before the trials, the lessened force difference 

may indicate a higher stability while walking with the vacuum socket than with the pin 

socket. 

Subject 2 also exhibited a difference in forces between the two peaks of force 

during heel strike and push-off. The difference between heel strike and push-off for the 

pin socket was 45.17 Newtons, resulting from a heel strike maximum of 881.64 Newtons 

and a push-off maximum of 836.47 Newtons. Subject 2, like Subject 1, also displayed a 

lower push-off force in the pin socket. The difference between heel strike and push-off 

for the vacuum socket was 47.95 Newtons, resulting from a heel strike maximum of 

903.86 Newtons and push-off maximum of 855.91 Newtons. Subject 2 primarily wears a 

vacuum socket and has seven years of experience with prostheses, ambulating at a K3 

level. There was less difference between the forces produced during heel strike and toe-

off between both sockets. There was only a difference of 22.22 Newtons during heel 

strike and 19.44 Newtons during toe-off between the pin and vacuum sockets. The 

subject was able to push off with more force with the vacuum socket but also required a 

higher braking force at heel strike with the vacuum socket. Subject 2 verbally 
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communicated he preferred the vacuum socket as it produced less pain than the pin 

socket. According to the results, he walks with similar forces on either socket. 

The moment resultants for both subjects were primarily influenced by the moment 

about the Y-axis, the large values of which tend to dominate the resultant. Subject 1 

exerted a maximum moment during the same interval for both the pin and vacuum 

sockets. Subject 2 also exerted a maximum moment during the same interval for both the 

pin and vacuum sockets. Subject 1 produced a much higher moment during the majority 

of the gait cycle in the vacuum socket. This could be due to the fact that the subject was 

wearing a vacuum socket for the first time and did not have time to adjust. It could also 

indicate a more loosely fitting vacuum socket since the prosthetist did not have time to 

modify the fit. The forces he exerted seemed to be close to the pylon as he walked and 

their line of action did not appear to cross the heel region of the foot nor extend far onto 

the forefoot . The trajectory of the moment curve with the vacuum socket varies greatly 

for subject 1 but the peak moment occurs during an interval that is similar for the pin 

socket.  The difference between the peak moments for the two types of sockets was 2.31 

Newton-meters. Subject 2 exerted more control in both the vacuum and pin sockets, as 

shown in Figure 4.2.2 with the plotted analysis matching closely between the pin and 

vacuum sockets. Like Subject 1, Subject 2 exerted a higher moment with the vacuum 

socket at the peak of the curve than the pin socket but the difference was only 3.1 

Newton-meters and was not significant.  

The force and moment curves plotted together show the relationship between the 

moment and force during the gait cycle.  Subject 1’s gait cycle produced a loop during 

heel loading in the pin socket. The moment and force both increased during loading 
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response to a local maximum but the moment suddenly dropped as stance continued. Toe 

loading was similar for both the pin and vacuum socket. Subject 1 appeared to reach  heel 

strike  sooner in the pin socket than the vacuum socket during the gait cycle. Subject 2 

produced more consistent results for both moments and forces. He reached heel strike and 

toe-off around the same interval during both gait cycles. 

The statistical analysis served to refute the first hypothesis which states that a 

vacuum pump socket attachment will cause less force on the residual limb than a 

conventional pin attachment during a self-selected walking pace. An alpha value of 0.05 

was used to determine effectiveness of the test. Subject 1 produced a T-test result of 

0.133 for the comparison of heel strike forces with the vacuum and pin sockets. This 

means there is a 13.3% chance that the distribution was the same for the pin and vacuum. 

There is no clear effect caused by the vacuum socket. The T-test produced a result of 

0.00246 for the force resultant during toe-off in the pin and vacuum sockets. This 

indicates that the vacuum socket did produce an effect on the subject’s gait. Finally, the 

moment resultant maximum produced a statistical value of 0.347, indicating there was no 

effect by using a vacuum socket rather than a pin socket. All of subject 2’s results were 

over 0.05, indicating there was no clear effect from using a vacuum socket instead of a 

pin socket. Thus, there was no significant effect produced on the forces and moments due 

to the vacuum socket. 

5.1 Shortcomings 

 There were a few shortcomings during the experiment that may have influenced 

the results. First, the goal was to recruit subjects who were transitioning from a pin to a 

vacuum socket. The original intent of the experimental design was to first measure a 
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subject who was using a pin socket prior to the initial fitting of the vacuum socket. Two 

weeks after the vacuum socket had been fitted, measurements would be taken with the 

vacuum socket.  This would allow two weeks for adaptation to the vacuum socket to 

occur, which would help ensure that the subject had adjusted to wearing a vacuum socket 

prosthesis. The results of the repeated experiment would be examined to determine 

whether the patient was exerting less or greater force and moment due to the vacuum 

socket. Adaptation time was not feasible for S1. Subject 1 was a relatively recent 

amputee and still adjusting to wearing a pin socket; he had only a K2 mobility level. The 

vacuum socket he used during the trials was the first vacuum socket he had ever worn. 

Proper alignment was ensured during all trials but the lack of time to adjust to a vacuum 

socket may have been the cause of the moment resultant curve not matching the form of 

the pin moment resultant curve.  

Subject 2 was an experienced prosthesis user and accustomed to walking with a 

vacuum socket. The pin socket he used for the trials was an older socket that may have no 

longer fit as well as it should have. Visually, the gait was not forced or uneven for both 

sockets and the results did not indicate a major difference in the use of both for subject 2.  

A longer runway at both clinic locations where measurements were taken would 

have served better to produce more than 10 steps. This could be a limiting factor for other 

clinics that do not have long hallways. At least 10 good steps would have provided a 

stronger statistical analysis but usually the first and last steps are discarded as they are 

non-representative of the entire trial.  

 Another major shortcoming came from the limited time available to process, 

analyze, and interpret data. The ideal complete analysis would involve analyzing all the 
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trials, not just trial 4, and looking at the differences in the sagittal, transverse, and coronal 

planes to help distinguish the varying forces exerted in all directions of the gait cycle.  
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CHAPTER 6: CONCLUSIONS 

 The use of a load cell can quickly produce quantitative results for a prosthetist to 

relay to insurance companies and medical physicians. With the increasing demand from 

insurance companies for proper documentation and justification for producing new 

sockets, prosthetists have a difficult time justifying the production of a new socket for a 

patient who may not be comfortable in his or her socket even though he or she may 

benefit from having a new or different type of socket. The expected lifetime for a socket 

is 5 years, which insurance companies take into consideration when approving or denying 

the billing of a new socket. Patients change physically and emotionally during those 5 

years and will become increasingly more confident walking with their prosthesis. They 

can realize the benefits from a more sophisticated socket design. They may also be 

experiencing painful sensations as they walk due to “milking” effects of a pin vacuum 

and could benefit from switching to the more expensive-to-produce vacuum socket. This 

could be researched with load cell data by examining the force and moment being created 

during the gait cycle.  

 This experiment measured the forces and moments produced during the entire gait 

cycle. The pin and vacuum sockets produced different results between the maximum 

force at heel strike and maximum force at toe-off. A small load cell, such as the one used 

in this experiment, would be a valuable asset to a prosthetist’s tool box when fitting a 

patient with a new socket. Further research is needed to fine tune the data gathering and 

data analysis portions of the experiment. Future examination would require an analysis of 

normalized data, inspection of the forces produced in the different anatomical planes, and 

a larger pool subject to produce an improved statistical analysis.  
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APPENDIX A  

GUI Interface 

The following steps were taken to process the raw data collected by the load cell. The 

load cell file first needed to be opened through Microsoft Excel in order for the GUI to 

read the data. The GUI output file was saved as a gait cycle Excel file. Various 

calculations were needed to convert the raw load cell data from the GUI to values in the 

correct SI units. The average time needed to analyze one trial from loading into the GUI 

to the export of gait analysis in Excel format without the necessary conversion factors 

was approximately 20 to 30 minutes. Subjects 1 and 2 had 25 trials altogether, with a 

minimum estimated processing time of 500 minutes.  

1. Installation and Initialization of GUI. Folder is created after clicking “Next” 

 

2. Enter foot to be analyzed and weight of subject in pounds 
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3. Input the offsets and scaling factors. In this experiment, all were 1. 

 

4. Select the load cell Excel file to be analyzed. Must be in the same folder as the 

GUI initialization application. 

 

5. The forces in the Z-direction must be analyzed first 
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6. Input the coordinates for steps to be analyzed. The zoom function can be used to 

select the positive starting and ending points of the gait cycle. Exclusion of any 

non-representative steps either in the beginning, middle, or end of the trial may be 

necessary to produce accurate results. 

 

7. Select “Mean & SD.” The following plots are produced: 
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8. Close the window by pressing “Back.” The window in step 6 is restored. Go back 

to “Transducer Menu” and all forces and moments will be green. Select forces in 

the X-direction and follow steps 6 and 7. Do the same for forces in the Y-

direction. 

9. After analyzing forces, mean and SD in the Y-direction as well, select “Force 

Resultant.” This analyzes the resultant of the three forces and produces a resultant 

curve and resultant angles. Only the curve is necessary for experimental analysis. 
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10. Close by pressing “Back.” If “Transducer Menu” or “Exit” are pressed, the 

program will shut down and processing must start over. 

11. Repeat steps 6 – 10 for the moments about the X, Y, and Z-axes. Produce the 

moment resultant plot. 
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12. Close by pressing “Back.” Go back to the beginning and exit at the very end. 

13. Three files are produced inside the folder:  

a. Gait cycles 

b. Transducer Data in Newtons 

c. Transducer Rawdata 

14. “Gait cycles” will be used for the analysis portion of the experiment. 
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APPENDIX B 

K Level Definitions 

K-levels are defined by Medicare based on an individual's ability or potential to ambulate 

and navigate their environment. Once it is determined in which K-level an individual 

resides, it can be determined which prosthetic components are covered by Medicare (8). 

K-Level Description Foot/Ankle Assemblies Knee Units 

K0 This patient does not have the ability or 

potential to ambulate or transfer safely 

with or without assistance and a prosthesis 

does not enhance their quality of life or 

mobility. 

Not eligible for prosthesis Not eligible 

for prosthesis 

K1 This patient has the ability or potential to 

use a prosthesis for transfers or ambulation 

on level surfaces at fixed cadence - a 

typical limited or unlimited household 

ambulator. 

External keel, SACH feet or 

single axis ankle/feet 

Single-axis, 

constant 

friction knee 

K2 This patient has the ability or potential for 

ambulation with the ability to traverse low-

level environmental barriers such as curbs, 

stairs, or uneven surfaces - a typical 

community ambulator. 

Flexible-keel feet and multi-

axial ankle/feet 

Single-axis, 

constant 

friction knee 

K3 The patient has the ability or potential for 

ambulation with variable cadence - a 

typical community ambulator with the 

ability to traverse most environmental 

barriers and may have vocational, 

therapeutic, or exercise activity that 

demands prosthetic use beyond simple 

locomotion. 

Flex foot and flex-walk 

systems, energy storing feet, 

multi-axial ankle/feet, or 

dynamic response feet 

Fluid and 

pneumatic 

control knees 

K4 The patient has the ability or potential for 

prosthetic ambulation that exceeds basic 

ambulation skills, exhibiting high impact, 

stress, or energy levels - typical of the 

prosthetic demands of the child, active 

adult, or athlete. 

Any ankle foot system 

appropriate 

Any ankle 

knee system 

appropriate 

 

 

  



60 
 

APPENDIX C 

Statistical Analysis 

The following tables were produced when examining the statistical significance of the 

forces and moments produced for S1 and S2 in the pin and vacuum socket. The interval 

was chosen based on the percent of stance which produced the maximum force or 

moment resultant. The percent of stance is equal to twice the interval minus one. The t-

test compared the final column displaying the resultant force or moment in Newtons or 

Newton-meters of the pin and vacuum sockets. 

Subject 1 

 
Table C.1 Subject 1 Pin Force Resultant First Maximum [9 Steps] 

 
Table C.2 Subject 1 Vacuum Force Resultant First Maximum [9 Steps] 

1st max inverval 11

pin Fx lb pin Fy lb pin Fz lb resultant (lb) resultant (N)

1781.00 27.18 -624.00 -9.52 7551.50 230.45 232.25 1033.08

885.00 13.50 93.50 1.43 8101.00 247.22 247.60 1101.36

-46.00 -0.70 502.50 7.67 8101.00 247.22 247.34 1100.24

353.00 5.39 436.50 6.66 7978.00 243.47 243.62 1083.67

874.00 13.34 372.00 5.68 7492.00 228.64 229.10 1019.07

1739.50 26.54 -602.50 -9.19 7987.00 243.74 245.36 1091.40

-63.50 -0.97 380.50 5.81 8119.00 247.77 247.84 1102.46

1837.50 28.04 -293.00 -4.47 7487.50 228.50 230.26 1024.24

1388.50 21.19 -212.50 -3.24 6793.50 207.32 208.43 927.13

1st max interval 15

vacuum Fx lb vacuum Fy lb vacuum Fz lb resultant (lb) resultant (N)

-2092.00 -31.92 1329.50 20.29 7026.50 214.43 217.74 968.56

-2407.00 -36.73 1430.50 21.83 7419.00 226.41 230.41 1024.90

-2543.50 -38.81 1444.50 22.04 7205.00 219.88 224.36 998.02

-2701.00 -41.21 1591.50 24.28 7408.00 226.07 231.08 1027.89

-2494.50 -38.06 1601.50 24.44 7416.50 226.33 230.81 1026.69

-2011.00 -30.69 1456.00 22.22 7127.00 217.50 220.77 982.05

-2483.00 -37.89 1507.00 22.99 7454.50 227.49 231.77 1030.96

-2599.00 -39.66 1541.00 23.51 7562.00 230.77 235.33 1046.82

-2924.50 -44.62 1357.00 20.71 7625.50 232.71 237.85 1058.03
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Table C.3 Subject 1 Pin Force Resultant Second Maximum [9 Steps] 

 
Table C.4 Subject 1 Vacuum Force Resultant Second Maximum [9 Steps] 

 
Table C.5 Subject 1 Pin Moment Resultant Maximum [9 Steps] 

 

2nd max inverval 30

pin Fx lb pin Fy lb pin Fz lb resultant (lb) resultant (N)

-600.00 -9.16 265.50 4.05 7047.00 215.06 215.29 957.66

-870.00 -13.28 367.00 5.60 7238.50 220.90 221.37 984.71

-1290.50 -19.69 308.50 4.71 7093.00 216.46 217.41 967.07

-903.00 -13.78 323.50 4.94 7305.00 222.93 223.41 993.78

-666.50 -10.17 657.00 10.03 7238.50 220.90 221.36 984.67

12.50 0.19 232.00 3.54 7012.00 213.99 214.02 952.00

-1064.00 -16.24 238.00 3.63 6965.00 212.55 213.21 948.38

-321.00 -4.90 142.50 2.17 7180.00 219.12 219.18 974.97

-603.00 -9.20 661.00 10.09 6691.50 204.21 204.66 910.39

2nd max interval 28

vacuum Fx lb vacuum Fy lb vacuum Fz lb resultant (lb) resultant (N)

-2562.00 -39.09 1533.50 23.40 7390.00 225.52 230.08 1023.45

-2037.50 -31.09 1474.50 22.50 7265.50 221.73 225.02 1000.95

-2365.50 -36.09 1483.00 22.63 7182.50 219.19 223.29 993.26

-2522.50 -38.49 1566.00 23.90 7070.00 215.76 220.46 980.67

-2291.00 -34.96 1455.00 22.20 7191.50 219.47 223.34 993.47

-2360.00 -36.01 1510.00 23.04 7300.50 222.79 226.86 1009.12

-2047.50 -31.24 1397.00 21.32 7268.50 221.82 225.02 1000.93

-2750.50 -41.97 1476.50 22.53 7068.00 215.70 220.90 982.59

-2403.00 -36.67 1349.00 20.58 7399.50 225.81 229.70 1021.74

max interval 34

pin Mx lb-in pin My lb-in pin Mz lb-in resultant (lb-in) resultant (N-m)

-221.75 -118.43 -1350.75 -721.38 70.30 37.54 732.00 82.70

-229.55 -122.59 -1436.25 -767.04 64.10 34.23 777.53 87.85

-214.10 -114.34 -1346.50 -719.11 66.50 35.51 729.01 82.37

-228.65 -122.11 -1372.30 -732.89 78.35 41.84 744.17 84.08

-197.30 -105.37 -1330.15 -710.38 71.30 38.08 719.16 81.25

-122.70 -65.53 -1266.25 -676.25 36.35 19.41 679.70 76.80

-174.00 -92.93 -1222.45 -652.86 59.75 31.91 660.21 74.59

-151.65 -80.99 -1170.30 -625.01 27.95 14.93 630.41 71.23

-131.50 -70.23 -1013.25 -541.13 95.65 51.08 548.06 61.92

max interval 34

vacuum Mx lb-in vacuum My lb-in vacuum Mz lb-in resultant (lb-in) resultant (N-m)

-125.65 -67.10 -1407.35 -751.61 156.35 83.50 759.20 85.78

-41.85 -22.35 -1359.75 -726.18 138.60 74.02 730.29 82.51

-56.30 -30.07 -1298.45 -693.45 139.25 74.37 698.07 78.87

-60.30 -32.20 -1323.65 -706.91 154.70 82.62 712.45 80.50

-92.10 -49.19 -1322.95 -706.53 137.45 73.41 712.04 80.45

-75.95 -40.56 -1378.75 -736.33 154.25 82.38 742.04 83.84

-52.45 -28.01 -1308.10 -698.60 135.60 72.42 702.90 79.42

-106.70 -56.98 -1371.20 -732.30 138.45 73.94 738.23 83.41

-40.50 -21.63 -1211.90 -647.22 135.55 72.39 651.62 73.62
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C.6 Subject 1 Vacuum Moment Resultant Maximum [9 Steps] 

 The following table summarizes the T-test values for the three maxima: 

S1  

t-test 

probability 

Force Resultant 1st Max 0.133 

Force Resultant 2nd Max 0.00246 

Moment Resultant Max 0.347 

Table 4.4.1.1 Subject 1 Pin and Vacuum Resultant T-test Values 

Subject 2 

 
Table C.7 Subject 2 Pin Force Resultant First Maximum [8 Steps] 

 
Table C.8 Subject 2 Vacuum Force Resultant First Maximum [8 Steps] 

 
Table C.9 Subject 2 Pin Force Resultant Second Maximum [8 Steps] 

1st max interval 12

pin Fx lb pin Fy lb pin Fz lb resultant (lb) resultant (N)

840.00 12.82 1144.50 17.46 6861.00 209.38 210.50 936.34

287.50 4.39 1336.00 20.39 6706.50 204.67 205.73 915.11

232.00 3.54 1287.00 19.64 6558.00 200.13 201.13 894.66

382.50 5.84 1248.50 19.05 6371.50 194.44 195.46 869.45

744.00 11.35 1280.50 19.54 6624.50 202.16 203.42 904.87

585.00 8.93 1191.50 18.18 6439.50 196.52 197.56 878.79

728.00 11.11 1087.50 16.59 6246.50 190.63 191.67 852.60

729.00 11.12 1035.00 15.79 5877.50 179.37 180.40 802.48

1st max interval 8

vacuum Fx lb vacuum Fy lb vacuum Fz lb resultant (lb) resultant (N)

1252.00 19.10 450.50 6.87 6939.50 211.78 212.75 946.35

1311.00 20.00 1608.50 24.54 6811.00 207.86 210.25 935.25

1039.50 15.86 1209.00 18.45 6589.00 201.08 202.55 900.97

1401.50 21.39 849.00 12.95 7003.00 213.71 215.17 957.13

1547.00 23.61 488.50 7.45 6578.00 200.74 202.27 899.72

1427.50 21.78 234.00 3.57 6307.50 192.49 193.75 861.85

1275.00 19.45 296.50 4.52 6799.00 207.49 208.45 927.22

1108.50 16.91 918.50 14.02 5900.50 180.07 181.40 806.92

2nd max interval 34

pin Fx lb pin Fy lb pin Fz lb resultant (lb) resultant (N)

-2053.50 -31.33 745.00 11.37 5878.50 179.40 182.47 811.66

-2483.50 -37.90 970.50 14.81 6266.50 191.24 195.52 869.71

-2496.00 -38.09 817.00 12.47 5910.00 180.36 184.76 821.84

-2482.00 -37.87 1083.50 16.53 6235.00 190.28 194.71 866.12

-2378.00 -36.29 866.00 13.21 6179.00 188.57 192.48 856.20

-2322.00 -35.43 884.00 13.49 5940.00 181.27 185.20 823.79

-2365.00 -36.09 1026.00 15.66 6154.00 187.81 191.88 853.53

-2069.00 -31.57 996.00 15.20 5701.00 173.98 177.47 789.44
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Table C.10 Subject 2 Vacuum Force Resultant Second Maximum [8 Steps] 

 
Table C.11 Subject 2 Pin Moment Resultant Maximum [8 Steps] 

 
Table 4.4.2.6 Subject 2 Vacuum Moment Resultant Maximum [8 Steps] 

 The following table summarizes the T-test values for the three maxima: 

S2 

t-test 

probability 

Force Resultant 1st Max 0.341 

Force Resultant 2nd Max 0.169 

Moment Resultant Max 0.249 

Table 4.4.2.1 Subject 2 Pin and Vacuum Resultant T-test Values 

 

2nd max interval 33

vacuum Fx lb vacuum Fy lb vacuum Fz lb resultant (lb) resultant (N)

-2140.00 -32.65 1070.00 16.33 5933.00 181.06 184.70 821.61

-2227.00 -33.98 1298.00 19.81 6012.00 183.47 187.64 834.67

-2361.00 -36.03 1201.00 18.33 6274.00 191.47 195.69 870.46

-2050.00 -31.28 1102.00 16.82 6165.00 188.14 191.46 851.67

-2156.00 -32.90 1060.00 16.17 6106.00 186.34 189.91 844.77

-2035.00 -31.05 1033.00 15.76 6230.00 190.12 193.29 859.78

-1737.00 -26.50 1344.00 20.51 6240.50 190.44 193.37 860.16

-635.50 -9.70 1395.00 21.29 6666.50 203.45 204.79 910.93

max interval 36

pin Mx lb-in pin My lb-in pin Mz lb-in resultant (lb-in) resultant (N-m)

245.35 13.10 -946.75 -50.56 93.80 5.01 52.47 5.93

282.60 15.09 -967.70 -51.68 133.60 7.14 54.31 6.14

243.70 13.01 -968.10 -51.70 123.60 6.60 53.72 6.07

294.50 15.73 -983.40 -52.52 130.60 6.97 55.27 6.24

278.30 14.86 -1005.00 -53.67 110.20 5.89 56.00 6.33

282.90 15.11 -923.30 -49.31 126.00 6.73 52.01 5.88

292.90 15.64 -951.70 -50.83 136.95 7.31 53.68 6.06

236.60 12.64 -764.80 -40.84 122.10 6.52 43.25 4.89

max interval 36

vacuum Mx lb-in vacuum My lb-in vacuum Mz lb-in resultant (lb-in) resultant (N-m)

305.00 16.29 -1030.50 -55.03 141.60 7.56 57.89 6.54

285.10 15.23 -1027.20 -54.86 181.40 9.69 57.75 6.52

280.00 14.95 -1046.70 -55.90 195.80 10.46 58.80 6.64

294.60 15.73 -990.50 -52.90 139.60 7.46 55.69 6.29

290.90 15.54 -1034.40 -55.24 158.20 8.45 58.00 6.55

272.20 14.54 -995.20 -53.15 160.40 8.57 55.76 6.30

343.45 18.34 -974.85 -52.06 162.85 8.70 55.88 6.31

292.30 15.61 -742.90 -39.68 112.40 6.00 43.06 4.86
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