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A bstract
A two-dimensional numerical model of the high electron mobility transis­

tor (HEMT) with consideration of quantization in the channel is presented. 

In previous numerical models of the HEMT, the quantization was treated by 

means of a triangular well approximation which approximates the variation 

of the electrostatic potential in the quantum well by a linear relationship. 

Electrons were assumed to reside right at the heterojunction and completely 

screen the electric field induced by the gate voltage. In this model, we do 

not make the above assumptions. Instead, the spatial spread of the electron 

concentration in the quantum well normal to the heterojunction is taken 

into consideration by solving Schrodinger’s and Poisson’s equations self- 

consistently. The Boltzmann transport equation in the form of a current 

continuity equation and an energy transport equation is solved to obtain 

the transient transport behavior. Transport of carriers takes place in two 

layers in the GaAs region: the lowest subband of the quantum well and a 

non-quantized bulk layer. Electrons in the quantum well travel in one di­

rection along the heterojunction, whereas electrons in the bulk layer travel 

in all directions on the two-dimensional simulation plane. A finite difference 

scheme based on a non-uniform rectangular mesh is used to  solve the system 

of equations.

The simulation program developed has been used on a number of device 

structures to investigate the effects on the overall performance of the device 

due to variation of the gate length and the impurity doping concentration in 

AlGaAs. It has been found that a reduction in the gate length results in an 

increase of the drain current which is partly due to a shift in the threshold



voltage. An increase in the drain current can also be obtained by having a  

higher doping level, in which case the transconductance is also expected to 

increase.
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C hapter 1 

Introduction

Ultra-fast electronics is one of the main focus of advanced research in semi­

conductors. A high-speed device which has drawn much attention in recent 

years is the High Electron Mobility Transistor (HEMT). The same device 

has been called by different researchers under names such as MODFET, 

TEGFET, and SDHT [1], [2], [3]. HEMT works under the principle of the 

field effect transistor (FET) in which the current in the device is controlled 

by the electric field induced by the gate voltage.

HEMT differs from other FET devices in that the accumulation of car­

riers in the conduction channel is due to the heterostructure of the de­

vice. A heterostructure consists of layers of materials having different energy 

bandgaps. The junction between two layers is called a heterojunction. The 

most commonly used materials for HEMT are GaAs and AlGaAs because 

of their closely matched lattice structures. Advanced fabrication technology 

developed in recent years makes possible the technique of modulation dop­

ing in which the AlGaAs layer is heavily doped with donor impurities and 

the GaAs layer is kept undoped. As the free electron in AlGaAs has higher 

energy than that in GaAs, transfer of electrons from AlGaAs to GaAs takes

1
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place, resulting in an accumulation of charge in GaAs. The discontinuity 

of the conduction band at the heterojunction acts as a barrier to the move­

ment of free electrons in GaAs, forming a potential well (Fig. 1.1). The well 

is normally narrow enough to coniine the electron and quantization effects 

become considerable. Discrete energy levels, or subbands, are formed in the 

quantum well. Electrons in the quantum well experience restricted dimen­

sionality in their motion, and transport takes place in a two-dimensional 

plane parallel to the hetero junction. Thus, electrons in the quantum well 

form a two-dimensional electron gas (2DEG).

One distinctive feature of the 2DEG is that electrons are physically sep­

arated from their donor impurities in AlGaAs. An undoped spacer layer is 

usually added between the highly doped AlGaAs layer and the quantum well 

to further separate the impurities from the hetero junction. As a result, elec­

tron scattering due to impurities in the crystal is greatly reduced, giving rise 

to high mobility. Ultra-high-speed switching times, 5.8 ps at 77K and 10.2 ps 

at 300K, have been demonstrated for AlGaAs/GaAs HEMT’s [4], [28].

Despite its high-speed performance, HEMT suffers from a tight control of 

the threshold gate voltage which is normally restricted to within IV [5]. As 

the gate voltage is further increased, the performance is severely degraded 

due to a  sharp decrease of the transconductance. The transconductance re­

veals information as to how fast the channel current responds to a change 

in the gate voltage. Leakage current through the Schottky barrier at the 

gate under high gate voltage can become unacceptably high [29], [30]. It has 

been shown [29] that the gate voltage swing can be increased by adding a 

layer of highly doped p-type GaAs right under the gate. In an ideal situa­

tion, transport of carriers takes place only in the quantum well. However,
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under high drain voltages, electrons gain enough energy to escape from the 

quantum well, resulting in parallel conduction in the bulk GaAs and Al­

GaAs regions. In order to better understand the physicB of the device and 

to identify areas where the performance of HEMT is hampered, analytical 

and numerical studies are often carried out.

In this thesis, a two-dimensional numerical model of HEMT will be pre­

sented. Chapter 2 outlines various mathematical models that have been 

developed. Chapter 3 introduces our approach to the modeling of the de­

vice and the numerical procedure involved. Chapter 4 gives the results of 

our simulation. Further discussion and conclusions are given in Chapter 5.



Chapter 2

O verview o f H EM T M odels

HEMT models based on analytical or numerical techniques have been de­

veloped in order to acquire a better understanding of the device physics, to 

predict the performance of the device under certain operating conditions, 

and to draw insights from the result on device design. In this chapter, three 

different approaches to HEMT modeling are reviewed: the Charge Control 

Model, the Numerical Model and the Monte Carlo Simulation.

2.1 Basic S ystem  o f  Equations

The general problem one deals with in a HEMT model is the transport 

of charge carriers through a medium of varying electrostatic potential. To 

obtain the potential profile, one needs to solve Poisson’s equation

V 2V = l ( n - p + N A - N D) (2.1)

where q is the electronic charge, e is the permittivity, n is the electron 

concentration, p is the hole concentration, N a is the acceptor doping level, 

and Nd is the donor doping level. In most cases, the hole concentration is 

assumed to be zero.

4
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As for transport, carriers are treated as classical particles in which the 

time of interaction is much shorter than the time between interaction. The 

motion of such particle is described by the Boltzmann equation

(2.2)
col

iIL
dt = 8^ / {5 (k , k W )[1 - / (k,)]- 5 (k,. k)/ (k ' )[1- / (k)]}‘flc (2.3)

where /  = / ( r , k, t) is the particle density in real and momentum space, F 

is the electric field, r  is the positioned vector, k is the wavevector, and the 

last term is a collision term 

V
col

where V  is the total volume of the material, and 5 (k ,k ')  is the scattering 

rate of a particle undergoing transition from state k to state k \  Analytical 

solution for the Boltzmann equation can be obtained only for certian special 

cases and in general numerical methods are used. One approach is the 

Monte Carlo method which simulates the random motion of particles in 

semiconductor materials by generating random numbers which approximate 

the scattering probability of electrons [13]. Another approach is to use 

the integrated form of the Boltzmann equation, or the Boltzmann moment 

equations, which are expressed in terms of macroscopic quantities such as 

the electron concentration, current density, average energy, and energy flux.

The quantum system in HEMT is described by Schrodinger’s equation

- ̂ 0  + = E*  <2'4> 

where m  is the electron conduction effective mass, U is the potential energy, 

ipi is the wavefunction, and Ei is the eigenvalue. Since Schrodinger’s equa­

tion involves the electrostatic potential, and the electrostatic potential, in 

turn, depends on the electron distribution, obtaining an accurate electron
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density in a quantum system requires a self-consistent solution of Poisson’s 

and Schrodinger’s equations. Most HEMT models that treat the quantum 

system use the triangular well approximation [6], [8], [21] in which the elec­

tric field in the quantum well iB assumed constant. The eigenvalues under 

this approximation are given by

Mfif(s--'rH)'"
where F  is the electric field in the quantum well. The electron population 

in each subband is governed by the Fermi-Dirac statistics

m kT  
N‘ = r f - 1” 1 + 8X11 {~Eiw L)\ <2-6)

where Ef  is the Fermi energy.

2.2 C harge C ontrol M odels

The earliest theoretical study on HEMT is based on the so-called Charge 

Control Model [7]. A number of studies have been reported using this ap­

proach [8], [9], [10]. The main idea of the model is to derive analytically the 

relationship between various external voltages and the charge density in the 

channel from which the current-voltage characteristics and the capacitance- 

voltage characteristics can be obtained. Since the mathematical expressions 

involved are relatively simple, computational effort required is minimal.

The basic assumption in this approach is a gradual channel approxima­

tion: The electric field normal to the heterojunction is assumed to be much 

greater than the electric field perpendicular to the hetero junction. Thus, 

Poisson’s equation which solves for the electrostatic potential in the device 

can be reduced to a one-dimensional equation involving only the dominant
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field in the perpendicular direction

£  -  - > ■ >  (2-7)

where N(x)  is the impurity doping level. Electrons in the conduction channel 

are assumed to occupy only the lowest subband and completely screen the 

electric field induced by the gate potential. A triangular well approximation 

based on constant electric field in the quantum well is used to calculate 

the energy level of the subband and the corresponding electron population. 

Carrier heating and two-dimensional effects of electron transport are usually 

not taken into account, whereas velocity overshoot and saturation may be 

included in the model by taking a proper velocity-field relationship.

The relationship between the gate voltage and the sheet charge n,  in the 

channel is obtained by integrating Poission’s equation, yielding,

n. = - ^ W - q V c) (2.8)

where

qVg = qVg -<f>M + AEc +  qVp (2.9)

and

VP = ^ (d - d . ) >  (2-10)

where e is the dielectric permittivity in the high-gap material (AlGaAs), 

Va and Vc are the gate and channel potential relative to the source, 4>m  is 

the Schottky barrier height, A E e is the conduction band discontinuity, d is 

the width of the AlGaAs layer, and d, is the spacer width. Here the Fermi 

level is assumed to be very close to the bottom of the potential well at the 

hetero junction.



8

With the assumptions stated earlier, Eq. (2.8) is taken to describe the 

electron sheet density along the channel from source (z = 0) to drain (z = 

L). The channel current j  can then be expressed as

j  = qn.v = ^ W b ~

which gives
2 djx'

Vc(x) = V ' ~ (W-V'c(O))2 - (2 .12)

where fi is the electron mobility. One can also include a source and drain 

resistance, R t and Rj,  in the drain voltage-current relation,

Vd = j R d + V ' - ^ - j R . ) 2 - 2 djx (2.13)
f i e

The assumptions of the model can be considered valid only under low 

drain voltages, implying subsaturation. Under high drain voltages, the par­

allel field can be as large as the perpendicular field and the one-dimensional 

solution to Poisson’s equation breaks down. Electrons are no longer confined 

in the lowest subband and in fact will occupy various subbands as well as 

the bulk. Consequently, transport in such a system includes both 2DEG and 

electrons in the 3D bulk, which in most cases cannot be adequately modeled 

by closed-form analytical expressions.

2.3 N um erical M odels

For accurate results, the basic system of equations outlined in Section 2.1, 

namely the Boltzmann transport equation, Poisson’s equation, and Schro­

dinger’s equation, needs to be solved numerically over a two- or three-dimen­

sional domain. A number of two-dimensional numerical models on HEMT 

have been developed [5], [6], [11],[12]. Transport is simulated by solving the
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moment equations derived from the Boltzmann transport equation. The 

most common approach is to solve the first two moment equations along 

with Poisson’s equation.

First moment equation, or continuity equation:

^  =  + (2.14)

5? = - i v j p + C p - { / p (2.15)

Second moment equation, or current density equation:

jn =  -qn/in VV  +  qDnV n  (2.16)

Jp =  -3PMpVV -  qDpVp  (2.17)

Poisson’s equation:

V - ( e W )  = q ( n - p - N D + NA) (2.18)

where V  is the electrostatic potential, e is the dielectric permittivity, q is the 

magnitude of the electronic charge, fi is the mobility, D is the diffusivity,

j n and jp are the electron and hole current densities, Gn and Gp are the

electron and hole generation rates, and Un and Up are the electron and hole 

recombination rates, respectively. Since the hole concentration in HEMT is 

much smaller than the electron concentration, the hole concentration and 

its current are usually ignored. Because of low impurity level in the conduc­

tion channel, generation and recombination are also ignored in most HEMT 

models.

Widiger [6] takes into account of electron heating by using hydrodyna­

mic-like transport equations, which include two higher order moment equa­

tions in addition to the continuity equation and the current density equation.

^  = - j . V V - n B - V - s  (2.19)
ot
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s = f i E n E W  -  V (D snE )  (2.20)

where E  is the average electron energy, s is the energy flux, B  is the energy-

dissipation factor, he is the flux mobility, and De  is the flux diffusivity. 

Similar equations apply for both electrons in the bulk and those in the 

quantum well, with V representing (d /d x ,d /d y ) in the bulk and d/dy  in 

the quantum well respectively. Coefficients /i,D,/zj5;, D^;, and B  are all 

functions of the average energy E  and are determined from experimental 

results and Monte Carlo simulations. Results of this study show that the 

hot-electron effects and the two-dimensional properties of Poisson’s equation 

are significant.

Thermionic emission and electron tunneling across the heterojunction 

have been included [12] using a current density expression,

j x  = —qSx [ n ( i j ) -  n (s+) exp ( ~ ^ ) ]  7n (2.21)

where j'x denotes the current density normal to the heterojunction, S± the

interface velocity, n(x j ) and n ( i+ ) the electron density at AlGaAs side and 

the GaAs side of the junction, 7„ a factor taking into account of tunneling, 

and &Vn is the discontinuity in the electron band parameter given by,

AVn = Ax + m o g '*«(*+) + kT Fl/2(Vc)
expfa)

(2 .22)W * J ) J
where x  is the electron affinity and Nc the density of states. The last term 

in Eqn. (2.22) is a correction term to take the effect of Fermi-Dirac statistics 

into account.

An accurate numerical model requires an adequate knowledge of the 

physical device structure, the boundary conditions and the physical pa­

rameters such as mobility and diffusivity. Of particular importance is the
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modeling of mobility since electrons in GaAs are known to have velocity 

overshoot under low electric field. Such velocity saturates when the electric 

field gets sufficiently large. It has been shown [23] that accurate description 

of the velocity-held characteristics is important in predicting device per­

formance. In [6] transport parameters such as mobility and diffusivity are 

taken as functions of the average electron energy instead of functions of the 

electric field. Such energy dependencies are determined from Monte Carlo 

simulations with consideration of the major scattering mechanisms. Another 

non-ideal feature that needs to be taken into account is the surface defect 

states at the interface between the AlGaAs layer and the capping dielectric. 

These surface states act as traps to electrons and affect the performance of 

the device. However, it has been shown [5] that HEMT is less sensitive to 

surface traps than are some other devices such as the GaAs-gate-FET.

2.4 M on te Carlo Sim ulations

The Monte Carlo method is another popular technique to the solution of the 

Boltzmann equation, and thus is gaining ground as a powerful technique in 

device simulation in recent years [13], [14]. Instead of solving the transport 

problem in terms of macroscopic quantities such as current density, energy 

flux, mobility and diffusivity, the Monte Carlo method simulates the motion 

of microscopic particles in both real space and momentum space. These 

microscopic particles are treated as classical particles which undergo free 

flights in both real space and momentum space until scattering events occur. 

Because of the randomness of the scattering events, statistical fluctuations 

prevail in the distribution of the particles, but as the number of sample 

events increases the uncertainty in the statistical measurement decreases
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and the resulting electron distribution becomes a solution to the Boltzmann 

transport equation.

For a uniform medium such as a pure semiconductor, it suffices to simu­

late only one particle based on the principle of ergodicity which states that 

the expectation value of an emsemble can be approximated by the expec­

tation value of a single particle over a sufficently long period of time. For 

a non-uniform material such as a heterostructure device, the principle of 

ergodicity fails and the simulation is performed over an emsemble of parti­

cles, typically of the order of 10,000. The strength of this approach lies in 

its ability to study transport phenomena at the microscopic level, revealing 

important time-dependent and space-dependent effects. In the numerical ap­

proach which solves macroscopic equations, problems exist in characterising 

fictitous quantities such as mobilities. Such problem is readily solved here 

as individual scattering mechanisms are taken into account for the transport 

of particles.

Wang and Hess [15] have studied the distribution of electron velocity at 

high fields using a three-dimensional Monte Carlo, neglecting the quantum 

effects. Two-dimensional effects have been investigated by Tomizawa et al. 

[16] in his Monte Carlo in which electrons in the quantum well are treated 

using two-dimensional scattering rates.

Works by Price [17,18], Walukiewicz et al. [19], Yokoyama and Hess [20], 

and Ravaioli and Ferry [21] have included the quantum effects in their Monte 

Carlo. References [17], [18], [19], [21] employ a two-subband triangular well 

approximation for the quantum well, whereas reference [20] treats up to five 

subbands using a self-consistent calculation of the electronic states in the 

quantum well.
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Our N um erical Approach

3.1 D ev ice  Structure

The physical device structure in this HEMT model is represented by a two- 

dimensional geometry of the form shown in Fig. 3.1. Both the gate length 

and the impurity doping level in the AlGaAs layer are input parameters 

of the computer program and are to be specified by the user. On the two 

sides of the gate are two 0.5 \im regions separating the gate from the source 

and drain. Beneath the gate is a highly doped AlxGai_xAs  layer of width 

50nm and aluminum mole fraction x — 0.3. A lOnm spacer region made of 

undoped AlGaAs lies between the highly doped AlGaAs layer and the GaAs 

layer. Such spacer layer is included to separate the free electrons in the GaAs 

channel from their donor impurities in AlGaAs reducing the scattering of 

electrons. The GaAs region consists of a quantum well of width lOOnm and 

a bulk layer of width 300nm, noting that the two layers overlap each other 

as is shown in Fig. 3.1. The doping level of GaAs is 1014cm"3. On the two 

sides are boundaries to two highly-doped GaAs regions, serving as ohmic 

contacts to the source and drain.

13
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3.2 T ransport

Transport in HEMT with hot electron effects is described by the follow­

ing four moment equations derived from the Boltzmann transport equation 

[6], [23].

| 2  = i v . j + G  (3.!)

Q
j + = -q /zn W  + qV(Dn)  (3.2)

= - j  • VV -  nB -  V ■ S (3.3)
ot

s  + § i ( t h f S )  =  he t iE V V  -  V (D EnE)  (3.4)

where n is the electron concentration, j is the electron current density, q 

is the magnitude of the electronic charge, E  is the average electron energy,

S is the energy flux, G is an electron redistribution term, and the various

coefficients, /z, D, B ,f iE, De,  and t j j f , are the mobility, diffusivity, energy 

dissipation factor, flux mobility, flux diffusivity, and high energy frequency 

factor, respectively. The above four equations adequately describe transport 

in both the one-dimensional quantum well system and the two-dimensional 

bulk system, with V representing (d /dx,d/dy)  in the bulk and d/dy  in the 

quantum well.

In our model, the recombination and generation of carriers in the unin­

tentionally doped GaAs layer are assumed to be negligible. The generation- 

like term, G, in Eq. (3.1) is artificially included to redistribute the carrier 

concentration between the quantum well and the bulk in order to maintain 

a quasi-equilibrium between the two systems (see Section 3.3.)

The coefficients fiE and DE have been shown [6] to relate linearly with
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fi and D, respectively, by assuming a Boltzmann distribution,

He  = afi (3.5)

De  — aD  (3*6)

where
< t E>>

< r  Ei > < E i >  K >

where r  is the energy relaxation time, E{ is the electronic energy, and the

brackets in Eq. (3.7) refer to statistical averages over the entire sample. For

a power-law scattering a  has a constant value of

« = | ( P + | )  (3.8)

where the power-law scattering is defined as

r  oc E f . (3.9)

For polar optical phonons in GaAs, p has a value of 0.5 [6],[32].

Also terms in Eqs. (3.2) and (3.4) involving the high frequency parameter 

thf  can be ignored [6] since it is of the order of 0.1 ps whereas typical 

transient time is of the order of 10 ps. Substituting Eqs. (3.2) and (3.4) into 

Eqs. (3.1) and (3.3) respectively yields,

dn 
dt

and

dnE

= V • [-( inVV  -I- V(2?n)] + G (3.10)

dt = - j  • W  -  nB  + V • a [ - f i n E ^ V  + V{DnE)}. (3.11)

The terms in Eqs. (3.10) and (3.11) involving/i correspond to transport of 

electrons and average energy under the influence of electric field, whereas the



16

terms involving D  correspond to transport of electrons and average energy 

due to diffusion processes, respectively.

The transport equations are solved along with Poisson’s equation given

by

^  + » )-» (* .» )]•  (3-12) 

where V  is the electrostatic potential, e is the dielectric permittivity, and 

No  is the impurity doping level. The above equation applies to both the 

AlGaAs and GaAs regions with different dielectric constants and doping 

levels.

Eqs. (3.10), (3.11), and (3.12) constitute a complete system of equations 

for our transport model under both transient and steady state conditions. 

Here the three unknowns to be solved are n, E  and V  over the entire simu­

lation domain.

3.3 T he Q uantum  W ell

Quantum effects are included in our model by means of a self-consistent 

solution of Schrodinger’s equation and Poisson’s equation. Schrodinger’s 

equation describing the quantum well is of the form

-  2mg ~ qV(X’ =  Ei^ x ) (3J3)

where m x is the electron conduction effective mass in the x-direction, ipi is 

the wavefunction corresponding to the eigenvalue JEJ» for the i-th subband, 

and V{x,y)  is the electrostatic potential. The boundary conditions are that 

the wavefunction vanishes at both infinities.

To model the quantum well, one possible approach is to define an artifi­

cial boundary across the GaAs region, separating the bulk system from the
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quantized system. Electrons confined by such artificial boundary and the 

heterojunction are considered to be quantized and their motion is restricted 

to the y-direction; whereas electrons lying below the artificial boundary 

are considered as bulk carriers with no restriction to their motion. How­

ever, there are a  number of shortcomings associated with such an approach. 

First, there is no definite rule to deline the quantum well/bulk boundary. 

As the wavefunction spans over a relatively wide region in the quantum well, 

if the well width is taken too small, much of the wavefunction outside the 

boundary will be truncated and the quantum effect can be greatly distorted. 

On the other hand, if the well width is taken sufficiently large to include a 

significant portion of the wavefunction, the bulk electronic behavior will be 

neglected. Neither case is desireable from a device simulation standpoint. 

Second, the electron concentration over the quantum well/bulk boundary is 

in general discontinuous, which gives rise to large diffusion current across 

the boundary. This can cause erroneous results in the simulation. Third, at 

points where the electric field at the heterojunction is weak, the quantum 

well is too shallow to confine the electrons and the electrons at the hetero- 

junction behave essentially as bulk carriers. Therefore, it is important that 

both the bulk and quantum characters of the electrons are considered, par­

ticularly at the hetero junction where the concentration of electrons is the 

highest.

We present here a different approach to this problem. In this approach, 

there is no artificial boundary separating the bulk GaAs from the quan­

tum well. Instead, the two systems overlap each other. Furthermore, the 

quantum well is taken wide enough to include a significant portion of the 

wavefunction. Electrons in the bulk undergo transport in both the x- and
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y-directions whereas electrons in the quantum well undergo transport in the 

y-direction only.

Since majority of the electrons in the quantum well reside in the lowest 

subband [22], in this thesis only transport in the lowest subband is consid­

ered. Electrons in higher subbands are treated as bulk electrons. In order 

to establish a relationship between the carrier concentration in the quan­

tum well and that in the bulk, we assume that over the region where the 

quantum layer overlaps the bulk layer a quasi-equilibrium state is estab­

lished between the relative electron distributions in the two systems, and 

the electron concentrations are given by,

Nbm  = N C exp ( - f t  (3.14)

and

N Z =  N Io In [l +  exp (3.15)

where Nbuik and Nj  are the electron sheet charge in the bulk and in the 

quantum well in their overlapping region, E fti is the quasi-Fermi energy, 

Eq and Ei  are the minimum energies of the first two subbands, and Nc  

and Njc are the effective density of states of GaAs in the bulk and in the 

quantum well, respectively, and are given by,

and

where m is the effective mass of GaAs, k is Boltzmann’s constant, and T l 

is the lattice temperature.
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We maintain such equilibrium between the quantum well and the bulk 

by means of a generation-like term G in Eq. (3.10); the term G re-distributes 

the electrons between the quantum layer and the bulk. The total electron 

sheet densities Nbulk and Nj  in cm~2 for the bulk and the quantum well 

at each time step are calculated by integrating the electron concentrations 

over x in the overlapping region. Then the new equilibrium values for Nbulk 

and N i  are computed according to Eq. (3.14) and (3.15). The differences 

between the new and old values contribute to the generation/recombination 

terms as following
M new  _  Mold

Gbuik = k * nbulk * '  bulkMold b>llk- (3.18)
bulk

and

Gi = k *  ( N p w -  N f d) (3.19)

where A: is a relaxation factor with value between 0 and 1, G b u lk  is the bulk 

generation rate in cm~3, Gi  is the quantum well generation rate in cm -2 , 

and nb u ik  is the bulk electron concentration in cm-3 . The relaxation factor 

serves to ensure smooth convergence of the result.

3.4 Solution  o f  Schrodinger’s Equation

The time-independent Schrodinger’s equation is solved by the Rayleigh-Ritz 

method [24], [25]. Consider the following form of Schrodinger’s equation

Hipi = Eiipi (3.20)

where H  is the Hamiltonian operator, E,- is the eigenvalue, and ipi is the 

wavefunction. The eigenvalue can be evaluated based on variational princi­

ples
P ^  w . v o
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where (ip,ip,) = 0; a =  1 ,2 ,. . . ,  *—1. The inner product of two wavefunctions 

is simply the integration of their product over the entire interval,

(V’i.V’a) = /  VhlM® (3.22)
J  ■—OO

In practice, we express the desired wavefunctions in terms of some known 

wavefunctions f i ’s which are approximate solutions to Schrodinger’s equa­

tion

^  =  c i/i + c2/ 2 + . . .  + cMf M (3.23)

Expanding ip in terms of the approximate wavefunctions, we have 

/  M M \
(Hip, Ip) = I H  ]T  Cjnfm, Y  Cn/n j = Y  ^riCynCn', (3-24)

V m=l n=l /  m,n

( M M  \

Y  Y  ) = 53 ̂ mnCmCn, (3.25)
m=l n=l /  m tn

where a^n and bmn are known constants given by,

amn = (H fm, f ny, (3.26)

bmn = (fm, f n). (3.27)

The wavefunction f m when acted upon by the Hamiltonian operator gives

= <3-28>

where U(x) is the potential energy, and by integration by parts

/ + o o  Jd f  -TOO i»+00 f+OO

.  jL ***■ (3-29)
The first term in Eq. (3.29) vanishes because of the boundary conditions on 

the wavefunction

f n ( o o )  = /„ (-o o ) = £(oo) = f n( - oo) = 0. (3.30)
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Therefore, can be expressed as

f+o°
“mn =  f  °° — fU 'n  + V{x)fmf ndx. (3.31)

J - 00 Wl*

Similarly, 6mn can be expressed as

bmn = f +°° fmfndx.  (3.32)
J — OO

Substituting Eqs. (3.24) and (3.25) into Eq. (3.21) we have

M  M

£ ) ( “””» -  ^mr^CmCn =  0. (3.33)
m=ln=l

Since both Cm and Cn are arbitrary in the above equation, the equality holds 

only if the determinant of the coefficients vanishes,

a n  -  ■S'l îi ai2 -  E i b u  • • • a \ M  -  E i b i M

j : : = 0. (3.34)
“ M l -  E \b M l  “ M2 -  E ibM2 • ■ • CLMM -  EibM M  

The above equation when expanded into a polynomial of Af-th degree gives 

M  different roots of E{. Eq. (3.34) cannot be solved analytically and it­

erative techniques such as the bisection method can be used. Variational 

theory shows that these energy values give the upper bound of the desired 

eigenvalues [25].

Once the eigenvalues Ei are found, the corresponding wavefunction can 

be easily evaluated by substituting Ei  in and solving for the coefficients cn 

from the equation
M
)   ̂(“mn E ibm n')cm = 0, (3.35)

m=l
where n = 1, 2, . . . ,  M.  The wavefunctions obtained contains an arbitrary 

multiplicative constant and need to be normalized.

To obtain a set of functions on which the desired wavefunctions are 

expanded, we solve for the wavefunctions of a linearized potential well as
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shown in Fig. 3.2. Schrodinger’s equation describing such a potential well is 

given by

• In AlGaAs , x < 0,

-  A E c)fi(x)  = 0 (3.36)

• In GaAs, x > 0,

+ ^ {Ei _  q£,x )f i (x ) = 0 (3.37)

where A E C is the conduction band discontinuity, and £, is the electric field

in the quantum well.

Solution of Eq. (3.36) is given by

fi{ x) = k ^ iX (3.38)

where fci is a constant of integration and /?,• is given by

P i = ( j ^ ( A E c - E i) y  . (3.39)

To solve Eq. (3.37) we introduce a new function ui(a{) = fi(x) where

( 2 rnx<l£s\* , \ In Ar\\
( * - & > ■  ( 3 - 4 0 )

The differential equation is simplified to the following

d ~ aiul(a i) =  0 (3-41)

whose solution can be expressed in terms of the Airy function [24]

u/(a«) = k2Ai(cti) (3.42)

where k2 is another constant of integration. The constants of integration 

k\ and k2 are determined by the boundary conditions and normalization of
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the wavefunction. The boundary conditions are that both the function /,-(*) 

and its first derivative are continuous at the hetero junction

Recall that the only variable in a j is the electron energy E{. Therefore, 

solving Eq. (3.45) gives us the allowed energy levels of the electron in the 

quantum well. Because of the implicit nature of Eq. (3.45), iterative methods 

are required to determine the energy eigenvalues.

Substituting Eq. (3.43) back into the original wavefunction equations, 

we have

k\e?'° =  kaAi(ai(0)) (3.43)

and

(3.44)

which gives

7 >li/(a ,(0)) -  /3iAi(ai(0)) = 0. (3.45)

where

(3.46)

• for x < 0,(AlGaAs)

fi = C • Ai(ai(0))e^ (3.47)

• for x > 0,(Ga.4s)

fi  = C • Ai(ai(x)) (3.48)

where C is a normalization constant.
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3.5 B oundary C onditions

The transport of electrons in the device is governed by three coupled, non­

linear partial differential equations Eq. (3.10), (3.11), and (3.12) with three 

unknown variables n, E, and V. These equations are solved subject to the 

boundary conditions given in this section.

The electrostatic potential is continuous throughout the simulation do­

main (Fig. 3.3). We assume no interface state between the AlGaAs and 

GaAs layers and both the potential and its derivative are continuous at the 

hetero junction.

At the interface between the AlGaAs layer and the capping dielectric, 

x = —d (see Fig. 3.1), the boundary condition for V  is

where n„  is the surface density of trapped charge at the interface. In our 

simulations, the value of n „  is assumed to be constant along the entire inter­

face between the AlGaAs layer and the capping dielectric. Such assumption

the interface states in HEMT’s do not affect the operation of the devices 

as much as they do in other FET devices since they are separated from the 

conducting channel by the insulating AlGaAs layer.

At the substrate boundary, x = Lx, we assume the electric field to be 

zero in the x-direction, and thus we have the boundary condition,

The electrostatic potential at the gate Vg is given by

dV
£ A l G a A s ' (3.49)

is not expected to introduce significant errors. It has been shown [5] that

Vg = Vga + FW (3.51)
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where Vga is the voltage applied across the gate and the Bubstrate and Vu 

is the the built-in voltage given by

qVbi = -$M 5 + AJSC + E f  (3.52)

where $m s is the work function difference between metal and the semicon­

ductor, AEc is the conduction band discontinuity at the heterojunction, and 

E f  is the Fermi energy relative to the conduction band in the bulk GaAs 

(Fig. 3.3).

The electrostatic potential V  and the electron concentration n in the 

source boundary are obtained by solving along with a one-dimensional Pois­

son’s equation the following equation which assumes zero current density in 

the transverse direction [6]

9V  „dn  n
" “ t e  -  qD» i  = °- (3-53)

The boundary value for n on the drain side is the same as that in the source

side, whereas that for V  is taken as the source potential plus the difference

between the drain and source voltages

V (x ,L y) = V(x ,0 )+ (Vd - V t ). (3.54)

Assuming no leakage current from the device, the boundary conditions for 

n at the hetero junction and the bottom subtrate boundary are given by,

Jt|*=o = 0 (3.55)

and

3t\x=L. = 0. (3.56)

where the transverse current density is given by

9V  _ 3n  
=  + (3.57)
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Finally, we assume the average energy at all boundaries to attain equi­

librium with the lattice, thus establishing the boundary condition for E

E  = |jfcTL (3.58)

where Tl is the lattice temperature.

3.6 N um erical S tab ility  C onsideration

The numerical solution of the partial differential equations outlined in Sec­

tion 3.2 requires iterative computation both in time and space. Numerical 

stability problems are often associated with such iterative techniques and 

careful consideration is needed to ensure smooth convergence of the results.

An explicit approach is commonly employed to solve the continuity equa­

tion

(3.59)

which is discretized into the form

n*+1 = nk + A t  ( i v  • . (3.60)

The values of n and V  at time k are plugged into the right-hand-side of 

Eq. (3.60) yielding the value of n at the next time step k +  1. This method 

is extremely straight forward requiring no complex matrix operation which 

means that the computation needed for each time step is minimal.

However, the major drawback of this approach is that excessively small 

time steps are required to guarantee numerical stability and to obtain accu­

rate solutions. Specifically, it has been shown [26], [27] that the maximum 

time step one can use without having any stability problem is given by,

Ax2A y2 2DAt < min
2D(Ax2 + Ay2) ’ v2,

(3.61)
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where A x  and Ay  are the mesh spacings, D  the diffusivity, and Voo the 

saturation velocity. When the maximum allowable time step is exceeded, a 

minor perturbation in the values of n t|J- at mesh point (ij)  can result in a 

diverging solution.

The smallest mesh dimensions in this simulation are 2 • 10~7 and 5 • 10-6 

cm, respectively. The diffusivity at low field is about 300 cm 2/s.  Assuming 

the mesh spacing to be the limiting factor to the speed of the iterative 

process, the maximum time step one can use without causing numerical 

instability problem is

At < 6.6 • 10- 17sec.

which is of the order of 106 times smaller than the typical transient time of 

HEMT. This poses a serious problem for the convergence of the program.

In order to increase the time step to speed up the program, one has to 

increase the mesh spacing which in turn will sacrifice the accuracy of the 

result. Another approach to the solution of the continuity equation is to 

write the equation in an implicit form,

^  = i [ v . , *  + V . J ‘« ] .  (3.62)

where the superscript k represent time. The price to pay is complicated 

discretization and tedious solution. In this thesis, the implicit approach 

based on Eq. (3.62) is used.

3.7 D iscretization  Schem e

Transport of electrons in this model is described by Eqs. (3.10), (3.11) and 

(3.12). Note that Schrodinger’s equation is solved assuming the electrons in 

the quantum well to be in quasi-equilibrium, and thus does not come into
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the picture of transport directly. A finite-difference scheme is employed to 

solve the set of nonlinear second-order partial differential equations. Note 

that nonlinearity comes in because of the energy dependencies of various 

coefficients /z, D,  and B,  and the coupling of the variables n, E,  and V.

The partial differential equations are written as a set of finite-difference 

equations at each point of a non-uniform rectangular mesh over the entire 

simulation domain. Since much of the action takes place in the quantum 

well, a high concentration of mesh points are placed along the channel near 

the heterojunction, resulting in very small mesh spacing in that region. 

These finite-difference equations are derived from truncated Taylor series 

with the assumption that the function involved and its derivatives are con­

tinuous and single-valued [26]. For a scalar quantity /  defined at the major 

mesh points, its first derivatives are vector gradient components defined at 

the half-points as

/*+&. -  li*  (3.63)d£
dx

dj_
dy

* + y ,i Z,'+ l — *«

= fi  (3.64)
iJ+L Vj+1 -  Vi

and its Laplacian, second derivative, is defined at the major mesh points as 

y2 x| _ __ _̂____  ( />+ij ~ fi,j _  fi.j ~ / l - l .A
'*>J — CC,’_i) \  Xt’+l ®t ®»—1 /

+ --------------- f fij+i -  f i j , _  h i  -  f r j - A  (3i65)
s ( w + i  -  y j - 1 )  V w + i  -  y j  y j  -  w - i  J

In this thesis, the electrostatic potential V, the electron concentration n, and 

the average electron energy E  are defined at the major mesh points; whereas 

first derivatives derived from these quantities such as the components of the 

electric field, current density and energy flux are defined at the half-points.
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Poisson’s equation, Eq. (3.12), is discretized into the form

2 ( V j + U - V i J  V i j - V i - u \  +
Xi+1 — *«-1 \  ®i+l — *« ~  *»-1 /

 2 f e - t i  = _ i ( ^ )(366)
2/i+i -  V 2/i+i “  Vi Vi "  % -i /  e

The transport equations, Eq. (3.10) and (3.11), are discretized using the

implicit form of Eq. (3.62)

ni f 1 -  • Jft1 = n i j  + • J* •

and

At
+ -rrV  • S j+l = ( n E ) ^  +  At - J  • VV -  nB -  -  V • J  

2

(3.67)

(3.68)

where the superscripts k denote discretization in time, subscripts z and j  

denote discretization in space, At is the time increment for each time step, 

J  is the current density, and S is the energy flux. The components of the 

current density are

T _  ... V*+i,i ~ vi,i . DU l,i'n*'+lJ "
— —  +  ? ----------------------------------------^t+l -  Xi *»+! -  xi

in the x-direction, and

T _  ... _ ^ .j+ i “  V*,j , -  Di,jni,j
— —  +  9- -----------------------------

(3.69)

(3.70)
Vj+i ~ Vj Vj+1 ~ Vj

in the y-direction, where D l and Dl are the transverse and longitudinal 

diffusivity respectively. The components of the energy flux are

ii ^+1.J Vi,i i
Xi+i -

*»+! -  Xi
(3.71)
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in the x-direction, and

Si,i+k = “ “
,, ^ .j+ i i

t+ A .\ /» « x l  *T
Vj+i -  Vj

Vj+1 -  2/i

in the y-direction. The term J  • VV in Eq. (3.68) is [6]

j .y v i  = Vi+lj- Vijj i+i;j+Vii- Vi-'j j i_lj +
1 i , +i -  xi I ,• -  x;_i

(3.72)

^ 'i+ 1 ~ Vi*j  L + V»  - ^ z l j  (3.73)
2/j+i — 2/j J+a V j - y j - i  3 '

taking into account of the contribution from current densities in all four 

directions.

A second-order partial differential equation

d 2d> , d 2<f> d 2d> ,d<f> d<f> . .  n

“ a ^  + 69 ^  + V + « i  + %  + r t + 9 =  (8’7 )

is said to be elliptic [31] when 62-4 ac  > 0. Careful inspection of Eqs. (3.66), 

(3.67), and (3.68) shows that these equations are indeed elliptic. Thus, 

a NAG library routine D03EBF for two-dimensional elliptic equations is 

employed to solve the above equations.

3.8 T ransport Param eters

The transport parameters required in the transport equations Eqs. (3.67) 

and (3.68) are the transverse and longitudinal mobilities, and /xj; the 

transverse and longitudinal diffusion constants, D l and Dl\ and the energy 

dissipation constant, B. These parameters and their energy dependencies 

have been provided by I. Kizilyalli and K. Hess1 [11]. Linear interpolation is 

used to approximate the parameter values between the available data points.

1I. Kizilyalli and K. Hess are with the Coordinated Science Laboratory, University of
Illinois



C h ap ter 4

R esu lts

In this chapter we present the results of our numerical simulation of HEMT 

which was performed under various biasing conditions at room temperature 

(300K). Such simulation has been performed on live different HEMT’s with 

various device structures. The design parameters of these devices are tab­

ulated in Table 4.1. Devices I, II and III have the same doping level of 

5 ■ 1017cm-3 in the AlGaAs, but have different gate lengths 0.5, 0.7, and 

1.0 fim respectively. Devices IV and V are simulated having the same gate 

length of 0.7 /im  but different doping levels 2.5 • 1017C77i-3 and 7.5- 1017cm-3 

respectively.

As boundary conditions, the electrostatic potential if) and the electron 

concentration n  at the source and drain boundaries are taken as fixed equi­

librium values obtained by assuming zero net transverse current along both 

boundaries. These values are plotted in Figs. 4.1 and 4.2. It should be noted 

that the high peak of the electrostatic potential is due to the assumption of 

complete ionization of impurities in AlGaAs. Without the assumption the 

peak is expected to be somewhat lower.

Fig. 4.3 shows a typical wavefunction for the lowest subband of the quan-

31
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turn well taken from a cross-section of the channel underneath the gate. 

Fig. 4.4 shows the  corresponding eigenvalues Eo and E\ in relation to the 

potential profile, which have the values 46 and 69 meV respectively. These 

eigenvalues are o f the same order of magnitude as those obtained from the 

triangular well approximation [20].

4.1 D rain C urrent D rain  V oltage C haracteristic

The variation of the drain current due to a change in the drain voltage 

provides important information on the operation of the device. Fig. 4.5 

shows the drain current drain voltage characteristic of Device II under three 

different gate biasing conditions, where Vg equals 0.45 V, 0.5 V, and 0.7 V 

respectively. The slopes of the curves decrease as the drain voltage increases. 

There is no sharp transition from the linear region to the saturation region; 

nevertheless, one can easily identify the major device operating regions on 

the drain current drain voltage characteristic. With a gate bias of 0.45 V, 

the device has a linear I d-Vd relationship when the drain voltage is under 

0.5 V; the onset of saturation occurs at around 0.7 V. With a gate bias 

of 0.5 V, the linear section of the curve lies in the region where the drain 

voltage is less than  0.7 V; the onset of saturation occurs at around 1.2 V. 

In the case of a 0.7 V gate bias, the region under 0.7 V of drain voltage is 

approximately linear and the onset of saturation occurs at around 1.2 V.

To show the variations of the electrostatic potential, electron concen­

tration, and current density along the channel, various plots are presented 

under two different sets of biasing conditions. In the first set, a gate voltage 

of 0.7 V and a drain voltage of 0.5 V are applied. In the second set, the gate 

bias is 0.7 V and the drain bias is 1.35 V. Figs. 4.6 and 4.7 show the electro­
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static potentials in  the device under the two drain biases 0.5 and 1.35 V. The 

dark region of the  graphs due to densely populated mesh points is the quan­

tum well. The AlGaAs region is located on top of the quantum well, whereas 

the source and drain are at the left and the right side boundaries respec­

tively. Figs. 4.8 and 4.9 show the electron concentration in the bulk GaAs; 

Figs. 4.10 and 4.11 show the electron concentration in the quantum well. In 

the case of Vd =  0.5 V, the electron concentration in the channel is relatively 

uniform from source to drain, whereas in the case of Vd =  1-35 V, there is a 

sharp reduction in the electron concentration in the region underneath the 

drain end of the gate. This is the well-known pinch-off phenomenon of the 

field effect transistor. The transverse and longitudinal current densities are 

shown in Figs. 4.12 through 4.15. (A positive transverse current indicates 

a flow of electrons from the bulk GaAs to the heterojunction, whereas a 

positive longitudinal current indicates a flow of electrons from the drain to 

the source.) W hen a low drain voltage is applied, the longitudinal current 

is nearly uniform throughout the channel. This corresponds to the linear 

region of the I d ~  Vds  characteristic in which the change in the drain cur­

rent is linearly proportional to the change in the drain voltage. When a 

high drain voltage is applied, the longitudinal current is no longer uniform, 

but decreases from the source along the channel and reaches a minimum at 

the pinch-off point. The pinch-off point acts as a bottleneck to the flow of 

current across the channel. As a result, the current is re-directed from the 

the hetero junction into the bulk, and the two-dimensional nature of electron 

transport becomes pronounced. This can be clearly seen from the large peak 

of the transverse current near the pinch-off point. As the flow of the current 

is limited by the electron concentration in the channel, the presense of a
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pinch-off region prevents the drain current from increasing linearly with the 

drain voltage. Thus, the device reaches a saturation state.

4.2 Drain C urrent G ate V oltage C haracteristic

We have studied the effects of the applied gate voltage on the electron trans­

port in the GaAs channel by simulating the operation of Devices I-V under 

a fixed drain voltage of 1.0 V and various gate voltages ranging from 0.35 V 

to 1.35 V. Figs. 4.16 through 4.20 show the electron concentration for Device 

II under five different gate biasing conditions, where Vg = 0.25, 0.5, 0.75, 

1.0, and 1.25 V, respectively. The electron concentration in the conduction 

channel under the gate increases with the gate voltage as expected. The 

pinch-off phenomenon, as indicated by the valley in Fig. 4.16, is pronounced 

in the case of the 0.25 V gate bias. This is because the drain voltage is much 

higher than the gate voltage. Electrons in the channel are largely drawn to­

ward the drain contact, resulting in a slightly depleted region underneath the 

gate, which is the pinch-off point. As higher gate voltages are applied, the 

pinch-off point disappears, as clearly demonstrated in Figures 4.17 through

4.20.

The terminal currents at the source and at the drain are obtained by 

integrating the longitudinal current density along the source and drain side 

boundaries, respectively. The steady state current is taken as the assump- 

totic value the drain and source terminal currents converge to over a suffi­

ciently long period of time, typically of the order of 2 to 10 ps, depending on 

the initial state of the device. The transient drain and source currents, i,{t) 

and id{t), for Device II under a gate voltage of 0.5 V are shown in Fig. 4.21. 

The resulting drain current-gate voltage (Id ~  Vg ) characteristics for De­
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vices I-V are given in Fig. 4.22. For a fixed gate voltage, the drain current 

increases witii decreasing channel lengths (Devices I, II and III). This is due 

to the fact th a t  a shorter device has a lower overall channel resistance than 

that of a longer device. The drain current is also found to increase with 

increasing im purity doping concentrations in AlGaAs (Devices IV, II and 

V). Such increase is caused by a higher electron density in the conduction 

channel.

We also calculate the total charge in the device by integrating over the 

entire GaAs region the sum of the bulk and the quantum well electron 

densities
Lu fLa

q-ndxdy. (4-1)«-y7Jo Jo

Fig. 4.23 shows the relationship between the total charge in the GaAs layer 

(the quantum  well and the bulk) and the applied gate voltage. The total 

charge in GaAs increases with increasing channel lengths (Devices I, II and 

III) and with increasing impurity doping levels in AlGaAs (Devices IV, II 

and V). The former result agrees with the general consideration that the 

longer the channel length the larger the volume of the device and thus the 

more is the charge in the GaAs layer. The latter result is due to the fact

that variation in the concentration of impurity doping in AlGaAs causes

variation in th e  electric field built up at the heterojunction and thus the 

amount of charge induced in the GaAs channel.

Based on th e  above results, we obtain values of the transconductance, the 

gate capacitance, and the unity-gain frequency according to the following 

formulae:
_ d l j  fA

9m -  dVg (4.2)



The transconductance values for the five devices simulated under various 

drain bias conditions are shown in Fig. 4.24. The graphs show a general 

pattern in which the transconductance increases with the gate voltage at 

low gate bias; however, as the gate bias is raised further, the transconduc­

tance levels off and then starts to decrease. Degradation of the transcon­

ductance under high gate voltages has been reported [11],[12] and has been 

a main interest of research. Similar patterns are observed in the plots of 

the gate capacitance (Fig. 4.25) and the unity-gain frequency (Fig. 4.26). 

One reason for the drop of the transconductance and the gate capacitance 

as the drain voltage is increased is that the electron concentration in the 

channel is limited by the supply of electrons at the source boundary, which 

can be clearly seen from Fig. 4.20. As a result, the electron concentration 

and thus the current density in the channel do not increase proportionally 

with the drain voltage. Other causes for the degradation of the transcon­

ductance has been suggested [5] such as the accumulation of electrons in the 

AlGaAs layer. The transport of electrons in AlGaAs, however, has not been 

included in our HEMT model; thus, the effects of such parallel conduction in 

AlGaAs cannot be concluded from our results. For Device II, the maximum 

transconductance obtained is 579.2 mS/mm at a gate bias of about 0.625 

V. The gate capacitance at such gate bias is 19.28 pF/cm  and the resulting 

unity-gain frequency is 47.8 GHz.
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4.3 Effects o f  th e  G ate Length

The effects of the gate length can be studied from the Ip  ~  I g characteristics 

of Devices I, II and III (Fig. 4.22) which have gate lengths of 0.5, 0.7 and 

1.0 fim respectively. The transconductance as a function of the gate length 

is plotted in Fig. 4.27. A reduction of the gate length results in an increase 

of the drain current. Similar results are obtained in [33] although the values 

of the currents are different owing to different biasing conditions. This 

increase in drain current is partly due to a shift in the threshold voltage. 

By extrapolating the drain current gate voltage characteristics (Fig. 4.22) 

to the horizontal axis where I j  = 0 A/cm, the threshold voltages for Devices 

I, II, and III are found to be -0.44, -0.17, and -0.15 V respectively. Thus, 

Devices I, II and III are all depletion mode (normally-on) devices. In order 

to obtain an enhancement mode (normally-off) device, one can modify the 

device structure such as reducing the AlGaAs thickness. The unity gain 

frequencies for Devices I, II, and III are calculated to be 61.44, 47.8 and 

38.9 GHz respectively at a drain bias of 0.875 V. Thus, the shorter the gate 

length the faster the switching speed the device can be operated on.

4.4 Effects o f  D oping

The effects of doping can be studied from the Ip  ~  Vg characteristics 

(Fig. 4.22) of Devices IV, II and V which have AlGaAs doping levels of

2.5 • 1017, 5 • 1017 and 7.5 • 1017cm-3 , respectively. The transconductance 

as a function of the doping level is plotted in Fig. 4.28. An increase in the 

doping level gives rise to a larger drain current because there is a higher 

electron concentration in the channel. The transconductance values for De­
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vices IV, II and V at a gate bias of 0.625 V are calculated to be 292.4, 597.2 

and 664.4 mS/mm respectively. The corresponding gate capacitances are

9.21, 19.28 and 19.44 pF/cm, whereas the unity-gain frequencies for these 

devices at the same gate bias are found to be 50.54, 47.8 and 54.39 GHz 

respectively.



C hapter 5

D iscussion and Conclusion

A two-dimensional numerical model for the High Electron Mobility Transis­

tor has been developed with consideration of quantization in the heterojunc­

tion. The pinch-off phenomenon and the two-dimensional nature of electron 

transport have been demonstrated. A maximum transconductance of 531.2 

mS/mm for a HEMT with gate length of 0.5 fxm and a doping level of 

5 • 1017cm~3 has been obtained, which has corresponding gate capacitance 

and unity-gain frequency of 13.8 pF/cm and 61.5 GHz respectively. The 

effects of the gate length and the impurity doping level in the AlGaAs have 

been investigated. It has been found that a reduction in the gate length 

gives rise to a decrease of the threshold voltage. Such shift in the threshold 

voltage causes more current to flow in the channel under the same bias con­

ditions. An increase in the impurity doping level in the AlGaAs also affects 

the amount of current in the channel. The higher the doping level the higher 

is the density of free electrons in the device. Thus, a larger drain current is 

obtained. However such increase in drain current is expected to level off as 

the impurity doping level is further raised owing to incomplete ionization of 

these dopants and accumulation of electrons in the AlGaAs layer.

39
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The values of the transconductance and the unity-gain frequencies ob­

tained from these HEMT simulations are somewhat larger than reported 

values [11], [12],[33]. A number of factors may have contributed to these 

discrepancies. First, the assumed values for the electron concentration at 

the side boundries may be larger than the actual values giving rise to an 

overestimation of the channel current. Second, we have assumed an ideal 

situation for the source and drain contact behavior in which the electron 

concentration is at the equilibrium value under all biasing condition. This 

obviously introduces some error in the simulation and contributes to an in­

crease in the transconductance. An improvement on the modeling of the 

contacts requires further study on the the physics of the material. How­

ever, the HEMT model developed can be easily modified to include a more 

accurately described contact behavior. Thirdly, we have not been able to 

obtain the amount of electron heating as reported in [11], [33]. Fig. 4.29 

plots the typical average energy values obtained in our simulations. In fact, 

in most cases in which a sufficiently large gate voltage is applied the amount 

of electron heating is found to be negligible. This gives rise to extremely 

high values of mobility thoughout the device. Thus, the resulting current 

is overestimated. Further study on the hot electron problem is necessary in 

order to determine the role of electron heating in the operation of HEMT.

Future works on the numerical modeling of HEMT can be done in the fol­

lowing areas: First, electron conduction in the AlGaAs layer can be included 

with consideration of the tunneling current through the heterojunction and 

the leakage current through the gate Schottky barrier. The mobility model 

in the AlGaAs should take into account of the low-field mobility and the 

saturation velocity. Second, higher subbands in the quantum well can be
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simulated. However, a scheme for coupling the electron transport in multi­

ple subbands is not a trivial problem and may require elaborate theoretical 

analysis. Third, the role of interface states in HEMT can be studied.
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Device Gate 
Length 
(,fim)

Channel
Length
( H

AlGaAs
Thickness
ram

AlGaAs
Doping
(cm-3)

GaAs
Doping
(cm-3)

Temp.
(K)

I 0.5 1.5 600 5.0 • 1017 1014 300
II 0.7 1.7 600 5 .0 -1017 1014 300
III 1.0 2.0 600 5.0-1017 1014 300
IV 0.7 1.7 600 2.5 • 1017 10l4 300
V 0.7 1.7 600 7.5 • 1017 1014 300

Table 4.1: Devices Simulated
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Figure 1.1: Formation of the 2DEG in GaAs
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Figure 4.15: Longitudinal current density with a gate voltage of 0.7V and a 
drain voltage of 1.35V
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