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Abstract 

Awareness detection technologies have been gaining traction in a variety of enterprises; most often used 

for driver fatigue detection, recent research has shifted towards using computer vision technologies to analyze 

user attention in environments such as online classrooms. This paper aims to extend previous research on 

distraction detection by analyzing which visual features contribute most to predicting awareness and fatigue. We 

utilized the open-source facial analysis toolkit OpenFace in order to analyze visual data of subjects at varying 

levels of attentiveness. Then, using a Support-Vector Machine (SVM) we created several prediction models for 

user attention and identified the Histogram of Oriented Gradients (HOG) and Action Units to be the greatest 

predictors of the features we tested. We also compared the performance of this SVM to deep learning approaches 

that utilize Convolutional and/or Recurrent neural networks (CNNs and CRNNs). Interestingly, CRNNs did not 

appear to perform significantly better than their CNN counterparts. While deep learning methods achieved greater 

prediction accuracy, SVMs utilized less resources and, using certain parameters, were able to approach the 

performance of deep learning methods. 
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Facial analysis has been a steadily growing 

field. In particular, the reduction of auto-related 

accidents has become a major focus for research related 

to fatigue and distraction detection. However, given the 

increasing shift towards computer-based work and 

learning enterprises, it has become more relevant to 

consider the efficacy and effects of prolonged attention 

in stationary environments. 

Through the use of visual information such as 

facial expression and eye closure, we can predict the 

attentiveness and fatigue of a user in a stationary 

environment which can be used to assess how to 

improve productivity and worker satisfaction. Utilizing 

the open-source analysis toolkit, OpenFace, we 

analyzed video data sets of lab participants in order to 

gauge the effectiveness of different visual cues in 

predicting a user’s alertness (Baltrusaitis, 2020; 

Ghoddoosian et al., 2019). 

For this study, we used awareness assessment 

technologies to study the drowsiness of users. We 

define awareness based on a drowsiness scale 

constructed by Ghoddoosian et al. (2019). To simulate 

ground truth we define high alertness to be when a user 

self-reports an absence of fatigue and is completely 

conscious while drowsiness is when a user self-reports 

requiring effort to stay awake (Ghoddoosian et al., 

2019). 

The main factors we considered to classify a 

worker as alert, or fatigued include eyelid visibility, 

facial expression, and Histogram of Oriented Gradients 

(HOG) (Xie et al., 2012; Darshana, et al., 2014; Dinges 

& Grace, 1998; Happy et al., 2013; Gjoreski, et al., 

2020; Ekman et al., 2002; Chen et al., 2014). Eyelid 

visibility will be used as a proxy for drowsiness and 

will be measured using an awareness assessment 

technology called PERCLOS which will be used to 
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register a user’s eye and detect the changes in eyelid 

coverage (Dinges & Grace, 1998). PERCLOS refers to 

the proportion/percentage of the time in a minute that 

a subject’s eye is more than eighty percent closed. 

Facial expressions can also be used to determine 

fatigue and distraction, as previous research has 

indicated that non-neutral facial expressions suggest 

that when a subject is dwelling on an emotion for 

longer than a given threshold, they may become 

inattentive to an assigned task (Revadekar et al., 2020). 

Contributions: The contributions of this paper include 

building on previous studies on attention detection, by 

comparing the performance of different features in 

Support-Vector Machine (SVM) classifiers. Moreover, 

this paper compares the accuracy and processing time 

of Support-Vector Machine (SVM) classifiers against 

Convolutional Neural Networks (CNNs) and 

Convolutional Recurrent Neural Networks (CRNNs). 

 

Literature Review 

The majority of research pertaining to 

drowsiness detection has been conducted on human 

drivers in the interest of developing alerts that can 

prevent road accidents. However, given the recent shift 

to online learning, recent research has examined how 

attention detection can be employed in online learning 

environments. 

An Overview of Attention Metrics: Methods for 

recognizing inattention can be categorized into contact, 

methods that utilize measurements from physical 

sensors; and non-contact, methods that utilize visual 

aspects that can be recognized via webcam (Alkinani 

et al., 2020). Recent research attempts also utilize data 

collected from both mediums, such as eye tracking data 

in conjunction with electroencephalogram signals 

(Alkinani et al., 2020). However, since contact metrics 

can be more costly, inconvenient, and at times 

impossible, this paper seeks to develop models that 

enhance contact free metrics. 

Many studies have been conducted on 

measuring the attention or drowsiness of drivers 

through contact free methods, particularly in relation to 

driver fatigue (Xie et al., 2012; Darshana, et al., 2014; 

Dinges & Grace, 1998; Gjoreski, 2020; Alkinani et al., 

2020; Trutschel et al., 2017). Attentiveness and fatigue 

have also been manually measured through the use of 

Continuous Tracking Tasks (CTT), that monitor a 

user’s alertness based on their performance at a given 

task, and Psychomotoric Vigilance Tests (PVT), which 

monitors user reaction time by prompting users to 

interact with a flashing panel at random intervals 

(Dinges & Grace, 1998). 

Mapping Facial and Physical Motion: Alertness 

measures can be inferred from Gjoreski et al.’s 

assessment of driver distraction. Specifically, they 

categorize distraction as either cognitive, emotional, 

sensorimotor, or mixed (2020). While this study 

primarily focused on characteristics related to the face, 

it is noted that full body motion such as yawning, 

posture, and hand position were all cited to contribute 

to attentiveness. Similarly, Happy et al. identified 

similar movements to be indicative of boredom or 

frustration when observed in students participating in a 

virtual classroom (2013). While e-learning users are 

closer to our proposed demographic, the similarities in 

methodology and findings suggests that studies 

performed on driver inattentiveness is highly 

applicable to stationary environments. In regards to 

monitoring emotional distraction, Revadekar et al. 

performed a relevant study on gauging student 

attention in e-learning environments by measuring 

facial expression in addition to posture, lean, and head 

movement (2020). Emotional inattentiveness was 

signified by a detected emotion enduring for longer 

than a given threshold which suggested that a user’s 

attention was directed away from the assigned task. 

The aforementioned study uses a threshold of ten 

minutes. 

Popular metrics for measuring facial expression 

also come from the use of the Facial Action Coding 

System (FACS), and the Histogram of Oriented 

Gradients (HOG) (Ekman et al., 2002; Chen et al., 

2014). FACS are a standardized method for 

categorizing facial muscle movement developed by 

Carl-Herman Hjortsjo. The current standard for FACS 

was developed by Paul Ekman and Wallace Friesen 

and is currently the industry standard (Ekman et al., 

2002). In facial analysis, HOG features are extracted 

by encoding facial feature components into a single 

vector which can then be fed into an SVM (Chen et al., 

2014). 

Eye Mapping: In regards to eye mapping, Madsen et 

al. monitored eye movement and pupil size from 

subjects who were viewing visual stimuli with and 

without a distraction task (2021). Madsen et al. found 

that subjects that were attentive to their task tended 
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towards synchronized eye movement, while subjects 

that were distracted had erratic movement (2021). In 

addition, subjects with synchronized eye movement 

also tended to recall more information from the visual 

stimuli when tested on it in comparison to their 

distracted counterparts. 

One of the most popular metrics for measuring 

alertness is PERCLOS, an alertness measure founded 

in the 1990s that predicts fatigue in relation to the 

percent closure of a user’s eye. Touted as the most 

promising and “first-ever” real-time drowsiness 

detection sensor, PERCLOS has become a popular tool 

in subsequent studies (Dinges & Grace, 1998). 

PERCLOS consists of three drowsiness metrics: P70, 

the proportion of time the eyes were closed at least 70 

percent; P80, the proportion of time the eyes were 

closed at least 80 percent; EYEMEAS (EM), the mean 

square percentage of the eyelid closure rating (Dinges 

& Grace, 1998). Of these three, P80 was cited to 

correlate best to driver fatigue (Xie et al., 2012). 

While numerous studies continue to be 

performed using PERCLOS, a recent study by 

Trutschel et al. cites that alternative measure 

technologies such as Eye-Tracking Signal and contact 

measurements via EGG and EOG recordings yield 

better performance at identifying lapses in attention 

that occur over a shorter period of time (2017). Since 

the results of this study are meant to analyze a general 

decrease in attentiveness as opposed to momentary 

lapses, we have opted to use PERCLOS for analysis 

purposes. 

Facial Analysis Toolkits: Extensive research has also 

been conducted on models for accurately mapping 

facial movement in real time. Toolkits such as 

Affectiva and OpenFace have been used both for 

mapping head gesture and recognizing facial 

expressions. Affectiva, while adept in emotion 

recognition, has primarily been used in commercial 

settings (Madgin & Constantine, 2018). 

Alternatively, OpenFace has become popular 

as an open source toolkit for mapping facial 

expression, gaze direction, and head pose with real-

time performance. Utilizing Conditional Local Neural 

Fields (CLNF), OpenFace employs a Point 

Distribution Model to outline the shapes of various 

facial landmarks in order to recognize and map their 

location and motion. Additional points are fitted 

around the eyes, lips, and eyebrows. OpenFace also 

uses a three-layer Convolutional Neural Network 

(CNN) that was trained using datasets of faces from 

various angles. By training on unconventional face 

angles, the CNN allows OpenFace to account for 

landmark detection errors. The CLNF framework is 

also used to extract head pose and eye gaze. Head pose 

is mapped in a similar way to the aforementioned facial 

landmark detection, and eye gaze is mapped by using 

CLNF to locate the eye and pupil to compute a gaze 

vector (Baltrusaitis et al., 2016). Facial expression is 

determined by the use of select Action Units, listed in 

Appendix A, which correspond to their respective 

FACS facial movements (Ekman et al., 2002). 

OpenFace detects the presence of all listed Action 

Units on a binary scale (0 or 1), and detects the 

intensity of all Action Units on a 1 to 5 scale with the 

exception of AU28. 

Machine Learning Methods: In addition to available 

toolkits, researchers have also yielded results by 

classifying facial features in relation to the centroid of 

the human face. By locating facial landmarks, boosting 

algorithms such as Adaboost can be used to reliably 

track head gestures in real-time (Xie et al., 2012). After 

establishing the face’s centroid, deviations in head 

position can be tracked by calculating the euclidean 

distance between the average centroid and the current 

centroid. When a subject’s head deviates from the 

average for extended periods of time we expect this to 

be indicative of distraction. 

Methods used to extract visual features and 

build training models generally stem from deep 

learning approaches which utilize neural networks 

containing multiple hidden layers (Alkinani et al., 

2020). Well suited for image classification, deep 

learning models such as Convolution Neural Networks 

(CNN), Recurrent Neural Networks (RNN), and Deep 

Belief Networks (DBN) are among the most common 

methods used for fatigue and distraction detection in 

human driver studies (Alkinani et al., 2020). Deep 

learning or deep neural network models refer to 

Artificial Neural Networks (ANN), which consist of 

feeding input into a series of hidden layers in order to 

produce an output (Chen, 2016; Alpaydin & Bach, 

2014). CNNs are distinguished by their convolutional 

layer, which performs matrix operations on inputted 

data in order to reduce image sizes (Albawi et al., 

2017). RNNs are distinguished by their ability to take 

previous outputs into consideration via feedback loops 
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(Chen, 2016). For video classification, CNNs and 

RNNs are commonly used in conjunction to form a 

Convolutional Recurrent Neural Network, or CRNN, 

wherein the CNN performs feature extraction on 

individual video frames, and then is reshaped in order 

to feed into the RNN. This approach combines the 

CNNs adeptness at image processing with the RNNs 

capacity for memory. Furthermore, Support-Vector 

Machines (SVM), are often used as classifiers for 

extracted features (Darshana et al., 2014; Alpaydin & 

Bach, 2014). An SVM, or kernel machine refers to a 

model of classification that is derived from calculating 

the discriminant of support vectors (Alpaydin & Bach, 

2014). An SVMs kernel determines what kinds of 

mathematical functions are employed to transform the 

data. 

Additional Neural Networks: Common neural 

networks utilized in computer vision, include Mobile 

Networks (MobileNets), Residual Networks (Resnets), 

Inception networks (Inception), and Dense 

Convolutional Networks (DenseNet) (Howard et al., 

2017; He et al., 2016; Szegedy et al., 2015; Huang et 

al., 2017). These networks can be implemented into an 

existing CNN, RNN, and CRNN. MobileNets refer to 

a class of neural networks designed with a focus on 

optimization and efficiency. They are composed of 

factorized convolutions which are meant to reduce the 

model’s size and computation (Howard, 2017). ResNet 

refers to a residual neural network which utilizes a deep 

residual learning framework composed of residual 

blocks that use “shortcut connections” to add the 

outputs of previous layers directly to the outputs of 

stacked layers. The Inception neural network is a deep 

convolutional neural network characterized by the use 

of convolutions of varying sizes (1 x 1, 3 x 3, and 5 x 

5 in the presented paper) which are then layered over 

one another (Szegedy et al., 2015). InceptionV3 is an 

upgraded version of the initial model which 

incorporates factorized convolution sizes in place of 

larger convolutions and batch-normalization of 

auxiliary classifiers (Szegedy et al., 2015). The Dense 

Convolutional Network, or DenseNet architecture 

connects every layer of the neural network to every 

other layer (Huang et al, 2017). 

 

Research Questions 

Generally, we seek to analyze how visual 

information can be used to predict attentiveness and 

fatigue in stationary workers. Thus, our research 

question asks “Which visual features are better suited 

for predicting either attentiveness or fatigue?” Since 

our research question centers around features, the ideal 

method for building a prediction model would be 

through an SVM due to the nature of its classification 

model, namely, its necessity for explicit feature 

extraction. Additionally, we are interested in 

comparing traditional machine learning methods that 

utilize SVMs to deep learning models such as CNNs 

and RNNs. Moreover, due to the nature of hidden layer 

neural networks, it is more difficult to identify which 

visual features contribute to a particular outcome. This 

provides much less explainability for CNN and RNN 

outcomes, whereas using an SVM is ideal for 

specifically identifying which features contribute to 

drowsiness prediction. 

 

Methodology 

Our goal is to compare the performance of three 

different approaches, SVMs, CNNs, and CRNNs, at 

predicting drowsiness given visual input. 

Classical Machine Learning: Appendix B provides an 

overview of our classical approach to drowsiness 

detection. We input video frames through OpenFace in 

order to extract feature vectors. These feature vectors 

are then used to classify into a drowsiness level using 

an SVM. 

Utilizing OpenFace, we were able to track 

facial landmark movement, gaze vector, and facial 

Action Units such that landmark movement and gaze 

vectors are used to convey head gesture and gaze 

information respectively. The facial Action Units, 

account for facial muscle movements and eye closure. 

Data was collected from every frame of our constructed 

subset. To approximate PERCLOS, we utilize AU45r. 

While the FACS specifies that AU45 to refer to blinks, 

OpenFace captures the intensity of certain action units 

on a scale of 0 to 5. 

Through a pilot study, we determined that the 

visual features that best predicted attention included 

HOG and AU’s. Therefore, the remainder of our 

studies utilized HOG and AU’s over a subset of video 

frames from the UTA data set. The AU features we 

were able to extract using OpenFace are listed on 

Appendix A. 

Using the data set described in the previous 

section, we processed each of the video frames 
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utilizing OpenFace and used the exported features to 

train a myriad of SVM’s. The results are described in 

Appendix H. We also investigated how video segments 

affected SVM classification performance. Utilizing a 

subset of 28 frame video sequences, we extracted AU 

and HOG features that were averaged across the entire 

video. We then inputted these features into an SVM, 

the results of which are described in Appendix I. 

Deep Learning: In contrast to our classical machine 

learning approaches, deep learning is used for end-to-

end training. Images are directly inputted into our 

model such that the feature extraction and 

classification occurs in a single neural network. In our 

work, we compare both image-based approaches, 

utilizing CNNs, and video, utilizing CRNNs. 

Convolutional Neural Networks: Appendix C 

showcases our data pipeline for CNN’s. Individual 

video frames are fed into the network, where feature 

extraction and classification is automated by the neural 

network. 

To investigate the performance of neural 

networks on our data set, we began by using the 

imageAI toolkit, which utilizes Tensorflow and Keras 

CNN models in order to make predictions based on 

input images (Olafenwa & Olafenwa, 2018). The 

models tested included MobileNetV2, ResNet50, 

InceptionV3, and DenseNet121, all of which were 

trained from scratch using the UTA sub- set over 100 

epochs (Howard et al., 2017; He et al., 2016; Szegedy 

et al., 2016; Huang et al., 2017). 

Though not state-of-the-art, these networks are 

typical backbones and provide a good baseline for 

expected performance. The results of these models are 

depicted in Appendix J. 

While training from scratch can produce highly 

specific models for drowsiness detection, it generally 

requires large volumes of data and significant 

computational resources to train. When there is a data 

deficiency, transfer learning help speed up the process 

by starting from a well-trained model for general 

classification problems (e.g. general object 

recognition). The network can then be modified for the 

particular task (drowsiness detection). In this way, 

strong feature extraction comes from the large general 

recognition training while more high-level and 

problem specific features can be learned quickly. 

To compare the performance of transfer 

learning, we utilized code from the Transfer-Learning-

Suite created by George Seif, which utilizes Keras to 

perform training with pretrained models (Seif, 2018). 

Our pretrained models were trained using the 

ImageNet and were provided by Keras (Deng et al., 

2009). Using transfer learning, we can work from a 

model that has some experience in recognizing and 

classifying images rather than training a model to 

analyze an image from scratch. This may be led to a 

quicker convergence rate or higher validation 

accuracy. We utilized the same neural networks as the 

CNNs trained from scratch for consistency. The results 

of our transfer learning models are recorded in 

Appendix K. 

Convolutional Recurrent Neural Networks: Wanting 

our final comparison point to be RNN’s, we utilized the 

video classification repository provided by Huan-Hsin 

Tseng in order to run our data on CRNN models 

(2018). As with our previous models, an overview of 

our model is depicted in Appendix D. The CRNN is 

composed of both a CNN and RNN. We utilize the 

CNN portion for feature extraction on individual video 

frames. The feature vectors outputted from the CNN 

are then fed into the RNN which utilizes their internal 

memory to analyze multiple feature vectors for 

classification. The RNN’s capacity for analyzing 

multiple video frames at a time allow us to explicitly 

model spatio-temporal features, which may be more 

beneficial for predicting drowsiness as opposed to the 

single image classifications that our previous CNN 

model performs. The CRNN models would then 

evaluate each video segment of our subset individually 

based on the input of 28 consecutive frames. The 

models utilized included a CRNN trained from scratch 

and a CRNN model that utilized a ResNet-152 neural 

network that was pretrained on the ILSVRC-2012-CLS 

ImageNet dataset (Deng et al., 2009). 

For comparison, we also recorded results from 

a 3D CNN. Rather than relying on an RNN to account 

for temporal variation of a video sequence, a 3D CNN 

analyzes a video sequence as a 3D tensor of images, 

where the depth of the tensor is equal to the number of 

frames of the video sequence. 

All of these results can be found on Appendix 

L. 

 

Experimental Evaluation 

Our models were all trained using the UTA 

Real-Life Drowsiness Dataset. Performance was 
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characterized by Test/Validation accuracy, the 

proportion of correctly classified data instances from 

the test set, as well as processing time. Additional 

metrics for performance included precision and recall 

for our SVMs, and loss and epochs for our deep 

learning methods. 

UTA-RLDD Dataset: We utilized the open source 

video data set developed by R.  

Ghoddoosian et al., referred to as the University 

of Texas at Arlington Real-Life Drowsiness Dataset 

(UTA-RLDD) (2019). Featuring sixty participants 

recording themselves self-reported levels of alertness 

or drowsiness, UTA-RLDD serves as an ideal resource 

for testing our models. Each video featured 

approximately ten minutes of a participant in a self-

reported state of alertness, classified as either “Alert,” 

“Low Vigilance”, or “Drowsy.” Participants classified 

themselves into one of these three classes according to 

a nine-point scale wherein 1, 2, and 3 mapped to 

“Alert”, 6 and 7 mapped to “Low Vigilance,” and 8 and 

9 represented “Drowsy” as shown in Appendix E. A 

sample of video frames from this data set are depicted 

in Appendix F. Most videos consist of user videos 

taken from the front. Based on this data we built a 

variety of models using both deep learning and 

classical machine learning methods. 

In the interest of time and convenience, we 

opted out of using the entirety of the data set. 

Moreover, during pilot studies we conducted utilizing 

the entire data set, we did not find a significant 

difference between the performances of models trained 

on the entire dataset, and those trained on a subset. 

Consequently, we constructed a subset of 3000 frames, 

with 1000 frames selected from each class, which we 

used to train and test each of our models. To collect 

these frames, we first extracted video frames in the 

form of jpeg files from each video of the data set. To 

control for each video’s length, and to discard data that 

might be associated with the beginning and end of a 

video, we only selected video frames between frame 

1440 (roughly one minute) to 14000 (roughly nine 

minutes). For each class, we then generated 1000 

timestamps that were equally dispersed throughout this 

eight minute period, and randomly selected images 

from our pool of video frames. 

In order to account for the video segments we 

would use during our studies with CRNN’s, we also 

created a subset of video segments that were composed 

of each frame from the image subset along with the 

twenty-seven frames that preceded it. Our training data 

is composed of video frames that were selected before 

frame 10000, roughly the seven minute mark, while 

our testing data is composed of frames collected after 

this point. These specifications of these data sets are 

recorded in Appendix G. It should be noted that based 

on our experimental design, our models do not perform 

predictions on users that it hasn’t already encountered 

during training. 

Evaluation Metrics: All models were evaluated based 

on the proportion of images from the test set that were 

correctly classified as either alert, low vigilance, or 

drowsy. In addition to analyzing the accuracy of each 

of our models, we also analyzed the processing time of 

each model. This was obtained by timing the number 

of seconds it took for each model to classify a single 

image, or in the case of the CRNN models, a video 

sequence. All models were timed on the same machine, 

but it should be noted that the neural networks were run 

on a graphical processing unit (GPU), while the SVM 

models only ran on a machine’s central processing unit 

(CPU). It should be noted that the processes for SVMs 

were timed using milliseconds, while the deep learning 

processes were timed using seconds. 

Classical learning methods were gauged via 

their precision and recall for each class. Precision and 

recall were calculated by the weighted average of the 

individual classes. 

We refer to the classes alert, low vigilance, and 

drowsy as the by the values 0, 1, and 2 respectively in 

the following formulas 

Weighted precision is calculated by

 
such that for 0 <= i <= 2, wi refers to the number of 

instances in class i, tpi refers to the number of instances 

that the model correctly classified into class i, and fpi 

refers to the number of instances that were incorrectly 

classified into class i. Similarly, weighted recall is 

calculated by 

 
where fni refers to the number of instances that belong 

to class i but were not correctly labelled by the 
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classifier. Colloquially, we refer to the values tp, fp, 

and fn as true positives, false positives, and false 

negatives respectively. Further, we can calculate the 

F1-score by taking the harmonic mean of precision and 

recall using 

 
 The CNN and CRNN models were evaluated based on 

their training accuracy, testing accuracy, and loss. 

Training accuracy refers to the accuracy obtained from 

the model classifying the data set it was trained over, 

while test accuracy refers to the model’s ability to 

classify the test data set. A loss function is a function 

used to determine a model’s error in classification by 

comparing the model’s expected output to its actual 

output. It generalizes this comparison by outputting 

loss, which refers to a score given to a model that 

serves as a summation of the model’s error in 

incorrectly classifying data by comparing the expected 

output to the model’s actual. Thus, a model’s objective 

is to minimize its loss score. Over time, as the model 

improves at classifying the data set, the loss value 

should drop. A low loss score generally correlates to a 

higher-performing model. 

Implementation Details: All models were run on 

Ubuntu 18.04.4 using Python 3.7.6, PyTorch 1.8.1 and 

Keras 2.4.3. The classification models were run 

entirely on an Intel(R) Xeon(R) Gold 5218 CPU, while 

the deep learning models utilized a Quadro RTX 6000 

GPU. The CNN models trained from scratch were 

trained at an initial learning rate of .001, while the 

models trained via transfer learning began with a 

learning rate of 0.00001. Both utilized a categorical 

cross- entropy loss function. 

The CRNN model trained from scratch used an 

initial learning rate of 0.0001, while the transfer 

learning model used a learning rate of 0.001. Both 

CRNN models and the 3DCNN model utilized a cross 

entropy loss function. CNN and CRNN models that 

were trained from scratch were run across 100 epochs, 

which was an upper limit for convergence across all 

networks. Pretrained CNN models converged within 

20 epochs and were only run for that amount. In 

contrast, the ResNetCRNN model converged at a much 

slower rate and was also run at 100 epochs to converge. 

The 3D CNN was run for 15 epochs and 

converged the quickest out of all deep-learning models. 

Classical Results: The classifiers’ overall performance 

(Appendix H) was characterized by classifying a 

testing data set which was comprised of 20 percent of 

select data. In general, the attributes that best predicted 

drowsiness were HOG. The Polynomial and Gaussian 

kernel correlated to highest validation accuracy, while 

the Sigmoid correlated to the worst. The models which 

utilize HOG and AU attributes in conjunction with a 

Polynomial kernel most closely approach the accuracy 

attained by the deep learning methods. It should be 

noted, however, that the model that only utilizes HOG 

attributes attain nearly as high of a validation accuracy, 

and the high performance of the “HOG & AU” model 

may be dependent on the presence of HOG features 

rather than the conjunction of HOG with AU’s. 

The SVM models that utilized video segments, 

as depicted in Appendix I, did not perform significantly 

better than its counterpart, and actually performs worse 

under certain parameters. One notable difference, 

however, is that it achieves an accuracy of 96.04% 

when trained on both HOG and AU data over a 

polynomial kernel. In contrast to its predecessor, the 

SVM models that analyze multiple images at a time 

appears to benefit from having multiple attributes to 

train on rather than just HOG. 

Deep Learning Results: The performance for CNN 

variants are summarized in Appendices J and K. 

Convolutional Neural Networks 

Generally speaking, the transfer learning 

models performed better overall in comparison to the 

models trained from scratch, but with the exception of 

MobileNetV2, both methods can be used to achieve 

approximately the same accuracy. 

Recurrent Neural Networks 

The comparison of CRNN (standard 

convolutional architecture CRNN and a ResNet based 

backbone ResNetCRNN) and 3DCNN are shown in 

Appendix L. The performance for all three variants are 

quite strong – perfect training accuracy and very high 

validation accuracy. The ResNetCRNN had the best 

performance as expected since it has the most 

backbone capacity. However, ResNetCRNN was by 

far the slowest of all the classification methods. The 

simple CRNN had strong performance with a fraction 

of the processing time, making it a strong candidate for 

real-time implementation. 
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It should be noted that although the 

ResNetCRNN model utilizes transfer learning, it 

converged at a slower rate than the transfer learning 

methods used by the CNN’s, it is for this reason that 

the ResNetCRNN was also allowed to iterate for 100 

epochs. In contrast, the 3DCNN converged at a much 

quicker rate, so it was run for 15 epochs as 

recommended by Tseng (2018). 

Comparison: While it is clear that the neural network 

models achieved overall greater accuracy, it should be 

noted that feature extraction for these models does not 

solely rely on a user’s facial expression. In contrast, the 

SVM’s, while having lower test accuracy, and were 

still able to achieve relatively high results by relying on 

data extracted from an individual’s face. 

Additionally, the classical ML approach with 

SVM has significantly lower computational cost at 

around 1-2 ms per image while the DL methods were 

on the order of seconds. 

Based on this experiment, the SVM approach 

would be more desirable than DL for real-time 

drowsiness detection. However, further experiments 

should be performed with more images and more 

participants to verify generalizability of all the 

techniques. 

 

Conclusion 

Based on our observations, while neural 

networks generally performed better attention 

classification, it is possible for SVM models to 

approach the accuracy of the deep learning models at a 

much lower processing time. We also believe that the 

methodology used to assess the performance of these 

classical models may be re-purposed for future 

research. The CNN models appeared to have the 

highest performance and quickest convergence in 

comparison to the CRNN counterparts, this is 

particularly interesting as it implies that drowsiness can 

be determined based on snapshots of an individual over 

a period of time. The CRNN models, while converging 

at a slower rate, performed similarly to the CNNs, but 

required a higher processing time. The highest 

performing SVM utilized the averaged HOG and 

FACS attributes of video segment frames over a 

Polynomial kernel. 

Based on extraneous research described in the 

appendix, we hypothesize that the performance of 

these models is highly dependent on whether a model 

has seen an individual before. Therefore, future 

research would involve testing these models on a 

dataset composed of more individuals and testing these 

models on subjects not present in the training set. 

Furthermore, based on our findings in Appendix M, we 

surmise that the performance of these models could be 

further improved by utilizing a more controlled dataset 

given that the HOG and FACS values of test subjects 

may vary wildly depending on how each participant 

chose to record themselves. Given that the UTA dataset 

was created with the intent of measuring blink 

frequency, it stands to reason that the FACS attributes 

we attempted to extract would be less consistent. 
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Appendix A: Table 1. Action Units detected by OpenFAce 
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Appendix B: Figure 1. Using an open source facial analysis toolkit, we can extract visual features from imported 

video data which we will use to train our SVM classifiers 
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Appendix C: Figure 2. When using CNN’s, we can directly feed visual input into the neural network. The CNN 

will perform feature extraction and drowsiness classification internally 
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Appendix D: Figure 3: The CNN performs feature extraction on individual video frames. These images are then 

inputted into a recurrent neural network as 28 frame sequences. These sequences are analyzed holistically to 

determine a drowsiness classification 
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Appendix E: Table 2: A drowsiness scale designed by [2] for the purposes of their study 

 

Scale Value Qualitative Description Classification 

1 Extremely Alert Alert 

2 Very Alert Alert 

3 Alert Alert 

4 Rather Alert  

5 Neither Alert or Sleepy  

6 Some signs of sleepiness Low Vigilance 

7 Sleepy, but no difficulty remaining awake Low Vigilance 

8 Sleepy, some effort to keep alert Drowsy 

9 Extremely Sleepy, fighting sleep Drowsy 
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Appendix F: Figure 4: A sample of video frames from the UTA-RLDD. Image taken from [2]. Categorized as 

alert (first, row), low vigilance (second row) and drowsy (third row). 
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Appendix G: Table 3. Data set specifications 
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Appendix H: Table 4. Support-vector machine results 
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Appendix I: Table 5. Support-vector machine results using video 
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Appendix J: Table 6. CNN training from scratch 
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Appendix K: Table 7. CNN training results using transfer learning 
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Appendix L: Table 8. RNN training results 
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Appendix M: Pilot study, challenges, and future research 

 

Pilot study 

Our pilot study consisted of testing six videos out of the UTA dataset in order to assess how gaze 

information, eye landmarks, and head pose all contributed to attention prediction.  Though an informal study, 

there was still a significant improvement in model accuracy when using Action Units and HOG over the other 

features.  When used independently or in conjunction, eye landmarks, head pose, and gaze information all 

performed at or slightly below 33 percent. Moreover, any additional models that combined Action Units with 

any of the aforementioned features also had much lower accuracy in comparison to models that solely used 

Action Units. 

 

Challenges and future research 

Although not included in our primary study, we did investigate the performance of the CNN and RNN 

neural networks on a alternate subset. This alternate subset was constructed as follows: 

In R. Ghoddoosian et al.’s [2] data set, videos are divided into groups of twelve called Folds with the 

intention of users using four of these folds for training data, and the remaining fold for testing. We follow this 

convention throughout the remainder of our study, by subdividing our subsets into folds based on which fold 

each frame or video segment originates from. Upon testing, we discovered that each of our previously described 

deep learning method performed poorly, averaging a 33 percent accuracy rate. We hypothesize that this is due 

to the fact that our training data no longer contains information on all individuals from the sample set and thus 

is unable to make accurate predictions when given a new person’s video data. 
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